## Supporting Information for "Decadal prediction of net primary production in the ocean"

K. M. Krumhardt<sup>1,3</sup>, N. S. Lovenduski<sup>2</sup>, M. C. Long<sup>3</sup>, J. Y. Luo<sup>3,4</sup>, K.

Lindsay<sup>3</sup>, S. Yeager<sup>3</sup>, C. Harrison<sup>5</sup>

<sup>1</sup>Environmental Studies Program and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado,

U.S.A.

<sup>2</sup>Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado Boulder,

Boulder, Colorado, U.S.A.

<sup>3</sup>Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado, U.S.A.

<sup>4</sup>NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, U.S.A.

<sup>5</sup>Port Isabel Laboratory, University of Texas Rio Grande Valley, U.S.A.

## Contents of this file

- 1. Figures S1 to S11
- 2. Table S1



Figure S1. The correlation coefficient between the physical supply of  $PO_4$  and  $NO_3$  over the FOSI reconstruction.



Figure S2. Mean absolute error in the CESM-FOSI reconstruction of NPP and satellite-derived NPP.

 Table S1.
 Anomaly correlation coefficients (ACC) or potential predictability of NPP in the

 world's Large Marine Ecosystems (LMEs) using the CESM-DPLE forecasts. ACCs in bold are

| LME                                 | 1     | Potential | Predictal | oility (AC | C)    |
|-------------------------------------|-------|-----------|-----------|------------|-------|
|                                     | LY1   | LY2       | LY3       | LY4        | LY5   |
| East Bering Sea                     | 0.38  | 0.31      | 0.32      | 0.16       | 0.27  |
| Gulf of Alaska                      | 0.52  | 0.29      | 0.15      | 0.02       | 0.07  |
| California Current                  | 0.72  | 0.32      | -0.08     | -0.16      | -0.02 |
| Gulf of California                  | 0.84  | 0.23      | -0.18     | -0.26      | -0.09 |
| Gulf of Mexico                      | 0.61  | 0.55      | 0.10      | 0.45       | 0.45  |
| SE US Continental Shelf             | 0.01  | 0.57      | 0.11      | 0.10       | 0.10  |
| NE US Continental Shelf             | 0.31  | 0.57      | 0.14      | 0.25       | 0.07  |
| Rection Shelf                       | 0.75  | 0.50      | 0.22      | 0.11       | -0.02 |
| Newfoundland Labradan Shalf         | 0.70  | 0.03      | 0.41      | 0.38       | 0.41  |
| Newfoundiand-Labrador Shell         | 0.49  | 0.24      | -0.09     | -0.17      | -0.08 |
| Insular Pacific-Hawilan             | 0.77  | 0.59      | 0.50      | 0.09       | -0.01 |
| Pacific Central-American            | 0.45  | 0.53      | 0.07      | -0.17      | -0.03 |
| Caribbean Sea                       | 0.64  | 0.45      | 0.29      | 0.26       | 0.17  |
| Humboldt Current                    | 0.47  | 0.37      | 0.17      | 0.15       | 0.22  |
| Patagonian Shelf                    | 0.51  | 0.34      | 0.24      | 0.20       | 0.10  |
| South Brazil Shelf                  | 0.74  | 0.61      | 0.47      | 0.36       | 0.29  |
| East Brazil Shelf                   | 0.72  | 0.56      | 0.39      | 0.32       | 0.33  |
| North Brazil Shelf                  | 0.50  | 0.31      | 0.17      | 0.11       | 0.13  |
| Canada E. Arctic-W. Greenland       | 0.43  | 0.48      | 0.44      | 0.38       | 0.21  |
| Greenland Sea                       | 0.59  | 0.53      | 0.42      | 0.33       | 0.33  |
| Barents Sea                         | 0.45  | 0.33      | 0.26      | 0.15       | 0.10  |
| Norwegian Sea                       | 0.11  | 0.29      | 0.13      | 0.15       | 0.01  |
| North Sea                           | 0.52  | 0.38      | 0.36      | 0.06       | 0.09  |
| Celtic-Biscay Shelf                 | 0.19  | 0.11      | -0.02     | 0.04       | -0.17 |
| Iberian Coastal                     | 0.23  | 0.12      | -0.05     | -0.05      | 0.00  |
| Mediterranean                       | 0.36  | 0.50      | 0.48      | 0.36       | 0.38  |
| Canary Current                      | 0.48  | 0.38      | 0.19      | -0.13      | 0.14  |
| Guinea Current                      | 0.43  | 0.35      | 0.23      | 0.25       | 0.17  |
| Benguela Current                    | 0.28  | -0.54     | -0.52     | -0.37      | -0.37 |
| Agulhas Current                     | 0.20  | 0.28      | -0.12     | -0.37      | -0.12 |
| Somali Coastal Current              | 0.17  | 0.20      | 0.22      | 0.30       | 0.12  |
| Arabian Soa                         | 0.17  | 0.21      | 0.56      | 0.30       | 0.10  |
| Alabian Sea                         | 0.29  | 0.31      | 0.30      | 0.27       | 0.20  |
| Culf of Theiland                    | 0.49  | 0.13      | -0.29     | -0.22      | 0.08  |
| Guil of Thanand                     | 0.94  | 0.84      | 0.70      | 0.51       | 0.34  |
| South China Sea                     | 0.59  | 0.50      | 0.44      | 0.20       | 0.04  |
| Sulu-Celebes Sea                    | 0.47  | 0.22      | -0.06     | -0.37      | -0.34 |
| Indonesian Sea                      | 0.53  | 0.27      | -0.27     | -0.38      | -0.10 |
| North Australian Shelf              | 0.56  | 0.46      | 0.50      | 0.30       | 0.13  |
| NE Australian Shelf                 | 0.78  | 0.75      | 0.33      | -0.02      | -0.17 |
| E-central Australian Shelf          | 0.82  | 0.69      | 0.48      | 0.28       | 0.13  |
| SE Australian Shelf                 | 0.40  | 0.28      | 0.28      | 0.29       | 0.29  |
| SW Australian Shelf                 | 0.71  | 0.54      | 0.44      | 0.48       | 0.59  |
| W-central Australian Shelf          | 0.69  | 0.47      | -0.30     | -0.35      | -0.10 |
| NW Australian Shelf                 | -0.00 | 0.15      | 0.26      | 0.18       | -0.15 |
| New Zealand Shelf                   | 0.56  | 0.48      | 0.15      | 0.33       | 0.33  |
| East China Sea                      | 0.42  | 0.36      | 0.25      | 0.20       | 0.11  |
| Yellow Sea                          | 0.59  | 0.54      | 0.50      | 0.37       | 0.12  |
| Kuroshio Current                    | 0.85  | 0.68      | 0.51      | 0.51       | 0.25  |
| Sea of Japan/East Sea               | 0.72  | 0.55      | 0.35      | 0.29       | 0.25  |
| Ovashio current                     | 0.41  | 0.24      | 0.05      | 0.19       | 0.16  |
| Sea of Okhotsk                      | 0.43  | 0.29      | 0.24      | 0.13       | 0.08  |
| West Bering Sea                     | 0.68  | 0.58      | 0.33      | -0.03      | -0.17 |
| N Bering Sea-Chukchi Sea            | 0.29  | 0.26      | 0.21      | -0.13      | 0.05  |
| Beaufort Sea                        | 0.28  | 0.20      | 0.08      | 0.22       | 0.15  |
| East Siberian Sea                   | _0 10 | _0.00     | 0.00      | _0.12      | 0.10  |
| Last Siberian Sea                   | -0.15 | -0.05     | -0.15     | -0.12      | -0.02 |
| Kara Soa                            | -0.10 | -0.03     | -0.15     | -0.20      | -0.00 |
| India Dea<br>India de Chalf and Cha | 0.00  | 0.11      | 0.17      | 0.02       | 0.08  |
| Iceiand Shell and Sea               | 0.55  | 0.54      | 0.50      | 0.42       | 0.26  |
| Faroe Plateau                       | 0.23  | 0.20      | 0.36      | 0.02       | -0.14 |
| Antarctic                           | 0.35  | 0.55      | 0.36      | 0.13       | -0.02 |
| Hudson Bay Complex                  | 0.08  | 0.06      | 0.03      | 0.07       | 0.13  |
| Central Arctic Ocean                | 0.28  | 0.31      | 0.18      | 0.30       | 0.18  |
| Aleutian Islands                    | 0.60  | 0.47      | 0.49      | 0.40       | 0.31  |
| Canadian High Arctic N Groonland    | 0.27  | 0.13      | 0.20      | 0.36       | 0.31  |

