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Supplementary Text 
 
Forecast Methods 
 
Teams reserved the right to publish their own research and therefore only provided standardized 
forecasts and brief descriptions of their approaches. The following is a summary of those 
approaches including citations for those that have been published. Some high-level model 
characteristics are summarized in Table S1. 
 
Team A. The model is a dynamical two-strain susceptible-exposed-infectious-recovered-
susceptible (SEIRS) compartmental model with a multi-life stage model for vector populations. 
Parameters were derived from the literature and data included dengue case data, precipitation, and 
minimum and maximum temperatures. 
 
Team B. Forecasts for each target-location were generated from an ensemble of three types of 
statistical models: Holt-Winters exponential smoothing (time series smoothing of historical 
dengue at local, seasonal, and long-term scales), multidimensional analogues (on historical 
dengue data and historical precipitation data), and historical average models (the seasonal 
distributions of historical cases). Ensemble components were assigned individual weights for 
each target-location pair based on mean absolute error in predictions over the previous 4 years 
(1). 
 
Team C. The model used a single strain susceptible-infected-recovered (SIR) model with an 
ensemble adjustment Kalman filter to sample model parameters consistent with all historical 
dengue case data available at the time of each prediction (2).  
 
Team D. The model used the K-spectral centroid clustering algorithm to generate normalized 
clusters of incidence patterns from similar seasons to a sliding window of normalized cases in the 
current season. The most similar curve was selected and scaled to project mean incidence for the 
rest of the season. Probabilities for each target were specified based on previous season error for 
the same targets. 
 
Team E. Two models were used to generate forecasts: a negative binomial generalized linear 
regression model (including time, recently observed cases, temperature, El Niño, the normalized 
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difference vegetation index, and temperature-scaled R0) and a Gaussian process model (including 
season week, incidence at the end of the previous season, a seasonal sine wave, and an indicator 
for severe seasons that is estimated for the current season). The Gaussian process model was used 
for all forecasts with less than 7 seasons of historical data and all early season forecasts, and the 
negative binomial regression for later season forecasts once more historical data had accumulated 
(3). 
 
Team F. A generalized linear model was built with numerous variables consisting of different 
case and environmental variables at different lags. Variables were selected by minimizing 
collinearity and optimizing fit (on mean absolute error and the Akaike and Bayesian information 
criteria). For total incidence in San Juan predictions were generated from a second model; a linear 
regression of cumulative cases reported up to that forecast week in a bootstrap sample of previous 
seasons on the total number of cases reported. 
 
Team G. A susceptible-infected-recovered (SIR) human and vector compartmental model was fit 
by iteratively sampling parameters, generating a predictive distribution, evaluating the likelihood 
on the data, and updating the parameter density. An extremely randomized trees regressor was 
used to generate independent estimates based on a suite of incidence and weather variables. 
Estimates from both models were weighted and combined to generate the forecasts.  
 
Team H. Five models were developed to predict subcomponents of dengue risk using historical 
case data: (1) a seasonal pattern (fitted to a transformed and normalized cosine functions), (2) a 
local logistic curve (fitted to the current season data), (3) a seasonal autoregressive integrated 
moving average, (4) a model to predict incidence based on estimated population susceptibility for 
each season (based on incidence in the previous two seasons), and (5) a model predicting season 
incidence based on early season incidence. These five model outputs were fitted to historical data 
with a random forest model to make a single forecast at each time point. 
 
Team I. A 4-strain human compartmental model, with susceptible-exposed-infectious-recovered 
(SEIR) for unique strain sequence combinations (128 compartments) was coupled with a multi-
lifecycle compartmental mosquito model. Parameters were initialized based on literature review 
and sampled using a genetic algorithm to calibrate the model to the data. The calibrated model 
was used to generate stochastic simulations for the forecasts. 
 
Team J. Forecasts were made using an ensemble of three models: an empirical Bayes model 
(using current and historical dengue data) (4), a pinned spline model (using dengue, lagged 
precipitation, and temperature data), and an empirical prior (using only dengue data from 
previous seasons). Individual model components were weighted to optimize leave-one-out cross-
validation.  
 
