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ABSTRACT: The Method of Object-based Diagnostic Evaluation (MODE) is used to perform an object-based verifica-

tion of approximately 1400 forecasts of composite reflectivity from the operational HRRR during April–September 2019.

In this study, MODE is configured to prioritize deep, moist convective storm cells typical of those that produce severe

weather across the central and eastern United States during the warm season. In particular, attributes related to distance

and size are given the greatest attribute weights for computing interest in MODE. HRRR tends to overforecast all objects,

but substantially overforecasts both small objects at low-reflectivity thresholds and large objects at high-reflectivity

thresholds. HRRR tends to either underforecast objects in the southern and central plains or has a correct frequency bias

there, whereas it overforecasts objects across the southern and eastern United States. Attribute comparisons reveal

the inability of the HRRR to fully resolve convective-scale features and the impact of data assimilation and loss of skill

during the initial hours of the forecasts. Scalar metrics are defined and computed based on MODE output, chiefly relying

on the interest value. The object-based threat score (OTS), in particular, reveals similar performance of HRRR forecasts

as does the Heidke skill score, but with differing magnitudes, suggesting value in adopting an object-based approach to

forecast verification. The typical distance between centroids of objects is also analyzed and shows gradual degradation with

increasing forecast length.

SIGNIFICANCE STATEMENT: Improving weather forecast models requires determining where themodel does well

and where it does not. Gridpoint-based methods for assessing model forecasts have known shortfalls when applied to

high-resolution models that can forecast individual thunderstorms. We present an object-based verification procedure

that focuses on identifying actual meteorological features such as thunderstorms instead of gridpoint-by-gridpoint

comparison between forecasts and verifying truth. This article reveals some of the information ascertained from this

assessment and illustrates the enhancement of information obtained from object-based verification to gridpoint-based

assessment.
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1. Background

Object-based verification is seeing increasing use in the

convection-allowing model (CAM) forecast community, es-

pecially for fields dominated by contiguous spatial features that

are small compared to the size of the domain—hereafter re-

ferred to as feature-based fields, and akin to the nomenclature

used in Ahijevych et al. (2009) for verification methods de-

signed to be applied to such fields. One major benefit to using

object-based methods is to avoid the double penalty problem

common in gridpoint-based verificationmetrics for CAM-scale

forecasts. Another benefit is to isolate the performance of

specific object attributes, such as the size of convective storms

or biases in storm location. Herein we apply object-based

techniques to 3-km grid spacingHigh-ResolutionRapidRefresh

(HRRR; Alexander et al. 2010; Benjamin et al. 2016) forecasts

of composite reflectivity.

Done et al. (2004) used a primitive form of object-based

verification to assess the performance of 4-km forecasts of

mesoscale convective systems (MCS) produced by the Weather

Research and Forecasting (WRF) Model (Skamarock et al.

2008), in particular, whether the WRF Model could even

capture the observed MCS in a real-world case. Pinto et al.

(2015) applied a more formalized method to assess attributes

such as size, location, and orientation of MCSs forecast by the

HRRR. Duda and Gallus (2013) determined the location ac-

curacy of initiating convection and upscale development of

MCSs in 3-kmWRF forecasts. Hartung et al. (2011) evaluated

the impact of new boundary layer thermodynamic and ki-

nematic profilers in an observation system simulation ex-

periment. Johnson andWang (2012) generated object-based

probabilistic forecasts of 1-h accumulated precipitation, later

refined through the OBPROB technique (Johnson et al. 2020).

Recently, verification of convective storms from 3-km CAM

forecasts using various advanced radar data assimilation (DA)

methods were compared to both traditional and neighborhood-

based verification metrics (Duda et al. 2019), where it was

found that object-based metrics can provide a comparable, but

unique, assessment of model performance in object-based

space compared to in gridpoint space.

A few specific object-based verification methods have been

developed. These include the structure-amplitude-location

technique (Wernli et al. 2008, 2009), the Contiguous RainCorresponding author: JeffreyD.Duda, jeffduda319@gmail.com
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Area (Ebert and Gallus 2009) method, and other more refined

and/or eclectic approaches used to verify only the specific fields

deemed necessary (e.g., Skinner et al. 2016, 2018; Stratman and

Brewster 2017; Jones et al. 2018; Flora et al. 2019; Potvin et al.

2019). Davis et al. (2006) introduced the Method of Object-

based Diagnostic Evaluation (MODE), which is used herein.

MODE is a complex method of object-based verification,

but the added detail enables output of a broad set of object

attributes as well as more complex metrics. MODE applies

fuzzy logic to objects classified from the gridded input datasets

(usually a forecast and an observation set) and attempts to

match them. The most unique output from MODE is a scalar

interest value between each pair of forecast and observation

objects. Ranging between 0.0 and 1.0, it is a normalized value

that can be understood as the probability that the compared

objects in the two datasets are the same object, where 1.0 im-

plies an effectively perfect correspondence between the two

objects. MODE has seen increasing use in verification of high-

resolution forecasts (e.g., Duda and Gallus 2013; Johnson and

Wang 2013; Cai andDumais 2015; Moser et al. 2015; Bytheway

et al. 2017; Griffin et al. 2017, 2020; Schwartz et al. 2017;

Adams-Selin et al. 2019; Duda et al. 2019; Gallus et al. 2019;

Johnson et al. 2020; Squitieri and Gallus 2020). MODE is used

herein to assess a variety of characteristics of the reflectivity

field output from the HRRR model. The preference for

MODE is its connection with the operational forecasting

community; MODE is a component of the Model Evaluation

Tools software package (METplus; Halley Gotway et al. 2018;

Brown et al. 2021) developed by the Developmental Testbed

Center at the National Center for Atmospheric Research for

use both by the research and operational forecasting commu-

nity. The open-source and continuously supported nature of

METplus makes it an attractive option for performing object-

based verification. Despite the extensive output from MODE,

there is presently no published procedure in METplus for

combining the raw outputs into useful metrics. Some metrics

not previously reported in MODE literature are introduced

herein and evaluated for their utility in assessing forecast

performance.

