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Abstract 

Complex microbial communities shape the dynamics of various environments, ranging 

from the mammalian gastrointestinal tract to the soil. Advances in DNA sequencing technologies 

and data analysis have provided drastic improvements in microbiome analyses, for example, in 

taxonomic resolution, false discovery rate control and other properties over earlier methods. In this 

Review, we discuss the best practices for performing a microbiome study, including experimental 

design, choice of molecular analysis technology, methods for data analysis and the integration of 

multiple ‘-omics’ data sets. We focus on recent findings that suggest that operational taxonomic 

unit-based analyses should be replaced for new methods that are based on exact sequence variants, 

methods for integrating metagenomic and metabolomic data and issues surrounding compositional 

data analysis, where advances have been particularly rapid. We note that although some of these 

approaches are new, it is important to keep sight of the classic issues that arise during experimental 

design and relate to research reproducibility. We describe how keeping these issues in mind allow 

researchers to obtain more insight from their microbiome data sets. 

Introduction 

Advances in DNA sequencing technologies have transformed our capacity to investigate 

the composition and dynamics of complex microbial communities that inhabit diverse 

environments from mammalian gastrointestinal tracts to deep ocean sediments. These 

developments have led to vast increases in the number of microbiome studies being performed in 

many fields of science, from clinical research to biotechnology. With this transformation, 

researchers are often left holding massive amounts of data and confronted with a bewildering array 

of computational tools and methods for analyzing their data. Conducting a robust experiment is 

not trivial in microbiome research, and as with any study, experimental methods, environmental 
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factors and analysis methods can impact results. Standards for data collection and analysis are still 

emerging in the field, yet many compelling results can be achieved with current practices. 

Microbiome analysis methods and standards are rapidly advancing. In particular, 

recommendations concerning differential abundance testing, using exact sequence variants rather 

than operational taxonomic units (OTUs) and performing correlation analysis have evolved 

quickly in the past two years. We can expect a similar pace of development in several other areas, 

including metagenomic taxonomy and functional assignment; integration of data sets from 

multiple sequencing runs; and further improvement in machine learning, compositional data 

analysis and multi-omics analyses. However, many of the most fundamental issues that concern 

microbiome studies arise from statistical and experimental design issues. The most important 

challenge for the field is to integrate new approaches that are unique to microbiome studies, while 

remembering standard practices that are broadly applicable to all scientific studies. 

Although it is impossible to be fully comprehensive in one article, this Review aims to 

provide straightforward guidelines for designing, executing and analyzing a microbiome 

experiment, with particular focus on human, model organism and environmental microbiomes. We 

direct the reader to more specialized reviews on specific topics where these exist. 

Experimental Design 

Designing an experiment that generates meaningful data is an important first step in your 

analysis. Typical scientific questions, such as case-control and longitudinal interventions or studies 

can all be studied in the context of the microbiome. Researchers can identify potential differences 

in microbial community structure and composition, genetics, or functional variation either between 

separate communities or over time. Notably, the general approach to microbiome analysis is 

applicable regardless of sample origin. However, specific details of the analysis may depend on 
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the sample origin; for example, 16S ribosomal RNA (rRNA) amplicon regions have variable 

success among different sample types in recapitulating results from metagenomic sequencing 

data1. 

The other primary considerations when assessing different sample types are experimental 

design and sample collection. We have observed many confounding issues during human 

microbiome studies and therefore we emphasize the importance of experimental design when 

performing these studies, though often many of the same considerations apply to animal models 

and environmental samples. 

Meticulous experimental design is crucial for obtaining accurate and meaningful results 

from microbiome studies. Many confounding factors, if not controlled, can obscure patterns in 

microbiome data (Figure 1). Careful curation of metadata, appropriate controls including 

extraction and reagent blanks, and thoughtful study designs that isolate and interrogate variables 

of interest are all essential.  

First, the scope of the experiment must be defined, and an appropriate experimental design 

selected for the question of interest. For example, cross-sectional studies are useful for finding 

differences in microbial communities between different human populations, such as healthy 

individuals and those with diseases, or individuals living in different geographic regions. However, 

due to the large variation in the microbiome between individuals and the profound influence of 

lifestyle2,3, diet4, medication5,6 and physiology, differences between populations may arise from 

factors other than the disease of interest. For example, initial reports of changes in the microbiome 

in diabetic individuals were confounded by effects of the drug metformin5. Longitudinal studies, 

especially prospective longitudinal studies that collect baseline samples before disease onset, can 

help resolve these issues, although they are more expensive. For ease in downstream statistical 
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analyses, longitudinal studies should plan the timing of sample collection carefully: for human 

studies, this may mean collecting samples at identical time points for each subject. Interestingly, 

community instability rather than the specific taxa present at a single time point can be a strong 

predictor of disease activity7. For example, individuals with inflammatory bowel disease (IBD) 

exhibit greater microbiome fluctuations than control cohorts7. Interventional studies, including 

double blind randomized control studies, are especially useful for identifying specific effects of a 

course of treatment on the microbiome and disease state. Designing a study with an analysis plan 

and specific experimental questions to interrogate can help determine the sample size. For 

example, to test the effects of a new broad-spectrum antibiotic on the mouse gut microbiota, more 

samples may be required to look at specific taxa shifts compared to assessing how alpha diversity 

(a quantitative measure of community diversity) changes with antibiotic treatment, as baseline 

microbiota composition varies between mice. The antibiotic may be expected to decrease alpha 

diversity in all mice, but it could perturb their microbial community composition in different ways. 

For any study design, appropriate methods to assess statistical power should be employed in order 

to discern technical variability and real biological results8. However, statistical power and effect 

size analysis remains a challenge in microbiome research9. Some methods that are currently used 

for power and effect size analysis are based on PERMANOVA8, Dirichlet Multinomial10 or 

random forest analysis11. As these methods are further developed to integrate metagenomics, 

metatranscriptomics, metaproteomics and metabolomics data sets, study design and selection of 

appropriate sample size will also improve. For specific experimental design considerations, we 

recommend reviewing the design of other successful studies with similar sample types and desired 

outcomes. We expand on important considerations for microbiome experimental design below.  
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Defining controls and exclusion criteria 

Defining clear inclusion and exclusion criteria limits confounding covariates. For instance, 

variability in recovery time from antibiotics among individuals12 suggests that individuals that 

were treated with antibiotics in the preceding 6 months should be excluded from most microbiome 

studies. Similarly, recovery of the skin microbiome after hand washing takes ~2 hours13. 

