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ABSTRACT: A 50-km-resolution GFDL AM4 well captures many aspects of observed atmospheric river (AR)

characteristics including the probability density functions of AR length, width, length–width ratio, geographical location, and

the magnitude and direction of AR mean vertically integrated vapor transport (IVT), with the model typically producing

stronger and narrower ARs than the ERA-Interim results. Despite significant regional biases, the model well reproduces

the observed spatial distribution of AR frequency and AR variability in response to large-scale circulation patterns such as

El Niño–Southern Oscillation (ENSO), the Northern and Southern Hemisphere annular modes (NAM and SAM), and the

Pacific–NorthAmerican (PNA) teleconnection pattern. For global warming scenarios, in contrast tomost previous studies that

show a large increase inAR length andwidth and therefore the occurrence frequency of AR conditions at a given location, this

study shows only a modest increase in these quantities. However, the model produces a large increase in strong ARs with the

frequency of category 3–5 ARs rising by roughly 100%–300%K21. The global mean AR intensity as well as AR intensity

percentiles at most percent ranks increases by 5%–8%K21, roughly consistent with the Clausius–Clapeyron scaling of water

vapor. Finally, the results point out the importance of AR IVT thresholds in quantifying modeled AR response to global

warming.

KEYWORDS: Atmospheric circulation; Extratropical cyclones; Climate change;Water vapor; General circulationmodels;

Model evaluation/performance

1. Introduction
Atmospheric rivers (ARs) are long, narrow, and transient

corridors of strong horizontal water vapor transport typically

associated with a low-level jet stream ahead of the cold front

of an extratropical cyclone. They cover only a small fraction

(;10%) of Earth’s surface but account for;90% of poleward

water vapor transport outside of the tropics (Zhu and Newell

1998). ARs frequently lead to heavy precipitation where they

are forced upward by ascent in the warm conveyor belt or by

mountains over populated regions such as the west coasts of

North and South America and western Europe (e.g., Ralph

et al. 2004; Neiman et al. 2008; Lavers and Villarini 2015).

Their impacts often extend eastward into the interior of the

continents (e.g., Rutz et al. 2014; Lavers andVillarini 2013) and

stretch as far as the polar ice caps as ARs transport large

amounts of heat and moisture poleward, affecting the ice

sheet’s water mass and energy budgets (Gorodetskaya et al.

2014; Neff et al. 2014). ARs can profoundly impact local hy-

droclimates by generating floods (e.g., Ralph et al. 2006; Neiman

et al. 2011; Lavers and Villarini 2013; Barth et al. 2017; Nayak

and Villarini 2017) or alleviating drought (e.g., Dettinger 2013).

Because ARs play such an important role in the global hydro-

logical cycle, local water resources, regional weather and climate

extremes, and other areas of societal importance (e.g., strong

winds), it is imperative to understand and predict the AR phe-

nomenon, especially their variations from subseasonal to inter-

annual time scales as well as their change in future warmer

climates (e.g., Payne et al. 2020).

Global climate models (GCMs) have until recently been

utilized to study the AR phenomena and their response to

global warming. Accurate climate projections of high-impact

weather and climate extremes such as flood and drought would

depend on the model’s ability to simulate the observed AR

climatology and variability in response to a large-scale envi-

ronment. Most previous modeling studies of ARs focused on

the west coasts of North America (e.g., Dettinger 2011; Gao

et al. 2015; Hagos et al. 2016; Payne and Magnusdottir 2015;

Pierce et al. 2013; Radić et al. 2015; Shields and Kiehl 2016a,b)

and Europe (Gao et al. 2016; Lavers et al. 2013; Ramos et al.

2016; Shields and Kiehl 2016a) with Espinoza et al. (2018)

being an exception, who investigated the AR response to

warming over the entire globe despite using relatively coarse-

resolution phase 5 of the Coupled Model Intercomparison

Project (CMIP5)models. However, the ability/quality of coarse-

resolution GCMs in representing ARs may be questionable

due to their inability to resolve ARs’ sharp horizontal gradient

of vapor transport. Indeed, Guan and Waliser (2017) have

pointed out considerable challenges for state-of-the-art

weather/climate models in simulating the fundamental char-

acteristics of ARs. In particular, they indicated the importance

of themodels’ horizontal resolution to the overall quality of the

AR simulations.

The goal of this study is to provide a systematic evaluation

of the ability of the Geophysical Fluid Dynamics Laboratory’s

(GFDL’s) new moderately high-resolution global climate

model to simulate the observed AR characteristics and re-

sponse to large-scale climate variability. Thereby, we also

document the model that has been used for GFDL’s partici-

pation in phase 6 of the Coupled Model IntercomparisonCorresponding author: Ming Zhao, ming.zhao@noaa.gov
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Project (CMIP6; Eyring et al. 2016) and the High Resolution

Model Intercomparison Project (HighResMIP; Haarsma et al.

2016). The rest of the paper is organized as follows. Section 2

describes the model, simulations, and the AR detection

method. Section 3 provides an evaluation of the model simu-

lated AR characteristics, climatology, and variability com-

pared to the results from the ECMWF interim reanalysis

(ERA-Interim, hereinafter ERA-I) product (Dee et al. 2011).

Section 4 documents the model simulated AR response to

global warming. Section 5 provides a summary.

2. The model, simulations, and AR detection method
The model we utilized for this study is a high-resolution ver-

sion of the GFDL atmospheric model version 4 (AM4) docu-

mented in Zhao et al. (2018a,b). AM4 has been used in GFDL’s

new physical climate model CM4 (Held et al. 2019) and Earth

system model ESM4 (Dunne et al. 2020) for GFDL’s partici-

pation in CMIP6 (Eyring et al. 2016). In addition, AM4 has also

been used in GFDL’s Seamless System for Prediction and Earth

System Research (SPEAR) documented in Delworth et al.

(2020). AM4 employs a cubed-sphere topology for the atmo-

spheric dynamical core. The default AM4 has 963 96 grid boxes

per cube face (corresponding toahorizontal resolutionof;100km).

The version we used here has 192 3 192 grid boxes per cube face

(thus referred to asC192AM4) corresponding to;50-kmhorizontal

grid spacing.

