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THE MEAN AND VARIANCE OF SKYWAVE RADAR SEA-ECHO POWER 
SPECTRA FOR DISCRETE IONOSPHERIC MULTIPATH

R.M. Jones
NOAA/ERL/Wave Propagation Laboratory 

Boulder, Colorado 80303

ABSTRACT

Previous results that give formulas for the mean and variance of 
skywave radar sea-echo Doppler spectra are transformed from a discrete 
representation to a general convolution form. While the discrete re­
presentation is general enough to represent arbitrary sea-echo spectra 
and arbitrary ionospheric distortion spectra, the derivation of the 
variance assumes that both spectra are composed of discrete spectral 
lines that are narrower than the spectral width of the window (or 
weighting function) applied to the measured time series and that the 
separation of the spectral lines is large compared with the spectral 
width of the window. The formulas are shown to be consistent with cor­
responding formulas derived from a continuous representation under the 
same physical assumptions. However, the formula for variance based 
on discrete spectra differs from that derived from a continuous re­
presentation under physical conditions that assume more continuous 
spectra for both the sea echo and the ionospheric distortion.

1. INTRODUCTION -- RELATION TO THE SKYWAVE SEA-STATE RADAR PROJECT

The skywave sea-state radar project is concerned with measuring sea-echo spec­
tra by ionospheric reflections. The advantage of skywave radar is that it in­
creases the coverage area. The disadvantage is that ionospheric motions distort 
the measured spectra.

When we process the measured spectra to reduce the ionospheric distortion, we 
need to know the expected mean and variance of the spectra (Georges et al., 1981).



Georges and Jones (1980) calculated these when the ionospheric distortion was re­
presented by discrete multipath. They pointed out that the discrete multipath re­
presentation was actually general enough to represent continuous (in the frequency 
domain) ionospheric distortion, but their formulas for the mean and variance of 
the power spectra are completely in terms of the discrete representation. The 
present report transforms their discrete representation formulas into a general 
convolution form.

2. SUMMARY

The ionosphere distorts skywave sea-echo spectra by convolution in the fre­
quency domain.

R(u>) = S(u>) * P(w) * W(w) (2.1)

where R is the measured Fourier spectrum (including a window or weighting function), 
S is the sea-echo Fourier spectrum, P is the ionospheric reflection Fourier spectrum 
(including both outgoing and returning reflections), and W is the transform of the 
window or weighting function. The above formula is valid for complex Fourier am­
plitudes, not power spectral density.

Only in the limit of an infinite ensemble average and under certain statistical 
assumptions is an analogous expression,

A A A A

<R((jo)> = <S(oj)> * <P(w)> * W(oj) , (2.2)

valid for power spectra. Here, ~ denotes power spectral density, and < > denotes 
an infinite ensemble average.

A A

Under the assumptions that the spectra <S(w)> and <P(w)> consist of discrete 
spectral lines that are narrower than the spectral width of W(oo), and that the

A

spectral lines are separated by more than the spectral width of W(oj), the 
variance of the measured power spectrum is shown to be approximately
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a2(R(a))) ~ (~)2 W2(to) * <S(w)>2 * o2(P(u)) +

+ (f1)2 W2(co) * <P(co)>2 * c2(S(u))) +

+ (f11)2 W2(w) * a2(S(co)) * a2(P(a))> +

+ <R(u))>2 - y  W2(oj) * <S(cj)>2 * <P(u>)>2 ( 1)2 (2.3)

where T is the sampling period,

a2(P(w)) = <(P(co) - <P((jJ)>)2> (2.4)

is the (unnormalized) variance of the ionospheric distortion power spectra,

a2 (S (w)) = <(S(u) - <S (oj)>)2> (2.5)

is the (unnormalized) variance of the sea-echo power spectra, and the convolution
 ^with the above variances is a frequency convolution that treats 2O (P(w)) and 

2 Aa (S(a))) as functions of a) (that is as spectra).

The first three terms in (2.3) are from the diagonal terms in the square of 
(2.1). The fourth and fifth terms in (2.3) are from the cross terms in the square 
of (2.1), and represent phase interference.

