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ABSTRACT

Aglobal-scale decadal climate shift, beginning in 1998/99 and enduring through 2013, has been documented

in recent studies, with associated precipitation shifts in key regions throughout the world. These precipitation

shifts are most easily detected during March–May when ENSO effects are weak. Analyses have linked this

climate shift to a shift in the Pacific decadal variability (PDV) pattern to its negative phase. Here the authors

evaluate the predictive skill of the North American Multimodel Ensemble (NMME), and the CFSv2 model

alone, in maintaining the observed precipitation shifts in seasonal forecasts, emphasizing the southwestern

United States where deficient precipitation has tended to prevail since the late 1990s.

The NMME hindcasts out to 6 months lead are found to maintain the observed decadal precipitation shifts

in key locations qualitatively correctly, but with increasingly underestimated amplitude with increasing lead

time. This finding holds in the separate CFSv2 model hindcasts. The decadal precipitation shift is relatively

well reproduced in the southwestern United States. The general underestimation of the precipitation shift is

suggested to be related to amuted reproduction of the observed shift in Pacific sea surface temperature (SST).

This conclusion is supported by runs from a different (but overlapping) set of atmospheric models, which

when forced with observed SST reproduce the decadal shifts quite well. Overall, the capability of the NMME

model hindcasts to reflect the observed decadal rainfall pattern shift, but with weakened amplitude (especially

at longer leads), underscores the broader challenge of retaining decadal signals in predictions of droughts and

pluvials at seasonal-to-interannual time scales.

1. Introduction

In recent years there has been a substantial effort

focused on evaluating the skill of initialized coupled

climate model decadal climate predictions. Although

evidence exists for some skill in model predictions of

decadal variability in sea surface temperature (SST)

(e.g., Meehl et al. 2014), preliminary assessments (e.g.,

Goddard et al. 2013) show that the skill of decadal

precipitation forecasts is generally quite low over most

land areas of the globe. Among other factors, a funda-

mental challenge to skillful decadal prediction is the

ability of climate models to capture shifts in low-

frequency behavior of the climate system, such as that

associated with multidecadal variability of SSTs in the

Pacific and Atlantic Oceans. In this paper the focus is on

Pacific decadal variability (PDV) and an observed shift

from its warm to cool phase in 1998/99 (Dai 2013; Ding

et al. 2013; Lyon et al. 2013). Here, PDV is defined in a

generic sense, not using a specific definition such as the

North Pacific index used in Trenberth andHurrell (1994),

the Pacific interdecadal oscillation presented in Mantua

et al. (1997), the interdecadal Pacific oscillation used in

Dai (2013), or the Pacific decadal time series developed in

Lyon et al. (2013). Themain goal of the study is to discern

the extent to which the coupled climate models of the

North American Multimodel Ensemble (NMME), in

hindcasts of seasonal means extending up to 6 months

into the future, are able to reproduce observed pre-

cipitation changes associated with this known decadal

shift in Pacific SSTs and to investigate some of the factors

(e.g., related to SSTs) if it does not.

Although the PDV patterns in SST and their tele-

connected climate anomalies are real, some work has

suggested that quasi-decadal shifts in the PDV may be

the result of several dynamical processes superimposed,

mainly coming from the tropical Pacific (i.e., ENSO;
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e.g., Newman 2007). This view of PDV implies that it is

not a climate mode in its own right and, because of the

lack of inherent predictability of one or more of its

components, may itself have little predictability andmay

vary on multiple time scales, interdecadal being just one

of them.

Interest in PDV arises from associated observed var-

iations in seasonal climate in various regions of the

globe. For example, the cold phase of PDV has been

associated with an increased occurrence of drought in

the western United States (Dai 2013; Hidalgo and

Dracup 2003), southern China (Chan and Zhou 2005),

central and southwestern Asia (Hoell et al. 2015; Lyon

et al. 2013), and eastern Africa (Lyon 2014; Yang et al.

2014). Such tendencies have substantial implications for

water resource management (e.g., Allen et al. 2014) and

the energy and agricultural sectors (e.g., Swetnam and

Betancourt 2010). The recent hiatus in the upward

global warming trend has also been linked in some

studies to the PDV (e.g., Kosaka and Xie 2013).

A decadal-scale shift in Pacific SSTs and associated

atmospheric conditions in 1998/99 have been docu-

mented in several recent studies (Dai 2013; Lyon et al.

2013; Trenberth and Fasullo 2013; Lin 2014, among

others). For theMarch–May (MAM) season, an analysis

of precipitation variability over the last several decades

indicates that recurrent drought events since 1999 in

East Africa, central-southwest Asia, parts of eastern

Australia, and the southwestern United States are all

regional climate variations associated with this global-

scale multidecadal pattern (Lyon et al. 2013). Using

simulations from atmospheric general circulation models

forced with observed global SSTs, Lyon et al. (2013) and

Dai (2013) further showed that many of the main pre-

cipitation and atmospheric circulation features associated

with the observed shift are captured. In addition, model

runs forced only with observed SSTs in the tropical Pa-

cific were also able to capture many of the observed at-

mospheric changes, pointing to its central role in driving

the regional and global atmospheric responses on the

multidecadal time scale.

In the last two years, a North American Mutimodel

Ensemble has been developed for improved operational

prediction of seasonal climate (Kirtman et al. 2014). By

late 2014, the NMME included eight coupled general

circulation models and had become a valued and rou-

tinely used input for the Climate Prediction Center’s

seasonal forecast production eachmonth (Kirtman et al.

2014). Hindcasts from sets of ensembles from each of the

NMMEmodels are available over a 32-yr period (1982–

2013). Here we examine these hindcasts to determine

the extent to which the NMME detected the observed

changes in seasonal precipitation following the decadal

shift in Pacific SSTs in 1998/99. In particular, we look for

evidence of reproduction of the drought-like conditions

in the southwestern United States, among other regions,

considering the December–February (DJF) season as

well as MAM.

The NMME hindcasts for the DJF or MAM seasons

discussed here are made for up to only several months in

advance, so they are not predictions of the decadal shift

from the years preceding the shift. In this sense the ex-

amination is of seasonal prediction skill during two

multidecadal periods having different climatological

average SSTs and precipitation. Rather than looking for

the hindcast skill for interannual variations such as those

related to ENSO, we look for model skill in reproducing

the observed mean differences between the two periods,

perhaps due largely to retention of the mean differences

in the initial conditions for the NMME hindcasts. Fail-

ure to reproduce these mean differences might manifest

itself with hindcasts that drift toward the climatology of

the entire 1982–2013 period even at short lead times. It

should be noted that there is little or no indication in

recent research that coupled models can reproduce ob-

served decadal variability in the oceans, and thus in the

atmospheric teleconnections. In fact, some studies have

suggested a lack of decadal-scale predictability specifi-

cally in the North Pacific in today’s coupled models

(Branstator et al. 2012; Branstator and Teng 2012;

Meehl et al. 2014).

The paper is outlined as follows. Section 2 first de-

scribes the model and observational data used in the

study and introduces the analysis methods. Section 3

presents results evaluating the skill of the NMME sea-

sonal precipitation forecasts for the full analysis period,

1982–2013. The observed precipitation shift for the pre-

and post-1999 periods are then presented and compared

with results from the NMME forecasts for these two

periods at 0- and 3-month lead times. To help explain the

model performance characteristics, errors in the SST

field generated by the NMME are examined in section 4

along with the precipitation field from the AMIP runs.

Finally, section 5 provides a summary and the main

conclusions of the study.