Due to the increase in horizontal resolution, we have mod-

ified the model’s physics and dynamics time steps so that the

C192AM4 has a gravity wave and Lagrangian dynamics step of

75 s, a vertical remapping and horizontal advection step of

600 s, and a physics and land model step of 1200 s. To increase

the model’s numerical stability, we use the fourth-order di-

vergence damping (Zhao et al. 2012) instead of the sixth-order

damping in AM4 (Zhao et al. 2018b). Furthermore, we have

slightly tuned the model’s cloud parameterization to increase

the top-of-atmosphere (TOA) net downward radiative fluxes,

which helps to reduce the cold bias in coupled model simula-

tions of the historical sea surface air temperature (SST). In

particular, the fall velocity of precipitating cloud ice has been

slightly reduced with the tuning parameter c1 (Zhao et al.

2018b) changed from 0.9 in AM4 to 0.8 in C192AM4. The

cloud erosion time scales (Zhao et al. 2018b) are also reduced.

The cloud tunings together amount to roughly 1Wm22 in-

crease in downward net TOA radiative flux in simulations

with observed SSTs and sea ice concentrations. Other than

this, we do not expect the cloud tunings to dramatically affect

the model’s simulation characteristics and we have verified

that the present-day climatological bias patterns simulated by

the C192AM4 are indeed very similar to that of AM4 (Zhao

et al. 2018a) for all fields we have examined. As mentioned in

section 1, the C192AM4 model has been used for GFDL’s

participation in the CMIP6 HighResMIP (Haarsma et al.

2016). The simulation data generated by this model will be

shared by the broader CMIP6 community.

In this study, we focus on four C192AM4 simulations forced

by prescribed SSTs, sea ice concentrations, radiative gases, and

aerosol emissions. The first (below referred to as PRESENT)

is a present-day simulation for the period of 1950–2014, with the

model forced by the observed daily SSTs, sea ice concentrations,

and radiative gases following the CMIP6 HighResMIP specifi-

cations. This simulation corresponds to the HighResMIP Tier 1

highresSST-present simulation (Haarsma et al. 2016). The sec-

ond (below referred to as FUTURE) corresponds to the

HighResMIP Tier 3 highresSST-future simulation covering the

2015–50 period. The future SSTs and sea ice concentrationswere

generated by the CMIP5 coupled model projections based

on the representative concentration pathway 8.5 (RCP8.5) sce-

nario (Haarsma et al. 2016). The specifications of the future

radiative gases and aerosol emissions follow the CMIP6 Shared

Socioeconomic Pathways 5 (SSP5), which contains emissions

high enough to produce a radiative forcing of 8.5Wm22 in 2100.

In addition to the two simulations proposed by the CMIP6

HighResMIP, we have also conducted a pair of idealized simu-

lations. The control simulation is a present-day climatological

run (below referred to as CLIMO) with the model forced by

monthly climatological SSTs and sea ice concentrations aver-

aged over the 1980–2014 period and with radiation (solar and

radiative gases) and aerosol emissions fixed at the year 2010

condition. Thus, the simulation does not contain interannual

variability of forcing. The idealized global warming simulation is

identical to CLIMO except with SSTs uniformly increased by

4K (referred to as P4K below). The two warming simulations

are utilized here to explore possible AR responses to future

global warming.

There are a number of methods published in literature for

detecting ARs on gridded model or reanalysis data. Shields

et al. (2018) describe a recent project for comparing the dif-

ferent approaches. For this study, we use a recent one devel-

oped by Guan and Waliser (2015) that is particularly suitable

for global AR analysis. This method uses high-frequency

(6-hourly) output of zonal and meridional vertically inte-

grated vapor transport (IVT) to compute the IVTmagnitude at

each grid cell. The algorithm starts with thresholding each in-

stantaneous IVT field based on the 85th percentile specific to

each season (i.e., percentile calculated over all time steps during

the 5 months centered on that month) and grid cell with a fixed

lower limit of 100 kgm21 s21. Thus, the IVT threshold may be

written in the form IVT0(month, y, x) with each monthly point

representing an overlapping 5-month season centered on that

month. The identified AR candidates are then checked for the

geometry requirement of length . 2000 km, length-to-width

ratio . 2, and other considerations indicative of the AR con-

ditions. They include a requirement of appreciable poleward

transport of moisture (.50kgm21 s21) and coherence of IVT

direction (i.e., more than half of the grid cells in an object must

have their IVT directions within 458 from the object’s mean IVT

direction). The AR detection algorithm provides output of AR

shape, axis, and landfall location as well as some basic mea-

surement of each detectedAR such as length, width,mean zonal

and meridional IVT, and the coherence of IVT direction (Guan

and Waliser 2015).

We use the ERA-I data at a horizontal resolution of 0.758 3
0.758 (lat 3 lon) for the period of 1979–2014. To facilitate

model comparisons with the ERA-I results, the model output

were first interpolated from its native cubed-sphere grid to a

lat–lon grid at the same resolution as in ERA-I. We then use
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the identical AR detection method for both the model simu-

lations and the ERA-I data and compare the AR statistics for

the common period of 1979–2014. To analyze the AR re-

sponses to large-scale circulation patterns, we use monthly

mean SST, sea level pressure, and 500-hPa geopotential height

data to identify various large-scale circulation patterns such as

El Niño–Southern Oscillation (ENSO), the Northern and

Southern Hemisphere annular mode (NAM, SAM), and the

Pacific–North American teleconnection pattern (PNA). Some

of these analyses involve the use of empirical orthogonal

function (EOF) analysis. The corresponding principal com-

ponent (PC) time series are used to identify the positive and

negative phases of a circulation pattern for compositing the

anomalous AR frequencies.

3. Present-day AR characteristics and variability
We begin with a comparison of the probability density

function (PDF) of some key AR parameters between the

PRESENT simulation and the ERA-I results (see Fig. 1). The

statistics are generated from roughly 6.2 3 105 AR objects

identified from 6-hourly IVT maps for 36 years over the 1979–

2014 period. Note the AR detection method does not track

individual ARs over time so each IVT map is treated inde-

pendently (Guan and Waliser 2015). Globally, there are on

average 17 252 AR objects per year in PRESENT, which is

roughly 3.9% more than that from the ERA-I (16 610 yr21).