For the special case that the sea-echo spectra have unit normalized variance,

a2(S(w)) = <S(to)>2 , (2.6)

and where the ionospheric distortion spectra have unit normalized variance,

a2(P(u>)) = <P(u))>2 , (2.7)

the first, second, third, and fifth terms in (2.3) become equal, so that
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(2.8)

The second term in (2.8) is twice the fifth term in (2.3). All of the terms in 
(2.3) are positive, so the smallest the fifth term can be is zero. The sum of 
the cross terms (the sum of the fourth and fifth terms in (2.3)) are also posi-

2tive, so the largest the fifth terms in (2.3) can be is <R(u>)> . Thus, the
/\ O2second term in (2.8) varies from zero to 2<R(co)> , and consequently the nor­

malized variance from (2.8),

=i + 2 2
(2.9)

<R(w)>

varies from one to three.

Jones (1981) shows that the variance in (2.8) agrees with that calculated 
from a continuous representation under the same physical assumptions related to

A A

discrete spectra for <S(oo)> and <P(co)>. However, Jones (1981) gives a formula
A -A.

different from (2.8) when <S(oj)> and <P(u))> do not consist of discrete spectral 
lines.

3. THE CONVOLUTION MODEL FOR FOURIER AMPLITUDES

Georges and Jones (1980) show that the ionosphere distorts sea-echo spectra 
by a convolution in the frequency domain. Their equation (13) is

R(oj) = W(W) * S(W) * P(co) (3.1)

where R(to) is the measured Fourier spectrum (complex amplitudes, not power spectral 
density), W(w) is the transform of the window (or weighting function), S(w) is the 
Fourier spectrum of the sea-echo, and P(co) is the Fourier spectrum of the product 
of the outgoing and returning ionospheric reflection coefficients. P(w) is a direct 
measure of the ionospheric distortion.
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All of the quantities in the above formula are complex Fourier amplitudes, not 
power spectral density. Such a simple formula does not hold for power spectra ex­
cept on the average. Even then, there is a variance associated with use of the 
formula.

4. MEAN OF THE POWER SPECTRUM

Georges and Jones (1980) derive expressions for the mean and variance of the 
observed Doppler spectrum in the presence of discrete ionospheric multipath. As 
they point out, their representation of ionospheric multipath, although discrete, 
is general enough to represent arbitrary, linear, shift invariant (in the frequency 
domain) ionospheric distortion. However, the approximations they use restrict 
their calculations of variance to spectra of S and P that consist of discrete 
spectral lines narrower than the spectral width of the window W and separated by 
more than the width of W. Here I transform their results to a general convolution 
form.

We start with their equation (24), which gives the mean or expected amplitude 
for the measured Doppler spectrum.

(1)
k=l i=l

where I have changed notation, and use R(w) for their R"((o). The brackets < > de­
note an ideal infinite ensemble average over the same "sea state" and the same 
"ionospheric state". We assume that the realizations within such an ensemble belong 
to the same probability distribution. The probability distribution for R(oj) need
not be the same as that for A^ or for B^, however, and the probability distribu­
tion may depend on 00, k, and i.

R(co) is the measured Fourier spectrum.

K
S(oo) = £ A, 6 (to—to, ) (2)k=l k k
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is the Fourier spectrum for the backscatter of radar from the ocean for a discrete 
spectral representation. is complex to include phase.

I
P(lo) = l B. 6(w-0) ) (3)

i=l 1

is the Fourier spectrum of the ionospheric transmission response function. It 
gives the Doppler spectrum shift from the transmitted frequency due to ionospheric 
motions for two-way ionospheric transmission. is complex to include phase.
Each term in (3) is from one ionospheric path in the multipath propagation.

I-1
-iOJT —~—~L (4)

is the Fourier transform of the window w^ applied to the data.

i L+l (ic 2 f the time window is symmetric) (5a)

or (if the time window is DFT even [Harris, 1978]) (5b)

is the center of the time window. W(co) is real if the time window is symmetric. 
It is complex if the time window is DFT even (Harris, 1978). In either case, we 
assume the time window has the following symmetry.

WS, w2£ -a ' K
c

Notice that the window W(co) in the frequency domain is continuous even though the 
time window is discrete.

We now begin to translate (1) into a more general expression that does not 
depend either on the discrete nature of the ionospheric multipath or the assumption 
of a discrete spectrum for the backscatter from the ocean. In doing this, I try 
to make the result independent of the discrete nature of our sampling process, and 
independent as far as possible of the length of the sample. That is, when we 
calculate the FFT (fast Fourier transform) of the measured time series, we are 
sampling in the frequency domain. Because the results here should be essentially 
independent of the details of our sampling process, we will try to ignore, from 
here on, the discrete nature of the window in the time domain.