Team K. Principal component analysis was used to select four variables from the numerous 
dengue and climate variables available: lagged minimum temperature, dew point temperature, 
specific humidity, and precipitation. These variables were used in a multinomial logistic 
regression to generate forecasts. 
 
Team L. Forecasts were generated by averaging across three models: a neural network informed 
by a susceptible-infectious-recovered-susceptible (SIRS) compartmental model coupled with a 4-
component (egg, immature, susceptible adult, and infectious adult) vector population model, a 
neural network time series model, and a Bayesian time series model. All models used 
temperature, precipitation, and historical case data. 
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Team M. For San Juan, a non-parametric additive autocorrelation model (dimension: 21, time 
delay: 3, forecasting steps: 52) was fitted using log-transformed data from previous seasons. For 
Iquitos, a seasonal autoregressive integrated moving average model (SARIMA(3,0,2)(0,1,1)52) 
was used. For both locations, forecasts were made for the entire season and not updated as new 
data became available within the season. 
 
Team N. The model used ordinary least squares fit to the relationship of cumulative cases up to 
the current week to each target on historical data and predict incidence for the remainder of the 
season. Prediction distributions were modified to inflate kurtosis and avoid predictions that were 
highly unlikely given historical data.  
 
Team O. The model was a non-parametric kernel-density state space reconstruction using log-
transformed and smoothed historical dengue data (5). Parameters and lags were estimated 
independently for each forecast horizon by minimization of the cross-validation mean absolute 
error of point predictions.  
 
Team P. The model was a Bayesian statistical, time-series regression model including smoothed, 
lagged dengue case data, lagged climate variables (precipitation, minimum temperature, and 
relative humidity), and an indicator for serotype switches within the past two years. Cases were 
modeled as a negative binomial process with an offset for estimated population size. 
 
Climate and environmental data 
 
Daily historical temperature and precipitation observations were made available from the Global 
Historical Climatology Network. Remotely sensed estimates of precipitation and Normalized 
Difference Vegetation Index were provided for the areas around both locations from the National 
Oceanic and Atmospheric Administration (NOAA) Climate Data Records. Temperature, 
precipitation, dew point, relative humidity, and specific humidity estimates were provided from 
the National Centers for Environmental Prediction Climate Forecast System Reanalysis. These 
data sources are maintained and quality controlled by NOAA.  
 
Regression models 
 
We compared logarithmic scores for all team forecasts and the baseline forecasts using Bayesian 
generalized linear models to estimate the conditional distribution of transformed scores given 
specific sets of variables potentially related to forecast skill. We first truncated each binned 
prediction to the range of 0.001 to 0.999 to avoid logarithmic scores of negative infinity or zero. 
We then calculated the corresponding logarithmic scores and converted those scores to surprisal 
values (−log(	𝑝()) by changing the sign. This outcome variable, surprisal, has the advantage of 
being on the same scale as the logarithmic score but is continuous and positive and therefore 
suitable to be approximated by a Gamma distribution. The truncation at 0.001 poses one potential 
complication: for models with many forecasts assigning zero probability to the outcome, the 
truncation leads to an artificial density at that specific surprisal (−log(0.001) ≅ 6.9). However, 
the Bayesian models treat these observations as uncertain and via Markov Chain Monte Carlo 
sampling they are distributed across a wider range of scores. 
 
After transformation, we used generalized linear Bayesian regression models to assess the effects 
of multiple variables (e.g. 𝑋1) on the Gamma-distributed surprisal values (using the identity link 
to measure effects on the logarithmic score scale):  
 
−𝑙𝑜𝑔(𝑝()~𝐺𝑎𝑚𝑚𝑎(𝜇(, 𝜙) 
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𝜇( = 𝛽> + 𝛽1𝑋1,(, 
 
where 𝜙 is the dispersion, 𝛽> and 𝛽1 are regression coefficients. To be consistent with the rest of 
the manuscript, we reported the estimated effects from the regressions on the logarithmic score 
scale rather than the surprisal scale. 
 