The average AR numbers detected from each IVT map are

roughly 11.8 for PRESENT and 11.4 for ERA-I.

While both PRESENT andERA-I produce a similar PDF of

AR length-to-width ratio (r) with a peak at ;6.5, PRESENT

tends to generate relatively more (fewer) ARs for r. 9 (r, 9)

than the ERA-I (Fig. 1a). This is because PRESENT produces

systematically narrower ARs in width (see Fig. 1c) but little

difference in the AR length PDF compared to ERA-I.

Figures 1d–f further show that PRESENT well reproduces

the latitudinal distribution of theARs’ centroid location as well

as their maximum equatorward and poleward extent compared

to ERA-I.

PRESENT produces not only narrower but also stronger

ARs than ERA-I as can be seen in Fig. 1g. In particular,

PRESENT generates relatively more (less) ARs for IVT

greater (less) than 440 kgm21 s21 compared to ERA-I. The

median values of IVT for PRESENT and ERA-I are respec-

tively 391 and 377 kgm21 s21. Figures 1h and 1i further show

that PRESENT produces stronger ARs for both the zonal and

meridional component of IVT. Since we used the coarse-

grained model data at the same resolution as the ERA-I, the

narrower and stronger ARs in PRESENT are likely due to the

model’s formulations in dynamical core and/or physics pa-

rameterizations (Zhao et al. 2018b) instead of its slightly higher

horizontal resolution than ERA-I.

Figure 1j shows the PDF of the ARs’ mean IVT direction,

which is defined as the angle of the mean IVT vector measured

in a clockwise direction from the north. Both PRESENT and

ERA-I produce two peaks: one at ;658 and the other ;1158.
The two peaks correspond to the Northern and Southern

Hemisphere (NH and SH) ARs. The model tends to slightly

underestimate the NH peak at;658. Figure 1k shows the same

distribution as Fig. 1j except in polar coordinates. It is clear that

the two peaks correspond to the eastward and poleward

transport of water vapor in the two hemispheres. Finally, Fig. 1l

shows the PDF of the coherence of AR IVT direction, which is

defined as the fraction of the AR grid cells with their IVT di-

rected within 458 of the AR’s mean IVT direction. Both

PRESENT and ERA-I produce a distribution peaking sharply

at 1, suggesting that the vast majority of the detected ARs are

spatially coherent in transporting water vapor. The coherence

is rarely less than 0.8 for both PRESENT and ERA-I. Note the

AR detection algorithm requires the coherence to be at least

0.5 to be a qualified AR candidate.

We compare in Fig. 2 the AR zonal scale defined as the

fraction of zonal distance spanned by all ARs at a given lati-

tude. PRESENT reproduces very well the ERA-I results with

only small underestimation in the deep tropics where ARs are

rare. In the NH (SH) middle latitudes both PRESENT and

ERA-I exhibit a fractional zonal scale of ;8% (;11%), con-

sistent with previous observational studies (e.g., Zhu and

Newell 1998; Guan and Waliser 2015). Despite the small spa-

tial coverage, ARs produce roughly 80%–90% of total me-

ridional IVT in the midlatitudes of both hemispheres, which

are also well simulated by PRESENT (Fig. 2, right legend/

ordinate). Guan and Waliser (2017) showed the difficulties of

the state-of-the-art weather/climate models in simulating the

fractional total meridional IVT accounted for by ARs and cast

doubt on the fidelity of the global water and energy cycles

represented in the models they examined. The realistic simu-

lations of the AR characteristic in PRESENT give us more

confidence in using this model for studies of AR variability and

future change as presented below.

Before we describe the modeled AR frequency variability,

we first evaluate the modeled spatial distribution of climato-

logical AR frequency computed as the fractional occurrence of

AR conditions at a given location for the 1979–2014 period.

Figure 3 compares the AR frequency between PRESENT and

ERA-I for the November to March (NDJFM) and May to

September (MJJAS) seasons with the bias patterns shown in

Figs. 3c and 3f respectively. PRESENT well captures the AR

frequency distribution with the pattern correlation coefficients

exceeding 0.99 and root-mean-square (RMS) errors below

0.008 for both seasons. However, there are significant regional

biases. For example, in the NDJFM season, PRESENT pro-

duces too many ARs in Alaska and northwestern Canada, but

not enough along the West Coast of the United States. Over

the North Atlantic and European sector, PRESENT tends to

slightly underestimate (overestimate) the landfalling ARs in

the United Kingdom (northwestern Africa and southwestern

Europe). In the MJJAS season, the largest bias appears to be

an underestimation over the southeast coast of Asia and an

overestimation over the subtropical central Pacific. In addition,

PRESENT also tends to produce too many ARs over the

northwestern Canada and Alaska, but not enough ARs over

most parts of North America.

We compare in Fig. 4 the seasonal anomalies of AR fre-

quency between PRESENT and ERA-I. In the NDJFM

season, ERA-I shows enhanced AR activities over the

northeastern Pacific extending into the West Coast of the
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FIG. 1. A comparison of the ERA-I (black) and PRESENT (blue) simulated probability density functions for (a) AR length–width ratio, (b) AR

length, (c)ARwidth, (d)ARcentroid latitude, (e) latitudeofARmaximumequatorward extent, (f) latitude ofARmaximumpoleward extent, (g)AR

mean IVTmagnitude, (h)ARmean zonal IVT, (i) ARmeanmeridional IVT, (j) ARmean IVT direction, and (l) the coherence ofAR IVTdirection

(see text for thedefinition).ThePDF(dividedby 2)ofARmeanIVTdirection forNH(redandmagenta)andSH(greenandcyan)ARsarealsoplotted

in (j) for comparison. (k) As in (j), except plotted in polar coordinates (only the PDFs of global ARs plotted for clarity) with azimuth representing the

direction of mean IVT and radial distance the probability density. The two lobes correspond to the NH and SH ARs as indicated by the legend.
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United States, the subtropical North Atlantic extending to-

ward the west coast of Europe, the Middle East, and the

westernMediterranean Sea and nearby northernAfrica. These

are all well captured by PRESENT although the model tends

to slightly underestimate (overestimate) the magnitude of the

anomalies over the Pacific (Atlantic) sector. In the MJJAS

season, ERA-I displays enhanced AR activities over the

southeastern Pacific extending toward Chile, the west coast of

Australia, and South Africa. These are also well captured by

PRESENT. Overall the pattern correlation coefficient for the

anomalous AR frequency between PRESENT and ERA-I is

0.96 with the model’s global RMS error below 0.005 for both

seasons (see Figs. 4c,f). The bias patterns exhibit some simi-

larities to their corresponding seasonal climatological bias

patterns shown in Figs. 3c and 3f.