6



Thus, we will treat the window W(u)) as though it were the Fourier transform 

of a continuous window function w(t).

00

W(u) = / w(t) e dt (7)
—00

where

w(t) = ^ f W(w) elWt dw (8)
—00

gives the inverse transform. Likewise, we will treat our measured spectrum R(w) as 
though it were the Fourier transform of a continuous function r(t).

CO
R(w) = / r(t) e iU)t dt (9)

—00

where

r(t) = / R(w) e'*'10*' dw (10)
—00

gives the inverse transform.

In our measurements, we sample r(t) (which includes the window), and perform
an FFT to give sampled values of R(co) . We then calculate |R(a))| 2 to give some- 

thing proportional to power spectral density. To find out the proportionality 
factor, we start with Rayleigh's theorem (Bracewell, 1965, page 112)

00 oo
/ r(t) r*(t) dt = / R(to) R*(w) dw . (11)
—oo —oo

Because of the window and/or the finite length of our measuring period, the integral 
on the left has no contribution outside of the measuring period. Thus, we can re­
write (11) as

T/2 .. 00
/ r(t) r*(t) dt = / R(w) R*((jj) du) (12)
-T/2 -00

where T is the length of the measuring period. We assume that the measured echoes 
(without the window) are, on the average, independent of time. That is, they are
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statistically stationary. (We know this to be true for measuring periods that are 
not so short that the statistics are meaningless and for periods that are not so 
long that the statistics have changed.) Thus, if we vary the length of the mea­
suring period, but keep the shape of the window the same (but keep the length of 
the window proportional to the length of the measuring period), then the integral 
on the left of (12) will, on the average, be proportional to the length of the mea­
suring period T. To get a quantity that is independent of the length of the mea­
suring period, we divide both sides of (12) by T.

T/2 oo
k / r(t) r*(t) dt = -7^= / R(co) R*(lo) do) . (13)

-T/2 ZTri -oo

The quantity of the left of (13) is on the average independent of T, and therefore,
the quantity on the right must also be independent of T.

It is convenient to define the left side of (13) to be proportional to the
A

frequency integral of the power spectral density R(co) because that would lead to 
a measure of the power spectral density that is, on the average, independent of the 
length of the measuring period T. Thus, we define

, T/2 2 00 /s
- / r(t) r*(t) dt = (—-) / r(oj) deo (14)
1 -T/2 27T -00

where the numerical factor is for convenience later. Comparing (14) with (13) gives 

R(oj) = R(w) R*(w) = y- Nw)|2 (15)

for the power spectral density. Similar arguments allow us to define 

W(oj) = W(w) W*(w) = |W(to) |2 (16)

for the power spectral density for the window.

If we try to write the corresponding expression to (15) or (16) for S(w) from 
(2), we get products of delta functions. That clearly will not do, so we calculate 
the inverse Fourier transform of (2) to give
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h
Ki(t) =  £ k=i \

iw, t k (17)

We now consider

/ s(t) s*(t) dt . (18)

Unlike the left side of (11), (18) has no window. Thus, if the backscatter from 
the sea is, on the average, independent of time, then the integral in (18) diverges. 
On the average, the integral will be proportional to the length of the measuring 
interval T for finite measuring intervals. It is thus more appropriate to consider, 
instead of (18), a finite integration time and to divide by the integration period 
to get a quantity that is independent on the average of the integration period.
Thus, we define, in analogy to (14)

T/2 2 ~/ s (t) s*(t) dt = (^jjr) / S(w) dto (19)
-T/2

a quantity proportional to the frequency integral of the power spectral density S(to) 
Substituting (17) into (19) gives

1 T/2 2 K K * , 10tk-*k')+i<“k-“k')t.f .1 ,2 „
j ! <2J> I I I A* A dt = (—) J S (oj) dco (20)-T/2 k=l k'=l k k

where is the phase of A^.