2. Data and methods

a. Data

Here we use a set of six coupled climate models from

the NMME project, which all have global 1982–2013

(32 yr) hindcast data available in a common format at

the time of this writing. The six models include the

1) NCAR–University of Miami CCSM3, 2) NOAA/NCEP

CFSv2, 3) Canadian Meteorological Centre (CMC)
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model 1 (CMC1), 4) CMCmodel 2 (CMC2), 5) NOAA/

GFDL model, and 6) NASA model (see Table 1 for

more information on models). All of the model data

were placed onto a 18 latitude–longitude grid at the

originating centers. Among the six models, the number

of ensemble members varies from 6 to 24, and the

maximum lead time varies from 9 to 12 months (Table

1). Most of the analyses here use the combined forecast

[i.e., the multimodel ensemble (MME)]. The MME is

formed by combining the individual ensemble members

of all of the models. Because some models have more

members than others, the number of members acts as a

model weighting factor; for example, CFSv2 has 4 times

as many ensemble members as CCSM3, so it exerts 4

times the weight of CCSM3 in forming the MME fore-

cast. Given that the hindcast differences in average skill

are not large among the models (Becker et al. 2014),

assigning as much weight to a model with relatively few

members as to a model with a large number of members

will theoretically diminish the skill of the MME when

themodel forecasts have similar average skill.We do not

attempt to weight models according to their hindcast

skill, for reasons described in section 2b. In the analysis,

we examine MME forecasts of 3-month mean pre-

cipitation for the first 3 months following initialization,

and also for the following 3-month period.

For comparison with the NMME coupled model re-

sults, model simulations (runs forced with observed,

global SSTs) from seven atmospheric models (hereafter

referred to as AMIP runs) are utilized. The seven models

used are ECHAM4.5; ECHAM5; NCAR Community

Atmosphere Model, version 4 (CAM4), and Community

Climate Model, version 3 (CCM3); NASAGEOS-5; and

two versions of CFSv2. These AMIP runs are made

available by researchers participating in the NOAA

Drought Task Force for an investigation of the recent

California drought (Seager et al. 2015). Monthly pre-

cipitation data from these models for the period 1979–

2013 is utilized following regridding to the common for-

mat of the NMME. Ideally, the atmospheric versions of

the same coupled models comprising the NMME would

be used for this purpose, but only an overlapping set of

models is available (Table 2). The overlap consists of the

NCEP CFSv2 and NASA GEOS-5 atmospheric models,

whose atmospheric components are essentially the same

as those of their NMME counterparts. The AMIP runs

aim to provide a comparative measure of the success of

climate models to capture the observed climate shift

when forced with observed, versus predicted (i.e., the

NMME), SSTs. For a better controlled comparison be-

tween the coupled and theAMIP simulations, the two sets

of results for the CFSv2 model alone are also examined.

For verification of the precipitation forecasts two

global precipitation analyses are utilized. The primary

dataset is the monthly merged satellite–gauge pre-

cipitation product from the Global Precipitation Cli-

matology Project, version 2.2 (GPCPv2.2; Adler et al.

2003; Huffman and Bolvin 2012). These are monthly

data on a 18 latitude–longitude grid with the period

1979–2013 utilized. The GPCP data have the advantage

of providing precipitation estimates over ocean areas,

thus allowing for a more complete picture of the global

shift pattern. The CPC Unified Gauge-Based Analysis

of Global Daily Precipitation dataset (Chen et al. 2008)

TABLE 1. Basic information for the six models of the NMME used in the study. (Expansions of acronyms are available online at http://

www.ametsoc.org/PubsAcronymList.)

Model Expanded model name No. of ensemble members Max lead (months)

CMC1-CanCM3 Canadian coupled model 1 10 12

CMC2-CanCM4 Canadian coupled model 2 10 12

COLA–RSMAS CCSM3 COLA–University of Miami–NCAR coupled model 6 12

GFDL CM2pl-aer04 Modified version of GFDL coupled model 10 12

NASA GMAO-062012 Modified version of NASA coupled model 12 9

NCEP CFSv2 NOAA/NCEP coupled model 24 10

TABLE 2. Basic information for the seven AMIP models used in the study. (GHG is greenhouse gas.)

Model Source Ensemble size Resolution SST forcing Trace gases Data available

CCM3 LDEO 16 T42L18 Hadley Fixed 1856–2014

ECHAM4.5 IRI 24 T42L19 ERSST Fixed 1950–2014

ECHAM5 NOAA/ESRL 20 T159L31 Hurrell Varying GHGs 1979–2014

GEOS-5 NASA GSFC 12 18 3 18 L72 Hurrell Varying 1871–2014

ESRL CFSv2 NOAA/ESRL 50 T126L64 Hurrell Varying CO2 1979–2014

NCEP CFSv2 NOAA/CPC 18 T126L64 Hurrell Varying CO2 1957–2014

CAM4 NOAA/ESRL 20 0.948 3 1.258 L26 Hurrell Varying 1979–2014
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is also used, primarily for assessing results over the

western United States. These data are on a 18 latitude–
longitude grid, which again matches the resolution of the

NMME forecast data. Monthly and seasonal averages

over the period 1982–2013 are computed from these daily

grids. Monthly average SSTs from the Optimum In-

terpolation SST version 2 dataset (OISSTv2; Reynolds

et al. 2002) for the same period are also employed. These

data are on a 18 latitude–longitude grid. All data used in

the study are obtained via the IRI Data Library (http://

iridl.ldeo.columbia.edu/).

b. Methods

For assessing the quality of the NMME forecasts, we

select the basic verification measure of temporal corre-

lation, which measures discrimination by computing the

extent to which the temporal phases of the variability in

the observations are represented in the forecasts. We

use a standard statistical test of significance of differ-

ences between two means (t test) to determine the ro-

bustness with which the models reproduce the shift in

mean conditions as seen in the observations. The en-

semble mean of the NMME forecasts is used for most

analyses, in which case the probabilistic aspect of the

NMME forecasts is ignored. However, we also examine

the position of the observation within the distribution of

model ensemble member hindcast to identify cases in

which the observation is poorly accounted for in the

model. In these analyses the ensemble member distri-

bution is better defined using a Monte Carlo simulation

method that greatly increases the effective number of

ensemble realizations.

When combining the forecasts of individual models

into a MME, we do not attempt to weight models by

their hindcast skill. Wemake this decision because it has

been found that when there are no more than moderate

apparent skill differences amongmodels, and only about

30 years of hindcast data are available, use of unequal

model weighting fails to result in higher cross-validated

MME skill than equal weighting (Kharin and Zwiers

2002; Tippett and Barnston 2008; Peña and van den

Dool 2008; Barnston et al. 2012; DelSole et al. 2013).

The reason given in these studies is that when the model

skills vary by the amounts seen here for the NMME

models (i.e., not drastically) the skill differences do not

exceed differences explainable by sampling variability

and hence may not reflect true model quality differ-

ences. When weights differ largely as a result of sam-

pling variability, they often yield less skillful forecast

results when applied to independent forecasts than

when equal weighting is used (Tippett and Barnston

2008). When a particular model shows much lower skill

than that of most of the othermodels, that model may be

removed entirely from the model set by subjective de-

cision. Such action was not considered in our case, as the

model showing lowest average skill over all seasons/

leads is still found to contribute to the multimodel

forecast skill during some seasons and lead times.1

In this study, cross-validation is not used in assessing

the hindcast skills of various methodological configura-

tions. The main reason is that we are examining a de-

cadal shift and have only two mean states (pre-1999 and

1999 onward; an earlier shift in the 1970s is before the

beginning of the NMME archive). On this decadal time

scale, and with only about three decades to use, cross-

validation has little meaning and is thus ineffective

in design.