In case-control experimental designs, controls must be appropriately selected and matched. 

Age and sex are common control criteria, despite the relatively weak effect of sex on most human 

microbiomes across body sites14,15, while other variables such as medication and diet are often 

more important confounders to control for. The relative effect sizes of these microbiome variables 

are still emerging9. Collection of comprehensive clinical data collection is crucial for identifying 

confounders that cannot be controlled. This topic has been extensively reviewed in Ref. 16. 

Environmental studies must also account for similar confounders, as plot-to-plot variation is a 

widely recognized confounding phenomenon in the ecological literature that should be addressed 

with nested statistical tests17. 

Animal models 

The predominant animal models for studying the microbiome are rodents, such as mice. 

Other models with varying microbial complexity such as bobtail squid, insects or zebrafish are 

often useful for studying specific interactions between host and microorganisms (for example, how 

the microbiome and the host genetics influence each other)18. Nevertheless, rodents are often 

preferred because they are well-characterized and have many physiological similarities to humans. 

Rodent microbiome studies require particularly careful design. As rodents are coprophagic, 

cagemate fecal microbiomes become more homogenous over time, so experiments must be 

replicated across multiple cages to control for cage effects19. Parental effects also necessitate 
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randomizing littermates between cages and allowing for normalization. Single-housing stresses 

mice20, and is thus often technically or ethically infeasible. Even genetically identical rodents may 

differ in their microbiomes due to environmental factors including diet, litter, vendor, shipment 

and facility21,22. Additionally, early life microbial exposures greatly impact the established 

microbiota and can influence immune system development23. Similar considerations apply to other 

co-housed model organisms, for example, zebrafish24. 

Technical variation 

Technical variability among experimental methods ranging from DNA extraction to 

sequencing is high25,26. The same reagent kits must be used for all samples in a study27, and 

multiple baseline samples should be collected to assess intrinsic variability among time points in 

longitudinal studies. Using blanks during sampling, DNA extraction, PCR and sequencing is 

essential for detecting contamination. Reads that are derived from microorganisms introduced as 

contaminants or that grow during shipping can sometimes be reduced during analysis28, though 

samples should be at -80 °C when possible29. For field studies or other situations where freezing 

is not possible, ambient storage methods, such as 95% ethanol or commercial products such as 

RNAlater or the OMNIgene Gut kit can be used30. Mock communities (reference samples with a 

known composition) are useful for standardizing analyses31, as is including the same standard 

specimens in each DNA sequencing run32. In general, reconciling microbiome data that were 

generated using different methods remains an unsolved challenge. 

Depending on the scope of their experiment (which includes the overall experimental 

design, sample types and source, sequencing method, and other factors that are discussed below), 

researchers can aim to gain a broad, community-level overview of their samples, a detailed 
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genomic-level understanding, or even characterization of the functional variation in microbial 

communities. 

Sequencing Targets and Methods 

Different methods for surveying microbial communities, including marker gene, 

metagenome, and metatransciptome sequencing, can produce varying results. All widely-used 

methods have strengths and weaknesses, so the question, hypothesis, sample type and analysis 

goals should inform the choice of method (Table 1). Here we discuss the trade-offs between cost, 

robustness, resolution and difficulty for marker gene, metagenome and metatranscriptome 

sequencing. We outline the best workflow for each method in Figure 2. To attain a high-level, but 

low resolution overview, the preferred method is marker gene sequencing. Metagenomic 

sequencing provides more detail by analyzing the total DNA in a sample, allowing strain-level 

resolution and detection of genes that can provide information on molecular functions. We also 

discuss metatranscriptomic sequencing of total RNA, which is used to characterize gene 

expression in the microbial community. 

Marker gene analysis 

Marker gene sequencing uses primers that target a specific region of a gene of interest in 

order to determine microbial phylogenies of a sample. This region typically contains a highly 

variable region that can be used for detailed identification, flanked by highly conserved regions 

that can serve as binding sites for PCR primers. Marker gene amplification and sequencing (such 

as 16S rRNA for bacteria and archaea and internal transcribed spacer (ITS) for fungi) is a well-

tested, fast and cost-effective method for obtaining a low-resolution view of a microbial 

community. This approach works well for host DNA contaminated samples, such as tissue and 
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low-biomass samples. However, because DNA sequences vary in these primer-amplified regions, 

primers do not have equal affinity for all possible DNA sequences, and consequently induce bias 

during PCR amplification. Other sources of inherent bias in marker gene sequencing include 

variable region selection, amplicon size33, and the number of PCR cycles34. Low-biomass samples 

are particularly susceptible to bias introduced by over amplification–as the PCR cycle number 

increases, contaminating microorganisms are increasingly over-represented35. Optimizing primer 

selection can help mitigate bias, but this requires a priori knowledge of microbial community 

composition to assess taxonomic resolution and coverage of the target community36. However, 

even well-optimized primers are often limited to genus level taxonomic resolution. Marker gene 

sequencing generally correlates well with genomic content37,38,39,40,41 and is applicable to the 

broadest range of sample types and study designs. 

Whole metagenome analysis 

Metagenomics is the method of sequencing all microbial genomes within a sample. 

Metagenomic sequencing yields more detailed genomic information and taxonomic resolution 

than marker gene sequencing alone, but it is relatively expensive to prepare, sequence and analyze 

the samples. This method captures all DNA present in the sample, including viral and eukaryotic 

DNA. Given adequate sequencing depth (the number of sequencing reads per sample), taxonomic 

resolution to species or strain level42 and the assembly of whole microbial genomes from short 

DNA sequence reads is possible43. However, de novo annotation of functional genes is not possible 

in such settings. Metagenomic sequencing profiles the functional capacity of an entire community 

at the gene level44, moving well beyond the limits of marker gene analysis. However, biases that 

are introduced by library construction, assembly and reference databases for annotation are less 

understood than biases that exist in well-characterized marker gene approaches. As the 
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metagenomics field matures, these annotation steps will continue to be improved and validated. 