The variables A^, <j> , and S(oj) are stochastic variables. We are interested in 
the infinite ensemble average of (20). We assume that the statistics of the A^ and 

are independent for different k. Thus, the infinite ensemble average of any 
term on the left of (20) for which k' / k will be zero. Thus

, K T/2 ^
<r £ < I A. | > / dt = / <S(co)> do) . (21)k=l K -T/2

This gives

K
l <1^1 > = / <S(w)> dw (22)k=l -oo

which clearly leads to

9



K
<S (oj) > = l <1^1 > 5(u)-ui ) (23)

k=l

for the power spectral density.

We can use similar arguments starting with (3) to give

<P(oi)> = l < | B | 2> 6(01-0) ) (24)
i=l

for the infinite ensemble average of the power spectral density P(ui) corresponding 
to the ionospheric transmission response function P (oi) .

Now we can calculate (1). It looks a little like a double convolution, except 
that the frequencies are not necessarily evenly spaced. Therefore, we start with

W(oi) * <S(oi)> E / W(oi-oi') <S(oi')> doi' . (25)

Substituting (16) and (23) into (25) and integrating over the delta function gives

K
W(oi) * <S(oi)> = l <|Ak|Z> |w(oi-oik)|Z . (26)

k=l

Continuing further, we have

A A A ^ A A A

W(oi) * <S(oi)> * <P(oi)> E / W(oi-oi') * <S(oi-o)')><P(oi' )>doi’ (27)

Substituting (26) and (24) into (27) and integrating over the delta function gives

/\ /n /n K Xw(co) * <S(ui)> * <P(oi)> = l l <|A |2><|b. |2>|w(a)-u.-co1 ) |2 . (28)
1 k=l i=l k 1 1 k

Now we notice that (28) is the same as (1) except for a factor. We multiply both 
sides of (1) by 2tt/T, and use (15) and (28) to give

<R(ui)> = W(oi) * <S(ui)> * <P(oo)> (29)

10



which is the result we want. (29) is equivalent to (1), although (29) is more 
general. We have not shown that (29) is true in general, but only that it is true 
when S(u) has the form given in (2) and P(w) has the form given in (3).

Equation (29) gives the mean of the observed Doppler spectrum. Now, we want 
to transform equation (27) of Georges and Jones (1980) to give the variance of the 
observed Doppler spectrum.

5. VARIANCE OF THE POWER SPECTRUM

The variance in the observed Doppler spectrum (equation (27) of Georges and 
Jones (1980)) is

o2 ( | R (to) | 2) = l l |W.k|4 (<|Ak|4><|Bi|4> - <|Ak|2>2<|B1|2>2} 
k=l i=l

+ l l <|Ak|2><|Ak,|2><|Bi|2><|Bi,|2>lWik|2|Wi,k, (30)
k/k' i^i'

where

W.. = W(to—(a. —OJ ) (31)lk l k

and I have replaced

2<|Ak|2>2 by <|Ak|4> (32)

and dropped the incorrect factor of 1/2 from the second term in equation (27) of 
Georges and Jones (1980). The first term of (30) is the same as the first term 
of Georges and Jones' equation (26). Their equation (26) is more general than 
their equation (27) because the latter assumes a unit normalized variance for A^ 
Thus, (30) allows arbitrary variance for both A^^ and Bk>

Georges and Jones point out that the first term in (30) arises from the 
diagonal terms in the square of the convolution in (3.1), and that the second 
term in (30) arises from cross terms (or phase interference terms) in the square 
of that convolution.

11



We can rewrite (30) by using

<|Ak|4>-<|Alc|2>2 + a2(|Ak|2) (33)

and

<IB±14> = <|b±|2>2 + a2 c1B±|2) . (34)

We can also rewrite the double sum in the second term of (30) as

K K K I
l l - l l ~ l l ~ l l (35)

k,k' i,i’ k'=k=l i/i' k^k' i'=i=l k'=k=l i'=i=l

However the middle two terms in (35) will be small because W(oo) is small except
for 03 small, and if the frequencies to^ and co^, are separated by more than 2tt/T,
(and similarly for Uh and u)^,) then there will be no values of i, i', k, k' in
those two terms where both W., and W.,. , will be significant. Georges and Joneslk x k
(1980) used similar arguments to derive their equation (27).

