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Abstract
This collection of papers provides insights into methods and data currently available to quantify the benefits associated with
estuarine habitat restoration projects in the northern Gulf of Mexico, USA, with potential applicability to other coastal systems.
Extensive habitat restoration is expected to occur in the northern Gulf of Mexico region over the next several decades through
funding associated with the 2010Deepwater Horizon oil spill. Papers in this section examine the development of vegetation, soil
properties, invertebrate fauna, and nekton communities in restored coastal marshes and provide a conceptual framework for
applying these findings to quantify the benefits associated with compensatory marsh restoration. Extensive meta-analysis of
existing data for Gulf of Mexico coastal habitats further confirms that structured habitats such as marsh, submerged aquatic
vegetation, and oyster reefs support greater nekton densities than nonvegetated bottom habitat, with oyster reefs supporting
different species assemblages than marsh and submerged aquatic vegetation. Other papers demonstrate that while vegetation
cover can establish rapidly within the first 5 years of restoration, belowground parameters such as root biomass and soil organic
matter remain 44% to 92% lower at restored marshes than reference marshes 15 years after restoration. On average, amphipod
and nekton densities are also not fully restored until at least 20 and 13 years following restoration, respectively. Additional papers
present methods to estimate the benefits associated with marsh restoration projects, nekton productivity associated with coastal
and estuarine habitats, and the benefits associated with the removal of derelict crab traps in Gulf of Mexico estuaries.
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Introduction

A common goal of ecological restoration is to establish habitat
that is self-sustaining and resembles natural conditions in both
structure and function (Thayer et al. 2003; Turner and Streever
2002). While restoration practitioners have made significant
advances toward replicating the structure of natural habitats,

key questions remain about how to re-establish and sustain
key ecological functions over time. These questions include
the following: (1) to what extent domature restoration projects
function similarly to natural habitats?; (2) what is the rate of
development for specific ecological functions?; (3) what ad-
ditional data are needed to reduce uncertainty in the rates of
development of ecological functions?; (4) what restoration
actions might increase the rates of development for desired
functions?; and (5) are there synergies between different types
of restoration projects that enhance restoration outcomes?

Many early coastal restoration projects focused on manip-
ulating physical conditions and establishing habitat structure.
Less effort was given to addressing whether restoration inter-
ventions resulted in similar ecological functions as natural
habitats. Some ecological functions can take years to decades
to develop or may never fully reach the level of natural refer-
ence habitats (McGlathery et al. 2012; Moreno-Mateos et al.
2012; Zedler and Callaway 1999). The restoration trajectory
or the rate of development of ecological structure and func-
tions and the time required for restored habitats to resemble to
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natural habitats, can have important implications for setting
realistic expectations and calculating compensatory restora-
tion requirements (e.g., Fonseca et al. 2000; Strange et al.
2002). Better understanding the trajectories associated with
the restoration project development may also help restoration
practitioners identify project features or approaches that speed
the development of important functions and services (e.g.,
Karp et al. 2018; Madrid et al. 2012; Reynolds et al. 2012;
Silliman et al. 2015). It can also help identify when to directly
restore specific lost ecosystem functions (McCay et al. 2003)
or prioritize the conservation of existing high function habitats
(e.g., Beck and Odaya 2001; Levin and Stunz 2005), rather
than conduct habitat restoration.

Extensive restoration of estuarine habitats will occur in the
northern Gulf of Mexico (GOM), USA region over the next
several decades through over $16 billion in funding provided
by penalties and settlement agreements associated with the
2010 Deepwater Horizon oil spill (Deepwater Horizon
Natural Resource Damage Assessment Trustees 2016; Gulf
Coast Ecosystem Restoration Council 2016). This substantial
investment in coastal habitat restoration is intended to provide
broad ecosystem benefits, including provision of food, shelter,
and spawning and nursery areas, to help restore the wide range
of species and life stages that were injured by the spill. A
better understanding of the ecological benefits of coastal hab-
itat restoration projects can help managers compare projects
and project designs and assist with the selection of projects
that maximize benefits to the range of species and habitats
targeted for restoration. With these goals in mind, this theme
section presents seven papers that synthesize the existing data
on the restoration of coastal habitats in the GOM. The papers
identify gaps where additional data collection would improve
the understanding of functional development and benefits to
associated faunal resources, providing a foundation for future
restoration work in the region and an approach that could be
applied in other regions.