As an objective method for identifying changepoints

in precipitation time series, a variant of the standard

normal homogeneity test (SNHT; Alexandersson 1986)

as discussed in Haimberger (2007) is used. While this

and related tests are frequently used to identify non-

climate-related inhomogeneities in time series, here it is

used to identify shifts associated with PDV. The SNHT

is applied using a 21-yr moving window to the full time

series for a particular season, generating a test statistic

for each center value (year) of a given 21-yr period. This

test statistic is evaluated for statistical significance by

comparing its value to that obtained when applying the

SNHT to a time series containing 30000 years of synthetic

data, having the same variance as the observed data.

3. Results

a. Skill of NMME precipitation forecasts during DJF
and MAM seasons

Before focusing on the NMME’s skill in representing

the decadal shift, we briefly examine the ability of the

NMME seasonal forecasts to reproduce the observed

variability at all time scales (interannual, decadal, and

slower trend) over the globe during 1982–2013. We fo-

cus onDJF andMAMbecause an observed decadal shift

beginning in 1998/99 is exhibited most clearly during

both the boreal winter (e.g., Dai 2013) and spring (Lyon

et al. 2013) seasons.

Figure 1 (top) shows the temporal correlation skill for

precipitation predictions at lead 0 for DJF (i.e., seasonal

forecastsmade at the beginning ofDecember). Relatively

high NMME forecast correlation skill is noted in eastern

equatorial Africa, the Philippines region, northern Brazil,

southeastern Australia, and the southern and western

1 The Climate Prediction Center likewise does not weight the

NMME models by their hindcast skill in forming the multimodel

forecast average.
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United States. The pattern of highest skill for MAM

(Fig. 1, bottom) is somewhat similar, but the highest

values are seen in northeastern Brazil, differing parts of

Australia, part of southeast Asia, and again in part of the

western United States.

In some regions, much of the skill shown in Fig. 1may

be coming from skillful predictions of high-frequency

interannual variability (e.g., variability associated

with ENSO, especially for DJF when ENSO tele-

connections are strong) rather than from a correct re-

production of a decadal shift. To help determine

whether the NMME shows a correct mean shift in its

forecasts around 1999, we examine maps of the differ-

ence in the mean forecast during 1999–2013 compared

with 1982–98, and compare the resulting patterns with

those in the observed precipitation. Figures 2a and 2b

show the difference in means in the observations for DJF

(left) and MAM (right) seasons. Figures 2c,d and 2e,f

show the difference in means in the NMME predictions

at 0- and 3-month lead times,2 respectively, with pre-

dictions for DJF (MAM) again shown in the left (right)

column. In the maps for observations and 0-month-lead

forecasts, the red lines show statistical significance at

the 90% and 99% confidence levels based on a t sta-

tistic, where dashed (solid) lines indicate a negative

(positive) difference.

The difference map for DJF observed precipitation

(Fig. 2a) shows a shift toward less precipitation in the

eastern and central equatorial Pacific, extending

westward to about 1608E. Lower precipitation is also

noted in Central America and the southern tier of the

United States, in eastern equatorial Africa, and in

FIG. 1. Correlation (1982–2013) between NMME precipitation forecasts and observations

for the (a) DJF and (b) MAM seasons at 0-month lead time (i.e., forecasts were initialized in

early December and early March, respectively).

2 A 0-month lead time forecast for DJF, for example, is made at

the beginning of December using observed data through the end

of November. A 3-month-lead forecast for DJF is made at the

beginning of September.
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parts of southern South America. A shift toward

greater precipitation is seen in northern South Amer-

ica, most of Indonesia and the Philippines, northern

Australia, southernmost Southeast Asia, and the

southwest tropical Pacific islands. All of these differ-

ences are statistically significant at least at the 90%

level, and some at the 99% level. The overall pattern

somewhat resembles the teleconnection pattern asso-

ciated with La Niña (Ropelewski and Halpert 1989).

For the MAM season, the difference map for ob-

served precipitation (top right panel of Fig. 2) is similar

to that for DJF in several respects and approximately

replicates findings in Lyon et al. (2013, see their Fig. 1).3

The large negative difference in the eastern and central

tropical Pacific Ocean and the opposing positive differ-

ence over the Maritime Continent and far western

tropical Pacific resembles the comparable features for

DJF, except that the latter feature is located slightly

farther north in MAM due to the seasonal migration of

the intertropical convergence zone. Hence, a wetter

MAM season is observed in Southeast Asia and south-

ern India during the post-1999 period, which covers a

smaller proportion of northern Australia as compared

with DJF. Similar to DJF, shifts toward greater pre-

cipitation are noted in southern Africa and northern

South America, while decreased precipitation is again

found in eastern equatorial Africa, parts of southern

South America, and the southern tier of the United

States. However, in MAM, unlike DJF, a shift toward

drier (wetter) conditions is seen in central and southwest-

ern Asia (central and eastern Russia). The regions men-

tioned above all have statistically significant differences.

FIG. 2. (top) Difference in seasonal mean observed precipitation (mmday21) between averages for 1999–2013

and 1982–98 for (a) DJF and (b) MAM, using NASA’s GPCPv2.2. (middle) As at top, but for NMME forecast

precipitation (mmday21) for (c) DJF and (d) MAM. Forecasts for both seasons made at 0-month lead time. Note

the change in scale for the observed vs forecast difference. (bottom) As at top, but for forecasts made at 3-month

lead time (3 months before the beginning of the first month of the predicted season) for (e) DJF and (f) MAM. In

(a)–(d), the red lines show statistical significance at the 90%and 99% confidence levels based on a t statistic (dashed

lines for negative t, solid for positive t).

3 Differences from results of Lyon et al. (2013) may be due to

slightly different study periods, and the fact that they use GPCC

observed precipitation data (gauge data only), while here the

NASA GPCP precipitation data (gauges and satellite) are used.
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To what extent does the NMME reproduce this de-

cadal shift in the DJF season? For 0-month-lead fore-

casts (Fig. 2c), statistically significant results appear

similar to their observational counterparts in many re-

gions, but differ in a few. A decrease in precipitation in

the eastern and central equatorial Pacific is common to

both observations and forecasts, but a narrow break in

the band of drying just north of the equator (58–108N)

appears only in the forecasts. A drying over the southern

tier of theUnited States and in eastern equatorial Africa

is also replicated in the NMME forecasts, as is increased

rainfall in northern South America, parts of Indonesia,

and the Philippines. Noteworthy differences include a

lack of increased rainfall in southern Africa and much of

Australia. In regions showing good model reproduction,

the decadal differences tend to be somewhat weaker than

those in the observations (note the differing color scales

in Fig. 2).

The mean shift in the NMME precipitation forecast

for DJF at 3-month lead time (Fig. 2e) shows a roughly

similar significant shift pattern, but with further degra-

dation of the strength of the difference field, resulting in

an inadequate reproduction of the precipitation de-

crease in eastern equatorial Africa, and a reversal of the

observed increase over southern Africa.

In MAM, the NMME reproduces the observed de-

cadal shifts for 0-month-lead forecasts to a greater ex-

tent than found in DJF (Fig. 2d). Most of the main

regions of statistically significant shift in the observa-

tions are seen also in the forecasts, to first order, al-

though the amplitude of the shift is less in the forecasts

(again, note the differing color scales in Fig. 2). The

narrow break in the west–east band of shift toward

lower precipitation in the tropical Pacific is noted in the

observations as well as the forecasts. However, the

forecast drying responses over eastern equatorial Af-

rica are weak, as are those in southern South America.

The forecast for MAM season at 3-month lead time

(Fig. 2f) shows a shift pattern with some resemblance to

that of 0-month-lead forecasts, but with further weak-

ening of the difference field and degradation of the

correspondence to the observed difference field. The

basic pattern of shift in the tropical Pacific is itself

poorly represented.