Thus, we may rewrite (30) as

02(|k(u)|2) - f I |wlk|4 [<|aJ2>2 02(|B.|2) +

k=l i=l

+ <|b.|2>2 a2(|Ak|2) + o2(|Ak|2) o2(|b.|2)] +

+ I 
k,k' i,i

l <lAk|2><l\.|2
'

><lBi|2><lBi. '> +

K
- 

k=l
I 
 

l
I

(36)
 i=l

We notice that the sum over i' and k' in the next to last term of (36) is independent 
of the sum over i and k. Thus, we can change the multiple sum into a product. Each 
factor in the product is the same as (1). Thus, we can rewrite (36) as

12



K I
(|R(w)|Z) = l l |WlkP [<|Ak|2>2 a2C|B.p) +

k=l i=l

+ <|b.|2>2 o2(|Ak|z) + a^d^p) az(|Bip)] +

K I 2 2 2.2+ <|R(a3)|2>2 - l l |wlkp <|\P>Z <|b1P> (37)
k=l i=l

The first term in (37) arises from the diagonal terms in the square of (3.1).
The last two terms in (37) arise from the cross terms in the square of (3.1).
To continue transforming (37), we need to derive expressions analogous to (23) and 
(24) for some of the quantities in (37). We start with < | A, | > . We expect that

/N 2 ^
this will somehow be proportional to <S(U))> .

We start with the transform of <S(w)>. Call this

s(t) E h / <s(w)> ^ dw (38)

Substituting (23) into (37) gives 

- ~ K
s(t) = 2rf E <l\l > 6<w_ajk>e dw • (39)

_oo k=l

Integrating over the delta functions gives

K
s(t) = h/7r  k=i^  <l\l2>e

ICO, tk (40)
k

The complex conjugate of (40) is 

~ , K 2 -^k^
s*(t) = I <l\- (41)2tt c'-l

Rayleigh’s theorem (Bracewell, 1965, page 112) is

00 ~ 1 00 ^ „
/ s(t) s*(t) dt = I <S(co)> do) . (42)

Substituting (40) and (41) into (42) gives

13



2 K K «> i (a), -a), ,) t n i-! 00 <̂k k dt- SM>‘«n> dw (43)
k=l k =1

The integral on the left of (43) is proportional to a Dirac delta function 6(w^-0)^,). 
It is not particularly useful to evaluate the integral as such because of the double 
sum, but it does show that only the k'=k terms in the sum on the left contribute. 
Thus, we can neglect the k'#t terms in (43) to give

i\.

l
 w A

 <|aJ2>2 (44) / dt = / <S (to) >2 dw . k=l k

The integral on the left diverges as expected, but if we consider a finite interval 
T, and divide by T, we get a quantity that is independent of the interval T.

K
l 2 2 T/2<1 i / ' dt = |- / <S(u>) dw (45)

k=l -T/2
/n 2 ^ 2

Clearly, <S(w)> diverges as T approaches infinity, whereas <S(w)> /T is roughly 
independent of T. Thus, for measurements over a finite time interval T, we can
consider

~ 2 
<S(w)> (46)T

to be an estimate of

A 2 lim <S(w)> (47)T-*» T

where T in (46) and (45) is the actual length of our measurement interval in our 
experiment.

From (45), we have

l <l\|2>2 <$(w-wk) = f1 <S(w)>2 . (48)

This is the expression we need to use in (37). Similarly, we have

l < | B. |2>2 6 (to—to ) = ~ <P(w)>2 (49)
i=l 1 1

14



as the corresponding expression for the ionospheric transmission response function

P(w).

O Now we must find corresponding expressions for the variances  2 (|A^| 2 ) and
(||2) in (37). We suspect that

a2(S(w)) = <S (to) 2> - <S (to) >2 (51)

is somehow proportional to

f O2^!2) - f «|a/> - <l\|2>2) • <52)
k— 1 k 1

Equation (48) already gives us an expression for the second term in (51). To cal-
A

culate the first term, we need an expression for S(u)). Equation (23) suggests that 
we might get the correct expression by simply removing the "expectation value 
brackets" from (23). To give further evidence for this, we consider using equations 
like (15) or (16) for S(uj). That is, we consider

? 2tt 1 S (oj) | 2 (53)S(w) T

Substituting (2) into (53) gives

K K? 2tt lS(w) = l \ 6 (o)-ook,) (54)
k=l k

The product of delta functions in (54) shows that only the k'=k terms in the double 
sum contribute. Thus, (54) becomes