We fitted regression models with Stan (http://mc-stan.org/) using the stan_glm function in the 
rstanarm package (http://mc-stan.org/rstanarm/). For each regression, we ran four chains with a 
burn-in of 500 samples, then collected an additional 1,000 samples and thinned by two to attain 
2,000 samples across the four chains. All models were checked for convergence and 
autocorrelation. To compare regression models we used leave-one-out cross validation with 
Pareto-smoothed importance sampling to estimate the expected log pointwise predictive density 
(ELPD) (6).  
 
To assess the relationship between scores and target, location, or season characteristics, we fitted 
a series of regression models to identify extrinsic factors associated with score variability 
including: location, target, location-target specific entropy (described below), season, forecast 
week (week of season), a testing/training season indicator, peak incidence (normalized by 
location), season incidence (normalized by location), and peak week (centered by location). We 
calculated target-location entropy (∑𝑝 log 𝑝, where 𝑝 is the bin-specific frequency) as the entropy 
of each target relative to the target-specific bins over all seasons in the training and testing 
datasets for each location separately (excluding two seasons in Iquitos with no clear peaks: 
2000/2001 and 2011/2012). 
 
First, we fitted a base regression model with covariates for target, forecast week, location and a 
location-season interaction term to capture variation by season (Table S3). We found that scores 
varied significantly across at least some components of all of these factors. We then removed the 
target variable and added two target-related covariates - target-location specific entropy and the 
number of bins for the probabilistic forecast – finding that the number of bins was associated with 
the differences in scores by target. We compared the ELPD for this model (-18,182) to the base 
regression model (-18,184) and found a negligible difference (2.4, standard error (SE): 3.5). We 
then removed the entropy variable and the location-season interaction terms and added four 
covariates potentially associated with season-specific scores: an indicator for training versus 
testing, centered peak week, normalized peak incidence, and normalized season incidence. Scores 
varied by centered peak week and normalized peak incidence with a slightly lower ELPD (-
18,237, difference: -55, SE: 13). We then removed the training season and normalized season 
incidence variables, keeping only forecast week, location, number of forecast bins, normalized 
peak incidence, and centered peak week. Compared to the base model, this model had a lower 
ELPD (-18,234, difference: -50, SE: 15) with a reduced set of variables that could account for key 
differences in scores. We did not assess additional variables that could explain the between-
location difference because with only two locations there would be no resolution between 
alternative binary effectors.  
 
Next, we used the final model described above to assess differences between forecasting 
approaches, using variables for mechanistic (if the forecast included at least one mechanistic 
component), climate (if the forecast used at least one climate variable), and ensemble (if the 
forecast was based on more than one model) (see Table S1 and above for more model-specific 
details). Additional important distinctions (e.g. modeling a vector population or using serotype 
data) were not assessed because not enough forecasts incorporated those approaches to enable 
comparison. For example, only two forecasts used serotype data and each used it in a different 
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way so any comparison would be confounded by many other possible distinctions (e.g. which 
climate data were used). 
 
