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ABSTRACT

The quasi-biennial oscillation (QBO) is a descending pattern of alternating easterly and westerly winds in

the tropical stratosphere. Upwelling is generally understood to counteract the descent of the QBO. The

upwelling hypothesis holds that where upwelling exceeds the intrinsic descent rate of the QBO, the QBO

cannot descend and a buffer zone forms. Descent-ratemodels of theQBO,which represent a highly simplified

evolution of a QBO wind contour, support the upwelling hypothesis. Here, we show that the upwelling hy-

pothesis and descent-rate models only correctly describe buffer zone formation in the absence of wave dis-

sipation below critical levels. When there is wave dissipation below critical levels, the 1D QBO response to

upwelling can be either to 1) reform below the upwelling, 2) undergo period-lengthening collapse, or 3)

expand a preexisting buffer zone. The response depends on the location of the upwelling and the lower

boundary condition. Mean-flow damping always forms a buffer zone. A previous study of reanalyses showed

that there is mean-flow damping in the buffer zone due to horizontal momentum flux divergence. Therefore,

the 1D model implicates lateral terms in buffer zone formation that it cannot self-consistently include.

1. Introduction

The quasi-biennial oscillation (QBO) is a descending

pattern of alternating easterly and westerly winds in

the tropical stratosphere with an average period of

28 months. The QBO is driven by interactions between

the mean flow and a wide spectrum of vertically prop-

agating waves, from planetary-scale Kelvin and mixed

Rossby–gravity waves to small-scale gravity waves.

The classical theory of the QBO is based on a one-

dimensional (1D) model of the tropical stratosphere

with a source of parameterized waves at the tropopause

(Holton and Lindzen 1972). The 1Dmodels of the QBO

have yielded insights into its descent mechanism and

period (Plumb 1977; Dunkerton 1981), and continue to

guide interpretations of QBO dynamics in general cir-

culation models (GCMs) (e.g., Hamilton et al. 1999;

Kawatani et al. 2011; Anstey et al. 2016).

A key application of 1D models is to study interac-

tions between upwelling and the QBO. Upwelling is

understood to resist the descent of the QBO. Early

accounts of the resistive effects of tropical mean up-

welling on the QBO led to upward revisions of the wave

stress required to drive the QBO (Gray and Pyle 1989;

McIntyre 1994; Dunkerton 1997). Variability in up-

welling also drives variability in the QBO descent rate.

The annual cycle in upwelling has been linked to ob-

served weak phase-locking of the QBO with the annual

cycle (Hampson and Haynes 2004; Rajendran et al.

2016). In this paper, we consider how upwelling impacts

the QBO without considering the consequences of

anomalous upwelling induced by the secondary circu-

lation of the QBO.

This paper revisits the problem of whether and how

climatological upwelling can form a buffer zone. A

buffer zone is a region where the QBOwould exist were

it not for dynamical interference by processes unrelated

to the QBO (Match and Fueglistaler 2019). Saravanan

(1990) showed that a bottom-heavy upwelling profile

representing the top of the Hadley cell appears to

form a buffer zone between the lower extent of the

QBO and the wave source. The buffer zone filters the

waves that propagate into the QBO region (Saravanan

1990). The buffer zone arguably plays an important roleCorresponding author: Aaron Match, amatch@princeton.edu
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in dynamical linkages between the QBO and tropical

weather, such as the proposed connection between the

QBO and tropical convection associated with the

Madden–Julian oscillation (Yoo and Son 2016; Martin

et al. 2019).

Saravanan (1990) hypothesized that the top of the

buffer zone forms where upwelling balances the wave-

driven descent rate of the QBO. Saravanan’s upwelling

hypothesis for buffer zone formation continues to guide

understanding of the basic state of the buffer zone

and interpretations of its trends in response to global

warming (e.g., Kawatani et al. 2011; Kawatani and

Hamilton 2013; Richter et al. 2020). Zero-dimensional

descent-rate models of the QBO, which have added a

lower rung to the hierarchy of QBOmodels, also support

the upwelling hypothesis. Descent-rate models make re-

strictive assumptions about the QBO vertical structure in

order to represent the descent of QBO features locally.

Both the upwelling hypothesis and descent-rate models

treat QBO features as objects that are advected by the

local wave drag and upwelling.

We will show that the advective perspective of QBO

descent only strictly applies when there is no wave dissi-

pation below critical layers, as in the wave drag formu-

lation of Lindzen and Holton (1968, hereafter LH68). If

there is wave drag below critical layers, as in the wave

drag formulation of Plumb (1977, hereafter P77), then the

QBO response to upwelling cannot be described by ad-

vective arguments. When advective arguments fail, the

QBO response to upwelling depends on the location of

the upwelling and the lower boundary condition. Figure 1

shows the 1D QBO response to upwelling under various

model configurations. [The 1D model is described in the

appendix including the 1D model equation, Eq. (A1),

with parameters in Table 1.] Figure 1c shows the canon-

ical buffer zone in experiments with upwelling at the

bottom of a domain and a zero-wind lower boundary

condition, as in Saravanan (1990).Upwellinghas previously

been understood to form a buffer zone in this experiment,

but we argue that upwelling is instead expanding the pre-

existing buffer zone that is imposed by the zero-wind lower

boundary condition. Depending on the location of the

upwelling and the lower boundary condition, the QBO

can also reform below the upwelling (Fig. 1d) or un-

dergo period-lengthening collapse (Fig. 1e).