How Do Restored Coastal Habitats Compare
with Natural Habitats?

For restored coastal marshes, habitat structure can develop
quickly following restoration (Armitage et al. 2014; Cui
et al. 2009; Edwards and Proffitt 2003; Virgin et al. 2020).
Structure, however, does not always correlate with functions
such as organic matter accumulation, nutrient transformation,
or benthic invertebrate community characteristics (Cole 2002;
Meli et al. 2014). Soil properties, including organic matter and
nutrients, are particularly slow to develop in restored wetlands
(Armitage et al. 2014; Craft et al. 2002; Cui et al. 2009;
Edwards and Proffitt 2003; Llewellyn and La Peyre 2011;
Morgan and Short 2002; Yu et al. 2017). In this issue,
Ebbets et al. (2020) corroborate these findings, suggesting that

for marsh restoration projects in the GOM, average below-
ground biomass and soil organic matter do not reach reference
levels until more than 30 years after restoration is complete.
The slow accumulation of soil organic matter may drive dif-
ferences in benthic communities observed between restored
and reference marshes, which can persist for decades follow-
ing restoration (Craft et al. 1999, 2003; Craft and Sacco 2003;
Levin et al. 1996; Minello and Webb 1997; Staszak and
Armitage 2013; Streever 2000; Swamy et al. 2002;
Zimmerman et al. 1979). The relatively slow development
of salt marsh invertebrate communities in restored marshes
is highlighted by the results of Baumann et al. (2020), who
found that amphipod communities do not fully recover until
more than 20 years following restoration.

Coastal marshes provide important functions for fish and
invertebrate species, serving as spawning and nursery habitat,
providing refuge from predators, foraging habitat, and envi-
ronmental conditions that enhance survival and/or growth
(e.g., overwintering habitat) (Beck et al. 2001; Boesch and
Turner 1984; Deegan et al. 2002; Lefcheck et al. 2019;
Rountree and Able 2006). These functions may not develop
at the same rate at restored marsh sites (Meli et al. 2014). Gut
content analyses and correlations between nekton density and
soil organic content and benthic invertebrate densities suggest
that trophic support functions may sometimes develop more
slowly than other nekton habitat functions, driven by slow
development of benthic infauna and epifauna communities
(Allen et al. 1994; Minello and Zimmerman 1992; Warren
et al. 2002; Zeug et al. 2007). Some studies suggest that it
takes longer to achieve comparable nekton sizes, growth rates,
and/or diet compared with reference marshes (Allen et al.
1994; Moy and Levin 1991; Warren et al. 2002; Weinstein
et al. 2019; Zeug et al. 2007), but there are also conflicting
examples (Llewellyn and La Peyre 2011; Rozas and Minello
2009; Simenstad and Thom 1996). Such delays are observed
more often in marshes created using dredged material with
low organic content. By contrast, many tidally restricted
marshes show rapid development of sediment organic content,
benthic invertebrates, and nekton feeding patterns and growth
once flooding has been re-established (Able et al. 2008;
James-Pirri et al. 2001; Lechene et al. 2018; Miller and Able
2002; Nemerson and Able 2005; Teo and Able 2003a, b;
Tupper and Able 2000; Weinstein et al. 2019).

In general, nekton communities establish rapidly at re-
stored marsh sites, with restored marshes capable of
supporting nekton densities and community compositions
similar to natural marshes as quickly as 1 to 2 years following
restoration (Able et al. 2008; Dionne et al. 1999; Jivoff and
Able 2003; Konisky et al. 2006; Lechêne et al. 2018;
Nemerson and Able 2005; Raposa and Talley 2012; Roman
et al. 2002; Simenstad and Thom 1996; Williams and Zedler
1999). However, this is not always the case for restored
marshes or all species (Havens et al. 2002; Minello 2000;
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Minello and Webb 1997; Moy and Levin 1991; Streever
2000). In this issue, Hollweg et al. (2020b) use a meta-
analysis approach to re-examine data from paired restoration
and reference sites in the northern GOM region. They find that
mean nekton densities at restored sites do not achieve equiv-
alence with reference sites until 13 years after restoration, a
trend that is strongly driven by lower crustacean densities at
restored sites (Hollweg et al. 2020b). Some of the variability
observed in nekton community establishment at created
marshes may be attributed to factors such as the type of
dredged sediments used, marsh elevations, rates of sediment
organic matter accumulation, and benthic community devel-
opment (Minello and Webb 1997; Thom et al. 2004; Zeug
et al. 2007). Project-specific features such as tidal connectiv-
ity, substrate variability, shallow ponds, and the amount of
marsh edge habitat can also have a strong influence on the
functions of restored wetlands (Larkin et al. 2008; Minello
and Webb 1997; Weinstein et al. 2005; Zeug et al. 2007).

