

1 Using Cell Cycle Measurements with Flow Cytometry to Predict the Growth Rate of Walleye
2 Pollock *Gadus chalcogrammus* Larvae

3

4 Steven M. Porter^{1*} and Annette B. Dougherty¹

5

6 ¹*Corresponding author. Recruitment Processes Program, Resource Assessment and
7 Conservation Engineering Division, Alaska Fisheries Science Center, NOAA, National Marine
8 Fisheries Service, 7600 Sand Point Way NE, Seattle, Washington 98115, USA
9 E-mail address: steve.porter@noaa.gov (S.M. Porter)

10

11 Published in the Journal of Experimental Marine Biology and Ecology 2019

12 <https://doi.org/10.1016/j.jembe.2019.151178>

13

14 Abstract

15 Growth rate during early life stages can be an important factor in the recruitment process of
16 marine fishes, and in this study we develop a methodology based on cell cycle measurements to
17 predict the growth rate of Walleye Pollock (*Gadus chalcogrammus*) larvae. Results from
18 cell-cycle analysis of muscle cell nuclei of laboratory-reared Walleye Pollock larvae measured
19 with flow cytometry were used as covariates in a generalized additive model to predict the
20 growth rate (growth in length per day, mm d⁻¹) of individual larvae from the day exogenous
21 feeding began (first feeding) to the time of capture ($r^2 = 0.79$). Additional covariates used were
22 temperature and standard length. A generalized additive model to classify a larva as fast- or
23 slow-growing was also formulated using the same covariates. Validation testing with an
24 independent set of 45 laboratory-reared larvae showed that 33% of the laboratory growth rates
25 (i.e., growth rate based on age and size) fell within the 95% confidence interval of the predicted
26 growth rates, and predicted growth rates were significantly less than otolith-derived growth rates.
27 The growth classification model was more accurate than the growth rate model, correctly
28 classifying the growth rate type (fast or slow growing) of 71% of the same set of larvae showing
29 that flow cytometric cell cycle analysis may be better suited for classifying larvae as fast- or
30 slow-growing rather than for predicting absolute growth rate. Predicted growth rates for larvae \leq
31 11 mm in length collected from the Gulf of Alaska were within the range of published values for
32 that area, and were not significantly different than corresponding otolith-derived growth rates.
33 The growth rates of Gulf of Alaska larvae > 11 mm were overestimated when compared to both
34 otolith-derived growth rates and published values, and that may be due in part because those
35 larvae were outside of the size range used to formulate the model. Predicted growth rate and
36 growth classification of late-stage, field-collected Walleye Pollock larvae would be improved by

37 adding larvae as large as 15 mm to the model to encompass the size range of larvae typically
38 collected during spring ichthyoplankton surveys conducted in the Bering Sea or Gulf of Alaska.
39 Flow cytometric cell cycle analysis offers promise as an alternative method for determining
40 growth rate of fish larvae when otolith daily increments cannot be reliably counted.

41

42 Keywords

43 Flow cytometry

44 Cell cycle

45 Growth rate

46 Fish larvae

47 Walleye Pollock

48 *Gadus chalcogrammus*

49

50 Introduction

51 Growth rate plays a crucial role in determining survival during the larval stage of marine
52 fishes, and small changes in growth or mortality rates during early life may affect year-class
53 strength (Houde, 1987). The ‘growth-mortality’ hypothesis is used to explain survival of marine
54 fish larvae and is based on fast growth being advantageous (Anderson, 1988). Components of
55 that hypothesis are the ‘bigger is better’, ‘growth rate’, and ‘stage duration’ hypotheses. The
56 ‘bigger is better’ hypothesis states that for individuals of the same age, larger larvae are more
57 likely to survive than smaller ones due to size-dependent predation mortality (Leggett and
58 DeBlois, 1994). A decrease in the growth rate of fish larvae due to suboptimal prey abundance or
59 temperature or other unfavorable environmental conditions can increase the duration that high
60 mortality rates operate over (Houde, 1987). The ‘growth rate’ hypothesis relates fast growth to
61 reducing the amount of time spent at sizes where mortality rates are highest (Ware, 1975). The
62 ‘stage duration’ hypothesis is based on fast growth reducing the amount of time an individual
63 spends in the high mortality larval stage; that is, increased survival by transitioning to the
64 juvenile stage sooner (Chambers and Leggett, 1987). Thus, an individual’s survival is affected by
65 both its growth rate and size-specific mortality rate. Model simulations have shown selectivity
66 for fast-growing larvae (Rice et al., 1993; Akimova et al., 2016). For example, 80% of Bloater
67 *Coregonus hoyi* larvae surviving to day 60 came from the upper 25% of the initial growth rate
68 distribution (Rice et al., 1993), most likely because of reduced mortality with increasing size.
69 Atlantic Cod *Gadus morhua* larvae surviving through settlement in the North Sea had growth
70 rates approximately equal to fish fed *ad libitum* in the laboratory (Akimova et al., 2016). Field
71 studies also show selection for faster growing fish larvae. Slow-growing Japanese Anchovy
72 *Engraulis japonicus* larvae were more likely to be preyed upon than faster growing individuals

73 (Takasuka et al., 2003, 2004). Otolith microstructure analysis showed that fast-growing Atlantic
74 Cod larvae, and Bluefish *Pomatomus saltatrix* larvae had higher survival (Meekan and Fortier,
75 1996; Hare and Cowen, 1997). Walleye Pollock larvae in the Bering Sea grew faster and had
76 higher survival into summer during relatively warm years compared to cold years (Hunt et al.,
77 2011). A laboratory study of yellowtail kingfish, *Seriola lalandi*, larvae reared under projected
78 climate change conditions (increasing ocean temperature and $p\text{CO}_2$) showed that larvae at 25°C
79 grew and morphologically developed faster than larvae at 21°C, but larvae at the higher
80 temperature had lower survival (Watson et al., 2018) indicating that future climate change could
81 negate the advantage of growing fast because of higher mortality. Growth during the larval stage
82 may also affect over-winter survival of young-of-the-year, larger young-of-the-year Walleye
83 Pollock *Gadus chalcogrammus* are more likely to survive than smaller individuals (Heintz and
84 Vollenweider, 2010).

85 Otolith microstructure analysis, the RNA-DNA ratio, and flow cytometric cell-cycle analysis
86 have been used to estimate growth rates of fish larvae (Dougherty, 2008; Calderone et al., 2003;
87 Calderone, 2005; Theilacker and Shen, 2001; Domingos et al., 2012). The number of otolith
88 increments and/or increment width is widely used to estimate the growth rate of fish larvae and
89 typically involves counting the daily increments formed on the otolith and then modeling growth
90 based on size at age (Dougherty, 2008). Problems with that method arise from increment
91 compression due such conditions as cold temperature or lack of prey that slow growth and
92 hamper the ability to reliably age larvae. The RNA-DNA ratio and temperature have been used
93 to model protein-specific, short-term growth rate of Atlantic Cod and Haddock *Melanogrammus*
94 *aeglefinus* larvae (Calderone et al., 2003; Calderone, 2005), and weight-specific growth rate for
95 different species of fish larvae (Buckley et al., 2008). The amount of variance in growth rate

96 explained by those models ranged from 39% to 82%. Using flow cytometric cell-cycle analysis
97 to estimate larval growth is based on the premise that cell proliferation is related to somatic
98 growth rate. In flow cytometry, individual cells or nuclei are stained with target-specific dyes,
99 passed through laser beams, and their fluorescence is measured. Flow cytometric cell-cycle
100 analysis is a technique that measures the DNA content of individual cells in a population based
101 on their fluorescence to determine the proportion of cells in different stages of the cell cycle, and
102 can be used on specific tissues of individual fish larvae or whole larva homogenates (Theilacker
103 and Shen, 2001; Domingos et al., 2012). The cell cycle is divided into two parts: interphase and
104 mitosis (M). Interphase consists of three stages: gap 1 (G1), DNA synthesis (S), and gap 2 (G2).
105 Cell growth occurs during the G1 stage before cell division begins, and cells may enter a G0
106 resting state after this phase in response to starvation or other unfavorable environmental
107 conditions (Murray and Hunt, 1993). For cells to divide they must first replicate their DNA (S),
108 and then grow and produce the structures necessary for mitosis (G2). The DNA content of cells
109 in the S-stage increases to up to twice the amount of DNA as G1 stage cells. G2 and mitosis
110 (before cell division) stage cells have twice the amount of DNA as G1 stage cells. The fraction of
111 cells in S, and G2 and mitosis (hereafter referred to as G2 and M) are indicative of cells that may
112 divide. For Walleye Pollock larvae the fraction of cells in S, and G2 and M-stages are responsive
113 to recent feeding history (Theilacker and Shen, 2001; Porter and Bailey, 2011) and can indicate
114 changes in cell division. The fraction of S-stage nuclei of muscle cells of Walleye Pollock larvae
115 significantly decreased after a few days of prey being withheld ($\leq 3d$, Porter and Bailey, 2011)
116 suggesting reduced cell division. The fraction of G2 and M-stage nuclei increased during
117 starvation (Porter and Bailey, 2011) and may indicate cells staying in the G2-stage due to a
118 checkpoint between this stage and mitosis that slows or halts cell division if energy reserves are

119 low (Murray and Hunt, 1993). Cell-cycle analysis of muscle tissue of Walleye Pollock larvae
120 (Theilacker and Shen, 2001), and whole Barramundi *Lates calcarifer* larvae (Domingos et al.,
121 2012) has shown that the fraction of cells dividing (S + G2 and M stages) is positively correlated
122 with both larval size and growth in length. For both studies slightly more than 50% of the
123 variance was explained in models using cell cycle analysis to estimate growth of those larvae
124 (Theilacker and Shen, 2001; Domingos et al., 2012).

125 Measuring the growth rate of marine fish larvae is valuable for understanding recruitment
126 dynamics because fast growth increases the probability of surviving this life stage. In this study
127 we formulate and test a generalized additive model to predict the growth rate (growth in length
128 per day, mm d^{-1}) of individual Walleye Pollock larvae using covariates from cell-cycle analysis
129 with flow cytometry, temperature, and standard length. This approach may offer an alternative
130 for growth rate estimates when otolith microstructure analysis is unreliable. The model was
131 developed and validated with laboratory-reared larvae and then tested on larvae collected from
132 the Gulf of Alaska. Growth rates predicted from the model and those calculated from otolith
133 microstructure analysis were compared.

