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1. Description of prediction systems

Details of the predictions systems used in this study are given below. Additionally,

the Earth system models and corresponding initialization techniques are summarized in

Table S1. Note that the models use different initialization and data assimilation designs.

Prediction systems followed CMIP5 (historical extended by RCP4.5) or CMIP6 (historical

extended by SSP2-4.5) forcing.

1.1. CanESM5

The Canadian Earth System Model version 5 (CanESM5, Swart et al. (2019)) devel-

oped at the Canadian Centre for Climate Modelling and Analysis couples version 5 of the

Canadian Atmospheric Model (CanAM5) and the CanNEMO ocean component adapted

from Nucleus for European Modelling of the Ocean (NEMO) version 3.4.1. CanAM5 in-

corporates version 3.6.2 of the Canadian Land Surface Scheme (CLASS) and the Canadian

Terrestrial Ecosystem model (CTEM), whereas CanNEMO represents ocean biogeochem-

istry (BGC) with the Canadian Model of Ocean Carbon (CMOC). Sea ice is simulated

within the NEMO framework with the LIM2 model. CanAM5 is a spectral model with

a T63 triangular truncation leading to a horizontal resolution of approximately 2.8◦, and

49 hybrid vertical coordinate levels extending from the surface to 1hPa. CanNEMO is

configured on the ORCA1 C-grid with 45 vertical levels ranging from about 6 meters

thickness near the surface to about 250 meters in the abyssal ocean. The horizontal reso-

lution is based on a 1 degree isotropic Mercator grid which is refined meridionally to 1/3

of a degree near the Equator, and includes a tripolar configuration to avoid the coordinate

singularity in the Northern Hemisphere.
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The CanESM5 ensemble of decadal hindcasts (Sospedra-Alfonso & Boer, 2020) is ini-

tialized each January 1st during 1961 to 2017 and run for 10 years. The ensemble members

are initialized from separate data constrained coupled assimilation runs that span 1958

to 2016 and are started from consecutive years following a 80-year spinup run that assim-

ilates repeating 1958-1967 data. For the ocean, the assimilation runs are nudged to 3D

potential temperature and salinity from ECMWF’s ORAS5 reanalysis, whereas sea surface

temperature is relaxed to values interpolated from NOAA’s OISSTv2 during November

1981 to 2016, and NOAA’s ERSSTv3 prior 1981. Sea ice concentration is relaxed to values

interpolated from HadISST.2 and the Canadian Meteorological Centre (CMC) analysis,

whereas sea ice thickness uses assimilation of the SMv3 statistical model of Dirkson,

Merryfield, and Monahan (2017). Atmospheric full-field temperature, horizontal wind

components and specific humidity are nudged toward values from ERA-Interim during

1979 to 2016, and to ERA40 anomalies added to ERA-Interim climatology prior 1979.

Land physical and BGC variables are initialized through response of CLASS-CTEM to

the data-constrained atmosphere, whereas oceanic BGC variables are initialized through

response of CMOC to data-constrained physical ocean variables and surface atmospheric

forcing. CanESM5 uninitialized predictions are historical simulations extended after 2014

with SSP2-4.5 forcing scenario. Although CanESM5 incorporates CTEM and CMOC to

simulate land and ocean carbon exchange with the atmosphere, initialized and uninitial-

ized predictions have prescribed atmospheric CO2 concentrations and thus ocean and land

CO2 are purely diagnostic without feedback onto the simulated physical climate.
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1.2. CESM-DPLE

The CESM (Community Earth System Model) Decadal Prediction Large Ensemble

(DPLE) is a collection of 40-member decadal hindcasts/forecasts using CESM version

1.1, run with prognostic ocean biogeochemistry (Yeager et al., 2018). The component

models include: CAM5 atmosphere (nominal 1◦ with 30 vertical levels); POP2 ocean

(nominal 1◦ with 60 vertical levels); CICE4 sea ice (nominal 1◦, same horizontal grid as

ocean); and CLM4 land (nominal 1◦, same horizontal grid as atmosphere). The ocean bio-

geochemistry model used in CESM-DPLE has been described in detail elsewhere (Lindsay

et al., 2014; Yeager et al., 2018; Lovenduski et al., 2019). The corresponding uninitialized

historical simulations comprise the CESM Large Ensemble (CESM-LE; Kay et al. (2015)),

34 members of which include the biogeochemical fields of interest here.