For a comprehensive review on metagenomics, we direct the reader to Ref. 45. 

Metatranscriptome analysis 

Metatranscriptomics uses RNA sequencing to profile transcription in microbiomes, 

providing information on gene expression and the active functional output of the microbiome. 

Metatranscriptomics differs from both marker gene and metagenomic sequencing that sequence 

DNA in a sample, regardless of cell viability or activity. Although there are methods for depleting 

relic DNA from dead cells46, sequencing microbial RNA provides better insight into the functional 

activity of a microbial community, though it is biased towards organisms with higher rates of 

transcription. It is worth noting that propidium monoazide (PMA) depletion of relic DNA is an 

alternative method to identify live microorganisms47. Host RNA contamination, particularly the 

highly abundant rRNAs, is also an important consideration and methods to exclude rRNAs from 

samples should be considered48. RNA must be carefully preserved to avoid degradation in all 

cases, though certain sample types may warrant specialized protocols for RNA purification. For 

example, soil samples require removal of enzyme-inhibiting humic substances49,50. Despite these 

technical difficulties, metatranscriptomic data can offer unique insight; transcriptomes vary more 

within individuals than metagenomes51, and metatranscriptomics can reveal microbial community 

response to perturbations, such as xenobiotic exposure52. For a comprehensive review on 

metatranscriptomics analysis of the microbiome, we direct the reader to Ref. 53. 

Analyses 

Ideally, each microbiome study would analyze samples with all three of the methods 

discussed above. In most cases, however, there is not enough sample material or enough project 
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funding for performing all three analyses, and in some cases, the samples might not be amenable 

to one of the sequencing methods. It is therefore paramount that the researcher chooses the method 

of sequencing that is most effective for answering their specific questions. If there are no budget 

constraints, we recommend performing metagenomics rather than marker gene sequencing. 

However, it is common practice to perform marker gene sequencing to gain a low resolution 

understanding of the microbial community composition. Next, depending on the focus of the study, 

the researcher can move on to metagenomic and metatranscriptomic sequencing, though this may 

require a second study for appropriate sample collection and processing. 

Marker gene analyses 

As noted above, marker gene approaches are sensitive to technical factors such as primer 

choice54, so well-validated protocols such as those used with the diverse sample set in the Earth 

Microbiome Project should be used55. The first step in analyzing marker gene amplicon data is to 

remove sequencing errors: despite very low sequencing error rates (for example, in Illumina 

sequencing ~0.1% per nucleotide56), most of the apparent sequence diversity arises from 

sequencing errors57,58. Until recently, this problem was addressed by clustering similar sequences 

into OTUs59,60. Clustering sequences into OTUs, termed OTU picking, consolidates similar 

sequences (usually with a 97% similarity threshold) into single features, merging sequence variants 

including those introduced by sequence error into a single OTU that can be used in subsequent 

analysis. However, this method misses subtle and real biological sequence variation, such as single 

nucleotide polymorphisms (SNPs) that would be consolidated into single OTUs61. Oligotyping62 

improves upon traditional OTU picking by including position-specific information from 16S 

rRNA sequencing to identify subtle nucleotide variation and by discriminating between closely 

related but distinct taxa. Algorithms such as Deblur63 and DADA264 use error profiles to resolve 
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sequence data into exact-sequence features (the marker gene sequence) called “sub-OTUs” 

(sOTUs). The resulting output from these methods is a table of DNA sequences and counts of these 

different sequences per sample rather than OTU groups. We recommend that these methods 

replace OTU-based approaches for all applications, except when it is necessary to combine 

sequence data that were generated using different technologies (that is, Illumina sequencing and 

454 pyrosequencing) or with different primer sets, when mapping to a common reference database 

of full-length sequences is often still needed65. 

One key analysis step is to assign taxonomic names to microbial sequences in the data. 

Taxonomy is typically assigned by machine learning approaches such as the RDP classifier66, 

which uses Naive Bayes models that are trained on oligonucleotide frequencies at the genus level 

to achieve ~80% accuracy in genus-level assignments. Popular microbiome analysis packages 

such as QIIME59 and Mothur60 provide support for taxonomic classification. In principle, exact 

matching to reference databases (three of the most characterized and frequently used are 

Greengenes, RDP, and Silva) should provide better specificity in taxonomic assignment, but the 

sensitivity of this approach is poor given the large number of unknown taxa. Furthermore, de novo 

phylogenetic trees that are constructed from short marker gene sequences are typically poorly 

resolved, so insertion of marker gene sequences into a characterized reference tree that is based on 

full-length sequences67 is desirable, given the importance of phylogenetic metrics68. 

“Unclassified” microorganisms should be checked for organelle sequences, and for many studies, 

chloroplast and mitochondria sequences should be excluded before proceeding with analysis 

(although for intestinal samples, these sequences can be useful for identifying consumed foods and 

thus should not be disregarded completely). 
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Predictive functional profiling38,39,40,41 is a technique for linking marker gene studies with 

available microbial genomes to make predictions about metagenomic content and thus the putative 

biological functions of a microbial community. This analysis generally requires a reference-based 

OTU table. Methods based on evolutionary models (for example, PICRUSt39) provide confidence 

intervals on these predictions of gene content, which will tend to be wider in regions of the tree 

distant from reference genome sequences, and narrower where many reference genomes are 

available. Thus, the availability of sufficient closely related reference genomes is a main factor 

that influences the accuracy of these results. Another limitation for predictive functional profiling 

is that some families of bacteria possess a very similar 16S rRNA variable region, despite being 

phenotypically and genotypically divergent.  

Most statistical analyses that are applied to microbiome data that is generated from marker 

gene sequencing can also be applied to other types of “-omics” analyses, and are described below 

in the “Higher-level analyses” section. 

Metagenome and metatranscriptome analyses 

Surveying the complete nucleic acid profile of a sample yields rich information that can be 

used to investigate a broad range of taxonomic, functional, and evolutionary aspects of microbial 

communities—even contaminants can provide important details69. As with marker gene-based 

surveys, the analytical methods must be carefully chosen to consider the sample origin and the 

specific hypotheses under investigation. Here, we discuss the best approaches to perform these 

analyses. 