134

135 Material and methods

136 *1.1 Laboratory rearing and growth studies*

137 Adult Walleye Pollock were collected by trawl in Shelikof Strait, Gulf of Alaska, during the
138 spawning season in March 2014, 2015, and 2017. Eggs from single fish pairings (one female and
139 one male) were fertilized and maintained aboard ship in the dark at 3°C before being transported
140 to the Alaska Fisheries Science Center, Seattle, WA. Larvae were reared at 3.2° and 6.1°C in
141 2014, 1.6° and 3.0°C in 2015, and 8.3°C in 2017 (Table 1). All rearing experiments used one-

142 micron filtered seawater (33 PSU) and a 16-hour daylight cycle with a $2.5 \mu\text{mol photon m}^{-2} \text{s}^{-1}$
143 light level at the water surface from overhead full spectrum fluorescent lights. Two replicate 20
144 L black, circular tanks each containing approximately 500 larvae were used for each temperature
145 and feeding treatment following procedures described in Porter and Theilacker, 1996. Feeding
146 treatments for the 3.2° , 6.1° , and 8.3°C experiments were high density of prey ($10 \text{ rotifer ml}^{-1}$ and
147 $3 \text{ natural zooplankton ml}^{-1}$), low prey density ($1.0 \text{ natural zooplankton ml}^{-1}$), and an unfed
148 treatment (Table 1). Natural zooplankton, which included primarily copepod nauplii (*Acartia*
149 spp.) and gastropod veligers, were collected from a local lagoon and screened through a $202\text{-}\mu\text{m}$
150 mesh. The high prey density treatment at 1.6°C did not use rotifer prey because they become
151 inactive and settle out of the water column at that temperature. Instead a zooplankton density of
152 10 ml^{-1} was used and the other treatments remained unchanged. Removing the rotifers and
153 increasing the density of zooplankton to 10 ml^{-1} should not negatively affect larval growth rate
154 because Walleye Pollock larvae fed natural zooplankton grow faster than those fed rotifers
155 (Porter and Bailey, 2007). Thus the growth rate of larvae fed 10 ml^{-1} zooplankton would be
156 expected to be at least equal to that of larvae fed the high density rotifer and zooplankton diet.
157 First feeding was defined as the first day when 50% of the larvae were observed feeding. Mean
158 standard length (SL) of 10 larvae at first feeding for each feeding treatment and temperature
159 were used as the size at that stage when calculating laboratory growth rate. Here laboratory
160 growth rate is defined as growth beginning at first feeding determined from known age and size
161 in the laboratory. For each larva from a specific feeding treatment and temperature, laboratory
162 growth rate was calculated as the difference between size at capture and mean SL at first feeding,
163 divided by the number of days after first feeding. Treatments were sampled three or four times at
164 intervals based on equivalent degree-days among rearing temperatures, ranging from 3 to 12

165 days between sampling depending on temperature. Larvae in the 1.6°C treatment were sampled
166 on the same days as the 3°C treatments. This ensured that an adequate sample number was taken
167 due to high mortality that was expected to occur at this temperature. The 2015 experiment was
168 designed to take into account the effect of intermittent feeding on growth. This experiment was
169 conducted at 3.0°C using larvae starved for 6 days after first feeding and then fed at the high prey
170 density treatment, and another treatment that fed at high prey density for 6 days after first
171 feeding followed by starvation. An always-fed high prey density treatment was used as a control.
172 For all experiments the number of larvae taken from a tank on a given sampling day ranged from
173 5 to 36 depending on whether larvae would also be used for model validation testing. Larvae
174 taken from rearing tanks were euthanized in a 1% solution of tricaine methanesulfonate (MS-
175 222), and then a digital photograph was taken of each larva before it was frozen at -80°C.
176 Calibrated digital photographs were used to measure SL and body depth at anus (BDA) of each
177 larva using Image-Pro Plus vers. 4.5 (Media Cybernetics, Inc., Rockville, MD) image analysis
178 software.

179 *1.2 Flow cytometry*

180 DAPI (4',6-diamidino-2-phenylindole), a fluorescent DNA stain, was used at a concentration
181 of 10 $\mu\text{g mL}^{-1}$ for cell-cycle analysis with flow cytometry. Nuclear RNA was stained with
182 Invitrogen Syto RNASelect green fluorescent cell stain (S32703, Life Technologies Corp.,
183 Carlsbad, CA; hereafter referred to as Syto RNASelect stain) and was used at a concentration of
184 1000 nM. Tissue preparation, DNA and RNA staining protocols followed Porter and Bailey
185 (2011 and 2013), modified from Theilacker and Shen (2001). A frozen larva was placed into an
186 approximately 100 μL mixture of DAPI and Syto RNASelect stains on a glass depression slide.
187 The head and gut were dissected away from the trunk musculature, and the tissue was sliced into

188 4–5 pieces with 2 scalpels. The pieces of the trunk musculature were transferred into a
189 microcentrifuge tube that contained a 230- μ L mixture of DAPI and Syto RNASelect stains and
190 then the mixture was triturated 6 times using a 1mL syringe with a 25-gauge needle to release the
191 nuclei from the cells. The solution was filtered through a 48- μ m filter into another
192 microcentrifuge tube to separate the stained nuclei from large cellular debris. Prepared samples
193 were kept on ice until they were analyzed with a BD Biosciences LSRII flow cytometer (BD
194 Biosciences, San Jose, CA), typically within 6 hours of preparation. DAPI was excited with a
195 405 nm, 100 mW violet laser, and Syto RNASelect stain was excited with a 488 nm, 100 mW
196 blue laser. The DAPI/DNA detector filter was 450/50, and filters used for Syto RNASelect
197 stain/RNA were 505 long pass and 530/30.

198 Chicken erythrocyte nuclei (Biosure, Inc., Grass Valley, CA) stained with the same mixture
199 of DAPI and Syto RNASelect dyes were used as flow cytometry controls. At the beginning of
200 each flow cytometry session, the control was run and necessary adjustments were made to the
201 laser voltages to keep control fluorescence values similar to previous sessions. Cell cycle
202 analysis is sensitive to tissue quality. High-quality tissue preparation (i.e., quickly freezing larvae
203 and minimizing tissue processing time) is necessary to keep the amount of tissue debris in
204 prepared samples low, and this in turn results in small coefficients of variation for G0 and G1.
205 Samples that had < 5000 nuclei analyzed or a coefficient of variation for G0 and G1 > 9.00 were
206 not used in further analyses and this criteria resulted in rejection of about a third of all samples.

207 For each larva, the fraction of nuclei in G0 and G1, S, and G2 and M stages of the cell
208 cycle were calculated using MultiCycle AV software, vers. 4.0 (Phoenix Flow Systems, San
209 Diego). FCS Express flow cytometry analysis software, vers. 3.0 (De Novo Software, Los
210 Angeles) was used to calculate the ratio of the number of S-stage nuclei to the number of G1-

211 stage nuclei with high RNA content (Porter and Bailey 2013; hereafter, this ratio will be referred
212 to as RSG1). RSG1 is a measure of potential cell division based on progression of nuclei from
213 the G1 to S stage. Slower growing larvae may have fewer dividing cells and thus potentially less
214 S-stage nuclei, so the ratio of S to G1 nuclei may vary with growth rate (Porter and Bailey,
215 2013).

216 *1.3 Otolith microstructure analysis*

217 Heads from frozen larvae were preserved in 100% ethanol after thawing. Otoliths were
218 prepared for microstructure analysis as described in Dougherty (2008). For each larva, otoliths
219 were dissected from the head and mounted to glass microscope slides using clear acrylic finger
220 nail polish. Walleye Pollock larvae deposit increments on their otoliths daily (Dougherty, 2008)
221 and their otoliths typically have an optically distinct increment representing the day of first
222 feeding (Bailey and Stehr, 1988). Otolith increment width is a relative measure of somatic
223 growth between days that the increments were deposited (Campana, 1996). Increments from
224 first-feeding to the otolith edge of both sagitta otoliths were counted, and that distance was
225 measured to nearest micron with an ocular micrometer at 1000X magnification using a
226 compound microscope. Both measurements correspond with growth from first feeding to
227 capture. Otoliths were read and measured along the maximum diameter axis, and the largest
228 value for increment number and distance was recorded.

229 *1.4 Growth model formulation and validation*

230 Generalized additive models (GAM; Wood, 2006) were used to predict the growth rate
231 (growth in length per day, mm d^{-1}) of a larva from the start of exogenous feeding (first feeding)
232 to the time of capture. GAMs are non-parametric regression techniques, in which the effect of a
233 covariate is estimated with a smooth function, typically a natural cubic spline, and therefore may

234 not necessarily be linear (Wood, 2006). Beginning at first feeding, larvae are dependent upon
235 their surrounding environment for energy, and measuring growth during at this stage gives an
236 overall indication of how well a larva has been feeding and growing. Laboratory growth rate was
237 used as the response variable, and the independent variables (covariates) were SL, BDA,
238 temperature, fraction of S-stage nuclei, fraction of G2-and-M-stage nuclei, and RSG1. The arcsin
239 \sqrt{x} transformation was used to normalize the fraction of S nuclei, fraction of G2 and M nuclei,
240 and RSG1. Four model formulations were tested; these models are not comprehensive of all
241 possible models that could be tested but represent formulations 1) similar to previous linear
242 models that used only cell cycle parameters to model growth rate (Theilacker and Shen, 2001;
243 Domingos et al., 2012), and 2) take into account that the relationship between cell cycle
244 covariates and growth rate may vary with either size or temperature. Two additive GAMs,
245 representative of previous linear models, included all potential cell cycle covariates as well as
246 either SL or the product of SL and BDA for the size covariate (BDA was used to take into
247 account growth in body depth, and the product of SL and BDA is correlated with larval weight,
248 van der Meeren, 1991; models 1 and 2, Table 2). SL and BDA could not be used as separate
249 covariates in the same model because they were highly autocorrelated ($r=0.96$) resulting in
250 multicollinearity in the model. Two variable coefficient GAMs (Bacheler et al., 2009) allowed
251 the relationship between cell cycle covariates and growth rate to vary with either SL or
252 temperature (models 3 and 4, Table 2). The two variable coefficient GAM formulations
253 represented that the relationship between the cell cycle parameter and growth rate was linear
254 (fraction of S-stage nuclei, fraction of G2-and-M-stage nuclei, and RSG1), but could vary with
255 either SL (model 3, Table 2) or temperature (model 4, Table 2). Cell cycle parameters may vary
256 with standard length for such reasons as larvae becoming better predators (i.e., improved

257 feeding, Porter et al., 2005), and increased digestive tract nutrient assimilation efficiency (Porter
258 and Theilacker, 1999). For Walleye Pollock larvae the fraction of S-stage nuclei increases with
259 temperature (Porter and Bailey, 2011), suggesting that temperature also affects the cell cycle.
260 Backward stepwise variable selection based on Akaike Information Criterion (AIC) was used to
261 select the covariates included in models. A covariate with a p-value > 0.05 was removed from
262 the model and the model was rerun. The covariate was not included in the final model
263 formulation if the AIC decreased upon its exclusion, but it was included if AIC increased.
264 Residuals were visually assessed to check for normality and independence. R version 3.4.0 (R
265 Core Team, 2017) and mgcv package (version 1.8-17; Wood, 2006) were used.