Restoration outcomes for submerged aquatic vegetation
(SAV) beds have been variable. Recent reviews of SAV res-
toration outcomes from Chesapeake Bay and Europe and a
global meta-analysis of SAV restoration found that few re-
stored sites survive beyond 1 year (Cunha et al. 2012;
Luckenbach et al. 2011; van Katwijk et al. 2016). The results
of these reviews contrast with numerous individual studies
over the past few decades that have documented examples
of successful SAV restoration (Bell et al. 2014; Fonseca
et al. 1996a; Kenworthy et al. 1980; McSkimming et al.
2016; Sheridan 2004). In some cases, monitoring timeframes
much longer than 3 years may be necessary to fully capture
the restoration trajectories of SAV beds ( Bell et al. 2008,
2014; McGlathery et al. 2012).

Appropriate site selection is particularly important for SAV
restoration, as water quality and water clarity are important
drivers of restoration outcomes (Golden et al. 2010;
Luckenbach et al. 2011; Orth et al. 2010; van Katwijk et al.
2016). Loss of historic SAV beds can create feedbacks with
water flow velocity that can increase turbidity and make it
difficult for SAV to re-establish, potentially explaining the
high failure rate for SAV restoration attempts (van der Heide
et al. 2007). The range of techniques that have been used for
SAV restoration complicates the development of restoration
trajectories for SAV beds. For example, seeding can result in
different outcomes from transplanting (Fonseca et al. 1990;
van Katwijk et al. 2016) and the timing of planting, interan-
nual variability in environmental conditions, use of fertiliza-
tion, and genetics of the donor stock can also influence out-
comes (Bologna and Sinnema 2012; Jahnke et al. 2015;
Kenworthy et al. 2018; Orth et al. 2009; Powell et al. 1991;
Reynolds et al. 2012). However, nekton and epifauna can
respond rapidly to successful SAV restoration, with abun-
dance/density, species composition, and size at restored sites
resembling those of natural SAV beds within a couple of years

(Fonseca et al. 1990, 1996b; McSkimming et al. 2016; Scapin
et al. 2016; for exceptions, see Sheridan et al. 2003).
Colonization by resident epibenthic fauna may be dependent
on the restored bed first reaching a minimum shoot density
(Fonseca et al. 1990, 1996b).

By contrast, restored oyster reefs tend to demonstrate rapid
development of both ecosystem structure and function, as
long as they are located in environmental settings with suit-
able salinity, water quality, and oyster larval transport
(Beseres Pollack et al. 2012; Powers et al. 2009). Under the
right conditions, restored eastern oyster (Crassostrea
virginica) reefs have been shown to support similar oyster
densities as natural oyster reefs within just a few years, with
examples from the GOM (Chambers et al. 2017; Dillon et al.
2015; Frederick et al. 2016; La Peyre et al. 2014; Rezek et al.
2017), South Carolina (Hadley et al. 2010), North Carolina
(Hanke et al. 2017; Keller et al. 2019; Meyer and Townsend
2000), and Chesapeake Bay (Schulte et al. 2009). Similar
outcomes have also recently been reported for other oyster
species in Australia (Shelamoff et al. 2019).