Read-based profiling takes the unassembled DNA or mRNA sequence reads and compares 

them against reference databases to assign taxonomy or annotate genes. With the ever-increasing 

size of modern query datasets and databases, methods are continually being refined to improve the 
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speed of read-based profiling. Many tools utilize k-mers, assigning taxonomy to short DNA 

fragments of length “k,” such as Kraken70 or employ the Burrows-Wheeler transform which 

compresses the database by merging similar sequences (for example, Bowtie271 and Centrifuge72). 

For a more comprehensive guide to tool selection, we direct the reader to Ref. 73. ‘Marker gene’ 

methods (such as MetaPhlAn274 and TIPP75) use specific genomic regions for taxonomy 

assignment, focusing on universal, single-copy elements. Beyond taxonomy assignment, others 

tools such as HUMAnN244 can also be used for annotating genes and metabolic pathways. Some 

tools, including MEGAN76, incorporate both of these functionalities, and can be a preferred 

method when both annotations are desired. Because each read is considered independently, read-

based methods scale efficiently to large, complex data sets, such as soil microbiome data sets. It is 

important to note that as taxonomic or functional assignment depends on homology between the 

single read and a reference, database choice is crucial. For well-characterized environments like 

the human gut, curated genome databases such as RefSeq77 and protein family databases like 

Pfam78 or UniRef79 increase the accuracy of results and decrease computational costs. For samples 

from poorly characterized environments, the use of large databases such as NCBI nr and nt and 

IMG/MG80 should be considered because the databases are larger, despite the increased 

computational complexity and decreased assignment specificity. Specialized databases must be 

used to annotate specific taxonomic or functional categories, such as PHASTER81 for 

bacteriophages, Resfams82 for antibiotic resistance genes and FOAM for environmental samples83. 

Additionally, numerous metagenomic data catalogues are available for many sample types, 

including Tara for ocean samples84, the BGI catalogue for mouse gut samples85 and MetaHit for 

human gut samples86. 
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Another method for analyzing metagenome and metatranscriptome sequencing reads is to 

assemble the short reads into longer sequences (contigs). These contigs can be further sorted or 

binned by similarity to assemble partial to full genomes of microorganisms. This allows data 

exploration beyond taxa and gene annotation, enabling the prediction of multi-gene biosynthetic 

pathways or even metabolic reconstructions with tools such as antiSMASH87. However, assembly-

based analyses are not universally applicable; higher biodiversity, the presence of many related 

strains in samples or low coverage yields fragmented assemblies and can obscure taxa from 

downstream analyses. For example, soil samples are often difficult to assemble due to the high 

microbial diversity and uneven distribution88. For samples that avoid these complications, 

metagenome assemblies provide valuable bespoke reference databases for read-based and 

assembly-based metatranscriptome analyses89,90, thus recovering the ‘microbial dark matter’ that 

is absent in curated databases91. Recommended tools for assembly-based analyses include 

metaSPAdes92 and MEGAHIT93. A comprehensive discussion of these and other tools can be 

found in Ref. 94. To assemble partial to full genomes of individual microorganisms, contigs are 

sorted (binned) into separate putative genomes with tools such as MaxBin295 and CONCOCT96, 

which evaluate nucleotide composition and abundance patterns across samples to perform sorting 

(binning). To evaluate the quality of these binned and assembled genomes, single-copy gene 

profiling tools such as CheckM97 that use common single-copy genes to estimate genome 

completeness and contamination can be used. Additionally, visualization tools like VizBin98 

display clustering of metagenomic sequences without alignment to a reference database, allowing 

researchers to visually inspect the sequence clustering of related organisms and assist with 

evaluating bin quality. Employing integrated workflow tools to automate data processing such as 
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Anvi’o99, ATLAS100, or MetAMOS101, is highly recommended because assembly-based methods 

are complex. 

In order to compare samples with varying sequencing read counts, various methods of 

normalization can be employed. Common methods of normalization include: read counts per 

million (counts are scaled by the total number of reads), transcripts per kilobase million (counts 

scaled by number of reads and length of reads), and converting the data to relative abundance. 

Additionally, there are various tools for performing normalization including edgeR102 and 

DESeq2103. 

New tools for both read-based and assembly-based approaches are under rapid 

development. When possible, specific analytical decisions should be made based on performance 

on well-studied or synthetic datasets (such as the Critical Assessment of Metagenomic 

Information104) that are most similar to the microbial community of interest. 

Higher-Level Analyses 

Processing microbiome data generates a matrix that relates feature abundance (taxa or 

genes) to samples. This output is deceptively simple; microbiome data is highly dimensional, often 

representing thousands of different taxa, and sparse with many zeros present in the matrix, 

requiring careful statistical treatment to extract meaningful results. 

Overall patterns in microbiome variation are typically assessed by alpha and beta diversity. 

Alpha diversity quantifies feature diversity within individual samples and can be compared across 

sample groups. For example, when comparing a sample from an individual with a disease to a 

healthy control, the researcher can use alpha diversity to compare the mean species diversity 

between the two samples. Measures of species richness (for example, the number of observed 

species, or Chao1 abundance estimator, which estimates true species diversity) and phylogenetic 
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measures (Faith’s phylogenetic diversity) are sensitive to the number of sequences per sample, 

whereas measures that combine richness and evenness (Shannon index) are much less so. 

However, it should be noted that these methods have been evaluated exclusively for 16S rRNA 

data, and may not apply to other microbiome data types. Beta diversity compares feature 

dissimilarity between each pair of samples, generating a distance matrix of beta diversity distances 

between all pairs of samples. Metric selection can influence the results obtained105,106 and should 

be chosen with biological data interpretation in mind. Quantitative metrics (Bray-Curtis, Canberra 

and weighted UniFrac) use feature abundance data in calculations whereas qualitative metrics 

(binary-Jaccard and unweighted UniFrac) only consider the presence or absence of features. 