266 To determine the model that best predicted growth rates, the model formulations were
267 compared using independent validation testing based on the following criteria: 1) how accurately
268 the model predicted laboratory growth rates. This test compared predicted growth rate and
269 corresponding laboratory growth rate for each larva to determine the model with the highest
270 accuracy; 2) how well predicted growth rates followed somatic growth. The distance from the
271 increment at first feeding to the otolith edge represents growth over the time period from first
272 feeding to when the larva was captured. The Pearson correlation coefficient was calculated for
273 the relationship between predicted growth rate and the distance from the first feeding increment
274 to the otolith edge, and the model with the highest correlation would indicate that predictions
275 tracked somatic growth better than the other models; and 3) similarity between predicted growth
276 rates and otolith-derived growth rates. Otolith-derived growth rate is the most common method
277 used to calculate growth rates of fish larvae in the field, and this test gives an indication of how
278 comparable results from the two methods are. Model predicted and otolith-derived growth rate
279 for the same larva can differ because otolith-derived growth rate uses the number of increments

280 from the first feeding mark to the otolith edge for the number of days from first feeding to
281 capture, and the growth rate models use the first day when 50% of larvae were observed to be
282 feeding as day of first feeding for determining number of days after first feeding a larva was at
283 capture. Some larvae start feeding before and after day of 50% feeding and that will affect the
284 calculation of growth rate. The testing data set consisted of 45 laboratory reared larvae that were
285 not used in the formulation of the models ranging in SL from 6.42 to 8.63 mm from high and low
286 prey density treatments from 1.6°, 3.2°, 6.1°, and 8.3°C (Table 3). A laboratory growth rate and a
287 predicted growth rate from each model was calculated for each larva. Differences between
288 laboratory growth rate and predicted growth rates among the models were compared using
289 repeated measures ANOVA. Otolith-derived growth rate was calculated as the difference in
290 length between the mean SL at first feeding for the corresponding temperature and feeding
291 treatment and size of a larva at the time of capture, divided by the number increments from first
292 feeding to the otolith edge. Differences between otolith-derived growth rate and predicted
293 growth rates among the models were compared using repeated measures ANOVA. SYSTAT
294 vers. 13 (SYSTAT software, inc., San Jose, CA) was used for all statistical testing.

295 The utility of using flow cytometry to classify larvae as fast- or slow-growing was
296 investigated by formulating binomial GAMs with logit link function similar to the growth rate
297 models. The rational was to compare accuracy of growth rate prediction (absolute growth rate) to
298 growth rate classification to determine which method would be most useful for use in the field.
299 For the response variable, each larva was determined to be fast or slow growing based on
300 predicted SL from a linear regression of age and SL from the high prey density feeding treatment
301 for each temperature. Only the high prey density treatment was used for that procedure because
302 larvae in that treatment were most likely to have growth rates similar to healthy larvae in the

303 field. For a given sampling day, a larva less than predicted size for that day was identified as
304 slow-growing, and a larva equal to or greater than that size was fast-growing. Growth
305 classification models predicted the probability of fast growth, and were formulated using the
306 same stepwise procedure described for the growth rate models. The validation testing set was
307 used to determine the model that most accurately classified larvae as fast- or slow-growing.

308 *1.5 Walleye Pollock larvae growth rate in the western Gulf of Alaska*

309 Walleye Pollock larvae were opportunistically sampled from the Gulf of Alaska near Kodiak
310 Island, and from the area between the Shumagin Islands and the southern end of Kodiak Island
311 from 18-30 May 2013 during an ichthyoplankton survey conducted by the Alaska Fisheries
312 Science Center (Fig. 1). Collections were made using a 60 cm bongo frame fitted with 505- μ m
313 mesh nets towed obliquely to a depth of 100 m or 10 m off bottom, whichever was shallower.
314 Water temperature was measured during each tow using a Sea-Bird SBE 19 Plus SeaCat attached
315 to the towing wire. At completion of a tow, Walleye Pollock larvae were immediately removed
316 from the net codend, placed onto a microscope slide with chilled seawater, imaged with a digital
317 camera and individually frozen at -80°C. Mean temperature between the surface and 50 m depth
318 was used as the value for temperature in the growth model because most Walleye Pollock larvae
319 in Shelikof Strait, Gulf of Alaska are located at this depth interval (Kendall et al., 1994).
320 Temperature, SL, transformed fractions of S-stage nuclei, G2-and-M stage-nuclei, and RSG1
321 were used to predict a growth rate for each larva at a station, and to classify them as fast- or
322 slow-growing. The mean growth rate and mean probability of fast growth of larvae at a station
323 were used as the value for that station. A mean otolith-derived growth rate was also calculated
324 for each station. Size at first feeding was estimated from a linear regression of age and size of
325 Walleye Pollock larvae from Shelikof Strait for 1983-2001 from hatching to 35 days after

326 hatching (n = 4159; A. Dougherty unpublished data). Mean predicted SL of larvae 5, 6, and 7
327 days after hatching was used as the size at first feeding (5.49 mm) because those ages represent
328 the time when larvae typically begin feeding at the temperatures measured in the study area.
329 Mean model predicted growth rates and otolith-derived growth rates for each station were
330 compared using the paired t-test.

331

332 Results

333 *2.1 Growth model formulation*

334 Linear regressions of SL and days after first feeding for the high prey density treatments at
335 1.6°, 3.0°, 3.2°, 6.1°, and 8.3°C showed that growth rates were 0.08, 0.09, 0.09, 0.18, and 0.18
336 mm d⁻¹, respectively. Those growth rates indicate that larvae grew well when compared to results
337 from previous rearing experiments at approximately the same temperatures (0.04, 0.06, 0.14,
338 0.16 mm d⁻¹ for 1.4°, 3.2°, 5.9°, 9.0°C, respectively; S. Porter unpublished data). Additionally, 9
339 larvae age-22 days after first feeding, reared at 2.8°C and fed high prey density were included to
340 increase the number of older larvae for temperatures near 3°C. A total of 318 larvae ranging in
341 SL from 5.32 to 11.17 mm were used to formulate the models (Table 3). The 1.6°, 3.0°, 3.2°, and
342 8.3°C treatments had no larvae remaining after three sampling dates (Table 3).

343 Models 1, 3, and 4 produced nearly identical r² values and similar AIC values, indicating that
344 these models fit the data similarly (Table 2). Model 2 had the largest AIC and smallest r² value
345 for the four models tested and was not considered further (Table 2). Models 1 and 3 included all
346 covariates, and model 4 covariates were SL, and the effects of G2-and-M, and S varying with
347 temperature (Table 2). Other covariates (rearing temperature alone, and RSG1) were not
348 included in this model because they were not significant and did not decrease the AIC score.

349 Predicted growth rates from models 1, 3, and 4 resulting from the independent validation data set
350 were compared to the corresponding laboratory growth rate, correlation with the distance
351 between the first feeding increment and the otolith edge, and to otolith-derived growth rates to
352 determine the model that most accurately predicted growth rates. Overall, predictions from all
353 models were correlated with laboratory growth rates (Fig. 2a, b, c; Table 4). The slopes of linear
354 regressions for the relationship between laboratory and predicted growth rates among models
355 were not significantly different showing that all models predicted growth rate similarly
356 (ANCOVA, $p = 0.35$; Fig. 2a, b, c; Table 4). Mean predicted growth rate for each model was not
357 significantly different from laboratory growth rate for rearing temperatures 1.6° and 8.3°C
358 (repeated measures ANOVA, $p > 0.05$; Table 5). For 3.2° and 6.1°C , mean predicted growth
359 rates were significantly different from mean laboratory growth rates (repeated measures
360 ANOVA, $p < 0.01$; Table 5). Growth rate was significantly overestimated by each model for
361 3.2°C , and for 6.1°C all models significantly underestimated growth rate (Table 5). Overall mean
362 percent error between predicted and laboratory growth was similar among models, 23% for
363 models 1 and 4, and 24% for model 3. Model 1 had the highest percentage of accurate
364 predictions (i.e., predicted growth rate of a larva was equal to the corresponding laboratory
365 growth rate; 16%, Table 4), and this model also had the highest percentage of laboratory growth
366 rates that fell within the 95% confidence interval of the predictions (33%; Table 4).

367 A subset of larvae from the independent validation data set were used for model assessment
368 involving otolith microstructure analysis ($n = 19$). Larvae reared at 1.6° and 3.2°C were excluded
369 because of either increment compression (1.6°C) or non-daily increment deposition (3.2°C) that
370 made determination of the number of daily increments and measurement of the distance from the
371 first feeding increment to otolith edge unreliable. Model 1 predictions had the highest correlation

372 with the distance between the first feeding increment and the otolith edge indicating that this
373 model had better fit with somatic growth than the other models (Table 6). Mean otolith-derived
374 growth rate was significantly greater and model 1 and 3 predicted growth rates were significantly
375 less than mean laboratory growth rate (repeated measures ANOVA, $p < 0.01$; Table 6). The
376 percentage of otolith-derived growth rates that were within the 95% confidence interval of the
377 predictions of each model was 11% (2/19), 5% (1/19), and 16% (3/19) for models 1, 3, and 4,
378 respectively (Table 6).

379 Of the models tested, model 1 was chosen as the best model for predicting Walleye Pollock
380 larvae laboratory growth rate (i.e., growth from first feeding). This model showed that increasing
381 temperature had a positive effect on growth over the range of temperatures tested (Fig. 3a), and
382 also indicated that larvae smaller than approximately 6.5 mm SL grew slower than larger larvae,
383 most likely because the smaller size range included starving larvae and larvae that were just
384 beginning to feed (Fig. 3b). Higher growth rates were associated with increasing values of the
385 fraction of G2-and-M-stage nuclei, and fraction of S-stage nuclei (Fig. 4a, b). The effect of
386 RSG1 on growth rate was weak for large ratios as evidenced by the wide 95% confidence
387 interval for those ratios (Fig. 4c). This model had both the highest percentage of correct
388 predictions and the highest percentage of laboratory growth rates that fell within the 95%
389 confidence interval of the predictions for the independent validation testing set (Table 4).
390 Additionally, correlation between growth rate predictions and the distance between the first
391 feeding increment and the otolith edge was highest with model 1 (Table 6). The percentage of
392 otolith-derived growth rates that were within the 95% confidence interval of the predicted values
393 of model 1 was nearly equal to that of model 4 (Table 6).

