

Supplemental Material

Weather and Forecasting
A Statistical Model to Predict the Extratropical Transition of Tropical Cyclones https://doi.org/10.1175/WAF-D-19-0045.1

© Copyright 2020 American Meteorological Society

Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).

Supplemental Material

Table S1: List of all features used for the initial feature selection in the operational model.

Feature	Definition
B	CPS parameter B
ΔB	change in B during previous 12 h
H_{a}	heading angle, measured clockwise from north
ΔH_{a}	change in H_{a} during previous 12 h
lat	latitude of the storm center
$\Delta l a t$	change in lat during previous 12 h
lon	longitude of the storm center
$\Delta l o n$	change in lon during previous 12 h
P_{o}	storm central pressure
ΔP_{o}	change in P_{o} during previous 12 h vertical wind shear ($200 \mathrm{hPa}-850 \mathrm{hPa}$)
$S H R$	within a circle of radius 500 km around the storm center
$\Delta S H R$	change in SHR during previous 12 h
SST	mean sea surface temperature within a circle of radius 500 km around the storm center
$\Delta S S T$	change in $S S T$ during previous 12 h
T_{s}	storm translational speed
ΔT_{s}	change in T_{s} during previous 12 h
$-V_{T}^{L}$	CPS parameter $-V_{T}^{L}$
$\Delta-V_{T}^{L}$	change in $-V_{T}^{L}$ during previous 12 h
$-V_{T}^{U}$	CPS parameter $-V_{T}^{U}$
$\Delta-V_{T}^{U}$	change in $-V_{T}^{U}$ during previous 12 h

Fig. S1: Regularization path of the logistic regression model for (left) the NAT, and (right) the WNP, showing how the feature coefficients (colored lines) vary with regularization strength, for a lead time of 24 h . The abbreviations of the features are defined in Table S1. The black dotted line is the Matthews correlation coefficient (MCC) obtained in the cross-validation (CV).

Fig. S2: The hazard model's phase diagnosis for six examples from the test set: a) Karl (2004, NAT), b) Halong (2014, WNP), c) Kit (1981, WNP), d) Ivan (2004, NAT), e) Helene (2006, NAT), and f) Marilyn (1995, NAT). The yellow line shows the predicted probability of the cyclone being extratropical, and the blue line shows the true status (1: extratropical, 0 : tropical).