Table 3 shows the spatial correlation, for the entire

globe and for land areas only, between observed and

forecast differences at 0-, 3-, and 6-month lead times for

the DJF and MAM seasons along with results for

January–March (JFM) and February–April (FMA).4

The NMME forecasts for seasons at other times of the

year (not shown) are found to have lower pattern cor-

relation skill. Contributions to the correlation are

weighted by the cosine of the latitude for an equal-area

calculation. During DJF and MAM (and the two in-

termediate seasons) correlations for 0-month-lead

forecasts exceed 0.5, which is statistically significant (at

0.05 level, two sided) if we assume at least 17 spatial

degrees of freedom—a very conservative estimate for

global precipitation, based on van denDool andChervin

(1986). For 3-month-lead forecasts the correlations

become weaker, and at 6-month lead time they are

useless for practical purposes. Correlations for the globe

tend to be stronger than those over land only, likely due

to the well-forecast precipitation difference over the

tropical Pacific associated with the SST shift underlying

this decadal variation. Based on these correlations, we

conclude that short-lead NMME forecasts capture the

pattern of the observed decadal shift reasonably well. As

forecast lead time increases, maintenance of the ob-

served decadal signal decays.

Table 4 shows, for DJF through MAM, the amplitude

of the difference fields as represented by the spatial

standard deviation of the differences over the globe and

for land areas only. The model forecast amplitude is

TABLE 3. Spatial correlation (COR) between observed field of

mean precipitation difference between 1982–98 and 1999–2013 and

the difference shown in the NMME forecasts, for the globe and for

land areas only. Results are shown at 0-, 3-, and 6-month lead times

for the DJF andMAM target seasons as well as the two in-between

seasons. Correlations of 0.5 or more, significant at the 0.05 level

(two sided) for 17 spatial degrees of freedom, are shown

in boldface.

DJF JFM FMA MAM

COR Globe Land Globe Land Globe Land Globe Land

0 month 0.65 0.50 0.71 0.51 0.60 0.60 0.67 0.60

3 month 0.46 0.34 0.55 0.29 0.44 0.19 0.35 0.16

6 month 0.29 0.17 0.29 0.00 0.26 0.07 0.17 0.24

TABLE 4. Standard deviation (SD; mmday21) over space, over

the globe and for land areas only, of (top) the observed mean

precipitation difference between 1982–98 and 1999–2013, and

(remaining rows) the difference shown in the NMME forecasts at

0-, 3-, and 6-month lead times for theDJF andMAM target seasons

as well as the two in-between seasons.

DJF JFM FMA MAM

SD Globe Land Globe Land Globe Land Globe Land

Obs 0.49 0.16 0.50 0.18 0.48 0.18 0.49 0.19

0 month 0.25 0.05 0.39 0.10 0.37 0.10 0.31 0.11

3 month 0.15 0.05 0.23 0.10 0.24 0.11 0.24 0.09

6 month 0.18 0.08 0.16 0.08 0.16 0.07 0.16 0.06

4 Note that correlations are affected not by the overall weakness

of the forecast decadal differences, but only by the geographical

phasing of the spatial patterns.
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calculated without regard to the correctness of the spa-

tial phasing of the difference fields. Because the primary

source of the decadal signal is in the tropical Pacific

Ocean, the amplitude of both observations and forecasts

over land is generally less than half of that over the

entire globe. For the globe, the amplitude of the fore-

casts at 0-month lead time is about half to three-quarters

that of the observations, indicating that the decadal

climate shift starting in 1999 is underrepresented in the

NMME forecasts. At 3- and 6-month lead times, the

forecast amplitude continues to decrease. Over land

only, the ratio of the forecast to observed amplitude

averages just slightly more than one-half for 0-month-

lead forecasts.5

One reasonably might want to know the degree to

which the decadal shift shown here and in recent studies

is statistically significant. To address this significance

issue in both observations and NMME forecasts, a t test

is applied to the difference between precipitation for the

periods 1982–98 and 1999–2012. Is the mean difference

great enough to overcome the higher-frequency vari-

ability, such as that related to ENSO fluctuations, and

unpredictable random variability? Table 5 shows the

percentage area (both for global and for land only) at-

taining local significance at the 5% level (two sided) for

the observations and for the NMMEmodel forecasts for

DJF through MAM at 0-, 3-, and 6-month lead times. In

the absence of a decadal shift, the percentage of local

significance is expected to be 5% due to random vari-

ability. The percentage is seen to be roughly 20% in the

observations. In the NMME forecasts the percentage of

area with local significance varies between about 10%

and 25%, often somewhat less than that of the obser-

vations. At 0-month lead time, with the exception of the

DJF season for land areas, the percentage of area having

local significance is comparable to that observed. The

greatest percentages of local significance for both ob-

servations and for 0-month-lead NMME forecasts oc-

curs for MAM, suggesting that this season may have a

minimum of other sources of variability (e.g., ENSO

related), allowing the decadal shift to be more easily

distinguished without prefiltering the data for variability

at other time scales such as ENSO and climate change.

With the percentages of local significance for obser-

vations and NMME forecasts well above the randomly

expected 5% level, we conduct field significance tests to

assess the probability of attaining these elevated per-

centages by chance. Seven hundred iterations of in-

dependent random shuffling of the year assignments are

carried out, and the number of instances in which the

percentage of local significance exceeds that found using

the correct year assignments is counted. Resulting field

significances for the DJF season for the observations for

the globe (land only) are 0.006 (0.002), while for the

NMME forecasts at 0- and 3-month lead times they are

0.07 (0.21) and 0.05 (0.05), respectively; for MAM, the

field significances for the observations are ,0.002

(,0.002)—that is, none of the 700 randomly shuffled

cases outperformed the actual one—and for the fore-

casts at short and longer leads they are 0.006 (,0.002)

and 0.07 (0.12), respectively. Strong field significance is

achieved for the observations in both seasons. The

0-month-lead NMME forecasts are field significant at

the 0.05 level for MAM season, but not for DJF. The

3-month-lead forecasts lack field significance at the 0.05

level for MAM, but are minimally significant for DJF. A

tendency for a statistically more robust decadal signal

over the globe than over land only is not seen in these

significance results, suggesting that the statistical ro-

bustness of the decadal signal is equally strong over land

as over the globe in both observations and predictions.

To evaluate the statistical significance of the differ-

ence between the decadal shift represented in the

NMME hindcasts and that observed, the position of the

observed shift within the distribution of shifts described

by the individual ensemble members within the NMME

is determined. The variation of shifts among ensemble

members is thus representing the uncertainty distribu-

tion for the significance test. If the observation lies in the

far tails of the ensemble distribution, or even completely

outside of that distribution, we may conclude that the

NMME did not reproduce what was observed (or pre-

dicted it with a very low probability). This analysis is car-

ried out for each location for the 0-month-lead hindcasts.

TABLE 5. Percentage of area over which the mean precipitation

difference between 1982–98 and 1999–2013 precipitation is locally

statistically significant at the two-sided 5% level, over the globe

and for land areas only. Results are given for observations, and in

the NMME forecasts at 0-, 3-, and 6-month lead times for the DJF

and MAM target seasons as well as the two in-between seasons.

The Student’s t test is used to test local significance of the period

difference at each grid point.