394 *2.2 Classification of growth*

395 Three binomial GAMs for classifying larvae as slow- or fast-growing, similar in formulation
396 to growth models 1, 3, and 4 (growth classification models 1, 2, and 3, respectively; Table 7)
397 were tested using the independent validation data set. The models predicted the probability of
398 fast growth, and a larva with a probability ≥ 0.50 was classified as fast-growing. Growth
399 classification models 1 and 3 had identical results with an accuracy of 69% (Table 7), and both
400 more accurately classified fast-growing (82%) versus slow-growing larvae (57%). Growth
401 classification model 2 was slightly more accurate overall (71%; Table 7), correctly classifying
402 one additional slow-growing larva than the other two models and was chosen as the best growth
403 classification model based upon highest overall accuracy. Model 2 indicated that larvae larger
404 than approximately 9.5 mm were more likely to be fast growing than smaller sizes (Fig. 5),
405 possibly because by the time larvae reach that size most individuals in poor condition (slow
406 growing) have died. In general, cell cycle covariates had a strong influence on the probability of
407 small larvae being fast growing and had a lesser effect on large larvae (Fig. 6a, b).

408 *2.3 Comparing predicted and otolith-derived growth rates of western Gulf of Alaska Walleye
409 Pollock larvae*

410 Thirty-one larvae ranging in size from 5.91 to 14.91 mm SL were analyzed from 14 stations:
411 6 stations were located in the vicinity of Kodiak Island and 8 stations were in the area between
412 Kodiak Island and the Shumagin Islands (Table 8, Fig. 1). One to four larvae were analyzed at
413 each station, and otolith microstructure analysis was completed on all larvae except for the larva
414 from station 187. Poor increment definition of those otoliths prevented the increments from
415 being reliably counted. Predicted growth rates were highly correlated with the distance from the
416 first-feeding increment to the otolith edge ($r = 0.98$), indicating that predicted rates were related
417 to somatic growth. Overall, predicted and otolith-derived growth rates were not significantly

418 different from each other ($0.21 \pm 0.08 \text{ mm d}^{-1}$ and $0.18 \pm 0.01 \text{ mm d}^{-1}$ respectively; paired t-test,
419 $p = 0.31$). However, the greatest differences between predicted and otolith-derived growth rates
420 were consistently at stations where mean larvae size was $> 11 \text{ mm SL}$ (stations 161, 162, 164,
421 and 191; Table 8). For those stations, predicted growth rates were significantly higher than
422 otolith-derived growth rates ($0.31 \pm 0.04 \text{ mm d}^{-1}$ and $0.17 \pm 0.005 \text{ mm d}^{-1}$ respectively; paired t-
423 test, $p = 0.009$; Table 8), and were also higher (range 0.26 to 0.36 mm d^{-1}) than the range of
424 published values for Shelikof Strait larvae calculated using otolith microstructure analysis (0.14
425 to 0.24 mm d^{-1} ; Bailey et al., 1996). A contributing factor to the large discrepancy in growth rates
426 between the two methods for larvae $> 11 \text{ mm SL}$ may be that the growth model was formulated
427 using larvae between 5.32 and 11.17 mm SL (only one larvae larger than 11 mm was used), so
428 growth rates were predicted outside of the range of sizes used in the model causing growth to be
429 overestimated. Additionally, no transforming larvae were included in the growth model, and
430 Walleye Pollock larvae growth rate changes when they begin juvenile transformation about 12
431 mm SL (Brown et al., 2001). Predicted growth rates for stations where mean larvae size was ≤ 11
432 mm were not significantly different from otolith-derived growth rates ($0.16 \pm 0.04 \text{ mm d}^{-1}$ and
433 $0.19 \pm 0.01 \text{ mm d}^{-1}$ respectively; paired t-test, $p = 0.15$), and nearly all of the predicted rates were
434 within the range of published values for Shelikof Strait larvae (Table 8). For this smaller size
435 range, at stations where more than one larva was analyzed, mean otolith-derived growth rates
436 were within the 95% confidence interval of the mean predicted growth rates for 6 out of 7
437 stations, and the mean percent error between the predicted and otolith-derived growth was 20% ,
438 much lower than 80% for larvae larger than 11 mm in size. Based on these results, the model
439 appears to be most appropriate for larvae $\leq 11 \text{ mm}$, and this equates to about the first 4 weeks of
440 feeding based on temperatures that typically occur at depths where Walleye Pollock larvae

441 reside. Larvae at all stations except for station 78 were classified as fast-growing (i.e., probability
442 of fast growth ≥ 0.50 ; Table 8). The predicted growth rate at station 78 was 0.14 mm d^{-1} , and that
443 corresponds with the lower end of the range of published growth rates (Bailey et al., 1996)
444 supporting that those larvae were growing slowly. There was a discrepancy between predicted
445 growth rate and growth classification for stations 18 and 187 because both stations were
446 classified as fast-growing but predicted growth rates were the slowest of all the stations (Table
447 8).

448

449 Discussion

450 The growth model developed in this study represents an improvement over other models that
451 have used flow cytometric cell cycle analysis to predict growth rates of fish larvae (Theilacker
452 and Shen, 2001; Domingos et al., 2012). Cell cycle covariates, larval length, and temperature
453 accounted for 79% of the variance used to predict growth rate of Walleye Pollock larvae in our
454 study. Previous models used only cell cycle covariates and explained about 55% of the variance
455 in growth rate and were based on only one temperature, so they may be better suited for
456 application in the laboratory rather than to the field. Growth rate of larvae reared in the high prey
457 density treatment at 6.1°C (0.18 mm d^{-1}) was within the range of growth rates for Gulf of Alaska
458 Walleye Pollock larvae at similar temperature (Bailey et al., 1996) supporting that predicted
459 growth rates should reflect growth in the field. A laboratory study that reared Walleye Pollock
460 larvae at 0° , 2° , 5° , and 12°C reported that larvae grew fastest (% mass day $^{-1}$) at the highest
461 temperature tested, and survival was highest at 2°C and lowest at 12°C (Koenker et al., 2018).
462 Survival at 5°C was nearly equal to survival at 2°C (Koenker et al., 2018) suggesting that the
463 optimal temperature range for survival in the field may be 2° to 5°C . The optimal temperature for

464 Walleye Pollock larvae growth is not consistent among studies. In our study growth rate at 6.1°
465 and 8.3°C was alike indicating that a temperature threshold may have been reached, and other
466 studies have found no significant difference in growth between 7.4° and 9.9°C (Porter and Bailey
467 2007) or that growth rate continued to increase up to 12°C (Koenker et al., 2018). The growth
468 model produced reasonable results when applied to Gulf of Alaska larvae \leq 11 mm SL as shown
469 by predicted growth rates within the range of published values for larvae in that area.

470 Confirmation of the growth model's utility is shown for the larva at station 187 (Table 8). The
471 otoliths of that larva were unreadable due to poor increment definition so the otolith aging
472 method could not be used to calculate growth rate. In this circumstance, the predicted growth
473 rate was 0.05 mm d⁻¹ (Table 8) indicating slow growth. Poor increment definition can be an
474 indication of weak growth (A. Dougherty, pers. comm.), supporting the model prediction.

475 The model for classifying larvae as fast- or slow-growing had a somewhat lower overall
476 classification accuracy (71%) than a logistic regression model developed for Walleye Pollock
477 larvae using the sum of the fractions of nuclei in S-stage and G2-and M-stages, and standard
478 length as covariates (79%; Theilacker and Shen, 2001). The difference in classification accuracy
479 between these models may be due, in part, because the Theilacker and Shen model was tested
480 with the same data used to formulate it. In that case, classification accuracy would likely be
481 higher compared to using an independent data set as was done here. Flow cytometric cell cycle
482 analysis may be better suited for classifying larvae as fast- or slow-growing rather than
483 predicting absolute growth rates because the accuracy of the growth classification model was
484 higher than the growth rate model. Thirty-three percent of laboratory growth rates of the test set
485 larvae were within the 95% confidence interval of the predicted growth rates compared to 71%
486 of larvae being correctly classified as fast- or slow-growing. Growth rate predictions and growth

487 classification for late-stage, field-collected Walleye Pollock larvae would be improved by adding
488 larvae as large as 15 mm to the models to encompass the range of sizes of larvae collected during
489 spring ichthyoplankton surveys conducted in the Bering Sea or Gulf of Alaska.

490 Differences among predicted, laboratory, and otolith-derived growth rates for the same larva
491 may be partially due to how age and size at day of the start of exogenous feeding (first feeding)
492 was determined. Day of first feeding was defined for this study as the day when 50% of the
493 larvae were observed to have started feeding, and the mean SL for each treatment on this day
494 was used as size at first feeding. The initiation of first feeding for Walleye Pollock larvae in the
495 laboratory generally occurs over a 3-day period (Porter and Theilacker, 1999). Larvae that start
496 feeding at the beginning of this period would be younger and most likely smaller than the mean
497 length at 50% feeding; larvae that start feeding near the end of the first feeding period would be
498 older and possibly larger than the mean. This variation in the onset of feeding can affect
499 calculation of growth rates. For example, larvae from the 6°C independent validation test set
500 were classified as age 13 days after first feeding based on the day when 50% of the larvae started
501 feeding. Otolith increment counts of that group of larvae ranged from 10 to 15 days after first
502 feeding, indicating that some larvae began feeding five days earlier than others. This range in age
503 when feeding actually began will cause differences between predicted growth rates (that are
504 based on age beginning when 50% of the larvae started feeding), and otolith-derived growth
505 rates that use the number of increments from first feeding to the otolith edge for age.
506 Additionally, flow cytometric cell cycle analysis can detect differences between starved and fed
507 fish larvae after 1 to 3 days of starvation (Theilacker et al., 1996; Catalán et al., 2007; Porter and
508 Bailey, 2011), indicating that cell cycle stages may be more related to recent growth rate (i.e.,

509 growth within the last 1 to 3 days before capture) rather than growth rate from first feeding to
510 capture that the otolith-derived growth rates represented in our study.