The HRRR model is a 3-km grid spacing forecast system

that uses the Advanced Research version of the WRF (ARW)

dynamical core. It is informally nested within the larger-domain

13-km Rapid Refresh model (Benjamin et al. 2016), which

provides the initial and lateral boundary forcing. The HRRR is

unique among operational CAMs in that new forecasts are ini-

tialized every hour; the rapidly updating nature of the HRRR

makes it attractive to forecasters for short-term weather fore-

casting, especially for severe convective storms and extreme

rainfall, among other hazards. Furthermore, the HRRR is often

judged favorably among other operational and experimental

deterministic CAM forecasts by researchers, model devel-

opers, and forecasters alike perennially at NOAA/Hazardous

Weather Testbed Spring Forecasting Experiments [e.g., Fig. 36

of Clark et al. (2016); cf. Figs. 28, 30, 32, 34, 36, and 38 of Clark

et al. (2017); Fig. 36 of Clark et al. (2018); Fig. 27 of Clark et al.

(2019); Figs. 42–44 of Clark et al. (2020); Roberts et al. (2020)].

The HRRR became formally operational on 30 September

2014 and has since undergone three major operational

upgrades: version 2 on 23 August 2016, version 3 on 12 July

2018, and version 4 on 2 December 2020. Operational

forecasts from HRRRv3 (hereafter HRRR) are verified

herein.

The two goals of this paper are as follows: 1) illustrate the

underutilized abilities of MODE, in particular, to provide in-

formation that standard verification practices do not and that

are helpful in assessing model performance; and 2) analyze the

ability of HRRR to simulate convective storms (as represented

via computed reflectivity fields) so that it can be improved.

2. Methodology

a. Data selection

One goal of this paper is to assess the ability of HRRR

forecasts to capture the object-based details of convective

storms. Therefore, the cases selected for verification occurred

during the 2019 warm season (1 April–30 September). Only

forecasts initialized every three hours (i.e., 0000, 0300, . . .,

1800, 2100 UTC) are selected, both to save computational

storage space and as a compromise between large-sample

collection and reduction of sample dependence. This selec-

tion criteria resulted in over 1400 cases that are verified.

HRRR forecasts run to 18 h except for at 0000, 0600, 1200, and

1800 UTC, at which they run to 36 h. Only the first 24 forecast

hours (at 1-h frequency) are verified regardless of total

forecast length.

The verification domain includes the eastern two-thirds of

the CONUS, roughly all land east of the Interstate 25 corridor

and including parts of Montana (e.g., Fig. 7 includes an outline

of the verification domain). There are limited areas east of

Interstate 25 that have poor radar coverage and/or complex

terrain, but those areas are nonetheless included in the verifi-

cation domain. Areas generally 100 km or less offshore of the

Gulf of Mexico and Atlantic Ocean coasts are also included

where the radar coverage is adequate.

The composite radar reflectivity field—calculated as

the column maximum of simulated reflectivity from the

HRRR—is verified. The composite reflectivity product from

the multiradar/multisensor project (MRMS; Smith et al. 2016;

Zhang et al. 2016) is used as the observations. MRMS data are

constructed from a regional mosaic of reflectivity values from

the WSR-88D radars around the United States and Canada

and therefore are dependent on the quality and coverage of the

radar data collected at each radar site, which varies by site and

time. MRMS data from the closest available time to the top of

each hour are used and assumed to be uniformly valid at ex-

actly the top of the hour. This choice can introduce additional

artificial error into the verification, but such error should be

negligible compared to the time scale at which the HRRR

forecasts are verified. Since the MRMS data are on a 0.018
latitude/longitude grid, which is substantially finer than the

HRRR grid, MRMS data are interpolated bilinearly to the

HRRR grid prior to verification with the understanding that

the interpolation does not necessarily remove all features on

the finer scale of the MRMS grid, which can introduce artifacts

in the results.
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b. MODE settings

MODE is configured to capture details relevant to con-

vective storms. Therefore, the following settings are used.

The convolution radius is set to 1 grid square; little

filtering/smoothing is selected to maintain as many near-

gridscale details as possible in the composite reflectivity field.

Reflectivity values of 25, 30, 35, and 40 dBZ are used as the

thresholds; these values are typical within convective storms

while also accounting for the slight reduction in peak values

within local reflectivity maxima due to the convolution

smoothing. The sample size at 40 dBZ is small relative to the

lower reflectivity thresholds. It is noted that the imperfect

correspondence between the HRRR microphysics and re-

flectivity diagnostic and the measured reflectivity in the

MRMS data can influence the classification of objects, espe-

cially the count and size. The methodology herein differs

from that in, e.g., Skinner et al. (2018) and Potvin et al. (2019),

who used percentile thresholds to eliminate bias. However,

there is no perfect strategy to account for a such a biased di-

agnostic field computed from forecasted microphysical fields

when performing object-based verification; using a percentile

thresholding technique could introduce other undesirable ar-

tifacts into the dataset to hamper analysis. Therefore, this ca-

veat underlies the analysis performed herein.

We compute the interest value for each forecast–observation

object pair by weighting the attributes such that location is

most important with various shape attributes having moderate

importance (descriptions of object attributes are in Table 1).