DJF JFM FMA MAM

% Globe Land Globe Land Globe Land Globe Land

Obs 15 19 20 22 20 21 22 23

0 month 13 8 22 20 21 22 24 28

3 month 17 17 13 14 13 11 14 10

6 month 16 17 15 18 17 16 15 14

5 It should be noted that because the observation is a single re-

alization, while the NMME forecasts are ensemble averages, the

latter are expected to have a slightly lower spatial standard de-

viation of difference due to their lesser contribution from noise,

despite the averaging over at least 15 years in the pre- and postshift

periods.
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To expand the uncertainty distribution beyond that

provided by the 72 NMME ensemble members, a

Monte Carlo randomization scheme is used to shuffle

the ensemble member selection separately for each

year, providing a multiplicity of ensemble member

combinations in each realization; 2000 such iterations

are generated. Figure 3 shows the spatial distribution of

the percentile of the observations within the expanded

NMME distribution for DJF and MAM, highlighting

percentiles of less than 10 or more than 90. When the

observation shows a negative difference (later period

drier than earlier period), and the NMME hindcasts

systematically fail to reproduce the precipitation de-

crease, the percentile of the observation within the

model ensemble distribution is on the low tail of the

ensemble distribution, and vice versa. In some regions

the pattern of high and low percentiles shown in the

panels of Fig. 3 appears similar to the pattern of the ob-

served decadal shift (Figs. 2a,b), indicating that the

observation falls on the tails of an ensemble distribution

of NMME hindcasts, suggesting that the decadal shift is

statistically not well represented. This is particularly the

case during MAM, when the ‘‘noise’’ of ENSO vari-

ability is relatively weak and can be noted in Indonesia,

southern Africa, and northern South America (system-

atically insufficient wettening starting in 1999), as well as

in the Gulf of Mexico, eastern equatorial Africa, and

parts of the northern tropical Pacific (insufficient dry-

ing). The resemblance of the patterns of percentile

extremes in Fig. 3 with the pattern of the observed de-

cadal shift, while sketchy, suggests a systematic un-

derestimation of some key aspects of the shift signal in

the NMME hindcasts. However, in some regions the

observation is not statistically underestimated by the

NMME. For example, for both DJF and MAM the per-

centile of the observation is not in the lower tail of the

CFSv2 ensemble distribution in the southwestern United

States, except in the southern portion, indicating that

FIG. 3. Percentile of observed precipitation mean difference for 1999–2013 minus 1982–98

within Monte Carlo expanded ensemble distribution of precipitation mean difference in

NMME hindcasts at 0-month lead time for (top) DJF and (bottom) MAM.
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the decadal difference in the NMME does not statisti-

cally differ from the observed drying tendency. This

approximate equivalence of NMME with observed

difference in the southwestern United States is consistent

with the middle versus the top panels of Fig. 2 for both

seasons.

In summary, the NMME forecast evaluations suggest

that the NMME reproduces the observed pattern of

decadal shift in precipitation fairly well, but at a reduced

strength. The NMME representation is more strongly

present in 0-month-lead than in 3-month-lead forecasts,

and is somewhat better in MAM when the decadal shift

stands out most clearly relative to higher-frequency

variability, than in DJF. Although the models appear

to reproduce reality more strongly when ocean areas are

included, performance over land, including the United

States, is also generally favorable despite some omis-

sions and errors in details. Field significance tests for the

robustness of the decadal signal are very strong in the

observed data, and significant also in some of the model

hindcasts, depending on season and lead time. Tests of

the significance of the differences between shifts in the

NMME hindcasts at 0-month lead time and those ob-

served, based on the position of the observed shift within

the distribution of the NMME ensemble members,

suggest systematically weak reproduction of the shift in

some of its key regions. This is seen more clearly in

MAM than in DJF when the observed shift itself is less

prominent. In section 4 we will show how the de-

ficiencies in the model decadal signal may be related to

errors in the NMME-generated SST forecasts.

b. Increased drought occurrence in the southwestern
United States

The southwestern United States has experienced a

protracted precipitation deficiency since the late 1990s;

the timing suggests a relationship to PDV, which is

consistent with previous investigations (see Dai 2013,

and references therein). Here, Figs. 2a and 2b suggest

that this decadal pattern is manifest by precipitation

deficits during both DJF and MAM. Climatological

precipitation in the southwestern United States during

May is quite small, so changes in MAM seasonal totals

are expected to be dominated by precipitation occurring

in March and April. As an objective method to identify

decadal precipitation shifts, we apply the SNHT to the

area-average precipitation time series for the south-

western U.S. region (308–408N, 1058–1258W, land areas

only), examining both the CPC unified and GPCP data-

sets (Fig. 4). Figures 4a,b show seasonal precipitation

departures from a 1980–2013 mean for the 6-month

December–May period. The horizontal lines represent

mean values for periods before and after an identified

changepoint. The SNHT results indicate that a likely

changepoint occurs in 1998/99 in both datasets (with

significance level p , 0.10). For DJF (Figs. 4c,d)

the SNHT did not identify a statistically significant

changepoint, although the results did indicate an en-

hanced likelihood of a shift in 1998/99 for both datasets.

In MAM (Figs. 4e,f), a statistically significant shift is

identified as most likely occurring in 2000 for the CPC

unified (p , 0.05) and GPCP (p , 0.10) data. These

results provide evidence for the consistency of the neg-

ative phase of PDV being associated with (not neces-

sarily ‘‘causing’’) an increased occurrence of drought in

the southwestern United States (e.g., Newman et al.

2015, manuscript submitted to J. Climate).

Figures 5a and 5c show similar time series generated

from NMME hindcasts at 0- and 3-month lead times

during the DJF seasons from 1982 to 2013; Figs. 5b,d show

the same for MAM. Horizontal lines on the graphs

again indicate mean values for the periods 1982–98

and 1999–2013. As shown in Fig. 1, the NMME shows

skill in seasonal precipitation hindcasts (most at zero

lead) in this region in both seasons. In DJF (Figs. 5a,c), a

downward shift in precipitation starting in 1999 is re-

produced quite well by the NMME at 0-month lead

time, and the interannual variability of the NMME

matches that of the observations fairly well (note peaks

with the El Niño years of 1983 and 1998, and the brief

‘‘spring El Niño’’ of 1993). At 3-month lead time, the

forecast decadal shift is weaker than that observed. The

correlations between the NMME forecasts and ob-

served time series at 0- and 3-month lead times are 0.56

and 0.52, respectively. InMAM (Figs. 5b,d), goodmodel

performance is seen both at the interannual time scale

(e.g., good reproduction of precipitation peaks during El

Niño endings in 1983, 1992, and 1998 and troughs during

La Niña endings in 1989 and 2008) and the decadal time

scale where the mean shift in the model approximates

that observed. The correlation with the observed time

series, reflecting variations at both time scales, is 0.66 for

0-month-lead forecasts—stronger than that of DJF

despite the weaker contribution from ENSO. At 3-month

lead time the NMME performance is still positive

(correlation with observations is 0.54), but the decadal

shift is underforecast.

c. Contribution of CFSv2 to NMME forecasts of a
decadal shift

It is increasingly believed that forecasts from an en-

semble of multiple models, each having its own set of

ensemble members, usually results in a more skillful

forecast than that from the most skillful individual

model (e.g., Kharin and Zwiers 2002; Kirtman et al.

2014). Nonetheless, one might legitimately ask whether
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there are individual models in the NMME that better

reproduce the observed decadal shift than others. Here

we limit our investigation to NOAA’s official opera-

tional prediction model, CFSv2. Because of its relatively

large ensemble size (24 members), CFSv2 exerts 33% of

the weight in creating the NMME MME forecasts

used here.

The global field of mean difference in DJF pre-

cipitation between 1982–98 and 1999–2013 predicted at

0-month lead time by the CFSv2 model is shown in

Fig. 6a, to be compared with the same but from the

NMME (Fig. 2c) and the observations (Fig. 2a). The

CFSv2-predicted difference pattern and statistical sig-

nificance pattern (red lines) appear similar to those of

the NMME, and in some regions the signal is stronger,

including portions of the tropical Pacific and parts of

Indonesia. During DJF the CFSv2 shows an ‘‘island’’ of

positive difference at and just north of the equator near

the date line, which does not appear as strongly for the

full NMME (and hardly appears in the observations).