511 The recruitment process of Walleye Pollock is initiated at the egg and larval stage, with larval
512 survival being a critical first step. Variability in growth rate during early life can affect the
513 survival of larvae due to size-dependent mortality (Leggett and DeBlois, 1994), and that can
514 potentially affect year class strength. The abundance of Walleye Pollock larvae reaching 15 mm
515 SL was positively related (although not statistically significant) to recruitment for years 1979 to
516 1991 (Bailey et al., 2012). In our study, the models worked best for larvae during the period of
517 about the first 4 weeks of feeding, and studies indicate that growth early in the larval period may
518 have a more significant effect on survival than growth later in this period. For example, field
519 studies have shown that for a shallow-water reef fish the Rainbow Wrasse, *Coris julis*, size at age
520 30 days was positively correlated with recruitment (Fontes et al., 2011). For King George
521 Whiting, *Sillaginodes punctatus*, larvae, growth from hatching to 25 - 30 days was the most
522 critical period for survival (Jenkins and King, 2006). Flow cytometric cell cycle analysis offers
523 promise as an alternative method for determining growth rate of fish larvae when otolith daily
524 increments cannot be reliably counted.

525

526 Acknowledgments

527 M. Canino, A. Deary, J. Duffy-Anderson, and L. Rogers provided helpful comments on early
528 drafts of the manuscript. This research was funded by the North Pacific Research Board (NPRB
529 grant no. 1417) and the Alaska Fisheries Science Center. It is contribution EcoFOCI-0913 to
530 NOAA's Ecosystems and Fisheries-Oceanography Coordinated Investigations. The findings and
531 conclusions in the paper are those of the authors and do not necessarily represent the views of the

532 National Marine Fisheries Service, NOAA. Reference to trade names does not imply

533 endorsement by the National Marine Fisheries Service, NOAA.

534 References

535 Akimova, A., Hufnagl, M., Kreus, M., Peck, M.A., 2016. Modeling the effects of temperature on
536 the survival and growth of North Sea cod (*Gadus morhua*) through the first year of life.
537 Fish. Oceanogr. 25, 193-209.

538

539 Anderson, J.T., 1988. A review of size dependent survival during pre-recruit stages of fishes in
540 relation to recruitment. J. Northwest Atl. Fish. Sci. 8, 55–66.

541

542 Bacheler, N.M., Bailey, K.M., Ciannelli, L., Bartolino, V., Chan, K.-S., 2009. Density
543 dependent, landscape, and climate effects on spawning distribution of walleye pollock
544 *Theragra chalcogramma*. Mar. Ecol. Progr. Ser. 391, 1–12.

545

546 Bailey, K.M., Stehr, C.L., 1988. The effects of feeding periodicity and ration on the rate of
547 increment formation in otoliths of larval walleye pollock *Theragra chalcogramma*
548 (Pallas). J. Exp. Mar. Biol. Ecol. 122, 147-161.

549

550 Bailey, K.M., Spring S., 1992. Comparison of larval, age-0 juvenile and age-2 recruit abundance
551 indices of walleye pollock *Theragra chalcogramma* in the western Gulf of Alaska. ICES
552 J. Mar. Sci. 49, 297–304.

553

554 Bailey, K.M., Brown, A.L., Yoklavich, M.M., Mier, K.L., 1996. Interannual variability in
555 growth of larval and juvenile walleye pollock *Theragra chalcogramma* in the western
556 Gulf of Alaska. Fish. Oceanogr. 5(Suppl. 1), 137-147.

557

558 Brown, A.L., Busby, M.S., Mier, K.L., 2001. Walleye pollock *Theragra chalcogramma* during
559 transformation from the larval to juvenile stage: Otolith and osteological development.
560 Mar. Biol. 139, 845-851.

561

562 Buckley, L.J., Caldarone, E.M., Clemmesen, C., 2008. Multi-species larval fish growth model
563 based on temperature and fluorometrically derived RNA/DNA ratios: Results from a
564 meta-analysis. Mar. Ecol. Progr. Ser. 371, 221-232.

565

566 Caldarone, E.M., St. Onge-Burns, J.M., Buckley, L.J., 2003. Relationship of RNA/DNA ratio
567 and temperature to growth in larvae of Atlantic cod *Gadus morhua*. Mar. Ecol. Progr. Ser.
568 262, 229-240.

569

570 Caldarone, E.M., 2005. Estimating growth in haddock larvae *Melanogrammus aeglefinus* from
571 RNA:DNA ratios and water temperature. Mar. Ecol. Progr. Ser. 293, 241-252.

572

573 Campana, S.E., 1996. Year-class strength and growth rate in young Atlantic cod *Gadus morhua*.
574 Mar. Ecol. Progr. Ser. 135, 21-26.

575

576 Catalán, I.A., Berdalet, E., Olivar, M.P., Roldán, C., 2007. Response of muscle-based
577 biochemical condition indices to short-term variations in food availability in post-flexion
578 reared sea bass *Dicentrarchus labrax* (L.) larvae. J. Fish Biol. 70, 391-405.

579

580

581 Chambers, R.C., Leggett, W.C., 1987. Size and age at metamorphosis in marine fishes: an
582 Analysis of laboratory-reared winter flounder (*Pseudopleuronectes americanus*) with a
583 review of variation in other species. Can. J. Fish. Aquat. Sci. 44, 1936–1947.

584

585 Domingos, J.A., Fromm, P., Smith-Keune, C., Jerry, D.R., 2012. A robust flow-cytometric
586 protocol for assessing growth rate of hatchery-reared barramundi *Lates calcarifer* larvae.
587 J. Fish Biol. 80, 2253-2266.

588

589 Dougherty, A.B., 2008. Daily and sub-daily otolith increments of larval and juvenile walleye
590 pollock, *Theragra chalcogramma* (Pallas), as validated by alizarin complexone
591 experiments. Fish. Res. 90, 271-278.

592

593 Fontes, J., Santos, R.S., Afonso, P., Caselle, J.E., 2011. Larval growth, size, stage duration and
594 recruitment success of a temperate reef fish. J. Sea Res. 65, 1-7.

595

596 Hare, J.A., Cowen, R.K., 1997. Size, growth, development, and survival of the planktonic larvae
597 of *Pomatomus saltatrix* (Pisces: Pomatomidae). Ecol. 78, 2415–2431.

598

599 Heintz, R.A., Vollenweider, J.J., 2010. Influence of size on the sources of energy consumed by
600 overwintering walleye pollock (*Theragra chalcogramma*). J. Exp. Mar. Biol. Ecol. 393,
601 43-50.

602

603 Houde, E.D., 1987. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp.
604 2, 17–29.

605

606 Hunt, G. L., Coyle, K. O., Eisner, L. B., Farley, E. V., Heintz, R. A., Mueter, F., Napp, J. M.,
607 Overland, J. E., Ressler, P. H., Salo, S., Stabeno, P. J. 2011. Climate impacts on eastern
608 Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating
609 Control Hypothesis. ICES J. Mar. Sci. 68, 1230-1243.

610

611 Jenkins, G.P., King, D., 2006. Variation in larval growth can predict recruitment of a temperate,
612 seagrass-associated fish. Oecology 147, 641-649.

613

614 Kendall, A.W., Jr., Incze, L.S., Ortner, P.B., Cummings, S.R., Brown, P.K., 1994. The vertical
615 distribution of eggs and larvae of walleye pollock, *Theragra chalcogramma*, in Shelikof
616 Strait, Gulf of Alaska. Fish. Bull., U.S. 92, 540-554.

617

618 Koenker, B. L., Laurel, B. J., Copeman, L. A., Ciannelli, L., 2018. Effects of temperature and
619 food availability on the survival and growth of larval Arctic cod (*Boreogadus saida*) and
620 walleye pollock (*Gadus chalcogrammus*). ICES J. Mar. Sci. 75, 2386–2402.

621

622 Meekan, M., Fortier, L. 1996. Selection for fast growth during the larval life of Atlantic cod
623 *Gadus morhua* on the Scotian shelf. Mar. Ecol. Prog. Ser. 137, 25–37.

624

625 Murray, A., Hunt, T., 1993. The cell cycle: an introduction. Oxford Univ. Press, Inc., New York,

626 251 p.

627

628 Porter, S.M., Theilacker, G.H., 1996. Larval walleye pollock, *Theragra chalcogramma*, rearing
629 techniques used at the Alaska Fisheries Science Center, Seattle, Washington. Processed
630 Rep. 96-06, 26 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand
631 Point Way NE, Seattle, WA 98115-0070.

632

633 Porter, S.M., Theilacker, G.H., 1999. The development of the digestive tract and eye in larval
634 walleye pollock, *Theragra chalcogramma*. Fish. Bull., U.S. 97:722-729.

635

636 Porter, S.M., Ciannelli, L., Hillgruber, N., Bailey, K.M., Chan, K-S, Canino, M.F., and
637 Haldorson, L.J., 2005. Environmental factors influencing larval walleye pollock
638 *Theragra chalcogramma* feeding in Alaskan waters. Mar. Ecol. Progr. Ser. 302: 207-217.

639

640 Porter, S.M., Bailey, K.M., 2007. Optimization of feeding and growth conditions for Walleye
641 Pollock *Theragra chalcogramma* (Pallas) larvae reared in the laboratory. AFSC
642 Processed Rep. 2007-06, 20 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv.,
643 7600 Sand Point Way NE, Seattle, WA 98115-0070.

644

645 Porter, S.M., Bailey, K.M., 2011. Assessing the condition of walleye pollock *Theragra*
646 *chalcogramma* (Pallas) larvae using muscle-based flow cytometric cell cycle analysis. J.
647 Exp. Mar. Biol. Ecol. 399, 101-109.

648

649 Porter, S.M., Bailey, K.M., 2013. Using measurements of muscle cell nuclear RNA with flow
650 cytometry to improve assessment of larval condition of walleye pollock (*Gadus*
651 *chalcogrammus*). Fish. Bull., U.S. 111, 337-351.

652

653 R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation
654 for Statistical Computing, Vienna, Austria.

655

656 Rice, J.A., Miller, T.J., Rose, K.A., Crowder, L.B., Marschall, E.A., Trebitz, A.S., DeAngelis,
657 D.L., 1993. Growth rate variation and larval survival: inferences from an individual-
658 based size-dependent predation model. Can. J. Fish. Aquat. Sci. 50, 133–142.