significantly higher than a persistence forecast at the 95% level.



**Figure S3.** NPP anomaly correlation coefficients (ACC; potential predictability) between the CESM-DPLE NPP forecasts and the CESM-FOSI NPP reconstruction. Only significant correlations are shown; white areas denote non-significant correlations.



:

**Figure S4.** Depth-integrated chlorophyll anomaly correlation coefficients (ACC; potential predictability) between the CESM-DPLE forecasts and the CESM-FOSI reconstruction. Only significant correlations are shown; white areas denote non-significant correlations.



**Figure S5.** Surface photosynthetically active radiation (PAR) anomaly correlation coefficients (ACC; potential predictability) between the CESM-DPLE forecasts and the CESM-FOSI reconstruction. Only significant correlations are shown; white areas denote non-significant correlations.



**Figure S6.** Mixed layer depth anomaly correlation coefficients (ACC; potential predictability) between the CESM-DPLE forecasts and the CESM-FOSI reconstruction. Only significant correlations are shown; white areas denote non-significant correlations.



Figure S7.  $PO_4$  physical supply anomaly correlation coefficients (ACC; potential predictability) between the CESM-DPLE forecasts and the CESM-FOSI reconstruction. Only significant correlations are shown; white areas denote non-significant correlations.



**Figure S8.** SST anomaly correlation coefficients (ACC; potential predictability) between the CESM-DPLE forecasts and the CESM-FOSI reconstruction. Only significant correlations are shown; white areas denote non-significant correlations.



-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Depth integrated phytoC peristence ACC

**Figure S9.** Depth-integrated phytoplankton carbon anomaly correlation coefficients (potential predictability) for a persistence forecast calculated using the CESM-FOSI reconstruction. Only significant correlations are shown; white areas denote non-significant correlations.



Figure S10. Correlation coefficients between FOSI-hindcast NPP reconstruction and satellitederived NPP (mean of VGPM, Eppley, and CbPM, see methods) over the period 2003 to 2015 (a) and the difference in standard deviation ( $\sigma$ ) between the CESM-FOSI NPP reconstruction and satellite-derived NPP (b) in LMEs. Pink LMEs in panel b represent regions were variability in NPP in the CESM-FOSI reconstruction is less than satellite-derived NPP.



Lead years

2

≥3

:

CESM-DPLE NPP forecast: lead years above persistence

Figure S11. Lead years that the CESM-DPLE forecast has higher predictability than a persistence forecast. Statistically significant improvements over persistence are shown in regions with patterns.

1