Other differences include CFSv2 correctly forecasting

a shift toward higher precipitation in southern Africa,

and an incorrect forecast toward lower precipitation in

northeast Brazil and the adjacent tropical Atlantic

FIG. 4. (top) Observed precipitation anomalies during the December–May season for the southwestern United

States (308–408N, 1058–1258W) during 1982–2013 (mmmonth21) for the (a) CPC and (b) GPCP datasets. Themean

values for 1982–98 and 1999–2013 are also shown where solid (dashed) lines indicate a statistically significant

(possible) changepoint observed based on the SNHT results. (middle) As at top, but for DJF in (c) CPC and

(d) GPCP. (bottom) As at top, but for MAM in (e) CPC and (f) GPCP.
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region. For the MAM season (Fig. 6b), differences in

CFSv2 again mimic those of NMME quite closely, in-

cluding their statistical significance. CFSv2 again shows

slightly higher magnitudes of precipitation difference in

the tropical Pacific, including an accentuated positive

difference just north of the equator in the central Pacific.

Differences from the NMME during MAM include a

more realistic prediction by CFSv2 of wetter recent

conditions in central Russia, and, similar toDJF, a faulty

prediction for recent drying in northeast Brazil and ad-

jacent Atlantic waters.

The overall similarity of CFSv2 with NMME results

could reflect the fairly strong role of CFS in shaping the

NMME forecast (33% weight); it is not known whether

or not it is also a result of a strong commonality among

features of the forecasts from most of the NMME

models. Table 6 shows the percentage change in mean

precipitation total during the DJF, JFM, FMA, and

MAM seasons in the southwestern United States (308–
408N, 1058–1258W) from 1982–1998 to 1999–2013 for the

observations and for the forecasts of the NMME and the

CFSv2 at 0- and 3-month lead times. The observations

indicate an approximate 15%–20% precipitation re-

duction in the region during northern winter and spring

seasons; generally, smaller reductions are found during

the remainder of the year (not shown). During the bo-

real winter and spring seasons, the NMME forecasts at

0-month lead time reproduce the decadal reduction of

precipitation in the southwestern United States quite

well during FMA and MAM but underestimate it by

25%–50% during DJF and JFM. At 3-month lead time

the NMME underestimation of the reduction is more

pronounced. The forecasts of the CFSv2 model behave

somewhat similarly to those of the NMME but re-

produce the precipitation reduction slightly less strongly

than the NMME during the MAM. At 3-month lead

time, CFSv2 fails to indicate a decadal precipitation

reduction. It is possible that the CFS forecasts at

3-month lead time are affected by an issue involving the

CFS reanalysis data used to initialize the model; this will

be briefly discussed in section 4.

Although the mean differences in precipitation be-

tween the 1999–2013 and 1982–98 periods in the CFSv2

hindcasts are smaller than those observed, one might

question the statistical significance of the difference

between the model and observed decadal signal. As

described above in section 3a for the NMME, we de-

termine, for each location, the percentile of the ob-

served decadal signal within the ensemble distribution

of the CFSv2 hindcast decadal signal. The uncertainty

FIG. 5. Anomalies in NMME forecast precipitation for the southwestern United States (308–408N, 1058–1258W)

during 1982–2013. The left (right) column is for the DJF (MAM) season with (a),(b) 0-month and (c),(d) 3-month

lead time. The mean values for 1982–98 and 1999–2013 are also shown where solid (dashed) lines indicate a sta-

tistically significant (possible) forecast changepoint based on the SNHT results.
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distribution is again refined beyond what is provided by

the 24 ensemble members, using Monte Carlo ran-

domization of ensemble member separately for each

year, providing 2000 realizations. Figure 7 shows the

spatial distribution of the percentile of the observation

within the expanded CFSv2 distribution, highlighting

percentiles of less than 10 or more than 90, for a char-

acterization of the CFSv2 model’s reproduction of

the observation as explained above for full NMME

application.

In a number of regions, the pattern of high and low

percentiles shown in Fig. 7 appears similar to the pattern

of the observed decadal shift (Figs. 2a,b), indicat-

ing that the observation falls on the tails of the ensem-

ble distribution of CFSv2 hindcasts. This resemblance

to the observed pattern is stronger for MAM (when

ENSO variability is weaker) than DJF and can be noted

particularly in in the central tropical Pacific in both

seasons (drying), central South America in MAM

(drying), parts of Indonesia, northern Australia, and the

southwest subtropical Pacific in both seasons (wettening),

and southern Africa and northern South America in

MAM(wettening). The result for CFSv2 alone is stronger

than that found for the full NMME, despite the similarity

between theCFSv2 andNMMEshift signals, likely due to

the somewhat narrower distribution of ensemble hind-

casts for a single model than for a set of several models.

The wider ensemble spread among the NMME comes

about through the noticeable ‘‘differences of opinion’’

reflected by differing ensemblemeans among theNMME

models (not shown; noted also in NMMEENSO forecasts;

FIG. 6. Difference in seasonal mean CFSv2 forecast precipitation (mmday21) between av-

erages for 1999–2013 and 1982–98 for (a) DJF and (b) MAM. Red lines show statistical sig-

nificance at the 90%and 99%confidence levels based on a t statistic (dashed lines for negative t,

solid for positive t). Forecasts are made at 0-month lead time.

TABLE 6. Percentage change in mean precipitation total in the

southwestern United States (308–408N, 1058–1258W) from 1982–98

to 1999–2013, for the four running 3-month seasons from DJF to

MAM, for the observations and for the forecasts of theNMMEand

the CFSv2 model. Model forecast results are shown at 0- and

3-month lead times.

DJF JFM FMA MAM

Observations 214 220 214 219

NMME, 0 month 28 214 219 220

NMME, 3 month 25 25 25 27

CFSv2, 0 month 210 213 215 216

CFSv2, 3 month 21 3 0 22
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Barnston et al. 2015). As found for the full NMME, in

both DJF and MAM the percentile of the observation is

not in the lower tail of the CFSv2 ensemble distribution

in most of the southwestern United States, indicating

that the decadal difference in CFSv2 is statistically

representative of the observed drying tendency, as seen

also in comparing Figs. 2c,d and the corresponding

Figs. 2a,b.

4. Role of errors in the SST field generated by the
NMME and CFSv2 alone

In coupled ocean–atmospheremodels such as those of

the NMME, SST predictions are developed simulta-

neously with atmospheric predictions, allowing for

feedbacks between the two. While full coupling allows

for potentially more realistic predictions, the models

inevitably contain biases, including possible systematic

errors in the SST predictions. Because of the strong role

SST plays in forcing the atmospheric circulation and

surface climate anomalies, having realistic SST anomaly

patterns is essential to the quality of the atmospheric

predictions. Simulations of atmospheric general circu-

lation models (AGCMs) using simultaneous observed

SST anomalies as the lower boundary conditions (so-

called AMIP simulations; Gates 1992) provide more

skillful atmospheric predictions than the same simula-

tions using predicted (imperfect) SSTs (Li et al. 2008,

among others). In the case of the NMME, we probe

whether using observed simultaneous SST as the lower

boundary condition results in improved reproduction of

the decadal precipitation shift compared with that

shown here using fully coupled models. Such improve-

ment would be particularly expected in the case of the

decadal shift around 1998/99, given that a shift in the

mean observed Pacific SST at that time was shown to

have a fundamental linkage to the shift in the atmo-

spheric anomaly pattern (e.g., Lyon et al. 2013).