659

660 Stabeno, P.J., Kachel, N.B., Moore, S.E., Napp, J.M., Sigler, M., Yamaguchi, A., Zerbini, A.N.,
661 2012. Comparison of warm and cold years on the southeastern Bering Sea shelf and some
662 implications for the ecosystem. Deep-sea Res. II 65-70, 31-45.

663

664 Takasuka, A., Aoki, I., Mitani, I., 2003. Evidence of growth-selective predation on larval
665 Japanese anchovy *Engraulis japonicus* in Sagami Bay. Mar. Ecol. Progr. Ser. 252, 223–
666 238.

667

668 Takasuka, A., Aoki, I., Mitani, I., 2004. Three synergistic growth-related mechanisms in the
669 short-term survival of larval Japanese anchovy *Engraulis japonicus* in Sagami Bay. Mar.
670 Ecol. Progr. Ser. 270, 217-228.

671

672 Theilacker, G.H., Bailey, K.M., Canino, M.F., Porter, S.M., 1996. Variations in larval walleye
673 pollock feeding and condition: a synthesis. *Fish. Oceanogr.* 5(Suppl. 1), 112-123.

674

675 Theilacker, G.H., Shen, W., 2001. Evaluating growth of larval walleye pollock, *Theragra*
676 *chalcogramma*, using cell cycle analysis. *Mar. Biol.* 135, 897-907.

677

678 van der Meeren, T., 1991. Selective feeding and prediction of food consumption in turbot larvae
679 (*Scophthalmus maximus* L.) reared on the rotifer *Brachionus plicatilis* and natural
680 zooplankton. *Aquaculture* 93, 35-55.

681

682 Ware, D.M., 1975. Relation between egg size, growth, and natural mortality of larval fish. *J.*
683 *Fish. Res. Bd. Can.* 32, 2503–2512.

684

685 Watson, S., Allan, B.J.M, McQueen, D.E., Nicol, S., Parsons, D. M., Pether, S.M.J., Pope, S.,
686 Setiawan, A.N., Smith, N., Wilson, C., Munday, P.L., 2018. Ocean warming has a greater
687 effect than acidification on the early life history development and swimming performance
688 of a large circumglobal pelagic fish. *Glob. Change Biol.* 24, 4368-4385.

689

690 Wood, S.N., 2006. Generalized additive models: an introduction with R. Chapman and
691 Hill/CRC, Boca Raton, FL, 392 p.

692

693 **Figure Captions**694 Figure 1. Sampling stations where Walleye Pollock larvae (*Gadus chalcogrammus*) were
695 collected in the Gulf of Alaska in May 2013.

696

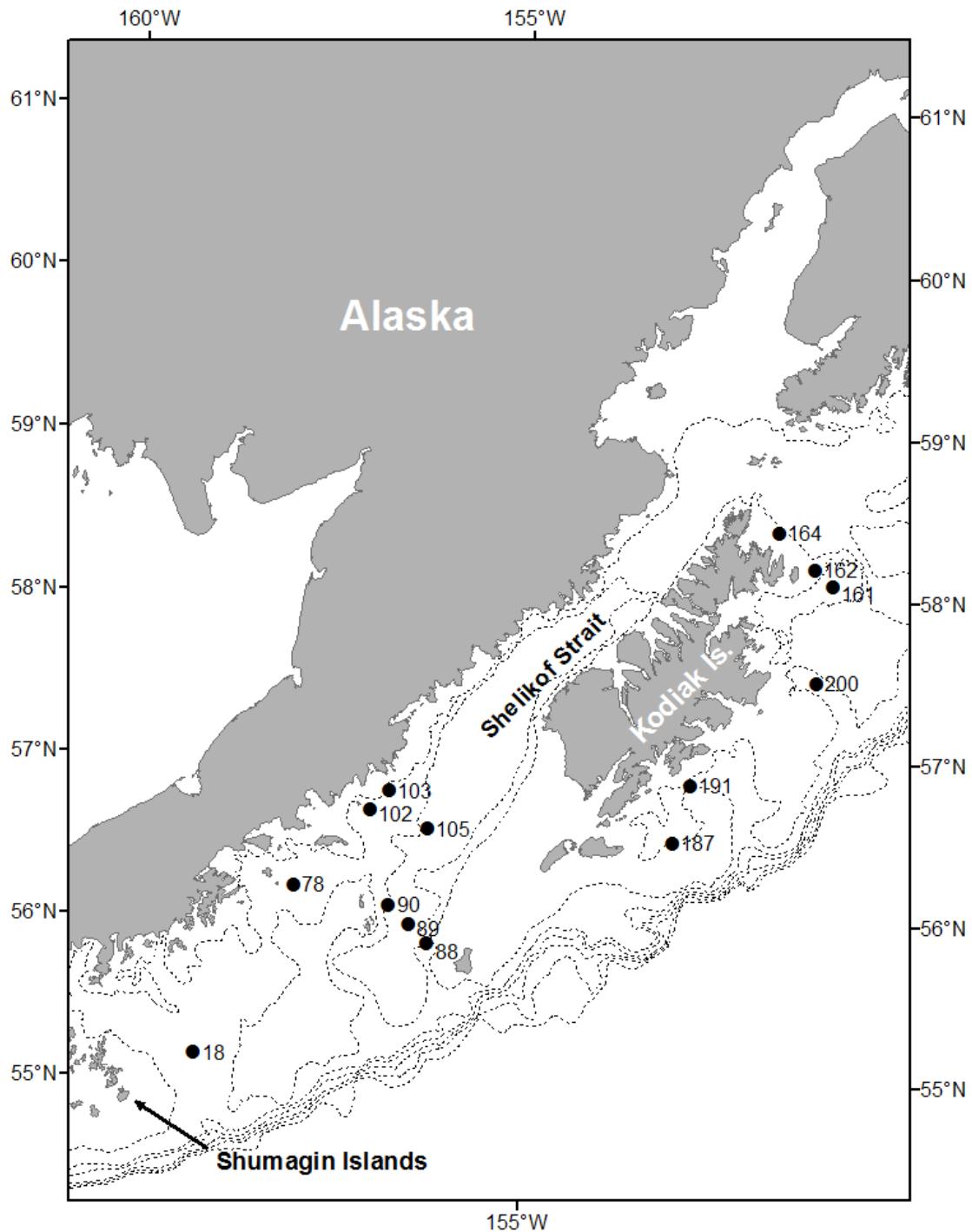
697 Figure 2. Relationship between laboratory and predicted growth rate for models 1 (a), 3 (b), and
698 4 (c).

699

700 Figure 3. Partial effects of temperature (°C; a) and standard length (mm; b) on growth rate (mm
701 d^{-1}) of Walleye Pollock larvae (*Gadus chalcogrammus*) for growth model 1. Tick marks on X-
702 axis show either rearing temperatures or individual standard length measurements. The 95%
703 confidence interval is shown by dashed lines.

704

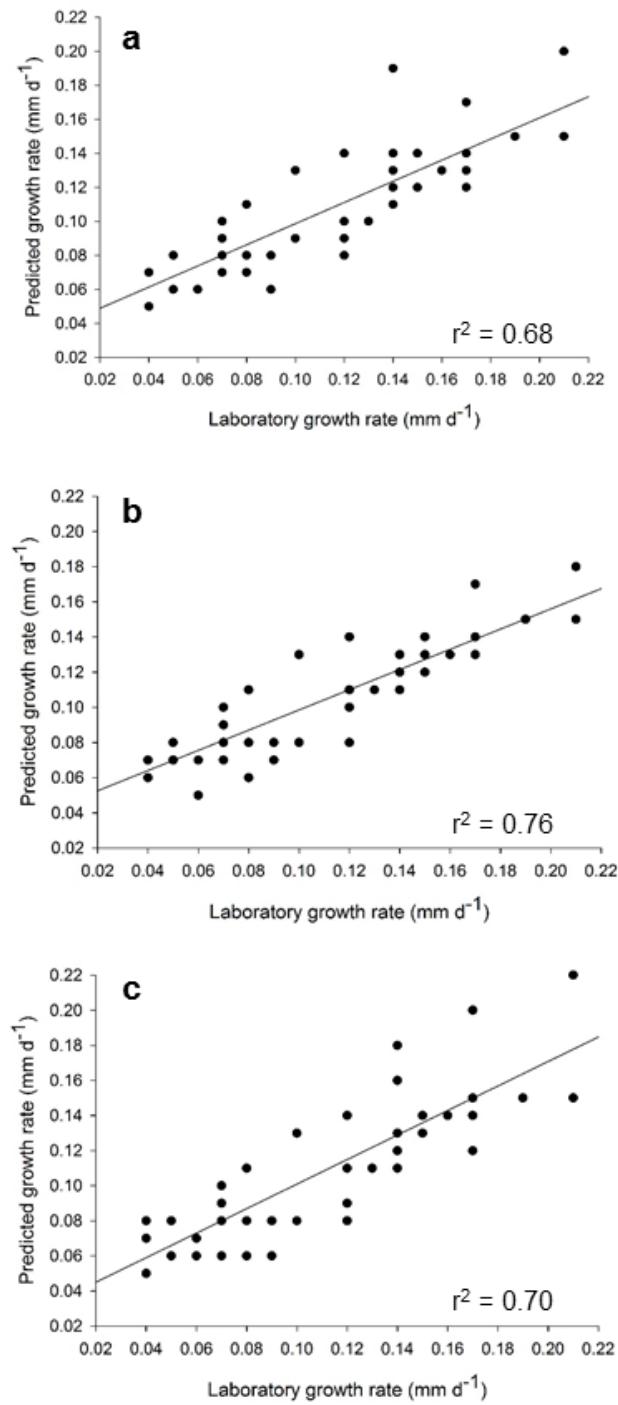
705 Figure 4. Partial effects of fraction of G2-and-M-stage nuclei (a), fraction of S-stage nuclei (b),
706 and ratio of the number of S-stage nuclei to the number of G1-stage nuclei with high RNA
707 content (c) on growth rate (mm d^{-1}) of Walleye Pollock (*Gadus chalcogrammus*) larvae for
708 growth model 1. Cell cycle data were normalized using the arcsin \sqrt{x} transformation. Tick marks
709 on X-axis show individual measurements. The 95% confidence interval is shown by dashed
710 lines.


711

712 Figure 5. Partial effect of standard length (mm) on the probability of fast growth of Walleye
713 Pollock (*Gadus chalcogrammus*) larvae for growth classification model 2. Tick marks on X-axis
714 show individual measurements. Y-axis represents values that larval size contributes to predicted
715 probability of fast growth. The 95% confidence interval is shown by dashed lines.