In this paper, we introduce the advective framework

for the response of QBO features to upwelling, as ex-

emplified by the upwelling hypothesis for buffer zone

formation, descent-rate models, and the LH68 wave drag

(section 2). Then, we describe the nonlocal dynamics that

occur when there is wave dissipation below critical layers,

as in the P77 wave drag (section 3). When there is wave

dissipation below critical levels, the QBO will be shown

to respond to upwelling by either 1) reforming below the

upwelling, 2) undergoing period-lengthening collapse, or

3) expanding the buffer zone.We explain the dynamics of

each of these responses and themodel configurations that

lead to each one. The upwelling hypothesis for buffer

zone formation will be shown to not be robust to model

configuration choices. On the other hand, mean-flow

damping robustly forms a buffer zone (section 4). These

results harmonize with Match and Fueglistaler (2019),

which implicated mean-flow damping by horizontal mo-

mentum flux divergence in forming the buffer zone.

FIG. 1. The response of the 1D model of the QBO (described in the appendix) to localized upwelling perturbations using the P77 wave

drag formulation. (a) Vertical structure of perturbations normalized bymaximum value. (b) Control simulation (i.e., with zero upwelling)

and zero-wind lower boundary condition. (c) With bottom upwelling and a zero-wind lower boundary condition, there is an expanded

buffer zone as in Saravanan (1990). (d) With interior upwelling and a zero-wind lower boundary condition, the QBO reforms below the

upwelling. (e) With bottom upwelling and a no-shear lower boundary condition, the QBO undergoes period-lengthening collapse.

The upwelling is Gaussian with a decay scale of 2 km and a peak magnitude of 2mm s21, and it is centered in the interior (27 km) or at the

bottom (17 km).

1956 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 08:14 PM UTC



2. The QBO response to upwelling without
background wave dissipation

Saravanan (1990) is the first paper to explicitly in-

vestigate the dynamics of the QBO buffer zone.

Saravanan argued that a buffer zone forms in a 1D

model of the QBO when there is an exponentially

decreasing upwelling profile above the model’s zero-

wind lower boundary condition. We reproduce the

upwelling buffer zone (using a Gaussian upwelling

profile) in Fig. 1c. Saravanan argued that the buffer

zone is formed by upwelling, which we call the up-

welling hypothesis. The upwelling hypothesis con-

tinues to prevail today. The upwelling hypothesis can

be represented by the following implicit equation

(Saravanan 1990, p. 2472):

w*(z
b
)’ f (u) , (1)

which states that the residual upwelling w* at the top of

the buffer zone balances the wave-driven descent rate

of the QBO f as a function of the wind at the top of

the buffer zone. The upwelling hypothesis fits into a

common perspective that QBO features are advected

downward by the wave drag. The advective perspective

of theQBOwave drag culminates in descent-rate models

of the QBO (introduced in this section). Yet, wave drag

is advective only when it is proportional to the vertical

zonal wind shear. One wave drag formulation propor-

tional to vertical shear is LH68, which assumes a con-

tinuous spectrum of waves dissipating only at critical

levels (Campbell and Shepherd 2005a). In the next

section, we show that when the wave drag is not ad-

vective (which occurs when the assumptions of LH68 are

relaxed), the predictions from the upwelling hypothesis

break down.

The LH68 wave drag assumes a continuous spectrum

of vertically propagating waves that only dissipate at

critical levels, where u5 c. Each infinitesimal band of

phase speed dc contains infinitesimal wave momentum

flux f(c)dc. (The wave momentum flux density with

respect to phase speed fwill be shown to be proportional

to the wave-driven descent rate f in the LH68 wave drag

formulation, which is why the symbol f is used for both).

The wave momentum flux F that diverges in a vertical

layer [z, z1Dz] that has winds in the range [u, u1Du] is
proportional to the wave momentum flux density in

phase speed space integrated across all critical levels in

that layer (assuming there is no wave dissipation below):

F(z)2F(z1Dz)5
Ð u1Du

u
f (u) du. Assuming that thewave

momentum flux density is constant (i.e., independent of

phase speed) and taking limits, the LH68wave dragGLH68

equals the following:

G
LH68

52
1

r
0

dF

dz
5

f

r
0

›u

›z
, (2)

with base-state density r0 5 rL exp[2(z 2 zL)/Hr],

density-scale height Hr, and the lower boundary indi-

cated by subscript L. The wave drag is proportional to

the vertical shear, so it operates as a vertical advection

with speed f/r0. Note that the LH68 wave drag advects

zonal momentum, but not other tracers.

The advective motion of QBO features in the LH68

wave drag suggests that a descent-rate model could be

produced that tracks a particular QBO feature as it

descends through the stratosphere subject to the effects

of upwelling and wave drag. A descent-rate equation

is constructed by dividing the prognostic equation for

zonal wind ›u/›t by minus the vertical shear ›u/›z

(Dunkerton 1991; Dunkerton and Delisi 1997; Dunkerton

2000; Rajendran et al. 2018). To represent QBO processes

locally, restrictive assumptions must be made about the

structure of the wind away from the feature of interest.

A descent-rate equation is transformed into a descent-

rate model by implementing heuristic representations of

stalling, annihilation, and reformation aloft of each

QBO shear zone.

We now briefly construct a descent-rate model for

the LH68 wave drag parameterization that demonstrates

how descent-rate models support the upwelling hy-

pothesis for buffer zone formation. Consider a simplified

version of the full 1D QBO model [Eq. (A1)]:

›u

›t
5G1

1

r
0

›

›z

�
r
0
n
›u

›z

�
2w*

›u

›z
. (3)

The terms on the right-hand side are wave drag, ver-

tical diffusion, and upwelling, with time t, height z, zonal

wind u, wave drag resulting from the dissipation of

vertically propagating waves in the QBO winds G, ver-

tical diffusivity n, and climatological residual vertical

velocity w*. [Note that Eq. (3) matches the full 1D

model, Eq. (A1), except without mean-flow damping or

prescribed acceleration.]