Many restored oyster reefs support similar resident macro-
fauna abundance, species richness/diversity, and biomass as
natural oyster reefs within a few years following construction
(Hadley et al. 2010; Harwell et al. 2011; Karp et al. 2018;
Meyer and Townsend 2000; Rezek et al. 2017). While few
published studies have compared the nekton communities of
constructed oyster reefs with natural reference reefs, studies in
North Carolina found similar nekton community characteris-
tics between created and natural reference reefs (Harwell et al.
2011; Meyer and Townsend 2000; Rutledge et al. 2018).
Numerous studies have demonstrated enhanced nekton abun-
dance on restored oyster reefs compared with unstructured
control sites (Chowdhury et al. 2020; Gilby et al. 2019;
Humphries and La Peyre 2015; La Peyre et al. 2014;
Scyphers et al. 2011). Food web characteristics such as food
chain length, food web complexity, and consumer stable iso-
tope values have also been demonstrated to be similar between
restored oyster reefs and natural reef communities within
2 years following restoration in some cases (Dillon et al.
2015; Rezek et al. 2017).

It has been well established that each of these coastal hab-
itats (marsh, SAV, oyster reefs) individually provide impor-
tant benefits to estuarine resident and transient nekton species,
as well as to other species that benefit from exported prey
(Able 2005; Blandon and zu Ermgassen 2014; Boesch and
Turner 1984; Deegan 1993; Jänes et al. 2020; Nelson et al.
2011; Odum 1980;Weinstein et al. 2005, 2014; zu Ermgassen
et al. 2016). In this issue, Hollweg et al. (2020a) reinforce that
these structured habitats support higher nekton densities than
unstructured habitat, with oyster reefs generally supporting
different nekton communities than marsh and SAV. There is
also evidence that restoration of multiple habitat types in close
proximity to each other can result in higher nekton
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biodiversity and production than the restoration of each indi-
vidual habitat in isolation (Baillie et al. 2015; Irlandi and
Crawford 1997; Meynecke et al. 2008; Zeug et al. 2007).
While some studies suggest that restored oyster reef habitat
can be functionally redundant to other structured habitats
(Geraldi et al. 2009; Grabowski et al. 2005; La Peyre et al.
2014), the presence of patchy oyster substrate along the marsh
edgemay enhance marsh habitat value for some species (Zeug
et al. 2007).

Given that different habitats are used by different nekton
species and life stages (Glancy et al. 2003; Rozas and Minello
1998; Rozas and Zimmerman 2000; Stunz et al. 2002, 2010),
protecting and/or restoring a heterogeneous mosaic of coastal
habitats within estuaries should support successful niche
partitioning. Heterogeneity within habitats can also contribute
to enhanced ecological function and service flows. For exam-
ple, microhabitats within coastal marshes (e.g., interior marsh
surface, marsh edge, tidal creeks, shallow ponds, and adjacent
non-vegetated bottom) support different nekton densities and
species compositions (Baltz et al. 1993; Breitburg et al. 1995;
Minello and Rozas 2002; Minello et al. 1994; Peterson and
Turner 1994). In this issue, Hollweg et al. (2020a) support
these findings for marshes in the northern GOM, with total
nekton density highest in marsh edge habitat and differing
nekton community composition between marsh edge, marsh
interior, and non-vegetated bottom habitats.

Applying Restoration Trajectories
to Compensatory Restoration

Trajectories describing the rate of development of ecological
functions can be used to quantify the scale of restoration need-
ed to offset habitat injuries in regulatory contexts. Habitat
equivalency analysis (HEA) and resource equivalency analy-
sis (REA) are approaches that have been developed to assist
with calculating the amount of restoration needed to compen-
sate for injuries to natural resources (English et al. 2009;
NOAA 1995, 1997). The main distinction between HEA
and REA is that HEA is usually applied to habitat types
(e.g., tidal marsh or oyster reefs) while REA is applied to
specific living resources (e.g., number of injured birds or bio-
mass of injured fish). These methods were originally devel-
oped in the USA for use in Natural Resource Damage
Assessments (NRDAs) for oil spills, but they have also been
applied to chemical spills, vessel groundings, forest fires, and
habitat conversion (Desvousges et al. 2018; Fonseca et al.
2000; Kirsch et al. 2005). The European Union has also
adopted HEA and REA for calculating environmental mitiga-
tion requirements (Desvousges et al. 2018; Lipton et al. 2018),
and the United Nations relied on HEA to determine compen-
sation for environmental damages in Kuwait from the 1990 to
1991 Gulf War (United Nations Security Council 2005).