FIG. 7. Percentile of observed precipitation mean difference for 1999–2013 minus 1982–98

withinMonte Carlo expanded ensemble distribution of precipitationmean difference in CFSv2

hindcasts at 0-month lead time for (top) DJF and (bottom) MAM.
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Ideally, the atmospheric versions of the coupled

models making up the NMME would be used for this

‘‘perfect SST’’ comparison. However, they are not

available. As an alternative, we use simulations of a

largely different set of seven atmospheric models

(Table 2). However, two versions of the CFSv2 are

used, one of which has essentially the same atmo-

spheric model as the NCEP version used in the NMME,

and the NASA GSFC atmospheric model (GEOS-5)

is highly similar to that used in the NASA GMAO

model of the NMME. The AMIP model simulations,

made available courtesy of the NOAA Drought Task

Force (Seager et al. 2015), provide output data during

1979–2013, converted to a common grid. These AMIP

simulations are used here to provide a comparative

measure of the ability of climate models to capture the

observed decadal shift when forced with observed, in

contrast to predicted, SST.

Figure 8 shows the difference between the AMIP

multimodel simulated mean precipitation for the period

1999–2013 minus 1980–98 for the DJF andMAM seasons.

These difference patterns, and their statistical significance,

reasonably match those found in the observations (Fig. 2,

top), and more closely so than those for the NMME

predictions at the shortest lead (Fig. 2, middle), in-

cluding the primary shift region across the tropical and

subtropical Pacific and Maritime Continent. An appli-

cation of the SNHT to the simulated southwestern U.S.

(308–408N, 1058–1258W) precipitation indices shows

statistically significant changepoints for DJF (p , 0.08)

and MAM (p , 0.01) occurring in 1998/99. This model

finding helps confirm not only the reality of the 1998/99

decadal shift, but that the atmospheric component of the

AMIP models is able to simulate the change in pre-

cipitation in the southwestern United States, given the

correct change in the forcing from SSTs.

It was noted above that the decadal precipitation

difference in CFSv2 alone (Fig. 6) is positive along (and

just north of) the equator near the date line, particularly

for DJF, while this feature does not appear in the mul-

timodel AMIP result (nor in the observations). This

feature is in a key location regarding atmospheric tele-

connections and thus deserves further scrutiny. For a

better controlled comparison between the coupled and

AMIP precipitation hindcasts, the AMIP simulations

are generated for the CFSv2 model alone. The resulting

FIG. 8. Difference in seasonal mean observed precipitation (mmday21) between averages for

1999–2013 and 1982–98 for the multimodel mean AMIP runs for (a) DJF and (b) MAM.
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geographical distribution of the decadal precipitation

shift is shown in Fig. 9 for DJF and JFM, directly com-

parable with the result for the CFSv2 coupled hindcasts

(Fig. 6). The decadal precipitation difference in the

tropical Pacific in the CFSv2 AMIP result is not unlike

that for the multimodel AMIP (Fig. 8) and lacks the

positive difference near the date line in the tropics seen

in the coupled CFSv2 result. Poor maintenance of the

decadalmean difference in the SST forcing is therefore a

likely reason for the imperfect reproduction of the de-

cadal difference in precipitation in CFSv2. However,

some role of the CFSv2 atmospheric model in the muted

and slightly displaced coupled model decadal difference

is also possible, as is a role of the CFSv2 reanalysis data

used to initialize the CFSv2 coupled integrations (to be

discussed further below). We suggest that these findings

for CFSv2 likely approximately apply to the NMME

coupled versus AMIP comparison also, despite the lack

of equivalency between the sets of constituent models.

Evidence for this generalization comes from the fact

that while not identical, the ‘‘clean’’ comparison of

coupled versus AMIP results for CFSv2 alone is similar

to that for the NMME, helping to reinforce its outcome.

Consequently, some additional AMIP-based analyses

are performed using the multimodel combination of

models shown in Table 2, with an assumption that they

would be approximately applicable to the set of NMME

model (Table 1).

In view of the realistic decadal precipitation differ-

entiation in the AMIP runs, it is reasonable to suspect

that errors in the SST predictions of the NMME may

be a cause of its somewhat weak reproduction of the

decadal shift in mean precipitation.6 To investigate this

possibility, we examine the errors in the hindcast

NMME SST field at 0- and 3-month lead times using the

OISSTv2 dataset for verification. An empirical orthog-

onal function (EOF) analysis is applied to the error

fields of the SST predictions over the Pacific during

1982–2010 for DJF andMAM.Results are shown for the

two leading errormodes at 0- and 3-month lead times for

DJF in Fig. 10, and for MAM in Fig. 11.

InDJF (Fig. 10), at 0-month lead timemode 2 represents

the model error in the decadal shift in SST most closely,

as indicated both by the spatial pattern and especially by

FIG. 9. As in Fig. 8, but for the CFSv2 AMIP runs for (a) DJF and (b) MAM.

6As will be discussed below, a problem in the ocean initializa-

tions may also contribute to the problems in the SST predictions.
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the principal component time series. At 3-month lead

time the shift is captured inmode 1, and the spatial pattern

resembles that of the observed shift quitewell. In the cases

of both lead times, the direction of the decadal shift in the

error indicates too weak a representation of the observed

decadal shift by the ensemble of AMIP models.7 For the

MAM season (Fig. 11), for 0-month lead time neither

mode 1 nor mode 2 clearly captures the decadal shift,

which appears mixed between the modes. At 3 months

lead the shift in the model error appears most clearly in

mode 2. At both leads the NMME SST forecasts un-

derestimate the magnitude of the observed decadal shift.

For bothDJF andMAM themodel error in predicting

the decadal shift appears more clearly in the 3-month

than 0-month-lead SST predictions. This result could be

related to the relatively greater loss of the decadal signal

in the initial conditions as the lead time increases; that is,

the models tend to revert to the overall base period

climatology with increasing lead time.

While the EOF analyses of the model error fields re-

flect an underrepresentation of the decadal shift in Pa-

cific SST, we wish to quantify more explicitly the extent

of the underrepresentation. Figure 12 shows the differ-

ence in mean SST between 1999–2010 and 1982–98 in

the observations (Figs. 12e,f) and in the NMME model

predictions for DJF and MAM at 0- and 3-month lead

times. For both seasons, the models appear to capture

the decadal shift pattern qualitatively correctly, but

underpredict its magnitude by about one-third to one-

half for 0-month-lead forecasts, and by about two-thirds

at 3-month lead time. The decreasing retention of the

decadal signal with increasing lead time appears to imply

inadequate prediction capability. But why is there already

a noticeable loss at 0-month lead time? One possibility is

imperfect atmospheric and oceanic initialization.

An artificial discontinuity, unrelated to the shift dis-

cussed in this study, also beginning in 1999, has been

noted in the CFS Reanalysis (CFSR) data (Saha et al.

2010). This shift induced a change in the pattern of the

SST in the eastern tropical Pacific toward a weak El

Niño (Kumar et al. 2012; Xue et al. 2013). Because this

SST shift is largely in the opposite direction from that of

the decadal SST shift discussed here, it may contribute

to the models’ underestimation of the observed shift.

This nonnatural shift has been attributed to the in-

troduction of the ATOVS radiance data in the atmo-

spheric assimilation beginning in late 1998 (Zhang et al.