TABLE 1. Parameter values for 1D model simulations.

Parameter Description Value

rL Density at zL 1 kgm21

Hr Density scale height 7 km

n Diffusivity 0.3m2 s21

FL Wave momentum flux (P77) 0.01m2 s22

N Buoyancy frequency (P77) 2.16 3 1022 s21

m Wave dissipation rate (P77) 1026 s21

k Wavenumber (P77) 2p/40 000 km21

c Wave phase speed (P77) 30m s21

f Wave momentum flux

density (LH68)

2 3 1024 kg s21
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The following LH68 descent-rate equation for the

zero-wind level z0 can be constructed by assuming 1)

constant density, 2) a no-shear lower boundary condi-

tion, 3) negligible diffusion near the zero-wind level,1

and 4) that the wave drag at z0 is not dissipated by

critical levels below z0:

dz
0

dt
5w*(z

0
)2 f . (4)

The descent-rate equation suggests that the zero wind

line is advected by the summed effects of upwelling and

wave drag. Upwelling always appears alone in descent-

rate equations (because they are derived by divid-

ing vertical advection 2w*uz by minus the vertical

shear 2uz). Importantly, the descent rate due to the

LH68 wave drag only appears so simply because the

LH68 wave drag is proportional to the vertical shear

[Eq. (2)]. In section 3, we analyze a wave drag that

does not act like advection, and therefore cannot be

emulated by a descent-rate model.

The descent-rate model tracks two zero-wind levels:

one with positive vertical shear and one with negative

vertical shear. Descent-rate models assume that these

zero-wind levels move continuously when in the interior

of the domain. Only at predetermined locations are

these zero-wind levels assumed to be annihilated and

reformed. In the LH68 descent-rate model, the zero-

wind level is assumed to descend until it reaches z5 0, at

which level it annihilates the previously stalled shear

zone, then stalls. When a shear zone is annihilated, it

is assumed to reform immediately at the top of the

domain.2

The LH68 descent-rate model suggests that the zero-

wind level moves downward if the upwelling w* is less

than the wave-driven descent rate f. If the upwelling

balances the wave-driven descent rate, then the zero-

wind level stalls indefinitely. If the upwelling exceeds the

wave-driven descent rate, then QBO features ascend.

Figure 2 shows the results from integrating the LH68

descent-rate model in a control experiment with no

upwelling versus in a perturbation experiment with

large, localized upwelling centered in the middle of the

domain. With large interior upwelling, the QBO stalls

indefinitely at the level where upwelling cancels the

wave-driven descent (Fig. 2b), consistent with the up-

welling hypothesis [Eq. (1)].

Using the LH68 wave drag formulation, upwelling can

form a buffer zone in the 1D model just as predicted by

the upwelling hypothesis and the descent-rate model.

Figure 3c shows the buffer zone formed by upwelling

using the LH68 wave drag formulation. The model

parameters are described in Table 1. The top of the

buffer zone matches the prediction from the upwelling

hypothesis.

In the LH68wave drag, the descent rate of shear zones

reduces to a simple balance between wave-driven de-

scent rate and upwelling, owing to the advective form of

the wave drag. Descent-rate models assume that wave

drag leads only to continuousmotion ofQBO features in

the interior of the domain, which leads these models

to corroborate the upwelling hypothesis. The next

section shows that if waves dissipate before reaching

their first critical level, then wave drag can act differ-

ently than downward advection, and QBO features can

move discontinuously.

3. The QBO response to upwelling with
background wave dissipation

Hypotheses about the QBO response to upwelling

that do not account for dissipation below critical levels

fail to describe QBO dynamics when there is wave dis-

sipation below critical levels. We analyze QBO re-

sponses to upwelling using the canonical P77 wave drag

FIG. 2. Descent-rate model with LH68 wave drag formulation.

(a) Control experiment with zero upwelling. The descent-rate

model evolves the location of the zero-wind line with uz , 0

(blue) and the zero-wind line with uz . 0 (red). (b) Vertical

structure of upwelling perturbation, which is Gaussian with an

amplitude of 3mm s21 centered at 27 kmwith a decay scale of 2 km.

(c) Experiment with upwelling imposed from (b). The zero-wind

level stalls indefinitely where upwelling balances the wave-driven

descent rate. (d) Zonal wind at the lower boundary in control ex-

periment. (e) Zonal wind at the lower boundary in the upwelling

experiment. In both cases, the wave-driven descent rate f5 0.6mms21

and the background density in constant. The model is integrated

using the first-order Euler method.

1 Diffusion vanishes at z0 if the wind is an odd function of height

in the vicinity of z0 [i.e., u(z0 1dz)52u(z0 2 dz)].
2 Because the LH68 shear zone cannot initiate a shear zone

without contributions from external accelerations, which are typi-

cally assumed to come in the form of a semiannual oscillation, the

assumption that a new shear zone forms immediately is tantamount

to assuming that there is an externally forced oscillation at the top

of the domain with a much higher frequency than that of the QBO.