Previous studies show that AR frequency is modulated by

various large-scale modes of climate variability such as ENSO,

NAM/SAM, and PNA. Thus, it would be important to evaluate

to what extent PRESENT can reproduce the observed present-

day AR frequency variability. Figure 5 shows the difference in

AR frequency between the El Niño and LaNiña conditions for
both the NDJFM and MJJAS seasons. El Niño and La Niña
conditions are selected here based on a threshold of60.88C for

the Oceanic Niño Index (ONI), computed as 3-month running

mean of the ERSST.v4 (Extended Reconstructed Sea Surface

Temperature version 4; Huang et al. 2015) SST anomalies for

the Niño-3.4 region (58N–58S, 1208–1708W). During El Niño
conditions, ERA-I exhibits enhanced AR activities in the

NDJFM season over a number of subtropical and extratropical

regions including the west coast of North America, the Gulf of

Mexico extending into the subtropical North Atlantic toward

the west coast of Europe, the east coast of Asia, the Middle

East, the south Indian Ocean, the South Pacific convergence

zone (SPCZ), and part of the South Atlantic. These anomalous

increases in AR frequency are broadly captured by PRESENT

with a pattern correlation coefficient of 0.68 and RMS error of

0.017. It is interesting to note there is some interhemispheric

symmetry in the pattern of AR frequency response to ENSO in

both PRESENT and ERA-I during the NDJFM season.

However, the model also displays significant regional biases.

For example, the increase in AR frequency over the north-

eastern Atlantic does not extend farther north into the United

Kingdom, which would negatively affect the modeled U.K.

landfalling ARs. Similarly, in the North Pacific sector, the

model tends to underestimate the increase in AR frequency

over the west coast of Canada. For the MJJAS season, the

pattern correlation is slightly lower (0.65) with a significantly

larger RMS error (0.023), which may be due to the fact that the

ENSO signal and their effects tend to peak at boreal winter.

Nevertheless, PRESENT appears to capture reasonably well

the increase inAR frequency in the southeastern Pacific, which

is important to the landfalling ARs in central Chile.

The NAM (SAM) is a major large-scale mode of atmo-

spheric circulation characterized by sea level pressure anom-

alies of one sign in the Arctic (or Antarctic) region, balanced

by anomalies of the opposite sign in the surrounding extra-

tropical regions. When the NAM (SAM) is in its positive

phase, a ring of strong winds circulating around the North

(South) Pole confines colder air across polar regions. This belt

of winds becomes weaker and more distorted in the negative

phase of the NAM (SAM), which allows an easier equatorward

penetration of colder, Arctic (Antarctic) air masses and in-

creased storminess into themidlatitudes. To explore the effects

of NAM (SAM) on ARs, we constructed the NAM (SAM)

index by EOF analysis of the monthly mean sea level pressure

(SLP) anomalies poleward of 208N (208S) for both ERA-I and

PRESENT. Because the NAM patterns can be significantly

different between the NH summer and winter, we conduct

EOF analysis of NAM patterns separately for the NDJFM and

MJJAS seasons. The positive (negative) phase of NAM for

each season are then selected based on a positive (negative)

threshold of 0.8 standard deviation of the PC time series for the

first EOF of the corresponding season. Since the SAM pattern

does not change much across the seasons, we simply conduct

the EOF analysis using all monthly SLP anomalies and then

select the positive (negative) phase of SAMbased on a positive

(negative) threshold of 0.8 standard deviation of the PC time

series for the first EOF.

We compare in Fig. 6 the difference in AR frequency be-

tween the positive and negative phase of NAM (NHmaps) and

SAM (SH maps) for both the NDJFM and MJJAS seasons. In

the NDJFM season, during the positive phase of NAM, ERA-I

exhibits a large increase in AR frequency from the coast of the

Baja California Peninsula stretching northeastward across the

continental United States and the Atlantic into the northern

Europe.Meanwhile, there is a large reduction inAR frequency

to the south from the Gulf of Mexico extending northeastward

across the subtropical North Atlantic into southern Europe. In

addition, there is also a large reduction of ARs over the

Labrador Sea and southwestern Greenland. In the Pacific

sector, the increase in AR frequency tends to be more zonal,

centered around 508N with a band of reductions at the south

centered around 308N. A similar pattern of anomalous AR

FIG. 2. A comparison of AR fractional zonal scale and meridi-

onal water transport between ERA-I and PRESENT. The AR

fractional zonal scale (black and blue lines; left legend/ordinate) is

defined as the total zonal distance spanned by all ARs at a given

latitude divided by the zonal circumference at that latitude. The

AR fractional meridional water transport (red and magenta lines;

right legend/ordinate) is defined as the fraction of total meridional

water transport due to all ARs at a given latitude.
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frequency can also be seen in the MJJAS season despite a

significantly weaker magnitude, especially in the North Pacific.

The response of AR frequency to NAM is well captured by

PRESENT although the model tends to slightly underestimate

the anomalies over the North Atlantic sector and overestimate

them over the North Pacific sector (see Fig. 6, NH). Overall,

the pattern correlation for the NH is, respectively, 0.86 and

0.75 for the NDJFM and MJJAS season with a RMS error of

0.017 and 0.016.