The CESM-DPLE hindcasts are initialized on each November 1 between 1954-2015 and

integrated for 122 months. The initial conditions for ocean and sea ice fields (including

ocean biogeochemical fields) come from a coupled ocean-sea-ice historical reconstruction

simulation forced with atmospheric reanalysis data combined with satellite-based flux

data (Yeager et al., 2018). There is no assimilation of ocean or sea-ice observations in

this reconstruction. Initial conditions for the atmosphere and land come from a randomly

selected, single member of the CESM-LE. Full-field initialization is used, necessitating a

drift correction step prior to analysis.

1.3. GFDL-ESM2

GFDL-ESM2 developed at the Geophysical Fluid Dynamics Laboratory builds on the

fully coupled GFDL-CM2.1 atmosphere-land-sea ice-ocean model. The resolution of the
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atmosphere and land models is 2.5◦ longitude x 2◦ latitude with 24 hybrid sigma/pressure

vertical layers in the atmosphere. The resolution of ocean and ocean biogeochemical

model is 1.0◦, with telescoping to 1/3◦ near the equator, with 50 vertical levels with

varying thickness ranging from 10 m near the surface to 400 m in the deep ocean. The

physical ocean model incorporates the ocean biogeochemistry component, the GFDL’s

Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT) marine biogeochemical

model that simulates 33 tracers to resolve global-scale biogeochemical cycles. Note that

this model version is different from ESM2M in key ways (different land model, different

ocean code base and settings). For the purpose of this study we took the name used in the

previous ocean biogeochemistry predictability studies by Park et al. (2018, 2019) which

used the same model version.

The ESM prediction system using GFDL-ESM2 comprises 3 sets of simulations: i)

An ensemble of 12-member uninitialized historical simulations, ii) assimilation run con-

strained by 3-D ocean in situ data and atmospheric reanalysis product, and iii) an en-

semble of 10 year-long with 12 ensemble retrospective prediction runs initialized from the

assimilation during the period 1961-2017. The initial conditions of ensemble prediction are

taken from the GFDL ensemble coupled data assimilation (ECDA) system coupled with

COBALT (Park et al., 2018, 2019). The ECDA system employs an ensemble Kalman filter

(EKF) assimilation scheme. The ocean in the ECDA is constrained by satellite-retrieved

surface temperature from NOAA optimum interpolation sea surface temperature v2 and

in situ ocean temperature/salinity from World Ocean Database (WOD) and Argo profiles

since 2000. The atmosphere in the ECDA is constrained by the 6 hourly temperature
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and winds from National Centers for Environmental Prediction, Department of Energy

(NCEP-DOE) Reanalysis 2 product. The ocean and atmosphere data constraints in the

assimilation run are optimally calibrated to reduce spurious equatorial upwelling and the

subsequent biogeochemical biases caused by assimilation-driven momentum imbalances

(Park et al., 2018).

1.4. IPSL-CM6A-LR

The IPSL (Institut Pierre Simon Laplace) decadal prediction system used here is based

on the IPSL-CM6A-LR version of the climate model described extensively in (Boucher

et al., 2020). The component models include: LMDZ6 atmosphere (average 157km, 79

levels ), NEMOv3.6STABLE ocean on the ORCA1 grid (nominal 1◦ with 75 vertical

levels), LIM3 sea ice (on the same grid as the ocean) and ORCHIDEE (Cheruy et al.,

2019) land (same grid as the atmosphere). The ocean biogeochemistry model used in

IPSL-CM6A-LR is based on PISCESv2 (Aumont et al., 2015).

The uninitialized historical simulations comprises 32 members. The hindcasts are ini-

tialized from a global century long simulation in which anomalies of global EN4 sea sur-

face temperature and Atlantic sea surface salinity presented by Reverdin et al. (2019)

have been nudged into the climate model. The nudging procedure is described by Estella-

Perez, Mignot, Guilyardi, Swingedouw, and Reverdin (2020). There is no assimilation of

subsurface ocean, sea ice or atmospheric observations. Hindcasts start each December 1

during 1961-2014 and integrated for 10 years; 10 members are launched for each start

date.
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1.5. MIROC-ES2L

MIROC-ES2L (Hajima et al., 2020) is an ESM developed for CMIP Phase 6. The phys-

ical core of MIROC-ES2L is MIROC5.2 (Tatebe et al., 2018). The ocean biogeochemical

component is OECO2, and the land biogeochemical component is VISIT-e, which has

the same horizontal grid as atmosphere. Details of OECO2 and VIST-e are described in

Hajima et al. (2020). The horizontal resolution of the atmospheric component has T42

spectral truncation (i.e., approximately 300 km) with 40 vertical levels up to 3 hPa. The

oceanic component has a horizontal tripolar coordinate system. In the spherical coordi-

nate portion south of 63◦N, the longitudinal grid spacing is 1◦, while the meridional grid

spacing varies from approximately 0.5◦ near the equator to 1◦ in mid-latitude regions.