1958 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 08:14 PM UTC



formulation, which is arguably the simplest wave drag

formulation with wave dissipation below critical levels.

a. P77 wave drag

The P77 wave drag assumes two discrete vertically

propagating waves of equal and opposite phase speed

that experience constant radiative or mechanical dis-

sipation. As the waves dissipate, they accelerate the

wind toward their phase speed. The vertical group

velocity of the waves depends nonlinearly on the dif-

ference between the phase speed of the wave and the

mean flow. If the vertical group velocity is small, then

the wave moves slowly and a large amount of dissi-

pation occurs over a shallow vertical extent. P77

waves are assumed to have the dispersion relation of

gravity waves or Kelvin waves, which relates the

vertical group velocity of the wave to the background

wind.3 For gravity waves or Kelvin waves, the vertical

group velocity is cgz 5 k(u 2 cn)
2/N, with buoyancy

frequency N, wavenumber k, and phase speed c for

discrete wave n. The P77 parameters are listed in

Table 1. Assuming a constant wave dissipation rate m,

the wave momentum flux as a function of height for a

wave with source momentum flux FL equals

F
n
(z)5 r

L
F
L
sgn(c

n
) exp

 
2

ðz
zL

m

c
gz

dz0
!
. (5)

The wave drag is proportional to the wavemomentum

flux divergence summed across all waves:

G
P77

52
1

r
0

�
n

›F
n

›z
. (6)

The P77 wave drag at a given level depends nonlocally

on the winds at that level and between that level and the

wave source. In contrast to the LH68 wave drag, the P77

wave drag does not depend on the winds above that level

or on the vertical shear (P77; Campbell and Shepherd

2005a). Because the P77wave drag is not proportional to

the vertical shear, it is not advective. Transforming the

P77 wave drag into a descent-rate equation does not

simplify it, and consequently the P77 descent-ratemodel

fails to emulate the response of the 1DP77QBO to large

upwelling.

Whereas the LH68 QBO forms a buffer zone below

large upwelling, the P77 QBO will be shown to exhibit

three types of responses to upwelling depending on the

location of the upwelling and the lower boundary con-

dition. These three responses were shown in Fig. 1, and

the dynamics of each will be discussed in the following

FIG. 3. Interior upwelling forms a buffer zone in the 1D LH68 QBO. (a) Vertical structure

of perturbations normalized by maximum value. (b) Control experiment. (c) Upwelling ex-

periment with Gaussian upwelling centered at 27 km with an amplitude of 2mm s21 and a

decay scale of 2 km. Using the LH68 wave drag formulation, upwelling forms a buffer zone

from z1b (marked with the black dashed line) to the bottom of the domain. The LH68 QBO

requires prescribed acceleration X to initiate shear zones, which takes the form of a semi-

annual oscillation near the top of the domain (described in the appendix).

3 In the first 1D model of the QBO, Holton and Lindzen (1972)

considered an asymmetric situation with one eastward-propagating

Kelvin wave and one westward-propagating Rossby wave. We

adopt the symmetrical approach of Plumb (1977) by assuming

waves of equal and opposite phase speed with identical dispersion

relations. If these waves are assumed to be Kelvin waves, then the

westward-propagating ‘‘anti-Kelvin’’ wave is unphysical. Gravity

waves of equal and opposite phase speeds are physically realizable.
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order: 1) reformation below the upwelling perturbation

(Fig. 1d), 2) period-lengthening collapse (Fig. 1e), and

3) expansion of the buffer zone (Fig. 1c).

b. Reformation below the upwelling perturbation

The P77 wave drag at a given level does not depend

on the flow above that level, which poses the following

challenge to the upwelling hypothesis for buffer zone

formation: Consider that a large-amplitude, localized

upwelling perturbation is imposed in the interior of the

P77 QBO. The upwelling hypothesis and descent-rate

models suggest that a buffer zone should form below the

level where the upwelling balances the descent rate of

the QBO. (The descent-rate model prediction for the

P77 wave drag, based on the descent-rate model of

Rajendran et al. (2018) is shown in Fig. 4, which makes

an identical prediction for the response of the QBO to

upwelling as does the LH68 descent-rate model in Fig. 2.

Yet, in terms of the P77 wave drag, the QBO below the

large upwelling perturbation should evolve as if the

perturbation was never imposed.

Figure 1d shows the response of the 1D P77 QBO to

large interior upwelling. Counter to the prediction from

the descent-rate model with P77 wave drag, no buffer

zone forms when the 1D P77 QBO is subject to large

interior upwelling. Instead, the flow below the up-

welling perturbation evolves as if the perturbation

was not imposed. Descent-rate models fail to emulate

the 1D P77 QBO response to large upwelling because

they assume that the motion of QBO features is con-

tinuous and can be emulated by advection. Because

the P77 wave drag is not proportional to vertical shear

and is not advective, the advective framework fails to

describe the response of the P77 QBO to upwelling. In

particular, the advective framework precludes the

possibility of QBO features reforming below a per-

turbation. Not only does the QBO reform below the

upwelling perturbation, but upwelling does not even

attenuate the QBO in the perturbed region.

It is useful to clarify the dynamics that are occurring in

Fig. 1d. The wave-driven descent rate is balanced by the

perturbation upwelling near the top of the upwelling

perturbation at approximately 29 km (z1b ) and near the

bottom of the upwelling perturbation at approximately

25 km (z2b ). Between z2b and z1b , the upwelling exceeds

the wave-driven QBO descent rate and QBO features

move upward, becoming virtually homogeneous and

approximately synchronized with the winds at z2b .

Above z1b or below z2b , QBO features descend due to

the wave drag. Because the P77 wave drag does not

depend on the winds aloft, the wind evolution near z2b is

similar to that which would have occurred in the ab-

sence of the upwelling perturbation. Therefore, the

winds that would have formed at z2b anyway in a control

experiment are rapidly advected upward by the up-

welling. The result is that the winds in the strong up-

welling region are not attenuated, but rather oscillate

with a phase lag relative to that which would have oc-

curred in the control. The phase lag increases with the

height above z2b , maximizing just below z1b .