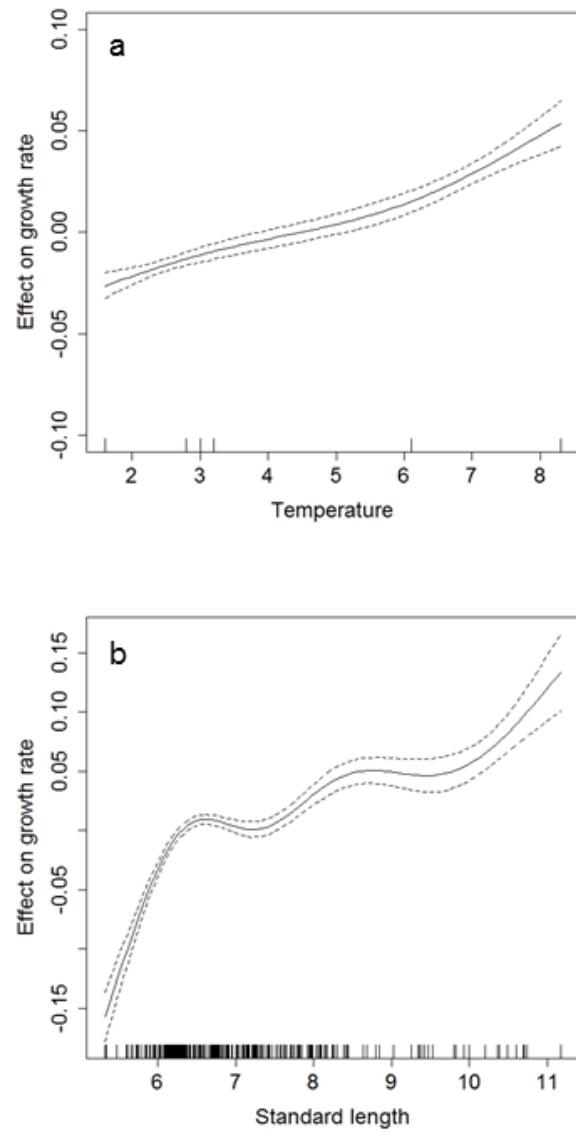
716 Figure 6. Partial effects of standard length (SL, mm) and fraction of G2-and-M-stage nuclei (a),
717 and SL and fraction of S-stage nuclei (b) on the probability of fast growth of Walleye Pollock
718 (*Gadus chalcogrammus*) larvae for growth classification model 2. Cell cycle data were
719 normalized using the arcsin \sqrt{x} transformation. Grey scale shows probability of fast growth
720 increasing from dark to light colors. Contour lines indicate probability of fast growth.

721


Fig.1

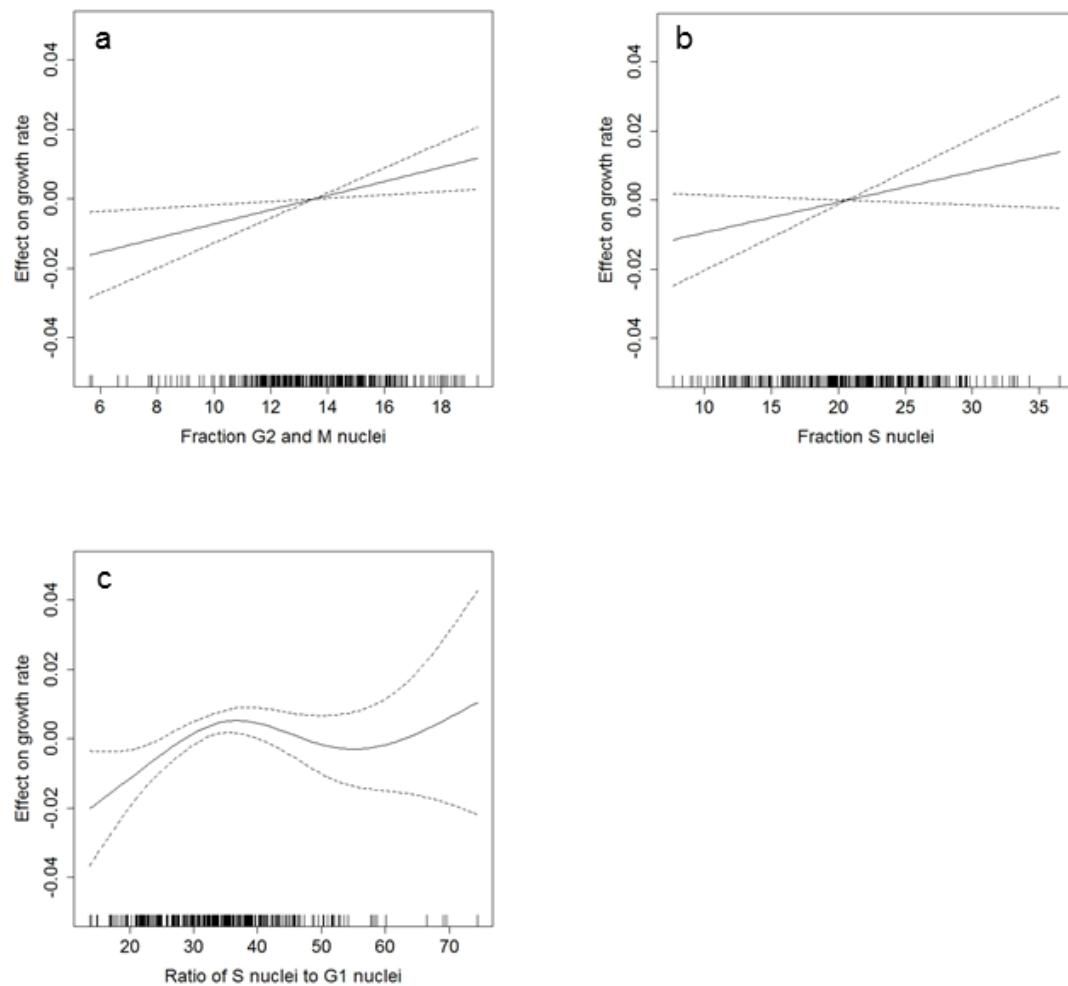
722

723


Fig. 2

724

725


Fig. 3

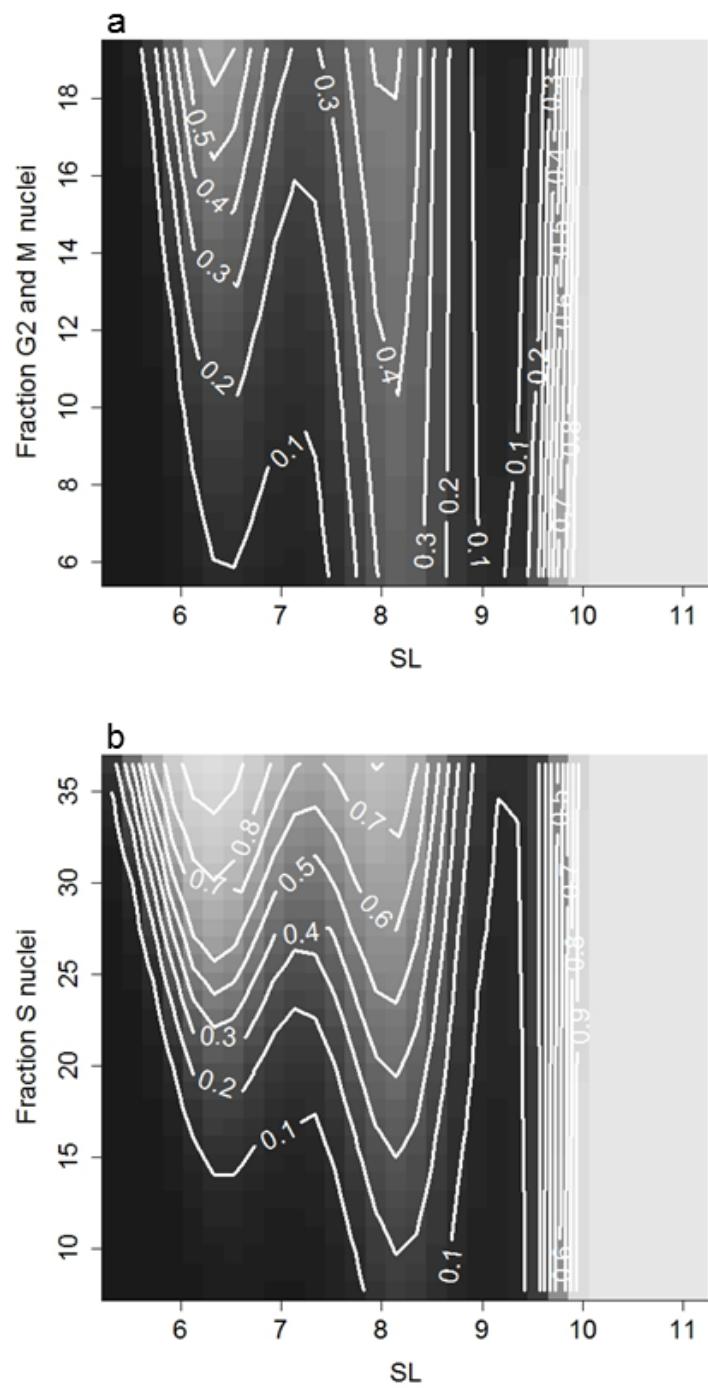
726

727


Fig. 4

728

729


Fig. 5

730

731

Fig. 6

732

733 Table 1. Experimental year, rearing temperature, and feeding treatments for Walleye Pollock
734 (*Gadus chalcogrammus*) larvae laboratory studies used to formulate the growth model.

735

Year	Temperature \pm SD ^a (°C)	Feeding treatments ^b
2014	3.2 \pm 0.1	HP, LP, UF
2014	6.1 \pm 0.4	HP, LP, UF
2015	1.6 \pm 0.1	HP, LP, UF
2015	3.0 \pm 0.1	S6F, F6S, HP
2017	8.3 \pm 0.5	HP, LP, UF

736

737 ^astandard deviation

738 ^bHP = high prey density (10 rotifer ml⁻¹ and 3 natural zooplankton ml⁻¹); LP = low prey density
739 (1.0 natural zooplankton ml⁻¹); UF = unfed; S6F = starved for 6 days then fed; F6S = Fed for 6
740 days then starved

741 Table 2. Additive and variable coefficient generalized additive models formulated to predict
 742 Walleye Pollock (*Gadus chalcogrammus*) larvae growth rate. AIC is Akaike Information
 743 Criterion.