K2tt I M 6 2 (co—cok) (55)S(w) T k=l

The square of the delta function in (55) makes it useless in calculations, but it 
at least shows that the k'#c terms do not contribute to S (u)). Thus, it seems rea­
sonable to remove the "expectation value brackets" from (23) to give

K
S(w) l \\\ 2 6(w-(\) (56)

k=l

15



Equation (56) has the same form as (2), that is, a sum of delta functions. We 
now want the expectation value of the square of (56) just as we earlier wanted the 
expectation value of the square of (2). To see that more clearly, we can consider 
that (53) is a correct equation, but simply that the resulting expression (55) is 
not usable. Thus, from (53) and (23), we have

<|S(w)|2> = l <|Ak|2> 6(0)-0)k) (57)
k=l

which we can interpret as the expectation value of the square of (2).

The analogous formula for (56) is

/\ K
<S(co)2>=!^ I <|aJ4> 6(oj-wk) . (58)

k=l

Now we have enough information to get the proportionality factor between (51) and 
(52). Substituting (58) and (48) into (51) gives

/\ K
a2(S(u))) = l (<IAk|4> - <|Ak|2>2) 6(oo-a)k) . (59)

k=l

Comparing (59) with (52) gives

K
c/(S(a))) = ^ l ^(IaJ2) 6(to-co ) . (60)

k=l

Similarly,

;(P(a0) = I? 2 ^ObJ2) 6(a)-to.) . (61)
i=l

From (16), we have

W(to)2 = (f1) | W (to) | 4 (62)

The double sums in (37) are of the same form as that in Cl). Thus, we can 
convert that double sum to a double convolution in the same way we did in (28). 
Thus, using (48), (49), (60), (61), and (62) in (37), we get
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ct2(IR(oo) 12) = W2(U)) * <S(W)>2 * a2(P(go)) +

+ W2(oj) * <P(oo)>2 * a2(S(aO) +

+ W2(a3) * a2(S(to)) * a2 (P ((jj) ) +

+ <|r(oj)|2>2 - W2(u>) * <S(w)>2 * <P(a>)>2 . (63)

We also have

a2 (| R(co) | 2) = <|R(w)|4> - < | R(oj) |2>2 (64)

and

a2(R(oj)) = <(R(co))2> - <R((d)>2 . (65)

Equation (15) gives

<r(u))> = y~ <lR((jJ) |2> • (66)

The square of (15) gives

2<(R(oj))2> = (I1) <|R(w)|4> . (67)

From (64) through (67), we get

2a2(r(oo)) = (I11) a2(|R(co) |2) . (68)

Using (68) and (66) in (63) gives
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+ (f1) W2(U)) * <P(w)>2 * a2(S(uO) +

2 ^ ^
+ (|^) W2(oo) * a2(S(co)) * a2(P(w)) +

^ 2 2 /v 2 ^ 2 + <R(co)> - (|^) W (io) * <S(U)> * <P(to)> . (69)

Equation (69) is the approximate equivalent of equation (27) of Georges and 

Jones (1980). This report does not constitute a derivation of its validity in 
general, but only for the form of S (to) and P(w) given in (2) and (3). The first 
three terms in (69) arise from the diagonal terms in the square of (3.1). The 

last two terms arise from the cross terms in the square of (3.1).

6. COMPARISON WITH CALCULATIONS BASED ON A CONTINUOUS

REPRESENTATION OF THE SPECTRA

Jones (1981) calculates the mean and variance of skywave radar sea-echo power 

spectra starting from a continuous representation of all of the spectra involved. 

His results are more general than those presented here in terms of the spectral 

characteristics, but less general in terms of the statistical properties of the 

spectra. It is obviously a useful check of consistency to compare the results 

for those special cases where the two methods should agree.

For the mean of the power spectrum, Jones (1981) gets the same result as in 

(29) here. To compare variance, we must consider special cases.

Jones' (1981) results apply only when the spectra for S(co) and P(oo) have 

normalized unit variance, that is, when

a2(S(co)) = <S(co)>2 (70)

and
a2 (P (co)) = <P(w)>2 (71)
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Substituting (70) and (71) into (69) gives
02(R(oo)) = <R(oo)>2 + 2(|^)2 W2(w) * <S(w)>2 * <P(U))>2 . (72)

We must compare (72) with the variance calculated by Jones (1981).

