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Section S1: Effect of neglecting E + C̄ in the wet regime
The solution in the case where E+ C̄ is not neglected in the wet regime has the same shape as the
solution with E + C̄ neglected (eq. 9 in main text), but with parameters (denoted with a ∗) given
by

s̄∗ =
s̄

(1− δ)
≈ s̄(1 + δ), s∗L =

sL
(1− δ)2

≈ sL(1 + 2δ), (1)

with δ = E+C̄
R0

<< 1. That is, the main effect of including E + C̄ in the solution is is a slight
extension of the cutoff scale. This can be seen in Fig. S2a, which compares the analytical solutions
for the E + C̄ neglected and non-neglected cases. Figure S2b confirms numerically the analytical
results for the on-off case, and Fig. S2c shows numerically that the main modification to the
solution carries over to the ramp precipitation case.

Section S2: Event duration distribution and sL ∝
√
tLDP in the

ramp precipitation model
The solution for the wet spell duration probability distribution in the ramp precipitation case,
adapted from Yi (2010), is given by

pt =
b√

2πD2
P

exp

(
− b

2αexp(−αt)
2D2

P sinh(αt)
+
αt

2

)(
α

sinh(αt)

)3/2

. (2)

To an excellent approximation we can simplify this to

pt =
t̄√
πtL

exp(− t̄2

tLt
)[2−1tL(1− exp(− 2t̄

tL
))]−3/2exp(− t

tL
), (3)

where tL is the duration cutoff given by

tL =
1

α
, (4)

and where we have also defined t̄ = b√
2αD2

. After making these definitions, expressions for pt in
the on-off (eq. B1 in main text) and ramp precipitation models are similar, with the expression
[2−1tL(1− exp(− 2t̄

tL
))]−3/2 providing an approximate power law range in the ramp case.

The proportionality sL ∝
√
tLDP , that was derived analytically in the on-off model (eq. 11

in main text), is shown numerically to hold in the ramp precipitation case. Figure S3a shows
that the accumulation moment ratio sM (which is proportional to sL, see Section S4) is linearly
proportional to

√
tL, with tL given by eq. 4 in the SI, when we keep DP fixed. Similarly, Fig. S3b

shows that sM is linearly proportional to DP when we keep tL fixed.
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Section S3: Derivation of accumulation distribution mathe-
matical form in the on-off precipitation model.
The derivation of the accumulation distribution (eq. 9 in main text) in the on-off case is shown in
SN14 and N17 —here we present its main steps for the reader’s convenience. Noting that in the
on-off precipitation case the accumulation in an event is proportional to its duration (s = R0t),
the column water vapor equation in the wet regime (eq. 6 in main text) can be written in a
transformed s coordinate (see N17 for more details) as

dq

ds
= −1 +Dsηs, (5)

where Ds = DP

R
1/2
0

and ηs is white noise in s coordinate. The Fokker-Planck equation (Gardiner

2009) governing the evolution (in s coordinate) of the probability of column water vapor in the
wet regime pq(s, q) is given by

∂pq
∂s

=
∂pq
∂q

+
1

2
D2
s

∂2pq
∂q2

= −∂J
∂q
, (6)

where J = −pq − 1
2D

2
s
∂pq
∂q is the probability flux (such that ∂pq

∂t + ∂J
∂q = 0). The solution pq(s, q),

subjected to the initial condition pq(s = 0, q) = δ(q − qc) and absorbing boundary condition
pq(s, q = qnp) = 0 (with qc = qnp + b, as defined in section 3a in the main text) is given by the pair
of Gaussians

pq(q, s) =
1√

2πD2
ss

[
exp

(
− (q − qc + s)2

2D2
ss

)
− exp

(
2b

D2
s

)
exp

(
− (q − qc + 2b+ s)2

2D2
ss

)]
. (7)

The accumulation distribution is given by the probability flux evaluated at event termination.
Noting that pq|q=qnp = 0, then

ps = J |q=qnp
= −1

2
D2
s

∂pq
∂q

∣∣∣∣
q=qnp

, (8)

which after evaluating yield the analytical solution for ps shown in eq. 9 in the main text.
In a simpler system with no moisture loss by accumulation (no −1 term in eq. 5 in the SI), the

solution for pq is much like eq. 7 but without the s term in the numerator of the exponentials. In
this case, it can be readily seen from eq. 8 that ps would have a power law range with exponent
τ = 1.5, as the derivative brings an additional s−1 term to the expression for ps. In the more
general case (with moisture loss by accumulation) ps inherits the power law range from the simpler
system, but with the added exponential exp(−s/sL) that limits the very large accumulation values.