744

Model Type	Model	AIC	r^2
Model 1 : Additive, standard length used as size covariate	$GR^a = a^b + s^c(t^d) + s(sl^e) + s(tg2^f) + s(ts^g) + s(trsg1^h) + \epsilon^i$	-1375.68	0.79
Model 2: Additive, product of standard length and body depth at anus used as size covariate	$GR = a + s(t) + s(slbda^j) + s(tg2) + s(ts) + s(trsg1) + \epsilon$	-1247.86	0.68
Model 3: Variable coefficient, cell cycle parameters vary with SL	$GR = a + s(t) + s(sl) + s(sl) \times tg2 + s(sl) \times ts + s(sl) \times trsg1 + \epsilon$	-1389.55	0.80
Model 4: Variable coefficient, cell cycle parameters vary with temperature	$GR = a + s(sl) + s(t) \times tg2 + s(t) \times ts + \epsilon$	-1378.39	0.79

745

746 ^agrowth rate (growth in length, mm d⁻¹)

747 ^bmodel intercept

748 ^csmooth function

749 ^drearing temperature

750 ^estandard length

751 ^farcsin \sqrt{x} transformed fraction of nuclei in the G2-and-M-stage of the cell cycle

752 ^garcsin \sqrt{x} transformed of nuclei in the S-stage of the cell cycle

753 ^h arcsin \sqrt{x} transformed ratio of the number of cells the S-stage to number of cells in the G1-stage with high nuclear RNA content

755 ⁱmodel error

756 ^jproduct of standard length and body depth at anus, and is correlated with larval weight (van der
 757 Meeren, 1991).

758 Table 3. Rearing temperature, days after first feeding sampled, size range (standard length, mm),
 759 and number of larvae (n) used to formulate and validation test the growth models.

760

Temperature (°C)	Days sampled	Model formulation		Validation testing	
		Size range	n	Size range	n
1.6	6, 12, 22	5.33 – 8.30	64	6.42 – 6.90	9
2.8	22	6.54 – 8.84	9		
3.0	6, 12, 25	5.60 – 8.41	72		
3.2	6, 12, 25	5.96 – 9.25	52	6.78 – 8.54	14
6.1	3, 6, 13, 25	5.32 – 11.17	88	7.40 – 8.63	15
8.3	3, 8, 17	5.66 – 8.25	33	7.14 – 8.61	7

761

762 Table 4. Validation testing for growth models 1, 3, and 4 (see Table 2 for description of models).
763 The Pearson correlation coefficient (r) between predicted growth rates and laboratory growth
764 rates, slope of linear regression for laboratory growth rate and predicted growth rate, the
765 percentage of predictions that were correct (i.e., equal to laboratory growth), and percentage of
766 laboratory growth rates within the 95% confidence interval of the predicted growth rates.

767

Model	r	Slope of linear regression	% correct predictions	% of laboratory growth rates within the 95% CI of the predicted growth rates
1	0.83	0.62	16	33
3	0.88	0.58	7	31
4	0.84	0.70	7	27

768

769 Table 5. Laboratory and model predicted growth rate (mm d⁻¹) for each rearing temperature for
 770 the independent validation testing data set (see Table 2 for description of models).

771

	Temperature			
	1.6°C, n = 9 ^b	3.2°C, n= 14	6.1°C, n= 15	8.3°C, n= 7
Laboratory ^a	0.06 ^c ± 0.02	0.08 ± 0.02	0.15 ± 0.03	0.15 ± 0.03
Model 1	0.06 ± 0.01	*0.09 ± 0.02	*0.12 ± 0.02	0.16 ± 0.03
Model 3	0.07 ± 0.01	*0.09 ± 0.02	*0.12 ± 0.02	0.14 ± 0.03
Model 4	0.06 ± 0.01	*0.09 ± 0.02	*0.13 ± 0.02	0.16 ± 0.04
ANOVA ^d	F _{3,24} = 0.44, p = 0.72	F _{3,39} = 5.12, p = 0.004	F _{3,42} = 66.58, p < 0.001	F _{3,18} = 2.76, p = 0.07

772

773 ^alaboratory growth rate was calculated from size at age (see text)

774 ^bnumber of larvae tested

775 ^cmean growth rate ± standard deviation

776 ^drepeated measures ANOVA comparing laboratory and model predicted growth rates at each
 777 temperature

778 * significantly different from laboratory growth rate (p < 0.05) as indicated by Tukey Test

779 Table 6. Laboratory growth rate, growth rate derived from otolith microstructure analysis, and
 780 growth rate predicted from models 1, 3, and 4 for 6.1° and 8.3°C rearing temperatures of the
 781 validation testing data set (19 total larvae, see text for explanation). The Pearson correlation
 782 coefficient (r) for predicted growth rates and the distance between the first feeding increment and
 783 otolith edge. The percentage of otolith-derived growth rates within the 95% confidence interval
 784 of the predicted growth rates.

785

Growth rate type	Growth rate ^b	r	% of otolith-derived growth rates within the 95% CI of the predicted growth rates
Laboratory	0.16 ± 0.03		
Otolith derived ^a	0.17 ± 0.02*		
Model 1	0.13 ± 0.03*	0.91	11
Model 3	0.13 ± 0.02*	0.77	5
Model 4	0.14 ± 0.03	0.81	16

786

787 ^aotolith-derived growth rate was calculated from larval standard length and number of daily
 788 increments from first feeding to the otolith edge (see text)

789 ^bmm d⁻¹; mean ± standard deviation

790 *significantly different from laboratory growth rate; repeated measures ANOVA, Tukey test,
 791 p < 0.01

792 Table 7. Additive and variable coefficient binomial generalized additive models formulated to
 793 predict Walleye Pollock (*Gadus chalcogrammus*) larvae as fast- or slow-growing based on
 794 laboratory growth rate of larvae in the high prey density treatment at each temperature. AIC is
 795 Akaike Information Criterion.

796

Classification Model Type	Model	AIC	r^2	% Correct ^j
Model 1: Additive, analogous to growth rate model 1.	$pGR^a = a^b + s^c(t^d) + s(sl^e) + s(tg2^f) + s(ts^g) + s(trsg1^h) + \epsilon^i$	321.61	0.33	69 (31/45)
Model 2: Variable coefficient, cell cycle parameters vary with SL. Similar to growth rate model 3 ^k .	$pGR = a + s(t) + s(sl) + s(sl) \times tg2 + s(sl) \times ts + \epsilon$	326.87	0.31	71 (32/45)
Model 3: Variable coefficient, cell cycle parameters vary with temperature. Analogous to growth rate model 4.	$pGR = a + s(sl) + s(t) \times tg2 + s(t) \times ts + \epsilon$	325.46	0.31	69 (31/45)

797

798 ^aprobability that a larva is fast growing

799 ^bmodel intercept

800 ^csmooth function

801 ^drearing temperature

802 ^estandard length

803 ^farcsin \sqrt{x} transformed fraction of nuclei in the G2-and-M-stage of the cell cycle

804 ^garcsin \sqrt{x} transformed fraction of nuclei in the S-stage of the cell cycle

805 ^harcsin \sqrt{x} transformed ratio of the number of cells the S-stage to number of cells in the G1-stage with high nuclear RNA content

807 ⁱmodel error

808 ^jpercent of larvae correctly classified as fast- or slow-growing, number of correct classifications shown in parenthesis

810 ^kbased on AIC, arcsin \sqrt{x} transformed ratio of the number of cells the S-stage to number of cells in the G1-stage with high nuclear RNA content was not included in the model

812 Table 8. Area sampled, station, water temperature (mean 0-50 m depth; °C), mean size of larvae,
 813 mean predicted growth rate, mean otolith-derived growth rate, and mean predicted probability of
 814 fast growth for Walleye Pollock (*Gadus chalcogrammus*) larvae collected from the western Gulf
 815 of Alaska 18 – 30 May 2013.

816

Area	Station	Date ^b	Temp.	n ^c	SL ^d	Pred. GR ^e	Oto. GR ^f	Prob. fast GR ^g
KI-SI ^a	18	18 May	4.9	1	6.70	0.10	0.20	0.77
KI-SI	78	21 May	4.0	1	9.47	0.14	0.19	0.10
KI-SI	88	22 May	4.6	3	10.36 ± 0.20	0.18 ± 0.01	0.19 ± 0.02	0.99 ± 0.01
KI-SI	89	22 May	4.2	2	8.93 ± 0.83	0.14 ± 0.02	0.18 ± 0.03	0.57 ± 0.16
KI-SI	90	23 May	4.5	3	10.21 ± 0.57	0.17 ± 0.03	0.18 ± 0.01	0.54 ± 0.24
KI-SI	102	23 May	4.5	3	9.90 ± 0.10	0.15 ± 0.003	0.20 ± 0.01	0.71 ± 0.19
KI-SI	103	23 May	4.1	2	10.07 ± 0.66	0.17 ± 0.03	0.19	0.54 ± 0.46
KI-SI	105	23 May	4.3	2	10.40 ± 0.60	0.18 ± 0.04	0.16 ± 0.01	0.79 ± 0.21
Kodiak Is.	161	27 May	5.1	3	12.73 ± 1.33	0.36 ± 0.10	0.17 ± 0.003	1.00
Kodiak Is.	162	27 May	5.1	1	12.10	0.30	0.17	1.00
Kodiak Is.	164	28 May	5.0	4	11.25 ± 0.99	0.26 ± 0.07	0.18 ± 0.01	0.75 ± 0.22
Kodiak Is.	187	29 May	5.5	1	5.91	0.05	- ^h	0.79
Kodiak Is.	191	29 May	6.0	1	12.10	0.32	0.17	1.00
Kodiak Is.	200	30 May	5.9	4	11.00 ± 0.60	0.24 ± 0.04	0.19 ± 0.02	0.93 ± 0.07

817

818 ^aarea between Kodiak Island and Shumagin Islands (see Fig. 1)

819 ^bdate larvae collected

820 ^cnumber of larvae analyzed

821 ^dmean standard length ± standard error

822 ^emodel 1 predicted growth rate \pm standard error (mm d⁻¹); mean growth rate for all larvae
823 analyzed at a station

824 ^fotolith-derived growth rate \pm standard error (mm d⁻¹) calculated from age (number of
825 increments from first feeding to otolith edge) and standard length

826 ^gmean probability of fast growth \pm standard error; probability ≥ 0.50 indicates fast growth

827 ^hotoliths from this larva were unreadable due to poor increment definition, so this larva was not
828 used in further analyses

