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1 

To the Editor — Rapid advances in DNA-sequencing and bioinformatics technologies in 

the past two decades have substantially improved understanding of the microbial world. This 

growing understanding relates to the vast diversity of microorganisms; how microbiota and 

microbiomes affect disease
1
 and medical treatment

2
; how microorganisms affect the health of 

the planet
3
; and the nascent exploration of the medical

4
, forensic

5
, environmental

6 and 

agricultural
7
 applications of microbiome biotechnology. Much of this work has been driven by 

marker-gene surveys (for example, bacterial/archaeal 16S rRNA genes, fungal internal-

transcribed-spacer regions and eukaryotic 18S rRNA genes), which profile microbiota with 

varying degrees of taxonomic specificity and phylogenetic information. The field is now 

transitioning to integrate other data types, such as metabolite
8
, metaproteome

9
 or 

metatranscriptome
9,10 profiles. 

The QIIME 1 microbiome bioinformatics platform has supported many microbiome studies 

and gained a broad user and developer community. Interactions with QIIME 1 users in our 

online support forum, our workshops and direct collaborations have shown the platform’s 

potential to serve an increasingly diverse array of microbiome researchers in academia, 

government and industry. Here, we present QIIME 2, a completely reengineered and rewritten 

system that is expected to facilitate reproducible and modular analysis of microbiome data to 

enable the next generation of microbiome science. 

QIIME 2 was developed on the basis of a plugin architecture (Supplementary Fig. 1) that 

allows third parties to contribute functionality (https://library.qiime2.org). QIIME 2 plugins exist for 

latest-generation tools for sequence quality control from different sequencing platforms (DADA2 

(ref. 11) and Deblur
12

), taxonomy assignment
13 and phylogenetic insertion

14
, which quantitatively 

improve the results over QIIME 1 and other tools (as detailed in the corresponding tool-specific 

publications). The plugins also support qualitatively new functionality, including microbiome 

paired-sample and time-series analysis
15

 (which are critical for studying the effects of 

treatments on the microbiome), and machine learning
16

. Trained machine learning models can 

be saved for application to new data and interrogated to identify important microbiome features. 

Several recently released plugins, including q2-cscs
17

, q2-metabolomics
18

, q2-shogun
19

, q2-

metaphlan2 (ref. 20) and q2-picrust2 (ref. 21), provide initial support for analysis of 

metabolomics and shotgun metagenomics data. We are currently working with teams 

developing bioinformatics tools for metatranscriptomics and metaproteomics, and we expect to 

https://library.qiime2.org/


2 

add new plugins supporting these data types to the ecosystem shortly. Additionally, many of the 

existing ‘downstream’ analysis tools, such as q2-sample-classifier
16

, can already work with 

these data types individually or in combination if they are provided in a feature table. Thus, 

QIIME 2 has the potential to serve not only as a marker-gene analysis tool but also a 

multidimensional and powerful data science platform that can be rapidly adapted to analyze 

diverse microbiome features. 

QIIME 2 provides many new interactive visualization tools facilitating exploratory analyses 

and result reporting. Static versions of interactive visualizations resulting from four worked 

examples are provided in Fig. 1. QIIME 2 View (https://view.qiime2.org) is a unique new service 

(Supplementary Methods) that allows users to securely share and interact with results without 

installing QIIME 2. The QIIME 2 visualizations presented in Fig. 1 are provided in 

Supplementary File 1 to allow readers to interact with QIIME 2 View. Corresponding worked 

QIIME 2 example code is provided in the Supplementary Methods. 

Reproducibility, transparency and clarity of microbiome data science are guiding principles 

in QIIME 2 design. To this end, QIIME 2 includes a decentralized data-provenance tracking 

system: details of all analysis steps with references to intermediate data are automatically 

stored in the results. Users can thus retrospectively determine exactly how any result was 

generated (Fig. 2 illustrates a simplified provenance graph derived from the data provenance of 

Fig. 1b). QIIME 2 also detects corrupted results indicating that the provenance is no longer 

reliable and the results no longer contain information enabling reproducibility. The provenance 

of the visualizations presented in Fig. 1 can be interactively reviewed by loading the contents of 

Supplementary File 1 with QIIME 2 View, providing far more detailed information than can 

typically be provided in Methods text. QIIME 2 results are also semantically typed (Fig. 2), and 

actions indicate acceptable input types, clarifying the data that actions should be applied to and 

making complex workflows less error prone. Complex workflows can be created and shared by 

using Jupyter Notebooks
22

 or Common Workflow Language (CWL)
23

, and support for other 

workflow engines is currently in development. 