The SH maps in Fig. 6 show the AR frequency response to

SAM. During the positive phase of SAM, ERA-I shows

broadly a poleward shift of AR frequency, which is also well

captured by PRESENT. The pattern correlation for the SH is

respectively 0.85 and 0.83 for the NDJFM and MJJAS season

with a RMS error of 0.018 and 0.015. In general, the shift of AR

frequency in both NH and SH is consistent with the poleward

migration of storm tracks during the positive phase of NAM

and SAM. Combining theAR response to NAM in theNH and

to SAM in the SH, the global pattern correlation coefficient of

the anomalous AR frequency between PRESENT and ERA-I

is 0.86 (0.79) for the NDJFM (MJJAS) season with a RMS

error of 0.018 (0.015).

Finally, we examine the impact of the PNA teleconnection

pattern on AR frequency. The PNA pattern is one of the most

prominent modes of low-frequency variability in the NH

extratropics, which is characterized by a wave train signal that

spans from the equatorial Pacific through the northwest of

NorthAmerica to the southeastern part of NorthAmerica. The

positive phase of the PNA pattern features above-average

heights in the vicinity of Hawaii and over the intermountain

region of North America, and below-average heights located

south of theAleutian Islands and over the southeastern United

States. The PNA pattern is associated with strong fluctuations

in the strength and location of the East Asian jet stream. The

FIG. 3. (left) Geographical distribution of climatological (1979–2014) AR frequency (computed as fractional

occurrence of AR conditions at a given location from all IVT maps analyzed; unit: fraction of time steps) from

(a) ERA-I and (b) PRESENT for the November–March season (NDJFM). (c) Results of (b) minus (a) with the

global pattern correlation coefficient and RMS error shown above the panel. (right) As in the left column, but for

the May–September (MJJAS) season.
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positive phase is associated with an enhanced East Asian jet

stream and with an eastward shift in the jet exit region toward

the western United States. The negative phase is associated

with a westward retraction of the jet stream toward eastern

Asia, blocking activity over the high latitudes of the North

Pacific, and a strong split-flow configuration over the central

North Pacific. Although the PNA pattern is a natural internal

mode of climate variability, it is also strongly affected by

ENSO. The positive (negative) phase of the PNApattern tends

to be associated with the Pacific warm El Niño (cold La Niña)
episodes.

To explore the effects of PNA on AR frequency, we con-

structed the PNA index by EOF analysis of the monthly

anomalies of 500-hPa geopotential height for all months from

1979 to 2014 over the NH region of 08–908N, 1208–3608E. The
positive (negative) phase of PNA is selected based on a posi-

tive (negative) threshold of 0.8 standard deviations of the PC

time series for the second EOF. Figure 7 shows the difference

in AR frequency between the positive and negative phase of

PNA for both the NDJFM andMJJAS seasons. In the NDJFM

season, during the positive phase of PNA, ERA-I shows an

increased AR frequency from the middle latitudes of North

Pacific to the northwest coast of the United States and the west

coast of Canada extending into the interior regions of Canada.

Meanwhile, there is a large reduction of AR frequency cen-

tered around the Bering Sea. In the subtropical northeastern

Pacific, there is a reduction of AR activities that extends

northeastward across the Baja California Peninsula and the

southern United States. In the Atlantic sector, the ERA-I

displays a broad northward shift of AR activities in response to

the positive PNA, which is somewhat similar to the AR re-

sponse to positive NAM. The pattern of AR frequency vari-

ability associated with the PNA is broadly captured by

PRESENT despite significant regional biases such as an un-

derestimation of the AR increase in the middle latitudes of

North Pacific and an overestimation of the AR reduction in

Alaska and the nearby Bering Sea in response to the positive

PNA. The overall NH pattern correlation is 0.81 in the NDJFM

FIG. 4. (left) The anomalous AR frequency averaged over the 1979–2014 period from (a) ERA-I and

(b) PRESENT for NDJFM. (c) Results of (b) minus (a) with the global pattern correlation coefficient and RMS

error shown above the panel. (right) As in the left column, but for MJJAS.
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season with a RMS error of 0.015. The pattern correlation is

significantly lower (0.66) in the MJJAS season with a larger

RMS error (0.027), consistent with generally weaker effects of

the PNA in boreal summer.

4. AR response to global warming
The realistic simulations of the present-day AR character-

istics and frequency variability motivate our further investi-

gation of the AR response to future global warming. As

described in section 2, we have conducted two global warming

simulations (i.e., FUTURE and P4K)with prescribed SSTs and

sea ice conditions. FUTURE may be considered as a more

realistic warming scenario since it includes the future SSTs

and sea ice concentrations projected from the CMIP5 coupled

models as well as specifications of future time-varying radi-

ative gases and aerosol emissions. In contrast, P4K is an

idealized global warming experiment in which we only in-

crease SSTs uniformly by 4K. P4K allows us to study the

effects of global mean SST warming in isolation from other

factors such as the interannual variations of forcings and the

detailed SST warming patterns, which are quite uncertain in

future projections. Figure 8 shows the spatial distribution of

the surface air temperature warming anomalies from the two

pairs of global warming simulations. Note that both panels

have been normalized by their corresponding global mean

warming (0.99 K for FUTURE minus PRESENT; 4.53 K for

P4K minus CLIMO) so that we can focus on their differences

in warming pattern. While both simulations tend to produce

more warming over land, FUTURE contains much larger

polar warming amplifications over the high-latitude sea ice

covering regions. Compared to P4K, FUTURE has less rel-

ative warming in the eastern portion of the North and South

Pacific, the broad Southern Ocean, the northern North

Atlantic, and Antarctica.

We apply the sameARdetectionmethod used in PRESENT

for the three additional simulations (FUTURE, CLIMO, and

P4K) except that for a given simulation, we use the IVT 85th

percentile of its own simulation for thresholding its IVT fields.

FIG. 5. (left) The difference in NDJFMAR frequency between El Niño and La Niña conditions from (a) ERA-I

and (b) PRESENT. (c) Results of (b)minus (a) with the global pattern correlation coefficient andRMS error shown

above the panel. (right) As in the left column, but for MJJAS.
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This would automatically and consistently take into account

the change in background state of moisture transport in the

global warming experiments. We refer to this choice of IVT

thresholds as our standard choice. However, in literature, most

global warming studies of ARs used the IVT thresholds based

on their present-day or historical simulations. For example,

Espinoza et al. (2018) used the IVT 85th percentile derived

from their historical simulations for detecting ARs in their

future simulations. To explore the consequence of this dif-

ferent choice of IVT thresholds, we have also conducted the

AR detection for FUTURE and P4K using the IVT thresh-

olds identical to their corresponding control simulation.