Attributes such as curvature ratio, orientation angle differ-

ence, and aspect ratio difference are considered irrelevant in

this context and are given zero weight. MODE calculates an

interest value between all pairs of forecast and observation

objects that are within 500 km (user-controllable) of each

other; while this setting is primarily used to save computational

time, it is an appropriate decision since objects separated by a

significant distance are almost certainly not characteristic of a

good forecast. Therefore, any object pairs that have a larger

centroid distance than that are automatically assigned an in-

terest value of 0.0. An interest value of 0.0 means the two

objects have no meaningful correspondence, whereas an in-

terest of 1.0 means the two objects have as much correspon-

dence with each other as is deemed necessary to consider the

forecast effectively perfect. These settings represent an open-

ended verification philosophy, since the setting of interest

maps and attribute weights can be chosen to represent either a

more lenient validation in which large errors in object location,

shape, size, or intensity can still result in very high (or perfect)

interest values, or a stricter state in which object attributes

must be approximately perfectly matched to obtain an interest

value of 1.0. As forecast systems improve, object-based veri-

fication fromMODE can be recomputed using stricter interest

maps to enforce a higher standard for declaring a fore-

cast ‘‘good.’’

The selection of weights (Table 2) is somewhat arbitrary as

the weights represent no explicit physical meaning but instead

are purely statistical. It cannot be claimed that this is neces-

sarily the optimal set of weights to use, as even the meaning of

‘‘optimal’’ is ill-defined, and each forecast user will prioritize

object attributes individually. It is possible to optimize the

weights based on a specific metric, but this work is designed

to be broad reaching and introductory, and therefore no single

metric is deemed better than all others. For uses of MODE

in which different forecasting systems are being compared,

the selection of weights is arguably unimportant, as all sys-

tems would be compared equally. It is also important to note

that the settings for MODE indicate a high level of dimen-

sionality regarding object-based verification; in fact, there are

innumerable ways in which forecasts and observations can be

compared. Therefore, there is some innate uncertainty in the

interest values. However, reasonable choices of interest maps

and attribute weights should minimize uncertainty. Quantifying

the uncertainty associated with the choice of the interest values

is beyond the scope of this paper.

c. Types of verification graphics/metrics and

description of each

The possible set of verification diagrams or metrics that can

be obtained fromMODEoutput is staggeringly large, too large

for each to be identified and compared. Those invoking object-

based verification should approach the exercise with specific

attributes in mind to assess and compare to limit information

overload.

Here, we present four broad categories of verification met-

rics using MODE output. They include comparison of object

attribute distributions in multiple dimensions, object counts,

TABLE 1. Description of object attributes in MODE.

Attribute name Description

Area Object area

Length/width/aspect ratio Dimensions of the smallest inscribing rectangle for the object

Axis angle Angle of long axis of smallest inscribing rectangle relative to longest grid dimension (e.g., 0 corresponds to

west–east orientation for common grids)

Volume (mass) Sum of field values within object

Complexity Ratio of the area of the convex hull not in the object to the area of the convex hull. The convex hull is the

smallest convex polygon that inscribes the object. It can be thought of as placing a rubber band around

the object.

Curvature Mathematical definition of radius of curvature

Intensity percentiles 10th, 25th, 50th, 75th, 90th, plus one additional custom percentile value (95th used)

Centroid Center of mass
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single valuedmetrics, and performance diagrams. In particular,

area, complexity, aspect ratio, and intensity percentile (for

composite reflectivity, the 95th percentile value within each

object was selected to represent a near-max value within each

object; Table 1) attribute distributions are directly compared.

The continuous ranked probability score (CRPS; Hersbach

2000) offers a convenient scalar metric by which to compress

probability distribution data into a single-valued measure of

the accuracy with which object attribute distributions are

forecast. The CRPS is formulated as

CRPS5

ð‘
2‘

[CDF
f
(x)2CDF

o
(x)]2 dx , (1)

where CDFf and CDFo are the cumulative distribution func-

tions of the given object attribute from the HRRR and

MRMS data, respectively, along the range of values of the

attribute x. The frequency bias diagnostic (F/O where F

represents the number of forecast objects identified, and

similar for the observations O) is heavily relied upon to

compare object counts.

Three additional scalar metrics rely on either the interest

value or one specific object attribute (e.g., object area or cen-

troid location). They include the object-based threat score

(OTS; Johnson and Wang 2013), the median of maximum in-

terest (MMI; Davis et al. 2006), and themean distance between

object centroids. OTS is a normalized threat score that is a

function only of object-pair interest and area, formulated as

OTS5
1

A
f
1A

o

�
p

Ip(afp 1 aop) , (2)

where Af and Ao represent the total area of all forecast and

observation objects, respectively; Ip is the interest value be-

tween forecast-observation object pair p; and afp and aop are the

areas of the forecast and observation objects in pair p, re-

spectively. The sum is calculated over interest-ranked unique

object pairs (hereafter, the ‘‘generalized’’ method), meaning

that the interest value between all pairs in a dataset are first

ranked in order of decreasing interest value. Starting from the

pair with the highest interest, all subsequent pairs that include

either that forecast or observation object are removed from

further consideration in the sum. The sum continues until no

pairs remain. This computation methodology ensures that

object frequency count bias will not artificially inflate the OTS;

in a forecast where there is a severe discrepancy between the

number of forecast and observation objects, most of the objects

in the dataset with the larger plurality will not be included in

the sum, which will decrease the numerator (but not the de-

nominator) and result in a lower OTS. Since the interest value

is limited to the range [0.0, 1.0], OTS is also limited to this range

and it is a positively oriented score. An OTS of 1.0 can only be

achieved if there is both a 1:1 correspondence between the

number of forecast and observation objects as well as an ef-

fectively perfect correspondence between the forecast and

observation object in each pair. Effectively, OTS 5 1.0

represents a perfect forecast.

The classical computation of MMI is described as follows

(also illustrated in Davis et al. 2009, their Fig. 1). A two-

dimensional table with size Nf 3 No (the number of forecast

and observation objects, respectively) is constructed. The

value in each cell is the interest value for that object pair. A

one-dimensional vector consisting of the maximum interest

value in each row and column of the interest table is then

constructed; the MMI is the median of that vector. This cal-

culation is rather arbitrary, and a small number of object pairs

can exert undue influence on the final value. Therefore, an

alternative calculation is tested here. It uses the generalized

method to create the one-dimensional vector of interest values.