Past HEA and REA models have incorporated the time
needed for habitat functions to develop and the risk that re-
stored habitats may never provide the same level of functions
and services as the injured natural habitats. These models
incorporate change in the level of resources or services pro-
vided by a restoration action over time, often included in
models simply as a percentage of total ecosystem service pro-
vided by restored habitat (e.g., Lavaca Bay, NOAA 2000)
However, HEA and REA models are only as strong as the
data that support them. The restoration trajectories (often
called “recovery trajectories” in HEA and REA applications)
used inmany previous HEA and REAmodels have frequently
relied on data from only a handful of restoration projects or
expert opinion (Strange et al. 2002). The meta-analyses pre-
sented in this theme section provide an opportunity to leverage
larger, synthesized datasets to support the development of
HEA and REA models for GOM coastal habitats that can
more accurately estimate restoration project benefits over
time. The REA model presented by Fricano et al. (2020) in
this issue provides an example for how restoration trajectories
derived through meta-analysis of regionally focused datasets
can be used along with other regionally specific input param-
eters to develop more robust estimates of restoration benefits.

Many environmental mitigation scenarios require out-of-
kind compensation for damages, such as restoring salt marsh
to mitigate for injury to soft-sediment benthic habitat (English
et al. 2009; Wickham et al. 1993). Another common scenario
is a “benefits cascade,” where a single restoration project ben-
efits multiple trophic levels (Heinrich et al. 2014). For exam-
ple, a marsh restoration project may be constructed to restore
for fish that were killed by an oil spill. The marsh is an appro-
priate restoration option based on the assumption that the
marsh will provide ecological services to the injured fish spe-
cies. A common metric is needed when calculating compen-
satory restoration requirements in situations that involve out-
of-kind restoration or benefits cascades. In this issue, Cebrian
et al. (2020) present a novel protocol for quantifying biomass
at recruitment (for species with life history tables available) or
productivity (for species without life history tables available)
supported by different coastal habitats, which can be applied
to help calculate out-of-kind restoration requirements.

Restoration trade-off scenarios have evolved from fairly
straightforward trade-offs between similar habitats or re-
sources to more complex applications. Prior approaches in-
clude the development of conversion factors based on produc-
tivity ratios for the same trophic level between habitat types
(e.g., M/V Athos, French McCay et al. 2002), the develop-
ment of equivalencies between trophic levels, and the appli-
cation of simple food chain models using energy transfer ef-
ficiencies to scale across trophic levels (see, e.g., French
McCay et al. 2002, 2003b; French McCay and Rowe 2003;
Peterson et al. 2003, 2007). Recent advancements in ecosys-
tem modeling approaches provide a means to integrate
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multiple components of the ecosystem, facilitating the consid-
eration of different restoration scenarios (e.g., Ainsworth et al.
2018; de Mutsert et al. 2017). Robust estimates for the
broadest possible array of various ecological functions of
coastal habitats, such as those provided by the meta-analysis
studies included in this theme section, can improve certainty
in ecosystem model outputs by providing more robust values
for model parameterization.

Overview of the Theme Section

This collection of papers provides insights into the quantifica-
tion of benefits and the rate at which benefits develop for
coastal habitat restoration projects in the northern GOM,
USA region. The authors of the papers included in this collec-
tion conducted systematic reviews of the existing literature on
coastal habitat restoration and utilization of coastal habitats by
species impacted by the Deepwater Horizon oil spill. Meta-
analysis was used to synthesize existing data related to marsh
vegetation and soils; marsh resident fauna; and nekton abun-
dance across marsh, oyster reef, submerged aquatic vegetation
(SAV), and open-water non-vegetated bottom (NVB) habi-
tats. The authors used the results of the meta-analyses to de-
velop quantitative relationships describing the restoration of
key structural characteristics and ecological functions and ser-
vices over time in restored coastal habitats. Approaches are
also presented to estimate the productivity of estuarine habi-
tats, model the benefits associated with a hypothetical marsh
restoration project, and quantify the benefits of removing der-
elict crab traps from estuaries. The synthesized datasets can be
used to compare benefits associated with different types of
restoration projects, serve as a reference for setting appropriate
targets and performance criteria, and be applied to scale up the
measured benefits of individual restoration projects to evalu-
ate the longer-term, cumulative outcomes of restoration in the
GOM. While this synthesis of existing data focuses specifi-
cally on the northern GOM,USA region, the results contribute
to an overall better understanding of the ecological benefits of
estuarine habitat restoration and can serve as a valuable refer-
ence for managers implementing restoration projects in other
regions.