The P77 QBO can only reform below perturbations if

there is enough space for a new shear zone to form. If the

upwelling is imposed near the lower boundary condi-

tion, then z2b will coincide with the lower boundary.

Then, rather than filling in properties that match what

would have occurred in a control experiment, the up-

welling will fill in properties that depend strongly on the

lower boundary condition. The next two examples of

P77 QBO responses to upwelling represent the responses

when the upwelling perturbations abut the lower

boundary condition.

c. Period-lengthening collapse

If upwelling is imposed at the bottom of the QBO

domain with a no-shear lower boundary condition, then

as the amplitude of the upwelling is increased, the period

of theQBO increases. After theQBOperiod diverges to

infinity, the system locks into a steady state. We char-

acterize this route to collapse as period-lengthening

collapse. Figure 1e shows one example of such a steady

state. The steady state wind profile depends on the initial

conditions.

The steady state emerges because the upwelling

prolongs the stalling stage of the QBO cycle. Once

the upwelling causes the QBO to stall indefinitely,

FIG. 4. As in Fig. 2, but for a descent-rate model using the P77

wave drag formulation. (a) Control experiment with zero upwell-

ing. (b) Vertical structure of upwelling perturbation, which is

Gaussian with an amplitude of 3 mm s21 centered at 27 km with

a decay scale of 2 km. (c) Upwelling experiment during which

the zero-wind level stalls indefinitely when it reaches the level

where upwelling balances the wave-driven descent rate.

(d) Zonal wind at the lower boundary in control experiment.

(e) Zonal wind at the lower boundary in upwelling experiment.

The descent-rate model implementation follows Rajendran et al.

(2018) except here the model upper boundary is 37 km. The wave

forcing F is 0.05m2 s22.
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the system locks. The locked state represents a dy-

namic equilibrium, such that if the upwelling were

turned off, the system would resume oscillating.

The details of the momentum balance in the locked

state depend on the wind structure, which in turn de-

pends on the initial conditions. For the locked state

shown in Fig. 1e, the momentum balance is character-

ized as follows: The westerly P77 wave dissipates near

the lower boundary. Below the zero-wind line, westerly

momentum is advected upward by the upwelling and is

balanced by diffusion. Above the zero-wind line, east-

erly wave drag is balanced by diffusion.

Collapse of the QBO appears to occur once the up-

welling exceeds the wave-driven descent rate somewhere

near the lower boundary. Figure 5 shows some steps

on the approach toward period-lengthening collapse. As

the upwelling is increased, the QBO period increases

nonlinearly. Between w*5 0:222mms21 (Fig. 5d) and

w*5 0:23mms21 (Fig. 5e), the period diverges to infinity

and the oscillation collapses. Figure 6 shows that the os-

cillation collapses when the upwelling first exceeds the

descent rate of the control QBO, about 1.25km above

the lower boundary. In this case, the upwelling exceeds

the descent rate between 18 and 19km, which is the min-

imum in the QBO descent rate, and corresponds to the

levels where the descending shear zone tends to slow as it

interacts diffusively with the stalled shear zone below.

d. Expansion of the buffer zone

Since zero-wind lower boundary conditions are stan-

dard practice in 1DQBOmodeling, it might be assumed

that the amplitude of the 1D QBO inevitably goes to

zero at the wave source. Yet, with a no-shear lower

boundary condition, the QBO maintains large ampli-

tude down to the wave source (Fig. 5b). Since quiescent

winds at or near the wave source are not inevitable

consequences of the QBO descent mechanism, they

must be explained in terms of a buffer zone formation

mechanism. A zero-wind lower boundary condition is

tantamount to prescribing a buffer zone.

Because the simulations in support of the upwelling

hypothesis use a zero-wind lower boundary condition

(i.e., a prescribed buffer zone), those simulations do not

demonstrate how to form a buffer zone, but how to

expand a preexisting buffer zone. Upwelling expands

the buffer zone by advecting zero wind upward from the

FIG. 5. Response of the 1D P77 QBO to bottom upwelling with a no-shear lower boundary condition. (a) The upwelling perturbation is

Gaussian with a decay scale of 2 km. (b) Control experiment with zero upwelling. Upwelling with a magnitude of (c) 0.2mm s21 and

(d) 0.223mm s21 lengthens the stalling at the lower boundary. (e) Upwelling with a magnitude of 0.23mm s21 leads to period-lengthening

collapse of the QBO.

FIG. 6. Profiles of bottom upwelling with magnitudes of

0.2 mm s21 (blue, as in Fig. 5c) and 0.23 mm s21 (red, as in Fig. 5e).

Descent rate (black) from the control P77 simulation with no-

shear lower boundary condition (Fig. 5b). When upwelling ex-

ceeds the descent rate (i.e., red intersects black), the QBO has

undergone period-lengthening collapse as shown in Fig. 5e.
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lower boundary (Fig. 1c). Upwelling is not unique in its

ability to expand the buffer zone; any process that ho-

mogenizes the winds near a buffer zone expands the

buffer zone. Figure 7 shows that enhanced vertical dif-

fusivity near the lower boundary expands the buffer

zone by diffusing zero wind upward from the lower

boundary.

Numerous simulations with various magnitudes and

height scales of upwelling reveal that upwelling expands

the buffer zone up to the level z1b where upwelling bal-

ances the wave-driven descent rate from the control

simulation. Figure 8 summarizes these results for both

the LH68 and P77 wave drag. In experiments with the

LH68 wave drag, upwelling forms the buffer zone (as

shown in Fig. 3c). In experiments with the P77 wave drag

and a zero-wind lower boundary condition, the zero-

wind lower boundary condition prescribes the buffer

zone and upwelling expands it to z1b .