There are 62 vertical levels in a hybrid σ–z coordinate system, the lowermost of which is

located at the depth of 6300 m.

Using MIROC-ES2L, we conducted three sets of experiments, namely, uninitialized

historical runs in 1850–2014, data assimilation runs in 1960–2016, and retrospective pre-

dictions starting from 1 January, every year from 1980 to 2017 with 10-yr-duration. All

the experiments have ten ensemble members. In the assimilation run, the monthly ob-

jective analysis of ocean temperature and salinity (Ishii & Kimoto, 2009) at the depths

between the sea surface and 3000 m are assimilated. The assimilation procedure is the

same as that used in Tatebe et al. (2012) and Watanabe et al. (2020), but a full-field

assimilation is adopted. In addition to that, absolute values of monthly sea-ice concen-

tration based on satellite observations of Armstrong, Knowles, Brodzik, and Hardman

(1994) are assimilated with the same procedure for ocean temperature and salinity. The
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atmosphere is constrained by full-field assimilation with the 6 hourly temperature and

winds from the JRA55 reanalysis (Kobayashi et al., 2015). With an initial condition at 1

January 1960 taken from a certain member of the historical runs, the spinup run for the

assimilation run is conducted over a few hundred years with the fixed CMIP6 external

forcings at the year 1960 until the air–sea and air–land carbon fluxes reach a quasi-steady

state. Initial conditions for ten member ensemble of the assimilation runs are taken from

arbitrary years of the spinup run.

1.6. MPI-ESM-LR

MPI-ESM-LR is a low-resolution configuration of the Max Planck Institute Earth Sys-

tem Model (MPI-ESM1.1; Giorgetta et al. (2013)), on which the coupled model inter-

comparison project phase 5 (CMIP5) simulations are based. The resolution of the ocean

model MPIOM is about 150km with 40 vertical levels. The resolution of the atmosphere

model ECHAM is T63 ( 200km) with 47 vertical levels. The ocean biogeochemistry com-

ponent of MPI-ESM is represented by HAMOCC (Ilyina et al., 2013), and the land and

vegetation component is represented by JSBACH.

The decadal prediction system comprises 3 set of simulations, i.e., i) an ensemble of 10-

member uninitialized historical simulations extended to the RCP4.5 scenario; ii) assimila-

tion run by nudging the ocean 3-D temperature and salinity anomalies from the ECMWF

ocean reanalysis system 4 (ORAS4) (Balmaseda et al., 2013) and the atmospheric 3-D

full-field temperature, vorticity, divergence, and surface pressure ECMWF Re-Analysis

ERA40 (Uppala et al., 2005) during the period 1960-1989 and ERA-Interim (Dee et al.,

2011) during the period 1990-2014; iii) An ensemble of 10-member retrospective predic-
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tion simulations initialized from the assimilation which is close to the observations, the

initialized prediction simulations run for 10 years starting annually from 1st January for

the period 1961-2014. There is no assimilation of ocean biogeochemical data due to the

limit of available data.

1.7. MPI-ESM1.2-HR

MPI-ESM1.2-HR is based on a latest MPI-ESM model version 1.2 (Müller et al., 2018;