Section S4: Relation between accumulation moment ratio and
cutoff
Assuming a shape of the accumulation distribution ps given by (4) in the main text

Ps = B(s)s−τexp(− s

sL
), (9)

where B(s) is a function that decay fast when s→ 0 (which is necessary to ensure proper normal-
ization for τ > 1). If we assume that τ < 2, then we have that the small accumulation range does
not overly contribute to the n-th accumulation moment 〈sn〉. In this case we have that 〈sn〉 is ap-
proximately proportional to

∫∞
0
s−τ+nexp(− s

sL
)ds. Expressing this in terms of Gamma functions

Γ, we have that 〈sn〉 ≈ B0s
n+1−τ
L Γ(n+ 1− τ), where B0 is some constant of proportionality. The

moment ratio sM = 〈s2〉
〈s〉 is then given by

sM ≈ (2− τ)sL, (10)

where we have used the property zΓ(z) = Γ(z + 1) of Gamma functions. This shows that sM is
approximately proportional to the cutoff, with constant of proportionality depending on τ (sL ≈
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2sM in the on-off case, where τ = 1.5). So for example in Fig. 6 of main text, where the model
parameters in the wet regime were chosen to yield similar sM as in observations, the modeled and
observed cutoffs may not be as similar, due to the different τ simulated compared to observations
in Fig. 6b.

Figure S1: Correlation between PL and τP estimators.
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Figure S1: Scatter of estimators of a) daily precipitation cutoff, and b) power law exponent using
the method of moments (ˆ) and the regression technique shown in Appendix A of the main text
(unadorned). c),d) Similar to a),b), but comparing the method of moments with maximum
likelihood (MLE) following the method of Thom 1958. Estimations are calculated from 16 different
500 year integrations of the on-off precipitation model, with parameters E = 0.1mmh , C̄ = 0,
DE = 3mm

h1/2 , b = 1mm, P = 10mmh , and DP varying from 5 to 20mm
h1/2 in increments of 1mm

h1/2 .
Correlation coefficients r between estimators are a 0.9994, b 0.9996, c 0.9895, d 0.9994.
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Figure S2: Effects of neglecting E + C̄ in the wet regime.
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Figure S2: a. Analytical solution for the accumulation distribution in the on-off case for the cases
where E + C̄ in the wet regime is neglected (blue) and the case it is not (red). Solutions are
constructed using the following parameters: DP = 15mm

h1/2 , E+ C̄ = 0.3mmh , P = 10mmh , b = 1mm.
b. Result of two 200yr numerical integrations of the on-off model with the same parameters as (a).
c. Numerical comparison of two 200yr integrations of the ramp model, one with E + C̄ neglected
and one where it is not (E + C̄ = 0.3mmh ). Same parameters as in (a), except with α = 0.3 1

h .
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Figure S3: sL ∝
√
tLDP in the ramp model
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Figure S3: a. Scatter between sM and
√
tL calculated for several 200yr runs of the ramp model

with parameters E = 0.1mmh , C̄ = 0, DP = 15mm
h1/2 , DE = 3mm

h1/2 , b = 1mm, and α varying such
that the different runs have tL values ranging from 30 minutes to 10 hours. b. Scatter between
sM and DP calculated for several 200yr runs of the ramp model with same parameters as in (b),
with DP ranging from 5 to 20mm

h1/2 and α = 1
tL

= 1
3h
−1.
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Figure S4: Wet and dry regime effects on Gamma distribution
parameters in the ramp precipitation model
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Figure S4: Same as Fig. 4 in main text but using the ramp precipitation model (with no analytical
approximation in this case). Parameters are the same as Fig. 4 except α = 0.35h−1 replaces
R0. In this case there is no analytical formula for sL so we use the accumulation moment ratio
sM =