4. A new hypothesis for buffer zone formation

The upwelling hypothesis correctly describes buffer

zone formation only when there is no wave dissipation

below critical levels, as in the LH68 wave drag formu-

lation. When there is critical-level dissipation below

critical levels, as in the P77 wave drag formulation, the

upwelling hypothesis fails. Upwelling cannot form a

buffer zone, but can only expand a preexisting buffer

zone. Furthermore, upwelling is not unique in its ability

to expand a preexisting buffer zone; enhanced diffusiv-

ity can, too.

An alternative hypothesis for buffer zone formation

supported by the 1D model is that mean-flow damping

forms the buffer zone. Mean-flow damping in the 1D

model is represented by the term2ku in Eq. (A1). Mean-

flow damping is not expected in the stratosphere from first

principles, yet has been diagnosed in the buffer zone and is

therefore worth considering as a buffer zone formation

mechanism. The manner in which three-dimensional

stratospheric dynamics might produce mean-flow damp-

ing is considered further in the discussion.

Figure 9 shows that mean-flow damping can form a

buffer zone regardless of the lower boundary condition

or damping location. The buffer zones at the bottom

of the domain match the conventional understanding

that the top of the buffer zone coincides with the bottom

of the QBO (Figs. 9b,c). The buffer zones in the interior

of the domain test the nuances of the buffer zone defi-

nition (Figs. 9d,e). They are certainly quiescent, yet the

QBO reforms below. Match and Fueglistaler (2019)

defined the buffer zone as ‘‘the region where the QBO

would exist were it not for interference by dynamical

processes unrelated to the QBO.’’ By their definition, the

interior quiescent regions are buffer zones. Regardless of

whether such a region is defined as a buffer zone, mean-

flow damping distinguishes itself from upwelling or en-

hanced diffusivity by forming a quiescent region when

imposed in the interior of the domain, as opposed to

upwelling which merely shifts the phase of the QBO

without diminishing its amplitude.

FIG. 7. The 1D QBO simulation with enhanced diffusivity at the

bottom of the domain. Enhanced diffusivity adds a Gaussian dif-

fusivity profile with a peak amplitude of 3m2 s21 centered at 17 km

with a decay scale of 2 km to the background diffusivity of

0.3m2 s21. Enhanced diffusivity expands the buffer zone in a vir-

tually identical way as upwelling does (Fig. 1c).

FIG. 8. Simulated top of buffer zone in 1Dmodel vs predicted top

of buffer zone for a range ofGaussian upwelling profiles imposed at

a zero-wind lower boundary condition. The upwelling perturba-

tions have different amplitudes and decay scales. The simulated top

of the buffer zone is defined where the standard deviation of the

wind drops below 5m s21. The predicted top of the buffer zone

occurs at the highest level where upwelling balances the wave-

driven descent rate, where the wave-driven descent rate is calcu-

lated in a control experiment without upwelling.
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Mean-flow damping forms a buffer zone if the

damping time scale is shorter than the QBO period. If

the damping time scale is much longer than the QBO

period, then the QBO can descend through the damping

regionwithout appreciable loss of amplitude. Themean-

flow damping experiments in Fig. 9 have a mean-flow

damping amplitude of k 5 1026 s21, which corresponds

to a damping time scale of 12 days, much shorter than

the QBO period.

5. Discussion

The upwelling hypothesis has been used to interpret

buffer zone dynamics in observations and GCMs. Based

on GCM simulations, Kawatani et al. (2011) proposed

that increases in residual upwelling in the buffer zone

associated with global warming could raise the top of the

buffer zone. Kawatani and Hamilton (2013) reported an

expansion trend in the top of the buffer zone in obser-

vations, which they attributed to an increasing trend

in upwelling. The focus in Kawatani and Hamilton

(2013) on upwelling—a process that expands the buffer

zone—could be complemented in future studies by a

focus on buffer zone formation processes.

QBO features in GCMs tend to be higher up in the

stratosphere compared to in reanalyses. Typically, the

pressure at which peak QBO amplitude occurs is 10 hPa

in GCMs versus 20 hPa in reanalyses (Schenzinger et al.

2017). The pressure at the top of the buffer zone is

typically 75 hPa in GCMs versus 85 hPa in reanalyses

(Schenzinger et al. 2017). Recent explanations for the

elevated buffer zone in QBOmodels focus on processes

that drive the QBO; for example, the depth to which

the QBO descends has been linked to the vertical res-

olution in the buffer zone, which is hypothesized to

influence resolved wave driving of the QBO (Anstey

et al. 2016; Geller et al. 2016). A complementary per-

spective to interpreting the elevated buffer zone in

GCMs might focus on processes that form and expand

the buffer zone.

Saravanan (1990) hypothesized that the buffer zone

filters waves. Wave filtering means that the spectrum of

waves entering the buffer zone differs from that exiting

the buffer zone. Because of wave filtering, the buffer

zone can influence the overall structure of the QBO.

Using a zero-wind lower boundary condition imposes a

buffer zone while neglecting wave filtering in the buffer

zone. Because wave filtering depends on the mean flow,

similar buffer zones will exhibit similar wave filtering.

Because wave filtering is the main way the buffer zone

affects the QBO, if two buffer zones have similar winds

(even if they have different formation mechanisms),

then the QBOs above those buffer zones will appear

similar. Note how the QBOs are similar whether the

buffer zone is expanded by upwelling (Fig. 1c), ex-

panded by diffusivity (Fig. 7), or formed by mean-flow

damping (Figs. 9b,c).