Phylogenetic measures such as UniFrac typically provide interpretable biological patterns107, 

though these metrics require a phylogenetic tree and thus cannot be used for direct comparison 

with “–omics” data that lack trees. Software for performing alpha and beta diversity calculations 

includes QIIME59, Mothur60, and the R package Vegan108. The non-parametric permutation tests 

PERMANOVA and ANOSIM are used for assessing significant beta diversity clustering between 

groups, but PERMANOVA may perform better on datasets with varying dispersions within 

groups109. Calculation of meaningful alpha and beta diversity measures requires the researcher to 

control for the sampling effort (that is, the number of sequences per sample obtained), as this can 

differ by orders of magnitude. The current best solution for UniFrac is rarefaction110, though for 

the special case of pairwise differential abundance testing, the full sample set should be used111.  

For visualizing beta diversity data, ordination techniques, such as principal coordinates 

analysis (PCoA) or principal component analysis (PCA), are commonly used. These methods 

reduce large and complex distance matrices into a visually manageable two dimensional or three-

dimensional representations of sample distances. Samples can then be colored by various metadata 
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categories to visualize clustering in an unsupervised manner. EMPeror offers an interactive 

framework for manipulating PCoA plots112. 

Another common analysis approach is to look at differentially abundant microorganisms 

or functional elements (for example, genes and pathways) in the comparison groups of interest 

(that is, treatment versus control). Identifying microbial taxa that explain differences between 

communities is particularly challenging because microbiome data sets are high-dimensional (that 

is, they include thousands of taxa), sparse and compositional. Compositionality is the crux of the 

problem113; when the proportion of one microorganism increases, the proportions of others must 

decrease for the proportions to sum to 1. For example, suppose a patient is administered a drug 

that increases the growth rate in only a single microbial genus, while not affecting the growth of 

others. Although the other microorganisms are not impacted by the drug, they would have 

decreased in relative abundance due to the outgrowth of the single microbial genus. This poses 

challenges for many classical methods, such as parametric statistical tests (for example, Student’s 

t-test and ANOVA), and measures of correlation including Spearman’s rank correlation, often 

leading to completely unacceptable false discovery rates above 90%110,114,115. Recently, 

“compositionally-aware” methods have addressed this problem of compositionality and relative 

abundance. One approach is to force strong biological assumptions on the statistical test: for 

example, Lovell’s proportionality metric detects only positive correlations116. Other tools that are 

widely applicable and have been optimized for microbiome data, such as SparCC117 and SPEIC-

EASI118, assume that few species are correlated, so most correlation coefficients are zero. 

BAnOCC119 is another tool for addressing the compositionality problem that makes no 

assumptions about the data. We recommend another approach that does not assume few species 

are correlated, which is to test for differences between microbial communities using the isometric 

https://link.springer.com/article/10.1023/A:1023818214614
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log ratio transform (ilr) [sic]. The isometric log ratio transform approach controls for false positives 

due to proportionality by testing for the changes in log ratios between microbial abundances, 

commonly referred to as balances. Balances can be constructed using prior knowledge such as 

evolutionary history107,120,121 or microbial niche differentiation in response to environmental 

factors such as pH122. After the ilr transform is applied, standard statistical tools such as 

multivariate response, linear regression and classification can effectively test for differences on 

the balances or log ratios between microorganisms rather than the raw microbial abundances, 

controlling for compositionally. Other recent methods use absolute quantification to address 

compositionality by complementing sequencing with microbial cell counts in each sample123,124. 

Machine learning is emerging as an especially useful technique for determining how 

microbiome data can be used to separate samples based on current state (usually determined by 

metadata categories, such as ‘healthy state’ versus ‘diseased state’)125,126 or, excitingly, to predict 

future state127,128. For instance, it is possible to model the severity and susceptibility of gingivitis 

based on an individuals’ oral microbiota127. Random Forests regression, a machine learning 

technique, has been effective in many applications, ranging from dating time since death of a 

corpse129 to providing a model for determining microbiome maturation in child development130. 

SourceTracker131, a Bayesian estimator of the microbial sources that make up an unknown 

community, is useful for classifying microbial samples according to environment of origin132. 

Importantly, machine learning analyses need a substantial sample size and should always be 

coupled with cross-validation, independent test sets, or other experimental and biological 

confirmation to ensure robust findings.  
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Integrating Other ‘Omics’ Data 

Knowing the composition of a microbial community is no longer a sufficient research goal; 

we want to know the function of the community. Integrating other data types—including marker 

gene sequencing, metagenomics, metatranscriptomics, metaproteomics, metabolomics and other 

techniques—for a given study is crucial for a comprehensive understanding of the composition 

and function of microbial communities. For example, changes in the metabolite profile of a 

microbial community reflect changes in its biosynthetic activity, mRNA and protein expression, 

and protein activity133. “Multi-omics” analysis integrates chemical and biological knowledge to 

provide a more complete picture of a biological system and is an active area of research with 

largely untested methods (Figure 3). 

Integrating multi-omics data types is inherently difficult. For example, gene expression and 

metabolism operate on different timescales134, and microorganisms produce many metabolites, 

often only in response to molecular signals from other species135. Also, the sparse nature of 

metagenomic and metabolomic data (where the data matrices are composed mostly of zeros) is 

much greater than of metaproteomic data and this may pose technical problems for some methods. 

Although the integration of different “-omics” data sets is a work in progress, tools that integrate 

these datasets are becoming increasingly available. For example, XCMS Online integrates 

metabolomic data with metabolic pathways, as well as transcriptomic and proteomic data136. 

Traditional correlation methods such as Pearson and Spearman could enable pairwise correlation 

between features across “-omics” data sets. However, these are prone to false positives due to the 

sparsity and high-dimensionality of microbiome and metabolome datasets. Procrustes analysis137 

uses dimensionally-reduced data to test if patterns (distances) between samples in one dataset is 

observed in the other, essentially correlating ordination spaces rather than individual features 

(tested using Mantel138 or PROcrustes randomization TEST).  Other methods integrate “-omics” 
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datasets by not only taking into account the relationships between samples, but also associating 

samples to particular metadata categories of interest (such as examining healthy versus diseased 

or control versus treatment groups). These methods include co-inertia analysis, which uses 

dimensionality reduction to associate sample patterns in two data sets and relevant metadata139, 

and partial least-squares140, related methods such as canonical correlation analysis141, or robust 

sparse canonical correlation analysis, which is a variation of the method to deal with sparse 

“-omics” data142.  