For a Gaussian-shaped window 

2
exp (-----)

W(w) = ------— (73)
a/Tn

that has the power spectrum

exp(- co2/a2)W(a)) 2 lw(oo) | 2 (74)_ 2 T a

Jones (1981) gets

a2(R(w)) = <R((jo) >2 + 4-rra2 W2(w) * <S (co)>2 * <P (co)>2 , (75)w w

where

~ 0 1 / O A A<S (co)> 2 - /- / exp(-2 \) <S(co-6)><S(uH-6)> d6 (76)w a TT ^-oo a

and

<P (w)>2 2 i / exp (-2 \) <P (w-A) ><P (aH-A) > dA . (77)w a n J r 2-oo a

The Blackman-Harris window (Harris, 1978) that we use has a shape near the peak 
that is very similar to a Gaussian. Thus, the case of a Gaussian-shaped window 
has practical applications.

If we substitute (23) into (76), we get

K K<S (w)>2 = ~ /~ / exp(-26^/a2, /2s) £ l <lAk|^> 6(oj-6-oi^)
-oo k=l k'=l

<|A^., | 2> 6(oH-6-co^,) d6 . (78)
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The product of the two delta functions in (78) is equivalent to 

6 (to-6(26+to^-co^,) 

which in turn is equivalent to

(80)(26+ tok-tok,)6 (to -

The parameter a in (73) is the spectral width of the window W(w). That the spectral 
lines in S(to) are separated by more than the spectral width of W(to) means that

|tok “ wk» I >> a for k ^ k' .

Because the value of a delta function is zero unless the argument is zero, (81) 

requires that the second delta function in (80) be zero unless

(82)2|6| » a for k f k'

However, the exponential in (78) will be small under the conditions of (82), and 
we may neglect the contribution to the integral under those conditions. Thus, 
the terms in the double sum in (78) for which k + k' are negligible. Thus, we 

may replace (78) by

<S 
00

(0))>2 = ± /T l <|aJ2>2 6(w-to ) / exp (-26 / a2) 6(26) d6 . (83)
w a TT k=]^ —oo

Integrating (83) gives

(84)<S (to)>2 = — w a/2? k=ll <l\|2>2 <5(to-to ) . k

Substituting (48) into (84) gives

_1_ _  2<S (to)>2 tt (85)<S(to)>w a/2n T

Similar considerations give
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<P~ 2 1  (w)> = ~L— Y1 (86) <p(w)>2
W a/2?

Substituting (85) and (86) into (75) gives

a2(R(o))) = <R(u)>2 + 2(|IL)2 W2(co) * <S(u)>2 * <P(w)>2 , (87)

in agreement with (72). Thus, the discrete representation and the continuous re­
presentation give the same results for variance under the same physical assump­
tions (that is, for effectively discrete spectra).

A A

However, Jones (1981) shows that when the spectral widths of S(oj) and P(w)
A

are larger (rather than smaller) than the spectral width of W(oj) (as our mea­
surements show them to be (Jones et al., 1981)), (76) and (77) reduce to

<S (io)>2 = <S(oo)> (88)
w

and

<P (co)>2 = <P(w)>2 . (89)
w

Substituting (88) and (89) into (75) gives

a2 (R(co)) = <R(io)>2 + 4Tra2 W2 (to) * <S(w)>2 * <P(w)>2 . (90)

Our measurements (Jones et al., 1981) show that the variance in (90) based on 
broad spectra for S(w) and P(oo) is probably more realistic than the variance in 
(72) or (87) based on discrete spectra.
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APPENDIX A. DEFINITIONS

s(t) is the time series for backscatter from the sea.

S (to) is the Fourier transform of s(t).
/'s‘ 2TT 2S(co) = — 1S (to) | is the power spectrum corresponding to S (to) , where 

T is the length of the measured time series s(t).

<S (co)> is the infinite ensemble average of S(to). The brackets < > denote an 
ideal infinite ensemble average over the same "sea state" and the same
"ionospheric state." We assume that the realizations within such an en­

semble belong to the same probability distribution.

w(t) is a window that we apply to the measured time series before performing 
a Fourier transform.