Aquila et al. (2014) used a GCM to simulate the re-

sponse of the QBO to large stratospheric sulfate injec-

tions. The stratospheric sulfate injections invigorated

the residual upwelling. For sufficiently large upwelling,

the simulated QBO collapsed. The QBO in their model

appears to have undergone period-lengthening collapse.

(The hallmark of period-lengthening collapse is that the

FIG. 9. Simulations using the 1D P77 QBOmodel with mean-flow damping imposed at various levels and with various lower boundary

conditions. (a) Vertical structure of perturbations normalized by maximum value. (b) Mean-flow damping at the bottom of the domain

with a zero-wind lower boundary condition. (c) Mean-flow damping at the bottom of the domain with a no-shear lower boundary con-

dition. (d) Mean-flow damping in the interior of the domain with a zero-wind lower boundary condition. (e) Mean-flow damping in the

interior of the domain with a no-shear lower boundary condition. Mean-flow damping profiles are Gaussian with a peak amplitude of

k5 1026 s21, centered at the bottom (17 km) or the interior (27 km), and a decay scale of 2 km.Mean-flow damping forms a buffer zone

for all forcing locations and boundary conditions.
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QBO period lengthens without the QBO amplitude

appreciably decreasing). The localized upwelling ex-

periments studied here are not likely to be the strongest

analog to the QBO behavior in the Aquila experiments,

since their upwelling anomalies likely spanned the entire

depth of the QBO region.

The response of the 1D model to dynamical pertur-

bations depends on the type of perturbation, the loca-

tion of the perturbation, the lower boundary condition,

and the wave drag. We contrasted a wave drag formu-

lation that had only critical-level dissipation (LH68)

with a wave drag formulation that had wave dissipation

below critical levels (P77). In the past decades, gravity

wave parameterizations have proliferated, and are often

introduced and tuned within GCMs to produce a QBO.

Typically, half or more of the wave driving of simulated

QBOs comes from parameterized gravity wave drag

(Richter et al. 2014; Anstey et al. 2016; Garcia and

Richter 2019). Simulated QBOs are typically interpreted

in terms of the classical 1D model with either LH68 or

P77 wave drag. However, having shown that QBO dy-

namics exhibit large sensitivity to the formulation of the

wave drag (see also Campbell and Shepherd 2005a,b),

efforts to interpret a GCM QBO in terms of the 1D

model could benefit from using that GCM’s gravity wave

drag parameterization in the 1D model. Such efforts

could help close the loop toward understanding the re-

sults of Schirber et al. (2015), who found that swapping

gravity wave drag parameterizations in a GCM led to

different QBO sensitivities to global warming.

Several terms in the 1D model serve as proxies for

more complex three-dimensional dynamics. First, ver-

tical diffusion is necessary in the 1Dmodel to annihilate

the stalled shear zone at the bottom of the domain (P77).

Infinitesimal vertical diffusivity permits the annihilation

of the stalled shear zone, but would lead to vertical shear

far in excess of observed values. The vertical diffusivity

used in 1D QBO studies is typically chosen to cap ver-

tical shears near their observed maxima. Uncertainty

remains regarding the processes for which the diffusion

serves as a proxy, but it is not molecular diffusion and

arguably represents the combined effects of small-scale

turbulence and shear instabilities. The vertical diffusiv-

ity necessary to maintain realistic vertical shear exceeds

that which is inferred from tracer patterns, such as the

water vapor tape recorder, by a factor of 4–100

(Dunkerton 2000). The discrepancy between vertical

diffusivity inferred from shears versus from tracers

could be reconciled if the diffusivity varied in space

and time, such as would be result from shear insta-

bilities in zones of large shear (Mote et al. 1998;

Dunkerton 2000). Second, we have argued that mean-

flow damping is the only robust buffer zone formation

mechanism (section 4). Whereas ion drag damps the

mean flow in the ionosphere, there is, in principle, no

expectation for mean-flow damping in the strato-

sphere. Although mean-flow damping is not expected

from first principles, it serves as a proxy for strato-

spheric processes that effectively damp momentum

anomalies, such as horizontal momentum flux diver-

gence. Match and Fueglistaler (2019) diagnosed the

effective mean-flow damping rate for each term in the

relative angular momentum budget in the tropical

stratosphere. Above the buffer zone, they diagnosed

weak mean-flow damping, with damping time scales

longer than the QBO time scale. In the buffer zone,

they diagnosed mean-flow damping by horizontal mo-

mentum flux divergence on a time scale of 50 days,

which could effectively damp the QBO winds. Third,

the prescribed acceleration is used to represent the

accelerations that lead to the semiannual oscillation.

Match and Fueglistaler (2019) suggested a possible

analogy in the tropical stratosphere between tracer

transport and the momentum flux divergence that leads

to mean-flow damping. Just as mean-flow damping is

weak in the active QBO region and strong in the buffer

zone, lateral tracer transport is weak in the active QBO

region and strong in the buffer zone (Plumb 1996; Mote

et al. 1998; Haynes and Shuckburgh 2000; Dunkerton

2000). Additional tracer studies might help constrain

the details of the mean-flow damping that forms the

buffer zone.

The joint results of the 1D model and reanalyses im-

plicate horizontalmomentumflux divergence in forming

the buffer zone. Horizontal momentum fluxes represent

lateral exchange of momentum between the QBO and

the far field atmosphere. By implicating lateral mo-

mentum exchange, the 1D QBO model has, for the

purposes of producing a complete description of buffer

zone formation, sown the seeds of its own obsolescence.