Advanced integrative analysis tools include molecular networking with GNPS143 to 

identify metabolites and pathway annotations144, and general systems biology tools, exemplified 

by XCMS Online136. Increasingly, multi-omics studies are investigating temporal patterns in 

addition to spatial patterns. Spatial mapping145, that can now be performed with the tool ‘ili145, 

adds a powerful dimension to multi-omics studies through visual representations that are readily 

amenable to human interpretation. 

Integration with other “-omics” data can be performed using various statistical 

methodologies146. However, these techniques have been shown to perform suboptimally on 

microbiome data sets115. Furthermore, simply finding correlations in various “-omics” data by 

itself is only the first step. Establishing causation and correlation across data sets is the next 

challenge. Box 1 gives an example of the integration of metabolome and microbiome data sets and 

corresponding approaches to move beyond correlation and determine causation. Correction for 

multiple comparisons is crucial in multi-omic analyses; data sets can contain thousands of different 

microorganisms and metabolites, so significant correlations are expected by random chance. 

Measures to correct significance testing for multiple comparisons include the False Discovery Rate 

(for example, Benjamini-Hochberg correction) or, for more conservative corrections, the Family-
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Wise Error (for example, Bonferroni correction). Using these methods to penalize multiple 

comparisons in conjunction with statistical models that incorporate sparsity and 

compositionality115, false discovery rates in large multi-omic comparisons can be reduced. 

Despite these challenges, the future potential for “-omics” data integration is promising. In 

particular, there are numerous examples where metagenome, metatranscriptome and metabolome 

data have been successfully integrated, illuminating gene regulation in microbiomes37 and 

correlating the presence of microorganisms with metabolites147. Such studies have provided 

insights beyond the capacity of single –omics, such as gut bacterial metabolism of xenobiotics148 

and how antibiotic-induced microbiome depletion creates a favorable metabolomic environment 

for Clostridium difficile149. Comparatively, the integration of metaproteomics data with 

microbiome data is a relatively newer field of investigation, though there are many recent examples 

of successful integration ranging from identifying biomarkers of Crohn’s disease150 to examining 

microbial protein production in layers of permafrost151. Additionally, tool development for 

metaproteomics annotations and analysis is ongoing152,153. Overall, integrating ‘-omics’ data can 

provide a more holistic and mechanistic understanding of microbiomes—from DNA identification 

to functional production of metabolites and proteins—and ideally lead to more actionable scientific 

insights. 

Conclusions 

In this Review, we have discussed how all stages of conducting a microbiome study, from 

designing the experiment to collecting and storing the samples, to obtaining insight from graphical 

displays of the sequence data, can substantially impact the results and their biological 

interpretation. As the effects of many of these technical steps are large compared to the real 

biological variability to be explained, standardization is necessary in order to compare and 
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combine separate studies, and the first efforts to do this and to provide recommendations and best 

practices, such as the International Human Microbiome Standards and the Microbiome Quality 

Control Project (MBQC), are already under way. Including bioinformatics pipelines and controls 

into these standardization efforts, and in particular using cloud-enabled reproducible computing 

resources that run open-source code on publicly available data to reproduce scientific claims of 

publications, is a rapidly emerging area that will bring consistency and comparability to the 

microbiome field. An important part of such efforts will be spike-in standards (which have already 

been so important to standardizing microarrays), and standardized biologically realistic samples 

that can be used to quantify systems-level accuracy in microbiome assays. 

This article has focused primarily on DNA-level analyses at the whole-community level, 

but as expression-level profiling and single-cell profiling techniques continue to advance, many 

similar considerations will apply to those types of data also. Avoiding the mistakes that have been 

repeated frequently in other expensive assays, such as inadequate sample size and validation, and 

employing best practices for standards, sample handling, compositional data analysis and other 

frequent pitfalls, will accelerate progress in these areas. Using standardized and well-characterized 

sample sets, such as those developed in MBQC and in the Earth Microbiome Project, can greatly 

shorten the time needed to understand the value and unique insights provided by a new technique. 

As the field trends towards ever-larger data sets, understanding subtle confounding factors 

long known to epidemiologists and taking more care with longitudinal study designs will become 

increasingly important. The value of interventional studies over observational studies is 

considerable, especially when human, animal model and in vitro data can be correlated across 

scales and systems. Increased standardization of techniques and dissemination of methods with 
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low noise and bias will greatly increase the ability of the microbiome field to deliver on the promise 

of translatability from lab-scale studies to the clinic, field or natural environment. 
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Glossary 

Alpha Diversity: A measure of within sample diversity 

Beta Diversity: A measure of similarity between samples 

Coprophagy (coprophagic): The consumption of feces. Many animal species eat feces to more efficiently break 

down plant matter by digesting the material twice.  

Effect size analysis: Quantification of the magnitude of an effect of a particular metadata category (treatment group, 

sex, sequencing plate) on the data.  

Exact sequence variants: For marker gene sequencing, the exact DNA sequence for each read is used instead of OTU 

clustering. 

Faith’s Phylogenetic Diversity: An alpha diversity metric which uses a phylogenetic tree to compute sample diversity 

False Discovery Rate: A method of understanding the rate of type I errors in null hypothesis testing when performing 

multiple comparisons 

Family-Wise Error: The probability of making one or more Type I errors (false discoveries) when performing 

multiple hypotheses tests  

Humic substances: Produced by biodegrading organic matter, humic substances are the main component of humus 

(soil).  

Isometric Log Ratio Transform: The isometric log ratio (ilr) transform converts a vector of proportions into a vector 

of log ratios using a tree as a reference. The computed log ratios consist of the difference of mean logarithms of species 

proportions between adjacent clades within the tree. 

k-mers: All possible sequences of length ‘k’ from a read obtained through DNA sequencing.  

Machine Learning: The use of algorithms to learn from and make predictions about data.  

Marker genes: Conserved genes (commonly 16S, ITS, and 18S) that typically contain a highly variable region that 

can be used for detailed identification, flanked by highly conserved regions that can serve as binding sites for PCR 

primers. 

Metadata: Information about the data. In many studies, this is structured as a matrix with samples as rows and 

metadata categories (Age, Sex, Longitude, Season, Disease-State, Average Monthly Rainfall, etc.) as columns.  

Metagenomes: The collection of genetic material from a community of organisms; for example, the genetic material 

from all microorganisms in the human gut microbiome.  