These results are referred to as FUTURE-CTLIVT0 and

P4K-CTLIVT0 respectively.

Table 1 shows the global and annual number of AR objects

from each simulation (or analysis). The model produces very

small changes in the global number of ARs in response to

warming with P4K-CTLIVT0 being an exception, which ex-

hibits roughly 4.7%K21 reduction. For the roughly 2-K (4-K)

global mean warming by the end of twenty-first century as

projected by the CMIP5 multimodel mean under the RCP4.5

(RCP8.5) scenario, this would indicate roughly a 9.4%

(18.8%) reduction of global AR numbers. This is roughly

consistent with Espinoza et al. (2018), who report ;10%

fewer ARs globally in future (2073–96) warmer climate sim-

ulated in CMIP5 models. However, the reduction in global

numbers of ARs in P4K-CTLIVT0 disappears nearly com-

pletely when we use the IVT 85th percentile of its own sim-

ulation (i.e., P4K) as the IVT thresholds for AR detection.

To understand the effect of different choices in AR IVT

thresholds on the simulated AR response to global warming,

Fig. 9 shows the NDJFM season 85th percentile of IVT mag-

nitude derived from each simulation. While the increase from

PRESENT to FUTURE is relatively small, it is huge from

CLIMO to P4K due to its factor of 4.6 increase in surface air

temperature. If we use the IVT 85th percentile from CLIMO

for P4K, this would lead to a large increase in the size of AR

candidates. The increase in an AR candidate’s size can result

FIG. 6. (left) The difference in NDJFM AR frequency between the positive and negative phases of NAM (NH)

and SAM (SH) from (a) ERA-I and (b) PRESENT. (c) Results of (b) minus (a) with the global pattern correlation

coefficient and RMS error shown above the panel. (right) As in the left column, but for MJJAS.
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in a reduction of total number of ARs because 1) it may ag-

gregate multiple ARs into an AR complex and 2) the enlarged

size may lead to its failure of satisfying other AR criteria such

as the requirement for IVT coherence, direction, and geome-

try. It is also possible that the reduced IVT thresholds may lead

to additional ARs identified, but these effects appear to be less

important.

To give an example, Figs. 10a and 10b compare a snapshot of

the ARs detected based on an instantaneous IVT field from

P4K using the two different IVT thresholds. The two ARs (see

Fig. 10a) identified in the South Pacific and South Atlantic

Ocean using our standard IVT thresholds are combined into a

huge one (see Fig. 10b) spanning across the two ocean basins if

we use the IVT 85th percentile from CLIMO as the thresholds.

Although the combined one exhibits a structure that does not

resemble a typical AR shape, it still passes all of theAR criteria

and survives as a modeled AR. It is however possible that an

enlarged AR candidate no longer satisfies the AR requirement

and is subsequently rejected as an AR. For example, Figs. 10a

and 10b show that one AR near southern Australia and three

other ARs near southern Africa identified using our standard

AR thresholds disappear if we use the CLIMO IVT thresholds.

This is due to the increased candidate sizes (see Figs. 10c,d)

that result in their failure of satisfying other AR criteria. Both

of the misidentifications would artificially reduce the number

of AR objects and this becomes more severe as the magnitude

of global mean warming increases. Indeed, we find the problem

occurs quite frequently in P4K-CLIMOIVT0. This is the pri-

mary reason we do not use the IVT 85th percentile from the

present-day control simulations for detectingARs in the future

warming experiments. Belowwe will focus on theAR response

using our standard choice of IVT threshold but we also include

FUTURE-CTLIVT0 and P4K-CTLIVT0 for comparisons

with earlier results in literature.

We now present in Fig. 11a the AR intensity PDF from two

pairs of global warming simulations. As expected, CLIMO

produces an intensity PDF very similar to PRESENT except

with a slightly stronger peak at ;400 kg m21 s21. This

suggests a slight reduction of AR intensity variability in the

climatological simulation with no interannual variability of

SSTs and sea ice. Compared to their control simulations, both

FUTURE and P4K exhibit a shift toward a higher intensity

PDF. By contrast, P4K produces a much larger shift due pri-

marily to its factor of 4.6 increase in global mean surface

warming. When normalized to per 1K of global mean warm-

ing, Fig. 11a (right legend/ordinate) shows that the two

warming simulations produce a similar broad reduction of ARs

at intensities below 450–500 kgm21 s21 and an increase at

higher intensities. The mean AR IVT increases by 4.9% and

7.5%K21 for FUTURE and P4K respectively. The model

produces much larger percent increases in strong ARs with

IVT greater than 800 kgm21 s21. To put the changes in the

context of a recent AR scale classification based on their po-

tential hydrological impacts (Ralph et al. 2019), we include in

Fig. 11a the possible range of AR scales at each IVT (see the

colored horizontal bars). Based on this classification, our sim-

ulations suggest a roughly 100%–300%K21 increase in cate-

gory 3–5ARs despite a slight reduction in the global number of

ARs with warming. However, the AR intensity PDFs in

FUTURE-CTLIVT0 and P4K-CTLIVT0 remain nearly un-

changed except at very high intensities.

One issue with quantifying percent change in the frequency

of an extreme event such as very strong ARs is that the

probability of the event in present-day simulations is very low

FIG. 7. (left) The difference in NDJFM AR frequency between positive and negative phases of the PNA from

(a) ERA-I and (b) PRESENT. (c) Results of (b) minus (a) with the pattern correlation coefficient and RMS error

shown above the panel. (right) As in the left column, but for MJJAS.
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(approaching zero). A small increase in its frequency in

warmer climates may lead to very large percent increases. To

provide additional information on the changes of AR inten-

sity, Fig. 11b further shows the percentile values of the

modeled AR mean IVT magnitude and their response to

warming. While FUTURE-CTLIVT0 and P4K-CTLIVT0

consistently show little changes except at the lower and

higher end of the percent ranks, FUTURE and P4K display a

large increase in all percentile values, indicating a systematic

increase in AR intensity with warming across all intensity

ranges. The magnitude of increase is ;5% and ;7.5%K21

for FUTURE and P4K respectively, roughly consistent with

the Clausius–Clapeyron scaling of water vapor (e.g., Held

and Soden 2006).