Finally, we compared calibration (see Fig. S4 for the specific metric) by forecasting approach 
with the same three characteristics (mechanistic, climate, and ensemble) while controlling for 
target and location (Table S4).  
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Fig. S1. Peak week and peak incidence forecasts at weeks 0, 12, 24, and 36 for all testing 
seasons. The solid black lines indicate the most recent dengue data that were available to teams to 
inform these forecasts and the dashed line indicates the data that became available later in the 
season. The colored points represent point estimates for each team while the bars represent 50% 
and 95% prediction intervals (dark and light, respectively). The colors match the legend in Fig. 2 
and the labels in Fig. S2. Corresponding forecasts for seasonal incidence are shown in Fig. S2.  
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Fig. S2. Total seasonal incidence forecasts at weeks 0, 12, 24, and 36 for all testing seasons. 
The solid black lines indicate the number of cases reported up to week 12 or week 24 and the 
dashed lines indicate the total at the end of the season. Grey horizontal lines indicate the bins for 
each forecast. Points are the point estimates and shading represents the 50% and 95% prediction 
intervals (dark and light, respectively). Open bars at the top indicate that the 95% interval 
includes the highest bin: greater than 1,000 or 10,000 cases, for Iquitos or San Juan, respectively.  
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Fig. S3. Calibration of forecasts by team. Team-specific calibration for binned forecasts overall 
(A) and by target-location (B). Each point indicates the average forecast probability within a 
given bin (e.g. between 0.2 and 0.3) and the frequency of the observed outcome for those 
forecasts. The vertical line is the confidence interval for that mean (a large interval indicates 
fewer forecasts in that bin). The dashed diagonal line indicates ideal calibration and the number 
under the team name is a calibration metric indicating distance from this line (lower calibration is 
closer to zero distance and therefore better). Calibration was calculated as the mean weighted 
squared difference AB ∑nD(pFD − oFD)

G, where 𝑁 is the total number of forecasts, nD is the number 
of forecasts in bin 𝑘 with average probability pFD, and oFD is the frequency of those forecasts being 
correct. Panel B shows the calibration for each target-location pair. 
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Fig. S4. Calibration compared to logarithmic score by team and target. Calibration was 
calculated as described in Fig. S3. Better calibration (lower) was general associated with better 
logarithmic scores (higher) for all target-location pairs (Iquitos-Peak week R2: 0.55, Iquitos-Peak 
incidence R2: 0.91, Iquitos-Season incidence R2: 0.95, San Juan-Peak week R2: 0.59, San Juan-
Peak incidence R2: 0.79, San Juan-Season incidence R2: 0.78). Despite lower logarithmic scores, 
peak week calibration is generally better because the greater number of bins (52 vs. 11) leads to 
more low or no probability predictions for outcomes that did not happen, which are therefore well 
calibrated.  
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Fig. S5. Forecast skill by team, forecast week, and target in the training seasons (2005/2006 
to 2008/2009). Solid colored lines represent the scores of individual teams averaged across all 
testing seasons for the respective forecast week, target, and location. For each target, the top 
forecast for the first 24 weeks (shaded) is indicated in bold (highest average early season score). 
The solid black line indicates the null model (equal probability assigned to all possible 
outcomes), the dashed grey line the baseline model, and the dotted black line the ensemble model. 
Forecasts with logarithmic scores of less than -5 are not shown. Breaks in lines indicate a score of 
negative infinity in at least one of the testing seasons. 
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Table S1. Model characteristics and forecasting scores for Weeks 0-24 in the testing seasons 
(2009/2010 to 2012/2013). The highest score for each target is indicated in bold, with both the 
top team and the baseline indicated if the baseline outperformed all teams. 
  

Model Characteristics 
 

San Juan (logarithmic scores) Iquitos (logarithmic scores) 