Metatranscriptomes: The total content of gene transcripts from a community of organisms.  

Naive Bayes Classifier: A simple probabilistic classifier used in machine learning that is based on applying Bayes’ 

theorem assuming strong independence between the features 

Nested statistical tests: Statistical tests that address variables related to the main effect. For example, soil plot would 

be a nested factor for testing the effects of a fertilizer on the soil microbiota.  

Operational Taxonomic Units (OTUs): A group of closely related individuals or sequences (often 97% sequence 

similarity threshold) 

Random Forests regression: A machine learning technique that uses decision trees to perform classification  

Reads: Inferred sequences of base pairs in a single DNA fragment.  

Shannon Index: A commonly used index to characterize species diversity in a community.  
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Box 1. Metabolomics and the microbiome 

Microbially produced metabolites influence host physiology, can shape microbial community 

dynamics and are involved in both health and disease. These metabolites can have both beneficial 

(for example, short-chain fatty acids (SCFAs)154) and detrimental effects on the host (for example, 

the genotoxin colibactin155). However, identifying a metabolite as sourced from the microbiome is 

particularly challenging. Even more challenging is identifying which microorganism or collection 

of microorganisms produced or modified a particular metabolite. Here are several strategies to 

address this problem:  

1. Compare metabolites from natural samples to those from cultured isolates of 

microbiome-isolated microorganisms. One useful approach is matching tandem mass 

spectrometry data from cultured isolates to clinical or environmental samples, showing that 

a particular metabolite signature can be sourced from the cultured microorganism156. 

2. Map metabolites detected in a microbiome sample to paired genome or metagenomic 

data. Some metabolites are unique to particular microbial taxa. Detection of these 

metabolites in a natural sample can enable determination of their likely source by mining 

paired genomic data for genes known to produce that metabolite. For example, 2,3-

butanedione, a unique fermentation product, is a microbial metabolite produced by 

Streptococcus spp. Detection of this metabolite in clinical samples along with the 

biosynthetic genes, facilitates mapping of reads to the biochemical pathway back to the 

genome of the organism of origin147. 

3. Build co-occurrence networks of microorganisms and metabolites. Co-occurrence or 

correlation methods associate microorgaisms with metabolite features. This is an active 

area of research, but available algorithms that have been optimized for detecting 

correlations between microorganisms in sparse microbiome data include SparCC117, 

CCLasso157, and others115,158. However, this approach warrants caution because of the high 

false discovery rates across the large multivariate datasets. 

4. Germ free versus specific pathogen free murine models. These comparisons identify 

metabolites from the microbiome as metabolites detected in colonized mice but not in 

uncolonized mice are likely produced by microorganisms. Gnotobiotic mice (mono-

colonized or with defined communities) help identify specific microorganisms that produce 

metabolites of interest159.  
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Box 2. Good working practices 

It is crucial for microbiome analyses to be reproducible. Similar microbiome studies can often 

have conflicting results, and without proper documentation of sample collection, data processing, 

and analysis methods, it is difficult to re-examine the data and reconcile these differences. As the 

field evolves, it will be necessary to revisit early experiments and potentially re-analyze the data 

with updated tools. Reproducibility is paramount for this process to be possible and efficient. 

When collecting samples, details of the collection process should be recorded in the experimental 

metadata to ensure that as much variability as possible is accounted for. Additionally, the Genome 

Standards Consortium minimum information standards (MIxS) for marker genes (MIMARKS) 

and metagenomes (MIMS)160 should be adhered to. These unified standards enable comparisons 

across data sets. During bioinformatics processing, researchers should track all of the commands 

that they ran and all software versions that they used, and deposit their raw data and metadata in 

public repositories. We recommend using tools such as Jupyter Notebooks (http://jupyter.org) or 

R Markdown (https://rmarkdown.rstudio.com/) to facilitate this, and then storing the notebooks in 

a revision control management system such as GitHub (https://github.com). Some software 

packages, such as QIIME 259 (https://qiime2.org) and Galaxy (https://usegalaxy.org/) 

automatically track this information for researchers through an integrated data provenance tracking 

system. Qiita (http://qiita.microbio.me) and EBI (http://www.ebi.ac.uk/) are powerful meta-

analysis and data archiving tools, respectively, and when combined allow a researcher to analyze 

their microbiome data in the context of tens of thousands of other samples, which enables the data 

to be re-used by future researchers.   

http://jupyter.org/
https://github.com/
http://qiita.microbio.me/
http://www.ebi.ac.uk/
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Box 3. Considerations for different microbiomes 

Although microbiome data analysis methods are widely applicable to many sample types and 

environments, experimental design, and method selection require careful consideration for 

different sample types. First, one must consider the composition of the sample and feasibility of 

use for different methods. For samples that are heavily contaminated with non-microbial DNA, 

such as tissue, shotgun metagenomic sequencing may not be feasible without non-microbial DNA 

depletion. Depending on the experimental question, samples heavily contaminated with relic DNA 

from dead microorganisms, such as soil, may require physical removal of relic DNA by propidium 

monoazide46 or other methods prior to DNA extraction. The amount of sample to collect is also 

determined by sample type. Whereas a high biomass fecal sample may only require a swab, 

samples with low microbial density may necessitate larger volumes and potentially concentration 

for sufficient DNA extraction. For example, ocean microbiome samples are usually large volumes 

of water run though a filter to trap and concentrate the target organisms prior to DNA extraction84. 

Though in all cases appropriate controls should be included, low biomass environments, such as 

blood, spinal fluid or laboratory clean rooms, particularly necessitate controls that have gone 

through the entire sampling process to fully characterize contaminants. DNA contaminants can be 

found in numerous reagents, including swabs, DNA extraction kits and PCR reagents27. 

Furthermore, the method of sample preservation is both dictated by analysis method and sample 

type. For example, metatranscriptomics requires an RNAse inhibitor and metabolomics requires 

sample preservation that does not interfere with metabolite extraction or data collection. 