Since this strategy tends to remove the many 0.0 interest

values, as 0.0 interest values with a multiplicity equal to the

difference in the number of objects between the forecast and

observations are appended to the interest vector to account for

object count biases. The alternative MMI is then the median of

that vector. Therefore, this alternateMMI cannot be artificially

inflated by an object count bias.

Performance diagrams (Roebber 2009) are constructed us-

ing the matching feature of MODE. Object pairs with an in-

terest value exceeding 0.70 (default, but user-controllable) are

considered ‘‘matched’’ (note: thematching behavior ofMODE

allows for an object in one dataset to be matched to more than

one object in the other dataset). In the context of a 2 3 2

contingency table like those used for verification of dichoto-

mous events, a match is equivalent to a ‘‘hit,’’ whereas any

forecast object that is not matched to an observation object

is considered a ‘‘false alarm,’’ and any observation object that

is not matched to a forecast object is considered a ‘‘miss.’’ It is

TABLE 2. Interest weights for object pair attribute comparisons.

Attribute Weight Description

Centroid distance 5.0 Distance between centroids of forecast and observation object

Boundary distance 4.0 Closest distance between object boundaries (not using convex hull)

Convex hull distance 0.0 Closest distance between object convex hulls

Angle difference 0.0 Difference between object orientation angles

Aspect ratio difference 0.0 Linear difference in object aspect ratio

Area ratio 4.0 Ratio of area of forecast object to that of observation object

Consumption ratio 2.0 Fraction of smaller object overlapping with (consumed by) larger object

Curvature ratio 0.0 Ratio of curvature of forecast object to that of observation object

Complexity ratio 0.5 Ratio of complexity of forecast object to that of observation object

Intensity percentile ratio 3.5 Ratio of the 95th percentile value of the forecast object to that of the observation object
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impossible to define ‘‘correct null’’ in this context, but the

performance diagram does not use this contingency.

Finally, various measures of the central tendency of the

distribution of centroid displacement errors are calculated.

Several sets of objects, classified morphologically or whether

matched or not, are considered. The generalizedmethod is also

included for comparison. For this object pair attribute there is

no finite maximum distance corresponding to a useless fore-

cast. Therefore, no artificial values are appended to the vector

of centroid distances from which the mean or median is com-

puted, which means the generalized centroid distance formula

is sensitive to object count bias. Centroid distances are also

decomposed into west–east and south–north components to

determine any directional bias in displacement errors.

3. Results

a. Object attributes

First, we examine how well HRRR forecasts replicated

specific object attributes of the composite reflectivity field. The

overall shape of the object distributions was invariant with

respect to forecast hour aside from a shift between forecast

hours 0 and 1 (representing the shift associated with dynami-

cally imbalanced fields following DA and forecast initializa-

tion). Therefore, only the 24-h aggregated distributions are

discussed. HRRR forecasts mimic the overall shape of the

observation distribution of object area (Fig. 1a). However,

there are discrepancies between HRRR forecasts and MRMS

observations in the proportion of small and large objects, with

medium-sized objects being particularly well replicated. This

tendency is more prominent at the lower reflectivity thresh-

olds, but not at the higher reflectivity thresholds (not shown).

Regarding shape-specific attributes, HRRR forecasts con-

tained objects that were too circular—there was a noticeable

shift toward higher aspect ratio (more circular/square shaped

objects than oblong objects) relative to the MRMS observa-

tions (Fig. 1b). There is an anomalous number of objects in the

[0.80, 0.85) bin for the HRRR forecasts, which could be an

artifact unique to the HRRR system (perhaps a resolution

dependency) since it is present at all reflectivity thresholds

but not at all present in the MRMS distributions. Similarly,

there is a noticeable shift in the distribution of object com-

plexity toward lower values in the HRRR forecasts (Fig. 1c).

This shift likely reflects underresolved convective-scale fea-

tures that survive the convolution filtering performed in

MODE but are captured in the relatively finer scales obtained

by S-band radars that comprise the MRMS data (and that re-

main even after horizontal interpolation). Indeed, the com-

plexity distribution errors are more significant with the smaller

objects (those covering 2250 km2 or less; Fig. 2a) compared

to those from medium and larger sized objects (larger than

20 000 km2; Fig. 2c). But there are approximately one and two

orders of magnitudemore small objects thanmedium and large

objects, respectively, so the small objects dominate the total

distribution.

The impact of the DA is dramatically visible from compar-

ison of f00 and f01 distributions (Fig. 3). This change almost

FIG. 1. Distributions of HRRR and MRMS composite re-

flectivity object (a) area, (b) aspect ratio, and (c) complexity, ag-

gregated over all forecast hours for the 25-dBZ threshold.
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certainly illustrates the impact of the cloud analysis (Hu et al.

2006)—at forecast initialization the reflectivity field very closely

resembles that of the observation reflectivity field. Because the

cloud analysis does not update related fields such as tempera-

ture or wind, the initial condition of the forecast contains a

dynamically unbalanced state. This imbalance includes a lack

of buoyancy or updraft velocity to sustain newly assimilated

convective storms. Therefore, some of the newly assimilated

reflectivity dissipates due to hydrometeors falling out. As

Fig. 4a illustrates, there is little additional degradation in the

quality of the object attribute distributions for longer forecast

hours. This conclusion is further supported by the scalar object-

based verification metrics in section 3c.

In contrast to object attribute distributions by forecast hour,

the shape and position of most attribute distributions did shift

with respect to time of day. The time series of CRPS for the

FIG. 2. Object complexity at 25 dBZ for (a) small (area

# 2250 km2), (b) medium, and (c) large (area . 20 000 km2) ob-

jects. Data aggregated across all forecast hours. Solid black lines

are used to denote the MRMS distribution, and red filled bars are

used for the HRRR data. The number of objects in the HRRR

forecasts ( f ) andMRMSobservations (o) are provided in the insets

of each panel.