A recent study suggests large increases (;25%) of AR

length and width with warming in the CMIP5 models

(Espinoza et al. 2018). To compare with this earlier study,

we examine the change of the PDF for AR length and

width from our simulations in Figs. 12a and 12b. Although

there is a general shift of the AR length and width PDF

toward larger values, the mean AR length and width in-

crease only modestly (;1%K21 or less) in FUTURE and

P4K. In contrast, FUTURE-CTLIVT0 and P4K-CTLIVT0

show a much larger shift in the PDFs with the mean AR

length/width increasing by ;5% and ;8%K21, respec-

tively. These numbers would suggest a roughly 20%–30%

increase in AR length/width for a global mean warming

of ;4 K projected by the end of the twenty-first century

under the RCP8.5 scenario. Thus, the FUTURE-CTLIVT0

and P4K-CTLIVT0 results are consistent with Espinoza

et al. (2018), who used the IVT 85th percentile from his-

torical simulations as the IVT thresholds for detecting ARs

in future warming simulations. However, our results sug-

gest that the magnitude of the increase in AR length/width

depends strongly on the IVT thresholds used in warming

simulations. This can be further seen in Figs. 12c and 12d,

which show the percentile values for AR length/width

and their response to warming. While FUTURE and P4K

exhibit only a modest increase (1%–2%K21) in all per-

centiles of AR length/width, FUTURE-CTLIVT0 and

P4K-CTLIVT0 generate a much larger increase (;5%–

10%K21) due to their use of IVT thresholds from the

control simulations. The response of AR length and width

with warming is directly relevant to the occurrence fre-

quency of AR conditions at any given locations as we

present below.

We show in Figs. 13a and 13b the geographical distribution

of the absolute and relative changes in annual AR frequency

between FUTURE and PRESENT. The global area-weighted

average of AR frequency increases by 1.4%K21, and this is

consistent with the small increase in AR length and width in

Fig. 12. Note that this change in global AR frequency is dif-

ferent from the change in global number of the AR objects,

which actually exhibits a slight reduction as mentioned before.

Regionally, the increase in AR frequency tends to occur over

most parts of themiddle and high latitudes including theArctic

Ocean, Greenland, northern North America, the Tibetan

Plateau, and the Southern Ocean sea ice–covering regions. AR

TABLE 1. Global and annual number of AR objects identified from 6-hourly IVT maps and its percentage change with global warming.

Simulation and analysis No. of AR objects (yr21) Percentage change (%K21)

PRESENT 17 252 —

FUTURE 17 191 20.36

FUTURE-CTLIVT0 17 212 20.23

CLIMO 17 370 —

P4K 17 359 20.01

P4K-CTLIVT0 13 677 24.7

FIG. 8. Difference in annual mean surface air temperature be-

tween (a) FUTURE (2015–50 average) and PRESENT (1979–2014

average) and (b) P4K and CLIMO. Both (a) and (b) are normal-

ized by their corresponding global mean warming (0.99K for

FUTURE minus PRESENT; 4.53K for P4K minus CLIMO) so

that their global mean warming are 1K.
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frequency tends to decrease over most parts of the tropical and

subtropical oceans. Large percentage changes tend to occur

over the regions of climatologically fewer AR conditions such

as the polar sea ice–covering regions and the Tibetan Plateau.

Figures 13c and 13d display plots similar to Figs. 13a and 13b

except for the change in AR frequency between P4K and

CLIMO. Compared to FUTURE, the response is spatially

much smoother due presumably to the lack of interannual

FIG. 10. (a) A snapshot of ARs detected based on an instantaneous IVT field from P4K using the IVT 85th percentile

derived from P4K as the IVT thresholds (i.e., our standard IVT threshold). The detected ARs are color coded. (b) As in (a),

except using the IVT 85th percentile from CLIMO as the IVT thresholds (i.e., an alternative IVT thresholds used in previous

studies) (c) Regions where the IVT magnitude is greater than the IVT 85th percentile from P4K and a fixed lower limit of

100kgm21 s21. These regions are used for detecting theARs in (a). (d) Regions where the IVTmagnitude is greater than the

IVT85thpercentile fromCLIMOandafixed lower limitof100kgm21 s21.Theseregionsareused fordetecting theARs in (b).

FIG. 9. (a) TheNDJFM85thpercentileof IVTmagnitude (valuesbelow100are set to 100 following thealgorithm)derived

from PRESENT and used for its AR detection (kgm21 s21). (b) As in (a), but for CLIMO. (c) As in (a), but showing the

difference between FUTURE and PRESENT. (d) As in (c), but for the difference between P4K and CLIMO.
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variability and uniform SST warming. Nevertheless, there are

some broad similarities between the two warming experiments

such as the increase in AR frequencies over the northern and

southern high latitudes, and the reduction or little change in

the tropics. However, there are also significant differences

between the two. In particular, the uniform warming tends to

produce a distinct increase in AR frequency over the West

Coast of the United States and the subtropical central North

Pacific near the southern edge of the North Pacific maximum

climatological AR frequency (see Fig. 3). In addition, P4K

produces an elongated band of increase in AR frequency

originating from the SPCZ and extending all the way into the

central Chile. The significant differences in regional changes of

AR frequency between the two warming scenarios suggests

both the importance of SST warming patterns and that the

effects of global mean warming may be masked by transient

SST warming patterns in the near-term predictions of ARs.

Despite the regional differences, the global averaged in-

crease (1.9%K21) in AR frequency between P4K and

CLIMO is only slightly larger than that (1.4% K21) from

FUTURE and PRESENT.