Team Mech.‡ Ensemble Climate Serotype Peak 
Incidence 

Peak Week Season 
Incidence 

Peak 
Incidence 

Peak Week Season 
Incidence 

A Yes No Yes No -4.62† -6.02† -4.79† -3.08† -6.07† -3.03† 

B No Yes Yes No -2.57 -4.24 -2.04* -1.85* -6.38 -2.03* 

C Yes Yes No No -2.12* -4.14 -2.13* -2.08* -3.36* -2.47 

D No No No No -2.62 -6.45† -5.07 -4.76 -5.83 -5.43 

E No Yes Yes No -1.43* -3.70* -2.81 -2.54 -3.29* -3.14 

F No Yes Yes No -2.99† -3.98† -3.98† -5.45† -4.66† -6.71† 

G Yes Yes Yes No -1.23* -4.88 -1.992* -2.18* -3.36* -2.49 

H No Yes No No -2.60 -5.37 -2.64 -3.07 -3.45* -2.54 

I Yes No Yes No -2.95† -6.03† -3.32† -4.18† -3.91*† -4.02† 

J No Yes Yes No -1.74* -4.20 -1.986* -2.27* -3.61* -2.66 

K No No Yes No -4.49† -6.17† -4.38† -6.68† -6.91† -6.91† 

L Yes Yes Yes No -3.30† -5.45† -4.19† -5.29† -4.05† -4.61† 

M No No No No -5.17 -5.75† -7.66 -5.78 -2.98* -3.50 

N No No No No -4.98† -4.06 -2.18* -3.88† -2.96* -2.28* 

O No No No No -2.66 -3.90* -2.84 -5.24 -4.35 -3.61 

P No No Yes Yes -2.63† -5.36† -4.55† -2.89† -3.08* -4.81† 

null NA No No No -2.40 -3.95 -2.40 -2.40 -3.95 -2.40 

baseline No No Yes No -1.43* -3.47* -2.15* -2.88 -2.55* -3.62† 

ensemble Yes Yes Yes Yes -1.68* -3.60* -2.13* -2.14* -3.10* -2.09* 

‡Yes if the model included any mechanistic component. 
†Forecasts with zero probability assigned to at least one observed outcome. Those individual forecast probabilities were changed to 0.001 to 
calculate the average. 
*Forecasts with scores higher than the null model. 
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Table S2. Forecasting scores for Weeks 0-24 in the training seasons (2005/2006 to 
2008/2009). The highest score for each target is indicated in bold, with both the top team and the 
baseline indicated if the baseline outperformed all teams. 
  

San Juan (logarithmic scores) Iquitos (logarithmic scores) 
Team Peak 

Incidence 
Peak 
Week 

Season 
Incidence 

Peak 
Incidence 

Peak 
Week 

Season 
Incidence 

A -4.74† -6.36† -5.04† -2.95† -6.11† -3.25† 
B -1.43* -5.11 -1.17* -3.02 -5.18 -2.31* 
C -1.22* -3.01* -2.09* -1.89* -3.20* -1.74* 
D -1.44* -4.27 -4.83 -8.34† -4.11 -3.62 
E -1.28* -3.28* -1.91* -1.73* -3.82* -2.95 
F -1.06* -5.31† -1.47* -1.45*† -5.29† -2.43† 
G -1.10* -9.48 -0.99* -4.23 -22.26 -12.76 
H -1.81* -3.08* -0.93* -2.90 -4.01 -3.17 
I -5.20† -4.12† -2.12*† -3.80† -5.86† -2.91† 
J -1.36* -2.86* -1.33* -1.47* -3.45* -2.22* 
K -2.61† -6.91† -2.18*† -4.97† -5.18† -5.80† 
L -2.21*† -4.15† -2.60† -3.82† -6.72† -4.70† 
M -0.94* -3.54*† -0.74* -4.30 -4.25† -2.35* 
N -4.41† -3.23* -1.25* -4.63† -3.19* -1.75* 
O -1.31* -2.74* -0.91* -6.11 -5.86 -3.89 
P -2.21* -3.11* -1.81* -3.42 -3.72* -4.16† 
null -2.40 -3.95 -2.40 -2.40 -3.95 -2.40 
baseline -1.41* -2.89* -0.85* -1.83* -3.41*† -1.78* 
ensemble -1.24* -2.93* -0.97* -1.88* -3.16* -1.99* 

‡Yes if the model included any mechanistic component. 
†Forecasts with zero probability assigned to at least one observed outcome. Those individual forecast probabilities were changed to 
0.001 to calculate the average. 
*Forecasts with scores higher than the null model. 
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Table S3. Regression models comparing logarithmic scores by target, location, season, and 
modeling-approach. 