FIG. 3. Object complexity distribution at 25 dBZ at forecast hour

(a) 0 and (b) 1 for HRRR (red bars) forecasts and MRMS (open

bars with black edges) observations.
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95th percentile of reflectivity within each object (Fig. 4b)

illustrates a trend exhibited by all attributes (except for object

area, not shown) in that the distributions were predicted with

poorer quality (higher CRPS) during the afternoon through

early evening. As discussed in section 3b, an overprediction of

new, small, and high-magnitude reflectivity objects (i.e., con-

vective storms) seems likely behind this change in performance.

b. Object frequency bias

HRRR forecasts exhibit a noticeable overforecasting bias in

terms of the number of reflectivity objects present which in-

creases with forecast lead time (Fig. 5a), and which is only

somewhat consistent with the gridpoint-based frequency biases

FIG. 4. CRPS at various reflectivity thresholds of (a) object as-

pect ratio as a function of forecast hour and (b) object 95th per-

centile of composite reflectivity as a function of the time of day,

both for objects defined at the 40-dBZ threshold. Note: sunrise and

sunset are approximately at 1200 and 0100 UTC, respectively, over

the analysis domain for this time period.

FIG. 5. Object (solid) and gridpoint (dashed with ‘‘X’’ marks)

frequency bias for different reflectivity thresholds as a function of

(a) forecast lead time and (b) time of day.
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[computed using the Model Analysis Tool Suite (MATS);

Turner et al. 2020]. At all but the 40-dBZ threshold, object-

based biases at initialization are close to 1.25 and steadily in-

crease into the 1.5–1.9 range by forecast hour 24; at 40 dBZ,

however, a bias of 1.55 at initialization is followed by a short,

rapid increase and then a slower increase after forecast hour 3

or so, to an object count bias well in excess of 2.0 (exceeding 2.5

by forecast hour 20 or so). This result implies the HRRR tends

to significantly over forecast the number of high-reflectivity

objects.

MODE enables a more detailed examination of what as-

pects of HRRR forecasts contribute to the overforecasting

of objects. At the low reflectivity thresholds the smallest ob-

jects contribute the most to the object count bias. Whereas

objects smaller than 2000 km2 have biases of generally 1.4–1.5

(Fig. 6a), the largest objects (10 000 km2 and larger) are either

forecast in appropriate numbers or have an underforecast bias.

At 35 and 40 dBZ, the distributions shift from being small-

object weighted to large-object weighted. While the smaller

objects maintain object count biases of 1.5–2.0 (Fig. 6b), larger

objects attain biases well above 2.0 to around 10.0 at 40 dBZ.

The reason these larger objects do not contribute overall to a

high total object count bias is the very small number of objects

of that size (Fig. 1a).However, since the object count bias value

is merely the ratio of the HRRR object count in that size bin to

theMRMS object count in that same size bin, it is possible that

otherwise-properly forecasted storms that are the wrong size

due to the reflectivity diagnostic are included in a given size

bin, causing the bias value to not strictly be dependent on the

number of meteorological entities in that size bin (this be-

havior would also manifest as low biases in other bins).

Gridpoint frequency biases, on the other hand, are closer to

1.0 at a given threshold than the corresponding object fre-

quency bias. Also, at the 25- and 30-dBZ reflectivity thresholds,

the decrease in gridpoint frequency bias between f00 and f01 is

more apparent than that in the object frequency biases. Finally,

the gridpoint frequency biases increase more slowly with

forecast hour than do the object frequency biases. The addition

of the object area distribution to this analysis provides infor-

mation about why the gridpoint frequency bias is generally

lower than its object-based counterpart: the HRRR forecasts

too many small storms, but each individual storm contributes

very little to the gridpoint count, so the gridpoint frequency

bias is not as large as the object frequency bias. This compar-

ison provides a powerful illustration of the information that

can be obtained from supplementing traditional verification

metrics with object-based verification techniques.

The overall overforecasting of reflectivity objects is not

spatially homogeneous. At low reflectivity thresholds, objects

tend to be forecast at appropriate frequencies over the plains

region, especially the southern plains and portions of western

SouthDakota andNebraska (Fig. 7). Consistent with Fig. 6, the

largest objects are substantially underforecast in this area

as well as in the Mississippi River Valley (Fig. 8). On the

other hand, objects are more substantially overforecast

over the southern United States and parts of the eastern

U.S. coast as well as on the High Plains of Montana and

Wyoming. Large objects are overforecast over the northern

High Plains as well, and over the Appalachian Mountains.

Radar coverage—especially in the vertical—is poor in some of

these areas, especially along the Montana–North Dakota

border, easternWyoming, and over a portion of Lake Superior.

Although the MRMS project incorporates data from most

Canadian radars, some of them, especially from eastern

Saskatchewan through southern Ontario, are C-band and may

suffer from limited range, especially over north-central Lake

Superior (Zhang et al. 2016). Despite the limited low-level

coverage, convective storms exceeding roughly 10 km in height,

which includes vigorous thunderstorms with strong updrafts,

FIG. 6. Object frequency bias as a function of object area ag-

gregated over all forecast hours for objects classified at (a) 25 and

(b) 40 dBZ.
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should still be detected; however, vertically limited precipitating

systems will likely be missed. Thus, while there is insufficient

information to conclusively determine that objects are truly

overforecast in these areas, the biases from nearby regions

suggest there may still be a legitimate signal. The increase in

object count bias with increasing threshold is universal; the high-

reflectivity objects are severely overforecast at nearly all loca-

tions in the verification domain (not shown).