In addition to sampling considerations, study design and metadata collection also require careful 

tailoring to sample type and environment. For example, animal studies require an evaluation of 

co-housing cage effects and should stratify experimental groups into multiple cages. Fresh samples 

should be collected and the mouse of origin should be recorded in the metadata.  Environmental 

samples require collection of metadata related to environmental conditions, such as pH, salinity, 

elevation, and depth for soil samples. The manner of collection is highly dependent on sample type 

and cannot be detailed for all possible samples in this Review. We recommend consulting well-

validated protocols related to the sample type of interest. In any case, methods of collection, 

preservation, and storage should remain consistent across all samples in a study to avoid 

introducing confounding variation. Sample composition can be affected by outgrowth of certain 

microorganisms during storage at room temperature28. 
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Figure 1. Experimental design considerations for microbiome experiments. 

Conducting a robust microbiome experiment warrants careful attention to numerous factors. Stratification 

by potential confounders (for example, age, gender, diet, lifestyle factors and medications) can help resolve 

differences in microbiota between groups of interest which might otherwise be masked by a confounder-

effect5. Longitudinal studies are especially powerful as they both control for confounding factors and allow 

for the assessment of community stability7. Similar considerations apply to animal studies, though the 

additional impact of coprophagy must be addressed in experimental design. For all studies, standardizing 

technical factors and sample processing is essential to control for variation introduced by kit reagents, 

primers, sample storage, and other factors. The collection and curation of metadata about all aspects of each 

sample, from clinical variables to sample processing, is crucial for data interpretation; without metadata, it 

is difficult to draw meaningful conclusions from sequencing data.  
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Figure 2.  Best workflow for 16S ribosomal RNA, metagenomic, and metatranscriptomic sequencing. 

After careful design and sample collection, microbiome data is generated from 16S ribosomal RNA 

(rRNA), metagenomic or metatranscriptomic sequencing. After performing 16S rRNA sequencing, we 

recommend using Deblur63 to resolve sequence data into single-sequence variants called “sub-operational 

taxonomic units (sOTUs).” Although DADA2 and Deblur achieve the similar results, Deblur is an order of 

magnitude faster than DADA2, is parallelizable, and shows greater stability (that is, it obtains the same 

sOTUs across different samples)63. Metagenomics and metatranscriptomics first require pre-processing to 

remove either host DNA or rRNA and host RNA. The resultant sequencing data can be analyzed by either 

read-based profiling using state-of-the-art tools such as Kraken70, Megan76, or HUMAnN44, or by assembly-

based analyses, with tools such as metaSPAdes92 and MEGAHIT93. For each of these three methods, higher 

level analyses (for example, alpha and beta diversity, taxonomic profiling and machine learning) are 

subsequently used to find overall patterns in microbiome variation. Random Forests regression has been 

effective in many applications, ranging from dating time since death of a corpse129 to providing an index 

for microbiome maturation130. SourceTracker131, a Bayesian estimator of the sources that make up each 

unknown community, is useful for classifying microbial samples according to environment of origin132. 
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Figure 3. Integrating “-omics” data with microbiome data. 

The central dogma of molecular biology of progression from genes to downstream metabolic products is 

reflected by the compendia of corresponding “-omes” co-occurring within the cell. Linking the knowledge 

from different “-omics” studies constitutes the multi-omics analysis. Panels around the cell represent some 

integration examples of various “-omics” data with marker gene sequencing: a) Three-dimensional 

visualization of mapped molecular and microbial (or any other) features aids our understanding of spatial 

correlation thereof. b) Sparse canonical correlation analysis141 identifying linear combinations of the two 

sets of variables that are highly correlated with each other. c) Correlation network analysis shows clustering 

of a particular microorganism with metabolites that are potentially produced and/or processed by it. d) 

Metabolic activity networks help to predict microbial community structure and function by mathematical 

modelling of the molecular mechanisms of particular organism(s). e) Procrustes analysis enables the direct 

comparison of different “-omics” data sets with the same internal structure on a single PCoA plot to reveal 

trends in the data. f) Multiple co-inertia analysis (MCIA) enables multidimensional comparisons through 

graphical representation, so that the similarity of different “-omics” data can be more easily understood. 
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Table 1:  Pros and cons of genomic analyses for evaluating microbial communities. 

Method Pros Cons 

Marker gene analysis • Quick, simple and inexpensive 

sample preparation and analysis55,59 

• Correlates well with genomic 

content37-41 

• Amenable to low-biomass and 

highly host-contaminated samples 

• Large existing public data sets for 

comparison16,55,160 

• No live, dead or active discrimination 

• Subject to amplification biases34 

• Choice of primers and variable 

region magnifies biases33,54,159 

• Requires a priori knowledge of 

microbial community36 

• Resolution typically limited to genus 

level at best 

• Functional information is limited 39,40 

Whole metagenome analysis • Can directly infer the relative 

abundance of microbial functional 

genes; microbial taxonomic and 

phylogenetic identity to species and 

strains level is attainable for known 

organisms42 

• Does not assume knowledge of 

microbial community (i.e., captures 

phages, viruses, plasmid, microbial 

eukaryotes, etc.) 

• No PCR-related biases 

• Can estimate in situ growth rates for 

target organisms with sequenced 

genomes161 

• Can allow assembly of population-

averaged microbial genomes43,162 

• Can be mined for novel gene 

families 

• Relatively inexpensive, laborious 

and complex sample preparation 

and analysis 

• Contamination from host-derived 

DNA and organelles may obscure 

microbial signatures 

• Viruses and plasmids are not 

typically well annotated by default 

pipelines 

• Deep sequencing depths are 

typically required relative to other 

methods 

• No live, dead or active 

discrimination 

• Population-averaged microbial 

genomes tend to be inaccurate 

owing to assembly artefacts 

Metatranscriptome analysis • Can estimate which 

microorganisms in a community are 

actively transcribing when paired 

with marker gene analysis 

• Inherently discriminates between 

active live organisms versus 

dormant or dead microorganisms 

and extracellular DNA 

• Captures dynamic intra-individual 

variation51 

• Directly evaluates microbial activity, 

including responses to intervention 

and event exposure52 

• Most expensive, laborious and 

complex sample preparation and 

analysis163 

• Host mRNA contamination and 

rRNA must be removed48,164,165 

• Requires careful sample collection 

and storage 

• Data are biased towards organisms 

with high transcription rates 

• Requires paired DNA sequencing to 

decouple transcription rates from 

bacterial abundance changes. 
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