Ebbets et al. (2020) conducted a systematic literature re-
view and meta-analysis to evaluate whether vegetation and
soil parameters at fresh, brackish, and saline marsh sites re-
stored using dredged sediment placement and thin layer sed-
iment addition recover to levels found at paired reference sites.
On average, belowground parameters (root biomass and soil
organic matter) were 44 to 92% lower at restored sites younger
than 15 years compared with the reference sites. Percent veg-
etation cover was 50% lower at restored sites compared with
the reference sites over the first 5 years of restoration; in con-
trast, aboveground biomass was 25% higher at restored sites.

Mean recovery trajectories for belowground biomass and pro-
ductivity, vegetation cover, and soil parameters indicated that
mean values for restored sites reached reference site condi-
tions within 30 years following restoration. However, the re-
covery curve for the 20th percentile of site data suggests
slower recovery for some sites.

Baumann et al. (2020) examined recovery of the epifaunal
gastropod periwinkle snail (Littorina irrorata) and a broad
grouping of amphipod crustaceans (orderAmphipoda) follow-
ing salt marsh restoration in the northern GOM. Faunal recov-
ery trajectories were developed using data from restored and
reference marshes extracted from published, unpublished, and
gray literature related to marsh structure and function follow-
ingmarsh creation, marsh rehabilitation, or experimental treat-
ments that closely mimic marsh restoration. The results of the
analysis indicate progressive recovery of periwinkle function
to equivalence with reference by year six, while amphipods do
not fully recover in the first 20 years following restoration.
Although periwinkle function in terms of annual biomass ad-
dition reaches equivalence by year six, the development of a
population structure characteristic of reference marshes would
likely take longer because of the relatively long lifespan for
this species.

Hollweg et al. (2020a) conducted a systematic literature
search and meta-analysis to evaluate nekton densities across
estuarine habitat types, including marsh, oyster reefs, SAV,
and open-water NVB in the northern GOM. They corrected
nekton densities for gear efficiencies to allow for comparisons
across sites, studies, and habitats. Higher nekton densities
were associated with structured estuarine habitats (i.e., marsh,
oyster reefs, SAV) than with open-water NVB habitats. Marsh
and SAV community assemblages were relatively similar to
each other but different from those associated with open-water
NVB and oyster habitats. Densities of recreationally and com-
mercially important crustacean and fish species were highest
in saline marshes, thus demonstrating the importance of these
habitats in the northern GOM.

Hollweg et al. (2020b) conducted a meta-analysis of nek-
ton densities measured at restored marsh sites in the GOM
compared with the reference (i.e., natural) sites to describe
general patterns of nekton recovery following restoration.
Overall, total nekton densities at restored sites were generally
lower than those at reference sites during the first decade fol-
lowing restoration. They found variations in restored versus
reference densities when examining specific fish and crusta-
cean taxa; densities of many crustacean taxa (e.g., penaeid
shrimp Penaeidae spp., grass shrimp Palaemonidae spp.)
and some fish taxa (e.g., gobiesGobiidae spp.) were generally
lower at the restored sites, while restored densities of other
crustacean taxa (e.g., portunid crabs Portunidae spp.) were
similar to the reference densities. Nekton densities—and con-
stituent crustacean densities—appeared to increase with the
age of the restored sites and were comparable with densities
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at the reference sites by approximately year 13, although the
specific response varied for different species groups.

Cebrian et al. (2020) propose a method to standardize esti-
mates of biomass at recruitment and nekton productivity that
can be used to inform coastal habitat conservation or restora-
tion actions in the northern GOM region, including efforts to
restore coastal wetlands, SAV beds, and oyster reefs. The
objective of their study was to develop a new protocol that,
building upon existing methods, derives nekton biomass and
productivity from density values. The method also allows for
the quantification of the uncertainty around the derived bio-
mass and productivity values, thereby allowing end users to
obtain an accurate understanding of the value and variability
of coastal ecosystems as habitat for nekton as well as devel-
oping effective strategies for the conservation and restoration
of nekton coastal habitat.