There is a diurnal cycle to the object count bias featuring a

broad maximum between 1800 and 2100 UTC and at a mini-

mum between 0600 and 0900 UTC (Fig. 5b). The former is

around the peak of convective activity overall (not shown) in

the United States in the late afternoon and early evening as

convective instability and PBL vertical motions are at their

maxima. The latter is during the overnight period when con-

vective instability is substantially reduced, although the con-

vective minimum tends to occur slightly later (between 1200

and 1500 UTC, but the bias values do not change much be-

tween about 0300 and 1200 UTC). The spatial pattern of object

count biases is also heterogeneous with some diurnal signal.

The lowest count biases are found over the High Plains re-

gardless of reflectivity threshold, where some underforecasting

is evident during the 0600–1800 UTC period of reduced con-

vective activity at all but the 40-dBZ threshold (not shown).

There is a small-to-negligible frequency bias over parts of the

mid-Atlantic region and the upper Midwest during that time

at the 25- and 30-dBZ thresholds, but objects are over-

forecast generally everywhere else (not shown). The over-

forecasting is more serious at the 35- and 40-dBZ thresholds

everywhere except for over the southern plains, where object

counts are accurately forecast for the most part (Fig. 9). The

overforecasting is particularly severe over portions of the

eastern CONUS as well as the High Plains of Colorado and

Wyoming.

There is some correlation between the spatial pattern of

overforecasting and the more complex/elevated terrain of the

Appalachian Mountains in the east, suggesting a potential for

the HRRR to be too aggressive with terrain-following low-

level wind flow to force deep convective storms. The object

frequency bias for small objects at 40 dBZ is also quite high in

these same areas, as well as across the upper Midwest (Fig. 10).

There is spatial correlation in the western areas of the verifi-

cation domain as well; the sloping terrain of the Great Plains

may be smoother than that in the Appalachians, but the

gradual ascent from east to west is notorious for channeling

orographically forced upslope flow to force deep convective

storms in the spring and summer, so the same issue could still

be at play. There are also locally higher frequency biases for

small objects over the Raton Mesa area of southeast Colorado

and northeast New Mexico, as well as near the Guadalupe

Mountains in southeast NewMexico and far western Texas, all

areas of locally complex terrain. This investigation reveals

that a deeper look at how the HRRR handles low-level flow in

the presence of complex terrain is warranted.

The overall significant count bias for large objects at high

reflectivity thresholds is intriguing. It could be a diagnostics

issue related to the computation of composite reflectivity

output from the Thompson microphysics scheme, or an issue

within the Thompson MP scheme itself. The version of the

scheme used in the HRRR includes a term for wet snow which

FIG. 7. Horizontal distribution of object frequency bias at 30 dBZ aggregated over

all 24 forecast hours. The verification domain is outlined in thick black.
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contributes to higher reflectivity values when present. While

the HRRR can struggle to adequately depict stratiform pre-

cipitation in regions associated with squall lines and mesoscale

convective systems and complexes, if it does produce a

stratiform region with wet snow falling through the melting

level, it could result in an expansive area of increased reflectivity

compared to what might be seen from observed radar in areas

where bright banding occurs.

FIG. 8. As in Fig. 7, but only objects larger than 20 000 km2 are considered.

FIG. 9. As in Fig. 7, but at 35 dBZ and for forecasts valid between 0600 and 1700 UTC.
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c. Scalar metrics

Examination of OTS as a function of forecast lead time

[Eq. (2), Fig. 11a] shows that this metric obeys common trends

in gridpoint verification metrics for reflectivity (among other

features-based fields like precipitation): 1) the score is highest

at initialization and decreases steadily with increasing forecast

length; and 2) scores decrease monotonically with increasing

reflectivity threshold. In the case of HRRR forecasts, the im-

pacts of model error appear quickly with OTS decreasing

dramatically during the first forecast hour. Since the ICs for

HRRR forecasts incorporate radar reflectivity via the cloud

analysis routine, which adjusts hydrometeor content and tem-

perature but not vertical motion, reflectivity at initialization

tends to closely resemble the observation data source (three-

dimensional MRMS reflectivity were used for radar DA while

the two-dimensional composite was used for verification).

However, any newly assimilated reflectivity structures within the

model quickly dissipate due to the lack of accompanying neces-

sary buoyancy or upward motion to sustain convective updrafts

(not shown). Therefore, the large decrease in OTS with forecast

hour is not surprising. This evolutionofOTS is consistentwith that

of Heidke skill scores (HSS; HSS ranges from negative infinity to

1.0 and so does not have the same range as OTS) for gridpoint

forecasts valid over the same period (Fig. 11a), showing that it is

appropriate for object-based verification. There are differences in

absolute magnitude between the twometrics, and theHSS curves

drop more significantly during the first forecast hour, but other-

wise the two metrics show similar evolutions. Speculatively, the

OTS curves appear to converge with decreasing reflectivity

threshold, as the difference between consecutive curves decreases

with decreasing threshold, whereas for HSS the difference be-

tween consecutive curves appears constant.

OTSs as a function of valid time (Fig. 11b) suggest that the

best reflectivity forecasts occur during the 0600–1200 UTC

period (overnight/early morning in the United States) with the

worst forecasts happening during the 1800–0000 UTC (mid-to-

late afternoon) period. This behavior corresponds to the trend

in object frequency biases; namely, the overproduction of ob-

jects by the HRRR causes the numerator in the OTS formula

to decrease relative to the denominator. The apparent 3-hourly

OTS signal (Fig. 11b) is an artifact resulting from only using

forecasts initialized every three hours. OTSs are substantially

higher at initialization compared to later forecast hours, so the

averaging incorporates this increase only during times of day

containing forecast initializations.