W(u)) is the Fourier transform of w(t) . It is complex because w(t) is not symmetric.
a 2tt 2W(oo) = |W(U) I is the power spectrum corresponding to W(co).

p(t) is the time series corresponding to two-way ionospheric transmission between 
the radar and some fixed spot (or patch) on the ground or ocean.

P(co) is the Fourier transform of p(t). It includes Doppler spreading from 
ionospheric multipath. It does not include Doppler spreading from 
movement of the scattering point on the ground or ocean. If the iono­
sphere were a perfect reflector, P would be a delta function.

A 2tt 2P(co) = — | P (to) [ is the power spectrum corresponding to P(io).

<P(co)> is the infinite ensemble average of P(o)).

r(t) = w(t)s(t)p(t) is the measured skywave sea-echo.
+R(go) = W(oo)*S(oo)*P(co) is the Fourier transform of r(t). 

* denotes convolution.
2 • 11 ^= ^ |R(o>)r is the power spectrum corresponding to R(w).

<R(o))> is the infinite ensemble average of R(oj) .
2 ~ A

a (R(uj)) is the variance of R(oj).

t Our variable R(co) was called R"(oo) by Georges and Jones (1980).
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APPENDIX B. ASSUMPTIONS

1. The convolution model (Georges and Jones, 1980)

R(u>) = W(w) * S(co) * P(w) . (B.l)

2. S (co) has zero mean.

<S(U))> = 0 . (B.2)

This is supported by theory (Weber and Barrick, 1977; Barrick and Weber, 1977) and 
measurement (Barrick and Snider, 1977).

3. S(co) is uncorrelated in frequency. That is

A A

<S(oj1) S*(w2)> = <8(0^)> 6(w1 - co2) = <S(co2)> 6(o)1 - oo2) (B.3)
also

<S(a>1) S(o)2)> = <S*((D1) S*(w2)> = 0 .

This is only an approximation. It is the continuous frequency representation of 
a corresponding expression

<Ak V> - <l\l2> \ k-

(B.4)
<Ak Ak'> ■ < C'-' 0

involving Kronecker deltas used by Weber and Barrick (1977). While (B.3) indicates 
that adjacent frequencies are uncorrelated no matter how close they are (in seeming 
contradiction to what we measure), convolution with a window gives a correlation 
frequency of about one or two FFT frequency bins, in agreement with experiment.
(We never measure S(co); even in the absence of ionospheric distortion, we measure 
W(a))*S(co).)
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4. A continuous function of frequency is a more realistic representation for 
P(to) than is discrete multipath. Our measurements in October, 1980 (Jones et al., 
1981) show this. Although the discrete multipath representation of Georges and 
Jones (1980) is general enough to represent continuous Doppler spreading, a con­
tinuous representation is more convenient to get accurate results.

5. P(w) has zero mean. That is

<P(co)> = 0 . (B.5)

We assume that analysis of the October 1980 measurements will confirm this.

6. P(oj) is uncorrelated in frequency. That is

<P(co1) P*(oj2)> = <P(a>1)> 6(w1 - <jo2) = <P(w2)> 6(a)1 - w2) (B.6)
also

<P(a>1) P(w2)> = <P*(u> ) P*(oo2)> = 0 .

Similar comments apply here as they did to (B.3). We hope that analysis of our 
October 1980 measurements will confirm that the cross correlation of P(co)*W(u)) is 
consistent with (B.6). The expressions corresponding to (B.6) for the discrete 
representation are

<B. B . . > < B. >6. . ,l l 1 l1 li
(B. 7)

•k *
<B. B..> <B. B.,> = 0l l l l

7. S(co) and P(to) are uncorrelated. That is

<f(S(u)) g(P(u>))> = <f(S(co))><g(P (co))> (B. 8)

where f and g are arbitrary functions. The following special case,

<S(to) P(co)> = <S(w) P*(co)> = <S*(u) P(co)> = 0, (B.9)

follows from (B.2) and (B.5). This is an assumption. We can see no reason why 
they should be correlated.

25



8. We assume that only R(uj) has useful Information, and that the phase of R(w)
is randomly distributed and thus has no useful information. This is an assumption. 
We do not know whether our measurements are consistent with this assumption.

A A

9. The spectra <S(u))> and <P(w)> consist of discrete spectral lines whose width 
is small compared with the spectral width of the window W(io), and whose separation 
is large compared with the spectral width of the window W(w).
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