Fricano et al. (2020) present a method for quantifying an-
ticipated ecological benefits associated with marsh restoration
projects, particularly marsh creation, in the northern GOM.
Using salt marsh vegetation (percent cover, aboveground bio-
mass, and belowground biomass), periwinkle snails, and am-
phipods as representative ecological components, they
modeled anticipated ecological functioning over time and
quantified total net project benefits for a hypothetical marsh
creation project in Barataria Bay, Louisiana. They applied a
rigorous approach to the development of input values, mining
the scientific literature, Coastal Wetlands Planning, Protection
and Restoration Act (CWPPRA) data, and other sources. They
also demonstrate how model inputs can be varied to accom-
modate different marsh restoration techniques, salinity re-
gimes, and geographic regions.

Arthur et al. (2020) present a method for determining the
potential benefits of crab trap removal projects in northern
GOM bays and estuaries. Recent stock assessments of blue
crabs (Callinectes sapidus) in the GOM are discouraging, in-
dicating the stock is in waning health (West et al. 2016). The
authors conducted a synthesis of data made available by state
natural resource management agencies and provide a novel
approach to handling large uncertainties regarding trap loss
rates. The outcomes of this analysis could serves as inputs
for REA, including applying concepts of production forgone
(French McCay et al. 2003a). An estimate of lost crab and
finfish biomass is determined based upon rates of ghost fish-
ing by derelict traps. The authors estimate that a 5-year pro-
gram would result in a benefit of 391,000 kg of crab and
300,000 kg of finfish not killed due to ghost fishing, for a
combined benefit of 691,000 kg across the GOM. The ap-
proach used could be extended to estimate other measures of
ecosystem performance, including reduced marine mammal
entanglement, improved esthetics, and economic benefits to
fishing communities. The article also brings attention to other
persistent threats and stressors in estuaries such as marine
debris. For certain ecosystems, habitat restoration alone may

be less effective than approaches that also address other
stressors to the system. This begs the question of how portfo-
lios of restoration projects can be designed to address multiple
stressors to a system.

Key Take-Aways

Coastal habitat restoration has been conducted for decades in
the northern GOM region through existing programs such as
the Coastal Wetlands Planning, Protection, and Restoration
Act (CWPPRA) program, NOAA’s Community-based
Restoration Program, and the USFWS Coastal Program, with
much more restoration planned or already underway as a re-
sult of the Deepwater Horizon settlements. However, many
restoration projects are only monitored for a few years after
construction, with most monitoring focused on meeting spe-
cific construction targets (e.g., marsh elevation, volume of
constructed oyster reefs) and the development of structural
habitat features (e.g., vegetation percent cover). The papers
included in this theme section reveal the limited amount of
long-term monitoring information currently available for
coastal habitat restoration projects in the GOM (Table 1).
Without more long-term monitoring data, natural variability
makes it difficult to accurately predict restoration trajectories
for some characteristics of restored marshes, particularly the
extent to which slower developing functions might emerge
over time (Callaway 2005; Zedler 2000). Larger, combined
datasets, such as those derived in these papers, improve un-
derstanding of the ecological services and the rate of develop-
ment of restored habitats.

While the papers in this volume draw on the best currently
available data from the GOM region, combining data from
numerous sites inherently introduces additional variability
and requires large sample sizes. Increased long-term monitor-
ing of individual projects combined with strategic re-sampling
of older restoration projects could further improve the power
of meta-analysis for developing restoration trajectories.
Collecting longer-term monitoring data for a variety of differ-
ent types of restoration projects and restoration projects with
specific design features would help clarify which restoration
actions are most effective at increasing the rate of develop-
ment of desired functions. As the number of restoration pro-
jects with long-term monitoring data increases, it should be-
come possible to distinguish differences between restoration
techniques and shed more light on the drivers behind the dif-
ferences in the rate of development of some habitat functions
seen in individual studies. Additional data collection related to
soil development, benthic community composition, and fau-
nal habitat utilization would further improve understanding of
the ecological services provided by restored habitats, the
length of time required to achieve full functional equivalence
with natural habitats, whether equivalence is ever achieved for
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all functions, and how to set appropriate performance expec-
tations for restoration projects.
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