The impact of using the generalized method to compute

MMI manifests as reduced scores, both as a function of lead

time and as a function of valid time of day (Fig. 12). This

result is sensible considering the stricter criteria used to

include a given forecast–observation object pair in the cal-

culation: since any given forecast or observation object is

removed from further consideration upon its first appear-

ance in the ranked-interest list, the final interest array

contains more zeros than the corresponding array in the

standard calculation. It remains to be determined, however,

which formulation is more useful or meaningful in assessing

forecast quality. MMI exhibits similar behavior to OTS,

including a substantial decrease between forecast hours 0

and 1 and a small decrease (or no change) beyond that. MMI

tends not to vary substantially as a function of time of day,

however, unlike the behavior of OTS. Additionally, there is

FIG. 10. As in Fig. 7, but at 40 dBZ and only objects smaller than 2250 km2 are considered.
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minimal variance of MMI values among the reflectivity

thresholds for the standard formulation, whereas OTS

values decrease noticeably and steadily with increasing re-

flectivity threshold. The alternative MMI (calculated using the

generalized method), however, exhibits a strong sensitivity to

reflectivity threshold; at the 25- and 30-dBZ thresholds, MMI is

nearly the same. However, alternative MMI values decrease

more between the 30- and 35-dBZ thresholds, and then

precipitously (generally going to 0.0) at the 40-dBZ threshold.

This sensitivity reveals a characteristic to the alternative for-

mulation that does not describe the standard formulation, and

it is speculated that this formulation reveals more about the

reflectivity values at which the forecasts become substantially

FIG. 11. OTS (solid lines) as a function of (a) forecast hour and

(b) time of day. HSS values derived from gridpoint comparisons

are plotted in (a) in dashed lines with ‘‘X’’ marks.

FIG. 12. MMI as a function of (a) forecast lead time and (b) valid

time of day for the indicated reflectivity thresholds. Solid lines

represent the standard calculation of MMI, whereas dashed lines

with ‘‘X’’ marks denote alternative MMIs calculated using the

generalized method.
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less accurate than does the standard formulation. But more

testing is needed.

Compared to OTS and MMI, which are normalized statis-

tical quantities, mean centroid distance has an inherent phys-

ical meaning, and therefore individual values are meaningful

for assessing skill of HRRR forecasts. Regardless of whether

only storm-shaped objects (small area, high 95th percentile

value) or all matched objects are considered, and whether the

generalized method is used, the mean centroid displacement

is essentially fixed among thresholds (Fig. 13a). This behavior

is at least somewhat expected since the set of objects defined

at a higher threshold is entirely contained within the set of

objects defined at all lower thresholds. However, this logic does

not explain all behavior of mean centroid displacements since,

e.g., there are approximately 3–4 times as many object pairs at

25 dBZ as at 40 dBZ. Distributions of pair centroid distances

(not shown) are effectively identical among thresholds. These

results imply that displacement errors in reflectivity objects

defined at one threshold but not at higher thresholds have es-

sentially the same distributions. The other major finding is that

the generalized mean centroid displacement error is lowest

(;40 km) at forecast initialization and increases dramatically

in the first forecast hour, then slowly and steadily beyond that,

similar to the signal of OTS and MMI. This behavior lends

credence to the use of mean centroid displacement as a rep-

resentative measure of forecast accuracy. It is also noteworthy

that the mean displacements between all matched objects

(Fig. 13c) is approximately the same as themean displacements

between objects classified as discrete cells (Fig. 13b), whereas

the generalized mean displacement values are about 40 km

larger (Fig. 13a). The difference between themean andmedian

values also suggests there are differences in the skew of

the centroid displacement distributions; for the generalized

method, there must necessarily be more extremely high cen-

troid displacement errors compared to the other object sets.

Since pair interest values are not considered when calculating

mean centroid distances using the generalized method, it

makes sense that these larger distances come from object pairs

with lower interest values. Evidently, these pairs also do not

involve discrete storm objects. These centroid displacement,

OTS, and MMI results are broadly consistent with those of

Blaylock and Horel (2020) who discerned centroid displace-

ment errors of around 60 km, increased errors in the late af-

ternoon, and a quick drop in forecast quality shortly after

initialization when using the fractions skill score (FSS).

The two-dimensional object displacement distributions re-

veal a nearly anisotropic and unbiased error direction tendency

among HRRR forecasts, especially at the 25- and 30-dBZ re-

flectivity thresholds (not shown). At 35 and 40 dBZ, however,

and especially during the 0600–1700 UTC time, a northwesterly

bias appears in the centroid displacement distribution; the mean

displacement is about 26 km in a north-northwest direction, al-

though the mode of the joint (west–east/south–north) proba-

bility distribution remains close to (0, 0) km (Fig. 14).

d. Performance diagrams

The performance diagram introduced inRoebber (2009) can

also be used in an object-based sense by using the interest value

threshold for matching forecast-observation object pairs to

determine the elements of a 2 3 2 contingency table. The re-

sults (Fig. 15) are consistent with examination of object fre-

quency bias (cf. Figs. 5 and 7 with 15) with all points laying in

the upper-left half of the diagram (where frequency bias. 1.0).

The results are also consistent with OTS (cf. Figs. 11 and 15) in

FIG. 13. Mean (solid) and median (dashed) centroid displace-

ment error for (a) generalized method, (b) only objects repre-

senting a discrete convective storm, and (c) all matched objects.
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that forecasts at initialization have high accuracy (CSI’ 0.8 for

25-, 30-, and 35-dBZ thresholds and 0.7 for 40 dBZ) followed

by a rapid decrease in forecast quality during the first two or

three forecast hours and then a slowdecrease beyond that.Using

this phase space, it is clear that the forecast quality decrease is

coincident with a decrease in the success ratio (an increasing

number of false alarms) whereas the probability of detection

remains either constant or decreases only slightly with increasing

forecast length. This is consistent with prior results that the

HRRR produces too many objects late in the forecast.

With respect to time of day, the best forecasts tend to occur

between 2100 and 0000 UTC, during the late afternoon, with

forecast quality at a minimum centered around 1200 UTC,

consistent with results from Blaylock and Horel (2020). This

outcome is inconsistent with OTSs as a function of time of day.