Further progress toward a complete theory for the

buffer zone awaits higher-dimensional models, which

would need to self-consistently include both vertical and

horizontal momentum processes. However, in models

with a self-consistent representation of the 3D dynam-

ics, it is challenging to formulate experiments that test

the QBO sensitivity to specific dynamical variables or

processes. For example, because upwelling is part of the

self-consistent circulation of a GCM, the sensitivity of

theQBO to upwelling cannot be actively studied (i.e., by

modifying the upwelling field) without violating either

the self-consistency of the upwelling field or changing

potentially confounding aspects of the flow. There is a

trade-off between specificity (is upwelling the only

variable changing?) and self-consistency (is upwelling

changing in a way that preserves the internal consistency
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between the upwelling field and the circulation as a

whole?) Here, we have proposed a new hypothesis for

buffer zone formation based on the 1D model, a model

with maximum specificity of inference but zero self-

consistency in its representation of upwelling, diffu-

sivity, or damping. Because our mean-flow damping

hypothesis replaces the upwelling hypothesis also

based on the 1D model, the 1D model has, since 1990,

provided the sole basis for hypotheses of buffer zone

formation. Given the interpretive ease of the 1D

model and the steep drop-off in the specificity of in-

ference gained from models with even modest self-

consistency, there is good reason to expect that the 1D

model will remain central to hypotheses of buffer

zone formation.

6. Conclusions

A buffer zone is a region where the QBO would exist

were it not for dynamical interference by processes un-

related to the QBO (Match and Fueglistaler 2019).

Using a 1Dmodel of the QBOwith a multiwave version

of the P77 wave drag, Saravanan (1990) hypothesized

that a buffer zone forms below a level where upwelling

exceeds the wave-driven descent rate of the QBO. We

have proposed a revised interpretation of the model

experiments from Saravanan (1990).

Upwelling forms a buffer zone in the 1D model of the

QBO with LH68 wave drag and in descent-rate models

of the QBO with both LH68 and P77 wave drag. The

models in which upwelling forms a buffer zone share the

property that the wave drag acts like downward advec-

tion. Upwelling does not form a buffer zone in the 1D

model with P77 wave drag, which has wave dissipation

below critical levels and has wave drag that does not act

like downward advection. When the P77 wave drag is

used, upwelling can expand (but not form) a buffer zone,

it can lead to period-lengthening collapse, or the QBO

can simply reform below the upwelling. Just like up-

welling, enhanced vertical diffusivity can also expand a

preexisting buffer zone.

Mean-flow damping is the only dynamical perturba-

tion that robustly forms a buffer zone, regardless of the

location of the perturbation, lower boundary condition,

or wave drag formulation. Because mean-flow damping

forms the buffer zone, the zero-wind lower boundary

condition typically used in classical QBO models tacitly

assumes that mean-flow damping has produced a buffer

zone. Match and Fueglistaler (2019) showed that, in re-

analyses, horizontal momentum flux divergence effec-

tively damps the mean flow in the buffer zone. Therefore,

the zero-wind lower boundary condition implicitly rep-

resents lateral exchange ofmomentumbetween theQBO

and the far-field atmosphere. The 1D model highlights

the importance of such lateral momentum exchanges,

although it cannot include them self-consistently. Future

progress in understanding buffer zone formation that is

complementary to the 1D theory described in this paper

could be driven by constraints on momentum dynamics

from tracer studies and judicious GCM experiments.
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APPENDIX

1D Model

The QBO is driven by vertically propagating waves

that interact with the mean flow. One-dimensional

models (in altitude) are the minimal configurations

that represent these wave–mean flow interactions, and

these models facilitate understanding of the base state

QBO and its response to dynamical perturbations. We

analyze the following 1D model of the QBO:

›u

›t
5G1

1

r
0

›

›z

�
r
0
n
›u

›z

�
2w*

›u

›z
2 ku1X , (A1)

with wave drag G, diffusivity n, density r0, residual

vertical velocity w*, mean-flow damping rate k, and

prescribed acceleration X. The terms on the right-hand

side are wave drag, vertical diffusion, vertical advection,

mean-flow damping, and prescribed acceleration. The

wave dragG is a function of themodeled winds, whereas

the prescribed acceleration X is independent of the

winds and is used to impose a semiannual oscillation at

the top of the domain when using the LH68 wave drag

(which on its own cannot initiate new shear zones).

The model domain is from zL 5 17km to zT 5 37km.

Subscript L refers to the lower boundary, and subscript

T refers to the upper boundary. The model is solved

numerically using the Crank–Nicolson method, an im-

plicit scheme that is second order in space and time. The

wave drag is formulated in a WKB sense where the

waves are assumed to change much more rapidly than

the mean wind (i.e., each time step), the wave drag is
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computed as if the mean wind was constant. The vertical

resolution Dz 5 250m. Table 1 documents the physical

parameter values used in the control simulations.

In the P77 wave drag formulation, the wave flux is

solved on half levels. The incoming wave flux into the

lowest model level is prescribed. If there is a critical

layer (where u 5 c) between two levels, then the mo-

mentum flux into the higher level is set to zero, similar

to the treatment in Saravanan (1990). The wave mo-

mentum flux divergence is computed by first-order

difference.

Because advection in the Crank–Nicolson method is

implicit, the LH68 wave drag is imposed as an effective

vertical velocity, rather than as an explicit acceleration.

Therefore, the effective vertical velocity due to the wave

drag and prescribed vertical velocity operate identically.

The minimal configuration of the LH68 model in-

cludes a prescribed acceleration in the form of a semi-

annual oscillation X, which begins above 28km and

increases in amplitude with height:

X5

8<
:

0 z, z
SA

4m s21
�z2 z

SA

1000m

�
v
SA

cos(v
SA
t) z$ z

SA

,

where zSA 5 28km, and vSA 5 2p/180 days.
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