Finally, QIIME 2 provides a software-development kit (https://dev.qiime2.org) that can be 

used to integrate it as a component of other systems (such as Qiita
24

 or Illumina BaseSpace) 

and to develop interfaces targeted toward users with different levels of computational 

sophistication (Supplementary Fig. 2). QIIME 2 provides the QIIME 2 Studio graphical user 

interface and QIIME 2 View, interfaces designed for end-user biologists, clinicians and policy-

https://view.qiime2.org/
https://dev.qiime2.org/
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makers; the QIIME 2 application programming interface, designed for data scientists who want 

to automate workflows or work interactively in Jupyter Notebooks
22

; and q2cli and q2cwl, 

providing a command-line interface and CWL
23

 wrappers for QIIME 2, designed for experts in 

high-performance computing. At present, computationally expensive steps support parallel 

computing at the individual-action level (for example, many actions including de-noising and 

taxonomy assignment support multiple threads). We are currently developing deeper integration 

with parallelism strategies available in third-party workflow engines, and workflow-level 

parallelism is currently possible through CWL. 

There are many other powerful open-source software tools for microbiome data science, 

including mothur
25

, phyloseq
26 and related tools available through Bioconductor

27
, and the 

biobakery suite
20,21,28

. The microbiome bioinformatics platform mothur is often compared to 

QIIME 1 and QIIME 2. A major difference between mothur and QIIME lies in the interactive 

visualizations: QIIME 2 provides many interactive visualization tools (several examples are 

provided in Fig. 1), whereas mothur focuses on generating data that can be easily loaded and 

visualized with other tools. The phyloseq tool focuses on microbiome statistical analysis and 

generating publication-ready visualizations but, unlike QIIME 2, begins with a feature or 

operational-taxonomic-unit table, leaving ‘upstream’ processing steps, such as sequence 

demultiplexing and quality control, to other processing pipelines, many of which (like phyloseq) 

are available through Bioconductor. The biobakery suite provides analytic functionality that 

complements that of QIIME 2, and we are actively working with biobakery developers to support 

interoperability by making their tools accessible as QIIME 2 plugins (for example, the q2-

metaphlan2 plugin allows users to run MetaPhlAn2 through QIIME 2). QIIME 2 provides the only 

Python-based microbiome data- science platform that supports retrospective data-provenance 

tracking to ensure reproducibility, multi-omics analysis support, interfaces geared toward 

different user types to enhance usability and an extensibility-focused design through the plugin 

architecture and software-development kit. We share feedback from users of QIIME 2 on these 

and other features in Supplementary Methods. 

The tools described in the preceding paragraph are all interoperable through plugins, 

exchange of files in standard formats or using multi-language environments, such as Jupyter 

Notebooks
22

. For example, the BIOM format
29 is supported by all of them. A diverse ecosystem 

of interoperable software is beneficial for the field, because it allows both experienced users to 

obtain multiple perspectives on their data and novice bioinformaticians to work in the 
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programming environments that they are most comfortable with (for example, phyloseq allows 

users to work in R, whereas QIIME 2 allows users to work in Python). We plan to continue 

working with the developers of these tools, and with organizations such as the Genomics 

Standards Consortium, on plugins and standards to ensure interoperability, as well as 

developing tools to automatically import data from microbiome data-sharing platforms such as 

Qiita, the European Bioinformatics Institute (EBI) European Read Archive and the National 

Center for Biotechnology Information (NCBI) Sequence Read Archive. 

Advances in microbiome research promise to improve many aspects of health and the 

world, and QIIME 2 will help drive those advances by enabling accessible, community-driven 

microbiome data science. 

Data availability 

Data for the analyses presented in Fig. 1 are available as follows: Earth Microbiome Project 

data in Fig. 1a were obtained from ftp://ftp.microbio.me/emp/release1, and the American Gut 

Project (AGP) data were obtained from Qiita (http://qiita.microbio.me) study ID 10317. 