Finally, we show in Fig. 14 that the AR frequency in-

creases drastically with warming if we replace the IVT

thresholds used in FUTURE and P4K by their correspond-

ing control simulations (i.e., PRESENT and CLIMO). The

global mean increase is 11% and 12%K21 for FUTURE-

CTLIVT0 and P4K-CTLIVT0, respectively. Regionally,

the increase in many of the middle and high latitudes re-

gions are more than 20%K21. Given the;4 K global mean

surface warming projected at the end of twenty-first cen-

tury under the RCP8.5 scenario, this would suggest

;44%–48% increase in global mean AR frequency and

;80% increase in AR frequency in many of the northern

and southern high latitudes. While the FUTURE-

CTLIVT0 and P4K-CTLIVT0 results are generally con-

sistent with Espinoza et al. (2018), our analysis suggests

that the results depend strongly on the IVT thresholds

used in warming simulations. In particular, we argue that

the use of IVT 85th percentile from historical or present-

day control simulations may not be appropriate for future

warming simulations, especially when the magnitude of

global mean warming is large as we have discussed in

Figs. 9 and 10.

5. Summary
We have described a moderately high-resolution (50 km)

version of the GFDL AM4 (i.e., C192AM4) used in simula-

tions of present-day climatology, variability, and future

changes in AR statistics. The identical model has been used for

GFDL’s participation in CMIP6 HighResMIP. This C192AM4

forced by the historical SSTs, sea ice concentrations, radiative

gases, and aerosol emissions well captures many aspects of the

observed AR characteristics compared to ERA-I results. They

include the PDF of AR length, width, length-to-width ratio,

geographical location, and the magnitude and direction of AR

mean IVT. The model typically generates narrower and

stronger ARs than the ERA-I and this is likely due to the

model’s formulation of dynamical core and physics parame-

terizations (Zhao et al. 2018b). The C192AM4 also reproduces

well the observed climatological distribution of AR frequency

despite significant regional biases. These biases include an

overestimation of AR activities in Alaska and northwestern

FIG. 11. (a) Probability density function (left legend/ordi-

nate) of the magnitude of AR mean IVT from two pairs of the

warming simulations. FUTURE-CTLIVT0 and P4K-CTLIVT0

are the same as FUTURE and P4K, respectively, except with

the IVT thresholds replaced by their corresponding control

simulations (see text for details). Red and magenta lines (right

legend/ordinate) show the percentage change of the probabil-

ity density (i.e., the absolute difference divided by the control

value at each bin and multiplied by 100) normalized to 1 K of

global mean warming (i.e., divided by the global mean value of

warming) between each warming simulation and its control.

The colored horizontal bars indicate possible range of AR in-

tensity following the classification by Ralph et al. (2019), which

takes into account both AR IVTmagnitudes and AR durations.

(b) As in (a), except showing the percentile values of AR mean

IVT magnitude (left legend/ordinate) and their percentage

change per 1 K of global mean warming (right legend/

ordinate).

1 DECEMBER 2020 ZHAO 10299

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/07/21 04:15 PM UTC



Canada and an underestimation along the West Coast of the

United States.

To provide a critical evaluation of the model’s ability in

simulating AR frequency variability to large-scale environ-

ments, we composite the anomalous AR frequency between

the positive and negative phases of several major modes of

climate variability including the ENSO, the NAM/SAM, and

the PNA pattern for both the model and ERA-I. Our results

suggest that the model can reasonably well reproduce the ob-

served AR frequency variability with a pattern correlation

coefficient of 0.68 for ENSO, 0.86 for NAM/SAM, and 0.81 for

PNA during the NHwinter (NDJFM). The pattern correlation

coefficients are slightly lower during the NH summer (MJJAS)

due probably to the fact that these modes of variability and

their effects tend to peak during the NH winter.

The realistic simulations of present-day AR characteristics

and variability motivate our further investigation of the AR

response to future global warming. In contrast to previous

studies that suggest large increases in AR length and width and

therefore the occurrence frequency ofAR conditions at a given

location, our study suggests only a modest increase in these

quantities. Despite this, the model produces a large increase in

strong ARs with the frequency of category 3–5 ARs rising by

roughly 100%–300%K21. The global mean AR intensity as

well as the AR intensity percentiles at most percent ranks

(10%–99%) increases by 5%–8%K21, roughly consistent with

the Clausius–Clapeyron scaling of water vapor. Our results

also suggest significant uncertainties in predicting regional

changes in AR frequency. Some of the effects of global mean

warming on regional changes in AR frequency may be masked

by the transient SST warming patterns in near-term AR

predictions.

Finally, our analysis points out that the modeled AR re-

sponse to global warming depends strongly on the IVT

thresholds used in warming simulations. The large difference

in the changes of AR length/width/frequency with warming

between the present study and some earlier studies (e.g.,

Espinoza et al. 2018) is due primarily to the difference in the

IVT thresholds used in future warming simulations. In par-

ticular, we argue that the use of IVT 85th percentile from the

FIG. 12. (top) As in Fig. 11a, but for (a) AR length and (b) AR width. (bottom) As in Fig. 11b, but for (c) AR length and

(d) AR width.
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present-day or historical simulations may not be appropriate

for future warming simulations especially when the magni-

tude of warming is large. It would lead to a significant over-

estimation of the increase in AR length/width and frequency

of occurrence and an underestimation of the increase in AR

intensity with warming. This would have important implica-

tions for AR-associated hazards as the climate warms.
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FIG. 13. (a) Geographical distribution of the absolute changes in annual AR frequency between FUTURE and

PRESENT normalized by the global mean surface warming (unit: fraction of time steps per 1 K of global mean

warming; K21). (b) As in (a), but for the relative changes defined as the absolute changes divided by the AR

frequency from the control simulation at each location andmultiplied by 100 (%K21). The equatorial (2.58S–2.58N)

region is masked out due to its very small AR frequency in control simulations. (c) As in (a), but for P4K and

CLIMO. (d) As in (b), but for P4K and CLIMO.

FIG. 14. As in Fig. 13, except theARdetection inwarming simulations uses the same IVT thresholds as those used in

their corresponding control simulations. Note the scales of the color bars are different from those in Fig. 13.
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