However, the inconsistency is not problematic, as these two

verification metrics assess different forecast components; OTS

is impacted by object frequency bias, which is at a minimum

(closest to 1.0) around 1200 UTC and is higher during the late

afternoon. Object-based CSI, on the other hand, does not ex-

plicitly account for object count bias, so it is likely that the

higher forecast object counts in the late afternoon result in

multiple forecast objects being matched to a single observation

object, which contributes to increased hit counts in the nu-

merator of the CSI formula.

4. Conclusions

TheMethod ofObject-basedDiagnostic Evaluation (MODE)

was used to conduct an object-based verification analysis of

approximately 1400 operational HRRR forecasts from the

2019 U.S. warm season. Composite reflectivity forecasts

initialized every three hours were verified hourly out to 24 h.

MODE was configured to classify primarily convective

storm objects. The attribute weights, which enable the

specification of a single statistic to encompass a number of

physical features of the objects, were subjectively set to be

largest for distance, near-max reflectivity, and area com-

parisons between forecast and observation objects. A vari-

ety of verification metrics and assessment methods were

used to ascertain aspects of HRRR reflectivity forecasts

against MRMS radar reflectivity observations that tradi-

tional gridpoint metrics are not equipped to provide. A

summary of the findings from object-based verification of

the HRRR forecasts is below:

d HRRR overpredicts the number of reflectivity objects in

general, especially small-sized objects (i.e., discrete convec-

tive storms). This overprediction is particularly high during

the afternoon and early evening when convective activity is

at its diurnal maximum. However, unknown bias errors in

the reflectivity diagnostic in the model may have contributed

to the overprediction.
d The overprediction of storms is worse across the south-

central, southeast, and northeastern CONUS. Reflectivity

objects are predicted with better frequency across the

southern plains. Furthermore, there is some spatial correla-

tion between overforecasting of small storms and complex or

elevated terrain, which may suggest model physics errors

associated with the near-surface flow.

FIG. 14. Probability density function of two-dimensional centroid displacement error at 40 dBZ

aggregated between 0600 and 1700 UTC.
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d Resolution issues associated with the 3-km grid spacing of

the HRRR impact some shape parameters of reflectivity

objects. In particular, small objects do not have the proper

spatial structure. This result illustrates an unavoidable out-

come from verifying a forecast field with an observation field

derived on a different scale; theMRMS data contain features

on a scale that are underresolved on the HRRR grid, and the

binary interpolation of the MRMS data to the HRRR grid

are not guaranteed to fully remove all of the finer-scale

features. Therefore, this particular result should be viewed

with that caveat.
d There is a rapid and substantial drop in forecast quality with

lead time, especially in the first 1–3 h. Adjustments from a

dynamically unbalanced initial state plus burgeoning model

error likely contribute to this behavior.
d There is a slight northwest bias in object displacement at high

thresholds and during the less convectively active times of

day. At lower thresholds and busier times of day, no system-

atic bias in location is observed.

An important result from this work is the illustration that an

object-based approach can add information to gridpoint-based

assessment of the quality of NWP forecasts. Additionally, object-

based verification canprovide information on specific attributes of

the forecast that either excel or need improvement that cannot be

ascertained from gridpoint verification. Finally, gridpoint- and

object-based verification can be related to each other via certain

degrees of similarity in certain metrics (e.g., frequency bias and

OTS versus HSS). This should help aid researchers and devel-

opers in transitioning fromaverification frameworkdominated by

traditional gridpointmetrics to one that incorporates object-based

assessments into the traditional approach.

This work demonstrated how object-based verification can

be used to evaluate HRRR reflectivity forecasts, in particular.

Future work will use MODE to evaluate the accuracy of 1-

and 6-h accumulated precipitation forecasts. Additionally, we

will use these object-based verification techniques to evaluate

the relative difference between HRRR v3 (analyzed here) and

v4 (implemented operationally at the National Centers for

Environmental Prediction on 2 December 2020). Evaluating

multiple forecast systems can also shed light on which MMI

formulation is preferrable.

It is important to stress that the verification herein was

conducted in a fixed-time framework, meaning temporal errors

were ignored; forecasts were compared to observations only at

the same valid time. It is well known that features in NWP

model output can contain temporal errors without spatial er-

rors, such as a thunderstorm predicted in the correct location

but one hour late compared to observations. Ignoring such

errors in this work has implications on the effectiveness of

this verification strategy, albeit not sufficiently substantial

to invalidate our conclusions. There are options for incor-

porating the temporal aspects of forecast error. One such

option is the time-domain expansion to MODE, called

MODE-TD (Clark et al. 2014). However, preliminary ex-

perimentation with MODE-TD revealed additional com-

putational requirements that currently make it infeasible for

verifying HRRR forecasts beyond a few hours. Once the

MODE-TD software matures, this work can be revisited by

applying the time dimension to 15-min reflectivity output

(for better resolved temporal forecasts) to enable assessment of

metrics such as timing errors of storms. Additionally, MODE-

TD is ideal for verifying hourly max fields such as updraft hel-

icity (UH) due to occasions when overlapping UH swaths are

caused by storms occurring in the same location but at different

times within an integration period. Prior unreported work ap-

plying MODE to UH forecasts resulted in many objects con-

sidered unrepresentative of the actual forecast evolution due to

overlapping tracks that could not be separated using MODE.

This use of object-based verification provides one way to

evaluate the physical processes and shortcomings in the DA

system that lead to disagreements between model forecasts

and observations. We anticipate integrating this object-based

method into the Model Analysis Tool Suite, which is being

increasingly used by model developers within the National

Weather Service and NOAA.
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FIG. 15. Performance diagram for HRRR composite reflectivity
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colored symbols emphasize the following key forecast hours: yel-

low (0), orange (12), and brown (24).
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