Sequence data in Fig. 1c are available in Qiita under study ID 10249 and the EBI under 

accession number ERP016173. Sequence data in Fig. 1b are available in Qiita under study ID 

925 and the EBI under accession number ERP022167. Data in Fig. 1d are available in the q2-ili 

GitHub repository (https://github.com/biocore/q2-ili). Interactive versions of the Fig. 1 

visualizations can be accessed at https://github.com/qiime2/paper1. 

Code availability 

QIIME 2 is open source and free for all use, including commercial. It is licensed under a 

BSD three-clause license. Source code is available at https://github.com/qiime2. Help for QIIME 

2 is provided at https://forum.qiime2.org. 

Supplementary Material 

Refer to Web version on PubMed Central for supplementary material. 

  

ftp://ftp.microbio.me/emp/release1/
http://qiita.microbio.me/
https://github.com/biocore/q2-ili/
https://github.com/qiime2/paper1/
https://github.com/qiime2/
https://forum.qiime2.org/
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Figure 1.  QIIME 2 provides many interactive visualization tools. The products of four worked 

examples are presented here, and interactive versions of these screen captures are available in 

Supplementary File 1 and at https://github.com/qiime2/ paper1. Detailed descriptions and methods, 

including the commands used to generate each of these visualizations, are provided in Supplementary 

Methods. a, Unweighted UniFrac principal coordinate analysis plot containing 37,680 samples, illustrating 

the scalability of QIIME 2. Colors indicate sample type, as described by the Earth Microbiome Project 

ontology (EMPO). b, Interactive taxonomic composition bar plot illustrating the phylum- level composition 

of microbial-mat samples collected along a temperature gradient in Yellowstone National Park Hot Spring 

outflow channels (Steep Cone Geyser). The many interactive controls available in this plot vastly 

decrease the burden of exploratory analysis over QIIME 1. c, Feature volatility plot 

(https://msystems.asm.org/content/3/6/e00219-18) illustrating the change in Bifidobacterium abundance 

over time in breast-fed and formula- fed infants. Temporally interesting features can be interactively 

discovered with this visualization. Bar charts rank the importance (predictive power for time point) and 

mean abundance of all microbial features. These bar charts provide an interface for visualizing volatility 

plots (line plots) of individual features in the context of their importance and abundance; clicking on a bar 

will display the volatility plot of that feature and highlight in blue that feature’s importance and abundance 

in the bar charts below. d, Molecular cartography of the human skin surface. Colored spots represent the 

abundance of the small- molecule cosmetic ingredient sodium laureth sulfate on the human skin. Sample 

data can be interactively visualized in three-dimensional models, thus supporting the discovery of spatial 

patterns.  

https://github.com/qiime2/paper1
https://github.com/qiime2/paper1
https://msystems.asm.org/content/3/6/e00219-18
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Figure 2.  QIIME 2 iteratively records data provenance, ensuring bioinformatics reproducibility.  

This simplified diagram illustrates the automatically tracked information regarding the creation of the 

taxonomy bar plot presented in Fig. 1b. QIIME 2 results (circles) contain network diagrams illustrating 

the data provenance stored in the result. Actions (quadrilaterals) are applied to QIIME 2 results and 

generate new results. Arrows indicate the flow of QIIME 2 results through actions. 

TaxonomicClassifier and FeatureData[Sequence] inputs contain independent provenance (red and 

blue, respectively) and are provided to a classify action (yellow), which taxonomically annotates 

sequences. The result of the classify action, a FeatureData[Taxonomy] result, integrates the 

provenance of both inputs with the classify action. This result is then provided to the barplot action 

with a FeatureTable[Frequency] input, which shares some provenance with the 

FeatureData[Sequence] input, because they were generated from the same upstream analysis. The 

resulting visualization (Fig. 1b) has the complete data provenance and correctly identifies shared 

processing of inputs. This simplified representation was created manually from the complete 

provenance graph for the purpose of illustration. An interactive and complete version of this 

provenance graph (as well as those for other Fig. 1 panels) can be accessed through Supplementary 

File 1. 
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