Mauritsen et al., 2019), which is used for CMIP6 simulations. The major model devel-

opment in the physical climate components relative to the CMIP5 model versions is the

new radiation and aerosol parameterizations (Mauritsen et al., 2019). The representation

of the land vegetation component is extended by including wild fires, multi-layer soil hy-

drology scheme, and nitrogen cycle. A major development to the ocean biogeochemistry

is the implementation of cyanobacteria as additional phytoplankton specie for prognos-

tic representation of nitrogen fixation, improved detritus settling and a number of other

refinements. MPI-ESM1.2-HR is configured with grid spacings of 40 km in the ocean

and T127 ( 100 km) in the atmosphere, with 40 ocean vertical levels and 95 atmospheric

vertical levels, respectively. The assimilation in the MPI-ESM1.2-HR decadal prediction

system is in general the same as in the MPI-ESM-LR prediction system for the atmo-

sphere and the ocean, the difference for nudging is the inclusion of assimilation of sea-ice

concentration from the National Snow and Ice Data Center (NSIDC) satellite observa-

tions (as described in Bunzel, Notz, Baehr, Müller, and Fröhlich (2016)). In addition, we

run a pre-assimilation to spinup the ocean biogeochemistry for about 50 years before the

assimilation so that the ocean biogeochemical processes slowly adjust to the new assim-
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ilated physical climate states (Li et al., 2019). The ensemble member for the initialized

predictions and uninitialized historical of MPI-ESM1.2-HR simulations is 10. Note that

the initialized 10-year long predictions of MPI-ESM1.2-HR system start annually from

November 1 for the period 1960-2018.

1.8. NorCPM1

The latest version of the Norwegian Climate Prediction Model (NorCPM1) builds on

NorCPM (Counillon et al., 2014, 2016; Wang et al., 2016, 2017), with the inclusion of an

ocean biogeochemical component, atmospheric aerosol and cloud chemistry, an update to

CMIP6 forcing, a retuning and some minor bug-fixes. The ESM in NorCPM1 is based on

the CMIP5 version of the medium resolution Norwegian Earth System Model NorESM1-

ME (Bentsen et al., 2013; Tjiputra et al., 2013), where the atmospheric, ocean physical,

ocean biogeochemical, sea ice and land components are represented by CAM4-OSLO,

NorESM-O, HAMOCC, CICE4 and CLM4, respectively. CAM4-OSLO has a 1.9x2.5 ◦

latitude-longitude resolution and 26 vertical layers. The ocean component NorESM-O has

a 1◦ horizontal resolution and consists of 51 isopycnic layers, where the two uppermost

layers represent the mixed layer.

NorCPM1 applies an Ensemble Kalman Filter to assimilate monthly anomalies of sea

surface temperature (SST) and temperature and salinity depth profiles. For 1950-2010

and 2011-2018, SST from the HadISST2 (HadISST2.1.0.0) and OISSTV2 (Reynolds et al.,

2002) datasets, respectively, are used. The temperature and salinity depth profiles come

from the EN4.2.1 dataset (Good et al., 2013). Based on Fransner et al. (2020), who showed

that the biogeochemical initial conditions have a minor impact on the predictability of

December 15, 2020, 11:23pm



X - 12 :

ocean biogeochemistry on interannual to decadal timescales, no assimilation of ocean

biogeochemistry is done within NorCPM1.

For the CMIP6 DCPP two sets of decadal hindcasts have been produced with Nor-

CPM1. Both sets consist of 10 members each and have been initialized on October 15th

every year from 1959 to 2017. They are thereafter run for ten years plus three months.

The two sets have been initialized from two different reanalysis products that have been

integrated between 1950 and 2019. The first one uses 1980-2010 as reference climatology

and applies weakly coupled assimilation, meaning that only the ocean state is updated

during assimilation. The second one uses 1950-2010 as a reference climatology and uses

strongly coupled data assimilation, implying that also the sea ice is updated during the

assimilation. Note that a discontinuity in the atmospheric CO2 in the years of 2015 and

2016 was discovered after all the simulations had been performed, which had arisen when

merging the historical and the future atmospheric forcing. The effect of this on the pre-

diction skill is avoided if benchmarking the skill of the predictions against the historical

(uninitialized) runs. However, this does not affect the current study which stretches until

the year of 2013.

2. Anomaly correlation coefficient

The quality of a prediction as an average over an ensemble can be assessed using the

anomaly correlation coefficient (ACC) defined as:

ACC(t) =

∑n
i=1[ai(t)oi]√∑n

i=1[ai(t)]2
∑n

i=1[oi]2

where t is the hindcast lead years, and n is the number of starting years, ai represents

the ensemble mean anomaly of the quantity in the hindcasts starting from year i, and oi
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is the anomaly of reference data from the corresponding year (Pohlmann et al., 2013). In

this study, t is from lead time of 1 to 10 years and n is the length of time series of 32

years.