σ2
s+s̄2

s̄ as its estimator, as used in previous publications (e.g., Peters et al., 2010, N17, MN18.
See also Section S4).
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Figure S5: σ2
w

w̄ as a function of changes in wet and dry regime
dynamics
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Figure S5: Ratio between variance and mean number of events per day σ2
w

w̄ as a function of changes
in a sL in the wet regime, and b C̄ in the dry regime. This is calculated from the same 500yr
model runs used in Fig. 4 in the main text. This shows that σ2

w

w̄ is of order 1 regardless of model
parameters, which helps justify (19) in the main text.
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Figure S6: Total number of events as a function of changes in
wet and dry regimes dynamics
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Figure S6: Number of accumulation events for different values of a sL and dry regime parameters
fixed, and b C̄ and wet regime parameters fixed. This is calculated from the same model 500yr
runs used in Fig. 4 in the main text.
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Figure S7: Error in analytical approximation for P̂L for differ-
ent averaging intervals.
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Figure S7: Error in the analytical approximation of P̂L (equation 17 in main text) compared to P̂L
calculated directly from daily, weekly or 4-weeks data based on 500yr model runs for different DP

values, with same parameters as used in Fig. 4a in the main text. The error is calculated as the
percentage deviation between the blue line and red crosses in Fig. 4a, and similarly for weekly and
4-weeks precipitation averages. The x-axis is the sL =

2D2
P

R0
corresponding to each individual run.

This corresponds to a tL =
2D2

P

R2
0

ranging from 30 minutes (sL = 5mm) to 8 hours (sL = 80mm).
This error is due to the assumptions made in section 4 that were used to derive the analytical
expressions in section 5 of the main text.
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Figure S8: Sensitivity to temporal resolution of data
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Figure S8: Sensitivity of accumulation distribution parameters τ and sL to resolution of data. This
is calculated from a 1000yr integration of the on-off precipitation model with a time step of one
minute, with parameters P = 10mmh , E = 0.1mmh , C̄ = 0, DP = 15mm

h1/2 , DE = 3mm
h1/2 , b = 0.2mm,

qc = 65mm. In each of the cases shown here the 1-minute simulated data is accumulated into 15
minutes, 1 hour, 3 hours and 6 hours accumulated values, which are used as building blocks to
calculate the accumulation distributions. Theoretical values for the parameters in this case are
sL = 45mm and τ = 1.5.
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Figure S9: Accumulation and temporally averaged precipita-
tion distributions in two other locations
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Figure S9: Similar to Fig. 6b in the main text but for other locations: a. Hartford Bradley Inter-
national Airport (1954-2013, 64.9m altitude, 41o56′N , 287o19′E), b. Fullerton Dam (1948-2013,
103.6m altitude, 33o54′N , 242o7′E). c. Similar to a but only for the extended winter months (Nov-
Apr). d. Similar to b but only for the extended winter months (Nov-Apr). The Hartford Airport
area sees precipitation both in winter (predominantly snow) and summer (predominantly convec-
tive). Almost all precipitation in the Fullerton Dam area occurs in winter and has a predominantly
frontal origin.
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Figure S10: wn becomes more localized around the mean as
tavg increases
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Figure S10: Normalized number of events distribution wn

w̄ for different tavg. The size of the
fluctuations relative to the mean σw

w̄ decreases as w̄−1/2. Distributions are calculated from a
2000 years integration of eqs. 5,6,8 in the main text for mean moisture convergence conditions
C̄ = 0.2mmh , as this tightening of the distribution around w̄ occurs faster under these conditions.
Remaining parameters are R0 = 10mmh , E = 0.1mmh , DP = 15mm

h1/2 , DE = 3mm
h1/2 , b = 1mm.
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Table S1: Parameters used to generate main text figures

R0 (mmh ) α ( 1
h ) DP (mm

h1/2 ) C̄ (mmh ) b (mm)
Fig. 2b 9 N/A 17 0.2 0.2
Fig. 2c N/A 0.35 12 0.2 0.2
Fig. 3 10 N/A 15 0 1
Fig. 4a,c 10 N/A 5 to 20 0 1
Fig. 4b,d 10 N/A 15 -0.1 to 0.4 1
Fig. 5a,c,e 10 N/A 10,15,20 0 1
Fig. 5b,d,f 10 N/A 15 -0.1, 0.1, 0.3 1
Fig. 6 9 N/A 17 0.2 0.2
Fig. 7 10 N/A 15 -0.1, 0.2 1
Fig. 8 N/A 0.3 15 0 1

Table S1 Parameters used in all main text figures. The following parameters are the same in all
cases: E = 0.1mmh , DE = 3mm

h1/2 , and qc = 65mm.
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