 Variable Mean Lower 95% CI Upper 95% CI ELPD* SE 
Base     -18184 171 

 Forecast week 0.0408 0.0371 0.0446    Iquitos-2006/2007 0.906 0.602 1.22    Iquitos-2007/2008 -0.14 -0.515 0.226    Iquitos-2008/2009 -0.242 -0.624 0.139    Iquitos-2009/2010 0.256 -0.084 0.607    Iquitos-2010/2011 -0.27 -0.653 0.126    Iquitos-2011/2012 -0.428 -0.863 -0.00202    Iquitos-2012/2013 0.132 -0.237 0.509    San Juan 0.91 0.628 1.21    San Juan-2006/2007 0.301 0.114 0.471    San Juan-2007/2008 -0.386 -0.65 -0.136    San Juan-2008/2009 -0.271 -0.519 -0.0424    San Juan-2009/2010 -0.927 -1.28 -0.619    San Juan-2010/2011 -0.649 -0.957 -0.385    San Juan-2011/2012 0.452 0.278 0.626    San Juan-2012/2013 -1.49 -1.87 -1.13    Target: Peak Week -1.15 -1.32 -0.994    Target: Season Incidence -0.0489 -0.156 0.0544   
Target variables    -18182 170 

 Forecast week 0.0406 0.0369 0.0444    Iquitos-2006/2007 0.895 0.607 1.19    Iquitos-2007/2008 -0.135 -0.515 0.218    Iquitos-2008/2009 -0.247 -0.642 0.119    Iquitos-2009/2010 0.247 -0.114 0.566    Iquitos-2010/2011 -0.275 -0.671 0.0976    Iquitos-2011/2012 -0.47 -0.898 -0.0385    Iquitos-2012/2013 0.107 -0.246 0.447    San Juan 0.921 0.646 1.2    San Juan-2006/2007 0.294 0.112 0.479    San Juan-2007/2008 -0.369 -0.639 -0.122    San Juan-2008/2009 -0.291 -0.532 -0.0493    San Juan-2009/2010 -0.959 -1.31 -0.647    San Juan-2010/2011 -0.648 -0.932 -0.378    San Juan-2011/2012 0.483 0.318 0.649    San Juan-2012/2013 -1.5 -1.88 -1.15    Number of bins -0.0268 -0.0309 -0.023    Target entropy -0.116 -0.316 0.103   
Target & season variables    -18237 171 

 Forecast week 0.0424 0.0385 0.0464    San Juan 0.664 0.554 0.777    Number of bins -0.0257 -0.0295 -0.022    Centered peak week -0.0488 -0.0575 -0.0402    Normalized peak incidence -0.405 -0.549 -0.26    Normalized season incidence -0.0345 -0.163 0.0968   
 Training season -0.058 -0.169 0.0565   
Reduced     -18234 171 

 Forecast week 0.0425 0.0388 0.0464    San Juan 0.652 0.542 0.762    Number of bins -0.0257 -0.0293 -0.0221   
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 Centered peak week -0.0479 -0.0565 -0.0397   
 Normalized peak incidence -0.429 -0.489 -0.371   
Model type    -18024 168 

 Forecast week 0.0438 0.0397 0.0481    San Juan 0.409 0.303 0.52    Number of bins -0.0155 -0.0196 -0.0115    Centered peak week -0.0369 -0.0447 -0.0298    Normalized peak incidence -0.186 -0.239 -0.143    Climate -0.136 -0.185 -0.0942    Ensemble 1.02 0.909 1.13    Mechanistic -0.645 -0.802 -0.492   

*ELPD: Leave-One-Out Expected Log Pointwise predictive Density 

 

Table S4. Regression model comparing calibration by target, location, and modeling-
approach. 

Variable Mean Lower 95% CI Upper 95% CI 
Climate 0.00120 -0.00046 0.00307 
Ensemble -0.00096 -0.00335 0.00070 
Mechanistic 0.00196 -0.00060 0.00604 
San Juan 0.00005 -0.00142 0.00158 
Target: Peak Week -0.01230 -0.01900 -0.00737 
Target: Season Incidence -0.00067 -0.00749 0.00990 

 
 