2012), due to forcing from the atmospheric to the oce-

anic aspects of the CFSR (Xue et al. 2011). The positive

change in east-central tropical Pacific SST in 1999 op-

poses the downward shift in the observed central and

FIG. 10. EOF analysis of the error in seasonal NMME SST predictions for the Pacific during the DJF season (1982–2010). (top) The

leading two EOFs for 0-month-lead forecasts for DJF with loadings for (a) EOF1 and (b) EOF2, and (c) the associated principal com-

ponent time series for DJF, with the vertical dashed line separating the two epochs. (bottom) As at top, but for the 3-month-lead SST

forecasts with loadings for (d) EOF1 and (e) EOF2, and (f) the PC time series of these EOFs.

7 For example, for predictions of SST for DJF at 3-month lead

time, the time series indicates a decrease in the amplitude of the

mode 1 pattern starting in the late 1990s. Since the decadal pattern

shown in mode 1 shows the negative phase, the model error is to-

ward too little negative phase (i.e., an underestimation of the ob-

served negative phase since the late 1990s).
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east-central SST documented here and in other studies

(e.g., Kumar et al. 2010, 2012; Deser et al. 2010; Lyon

and DeWitt 2012; Lyon et al. 2013). The opposing di-

rections of shift between this observationally induced

one and the natural one ensures that one of the shifts

cannot be camouflaged as the other. However, because

they both occurred around the same year, the apparent

reproduction of the natural shift by models that use the

FIG. 11. As in Fig. 10, but for MAM.

FIG. 12. (top) Difference in NMME 0-month-lead seasonal SST forecasts averaged over 1999–2010 and 1982–98

for (a) DJF and (b) MAM. (middle) As in (a) and (b), but for differences in the 3-month-lead forecasts for (c) DJF

and (d) MAM. (bottom) Observed differences in seasonal averages for (e) DJF and (f) MAM.
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changed atmospheric assimilation may be damped. The

ENSO-related SST predictions of the CFSv2 model, for

example, have been found to be affected (Barnston and

Tippett 2013).

The relatively faithful reproduction of the difference

in mean precipitation from before to after the late 1990s

by the AMIP models (Fig. 9) and the inadequate re-

production of the SST anomalies associated with the

decadal shift (Figs. 10 and 11) help provide evidence that

the SST predictions (and possibly ocean initializations)

play a critical role in the somewhat weak representation

of the shift in precipitation shown by the NMME. Thus,

at least for the NMME model hindcasts, the coupled

models are able to reproduce seasonal precipitation

changes associated with Pacific decadal SST variability

most effectively only at relatively short lead times.

5. Discussion and conclusions

A global-scale decadal climate shift, beginning in

1998/99 and enduring through 2013,8 has been docu-

mented in recent studies in both observed and model-

simulated rainfall. An associated shift in seasonal

precipitation has appeared in a number of regions

throughout the world, and is most easily detected during

MAM when the effects of ENSO are relatively weak.

Previous analyses have linked this climate shift to a shift

in Pacific SSTs that occurred near 1999, and have char-

acterized the climate pattern as being related to the

Pacific decadal variability (PDV) pattern. Here we ex-

amine some of the details of the shift in the mean pre-

cipitation associated with this SST regime change during

boreal winter and spring seasons, with special emphasis

on the southwestern United States where deficient pre-

cipitation has generally persisted since the late 1990s.

We focus the assessment on the predictive skill of the

North American Multimodel Ensemble (NMME) in

reproducing the precipitation shift in its seasonal hind-

casts, and also examine the behavior of the CFSv2

model, which contributes to the NMME.

The NMME ensemble mean hindcasts are found to

capture the decadal precipitation shifts qualitatively

correctly, but with somewhat underestimated ampli-

tude, particularly for longer lead forecasts. This weak-

ened response applies to the decadal precipitation signal

in several locations of the globe but is not severe in the

southwesternUnited States at short lead time; it appears

also in the CFSv2 when considered in isolation from the

NMME. The model shifts in precipitation are statisti-

cally significant in many of the regions for 0-month-lead

forecasts, as they are in the observations. The NMME

and the CFSv2 model alone reproduce the main region

of negative precipitation anomalies over the east-central

tropical Pacific Ocean and an opposing horseshoe pat-

tern of rainfall increases over the Maritime Continent

and off-equator western tropical Pacific Ocean, all as-

sociated with the decadal shift. Model performance is

also favorable for the negative shifts over eastern

equatorial Africa and the southwestern United States

and the positive shifts over northern South America.

Some details of the observed pattern of precipitation

decadal shift are not reproduced well by the NMME,

such as a shift toward more precipitation in southern

Africa in DJF. The CFSv2 model erroneously predicts a

dry shift over northeastern Brazil in both DJF and

MAM, despite correct forecasts for wetter recent con-

ditions over the rest of northern South America. CFSv2

also shows a spurious small region of wet shift near and

north of the equator at the date line, especially for DJF.

At 3-month lead time, both NMME and CFSv2 gener-

ally substantially underestimate the strength of the de-

cadal shift in precipitation.

An examination of the precipitation field in AMIP

style runs for a different (but overlapping) set of atmo-

spheric models suggests that the insufficient amplitude

of the precipitation shift is likely associated with an

underestimation of the decadal shift in the Pacific SST

predictions in the coupled model forecast integrations.

This suggestion stems from the finding that when forced

by simultaneous observed SSTs, the NMME atmo-

spheric models reproduce the observed decadal pre-

cipitation shift quite well. The same analysis using

AMIP simulations for the CFSv2 model alone leads to a

similar result when compared with the coupled CFSv2

results. A specific problem in the oceanic and atmo-

spheric initialization beginning in 1999 may be a sec-

ondary cause of the weak decadal SST signal in the SST

forecasts, as the weakness appears even at short lead

time. Errors in the atmospheric models of the NMME

cannot be ruled out as additional contributors to the

muted amplitude of the decadal shift, but they do not

appear to be the main cause.

Although some dynamical predictability has been

demonstrated on the decadal time scale in the North

Pacific (e.g., Mochizuki et al. 2012; Chikamoto et al.

2012), the current findings suggest a gap in performance

in the SST predictions within the coupled climate

models of the NMME. This result is consistent with

previous findings indicating that inherent predictability

of North Pacific SST is lower than that in some other

8 Recent observations suggest that the PDV mode may have

shifted to a positive phase in 2014 and continued positive in 2015,

but another year or two are needed to be more certain of this

phase change.
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extratropical ocean basins, due to both greater sensitivity

to initial state uncertainty (Branstator et al. 2012;

Branstator and Teng 2012) and lack of certainty re-

garding the mechanisms of internally based decadal var-

iability in the North Pacific (Meehl et al. 2014). Although

these studies apply to longer lead forecasts of decadal

variability, such as predicting a phase change in the PDV

pattern a year or two in advance, they also appear to in-

clude coupled models’ ability to retain a decadal mean

signal, present in the initial conditions, out to one or two

seasons into the future. Based on the current work, to-

day’s coupledmodels appear to substantially regress such

decadal mean conditions toward the overall average cli-

mate within the first 6 months of lead time.

In conclusion, the NMME seasonal hindcasts, and

those of the constituent CFSv2, reproduce the pattern of

precipitation impacts of a decadal climate shift begin-

ning in 1999 fairly well, but with generally under-

estimated amplitude and minor errors in the details of

the spatial pattern of change in various regions. While

coupled models may not be able to forecast a decadal

shift years before it occurs (Meehl et al. 2009; Ding et al.

2013), once such a shift has occurred the NMME re-

produce its continuation, but with systematically some-

what weakened amplitude at the shortest lead times (up

to 3 months), despite the presence of the decadal mean

signal in the initial conditions, and with substantially

weakened amplitude at longer lead times. This finding

underscores a lesser challenge than successfully pre-

dicting decadal periods of drought or pluvials at 1 or

more years lead time with coupled climate models—

namely, that of just maintaining the decadal component

of precipitation anomalies in short-lead and especially

medium-lead seasonal forecasts.
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