If the ACC value equals one, both data sets are positively correlated, which means a

perfect prediction quality. If the ACC value equals minus one, the data sets have an

inverse relationship. If the ACC value is zero, there is no correlation between the data.
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Figure S1. Time series of Nino3 index and the air-land CO2 flux (NBP) from model recon-

struction. The Nino3 index from HadISST is shown with black dash line, and the GCB2019 NBP

is shown with black solid line. The numbers after the legend show the correlation with HadISST

Nino3 index.
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Figure S2. Significance P-values of air-sea CO2 flux predictions evolving with ensemble size.

The significance of skill of CESM-DPLE air-sea CO2 flux predictions at lead time of 3 years

relative to the corresponding reconstruction simulation is shown in black. The colors indicate

results relative to different reference data, i.e. GCB (red) and SOM-FFN (blue).
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Figure S3. Correlation for air-sea and air-land CO2 flux at lead time of 2 years relative to

SOM-FFN for ocean and GCB2019 for land, respectively. The skill is quantified with anomaly

correlation coefficient. Shown are the correlations of the initialized retrospective predictions

(left) and the difference between initialized and uninitialized simulations(right). The crosses

show significance at 95% level.
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Figure S4. Same as Fig. S3, but based on correlation with the reconstruction simulation.
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Figure S5. Predictive skill of sea surface temperature for the initialized simulation at lead

time of 2 years and the difference between the the initialized and uninitialized simulations for

the period from 1982-2013. Observations are HadISST.
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Table S2. Significance P-values for predictive skills of the detrended CO2 flux into the ocean,

CO2 flux into land, and variations in the inferred atmospheric CO2 growth presented in Figure

3. LY1 to LY10 refer to lead years 1 to 10, respectively.

Model LY1 LY2 LY3 LY4 LY5 LY6 LY7 LY8 LY9 LY10

air-sea CO2 flux
CanESM5 0.97 0.94 0.57 0.11 0.12 0.01 0.73 0.73 0.64 0.90
CESM-DPLE 0.03 0.00 0.00 0.01 0.02 0.02 0.19 0.05 0.09 0.64
GFDL-ESM2 0.00 0.01 0.09 0.62 0.82 0.71 0.90 0.89 0.93 0.78
IPSL-CM6A-LR 0.34 0.29 0.32 0.21 0.10 0.10 0.16 0.23 0.11 0.14
MIROC-ES2L 0.01 0.04 0.08 0.19 0.26 0.29 0.30 0.31 0.89 0.93
MPI-ESM-LR 0.13 0.09 0.26 0.12 0.06 0.12 0.12 0.03 0.09 0.28
MPI-ESM1-2-HR 0.00 0.00 0.00 0.00 0.00 0.10 0.04 0.16 0.05 0.07
NorCPM1 0.00 0.00 0.01 0.00 0.05 0.05 0.12 0.38 0.34 0.34

air-land CO2 flux
CanESM5 0.00 0.00 0.47 0.86 0.82 0.91 0.61 0.97 0.82 0.70
CESM-DPLE 0.24 0.07 0.62 0.77 0.71 0.80 0.87 0.76 0.82 0.89
IPSL-CM6A-LR 0.00 0.00 0.13 0.23 0.40 0.19 0.27 0.21 0.31 0.14
MIROC-ES2L 0.01 0.56 0.35 0.39 0.63 0.73 0.50 0.36 0.56 0.80
MPI-ESM-LR 0.00 0.03 0.35 0.59 0.79 0.48 0.21 0.59 0.35 0.48
NorCPM1 0.00 0.01 0.74 0.46 0.25 0.46 0.48 0.27 0.26 0.21

atmospheric CO2 growth
CanESM5 0.00 0.00 0.55 0.86 0.77 0.92 0.66 0.97 0.83 0.73
CESM-DPLE 0.33 0.07 0.57 0.70 0.61 0.81 0.88 0.76 0.82 0.90
IPSL-CM6A-LR 0.00 0.01 0.12 0.24 0.46 0.22 0.31 0.28 0.39 0.19
MIROC-ES2L 0.01 0.65 0.42 0.41 0.65 0.69 0.40 0.32 0.52 0.71
MPI-ESM-LR 0.00 0.05 0.46 0.67 0.80 0.51 0.19 0.53 0.31 0.44
NorCPM1 0.00 0.00 0.70 0.40 0.23 0.38 0.48 0.28 0.31 0.25
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