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Supplementary Text  

S1. The detrending approach  

Prior methods used to define the forced signal and internal variability (IV) in observations  

and assess their relative roles include: (1) using simple linear detrending to remove the forced  

long-term trend (which leaves forced decadal variations in the residual) (18), which is not a  

good choice since the long-term warming signal is non-linear in time and non-uniform in space  

(14, 19); (2) using the observed global-mean SST time series to represent the externally-forced  

change (19), which is incorrect since the global-mean temperature from individual ensembles  

contains internal variations and differ from each other (45); and (3) using the ensemble mean  

of climate model ensemble simulations to estimate the externally-forced change and consider  

the residual in any realization (such as a model run or the observations) as the internal variations  

after the forced component being removed through regression (the method used in our study).  

We have tested these different methods to separate the externally-forced and internally- 

generated variations in the North Atlantic and Pacific (i.e., to define the AMO and IPO index,  

11, 17; not shown), and method 3 outperforms the other methods. As the global-mean SST time  

series from the ensemble mean mainly contains a forced response, this procedure removes most  

of the externally-forced component from the observations (44).   

To remove the warming effect from the monotonic increase in greenhouse gases (GHGs),  

we detrended the observational SSTs using global-mean SST time series from the ensemble  

mean of the CMIP5 GHG-only simulations.  

  

S2. The statistical significance  

The statistical significance of the correlations and regressions between two time series,  

especially after applying low-pass filter, is an important issue. To account for the reduced  

degree of freedom caused by the low-pass filtering, we used the effective degrees of freedom  

(EDF) to account for autocorrelation in estimating the attained significance (i.e., the p-value)  

in the Student's t-test. The EDF (N*) is given by the following approximation (8, 46):  
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where N is the sample size, and ρxx(j) and ρyy(j) are the autocorrelations of the two sampled  

time-series x and y at time lag j. Our method, which is based on Zhao and Khalil (47), is similar  

to the above equation but without the weighting function (N-j)/N. This method performed  

relatively well compared to other methods (46). We also repeated the analysis directly using  

the above equation in estimating EDF, and the results are similar.   

Furthermore, we also used the Monte Carlo approach to derive the attained significance.  

The Monte Carlo approach was implemented as follows: For each of the x and y variables, its  

time series was first randomized in its temporal order to generate 1,000 synthetic time series  

for each of them, the correlation coefficient for each pair of these 1,000 samples was then  

computed, and a probability density function of the correlation coefficients was estimated to  

assess the statistical significance of the attained correlation coefficient between x and y. The  

quoted significance level (i.e., the p-value) is the fraction of the samples whose r values exceed  

the value being tested. The p-values from this Monte Carlo approach are similar to those from  

the Student's t-test with EDF shown in Fig. 1C and Fig. 2, except for the negative correlations  

in the tropical central Pacific and subtropical South Atlantic, where the Monte Carlo approach  



 
 

suggests a lower significance level. Note that the negative correlations in the tropical central  

Pacific and subtropical South Atlantic are dominated by the IV component (e.g., IPO-like  

variability, 7, 17, 44), where SSTs have weaker autocorrelation than other regions (e.g., ATL,  

TWP, SNP, SSP) that are dominated by the externally-forced component.  

  

S3. Estimated GHG-detrend forced component  

Separating different externally-forced components in the observations or model  

simulations is not a trivial task. We have tested three ways to estimate the GHG-detrend forced  

component (i.e., externally-forced decadal-multidecadal signal) including:   

1) The GHG-detrend forced component is estimated by using the low-passed filtered SST  

anomalies from the CMIP5 all-forcing MMM after removing the GHG-induced warming  

signal via linear regression. We removed the GHG-induced warming via linear regression from  

the CMIP5 all-forcing MMM and then averaged the residual SSTs to derive the GHG-detrend  

forced decadal signal.   

2) The forced decadal signal was estimated based on the regressed SSTs between local  

smoothed SSTs from observations and the global-mean SST time series from the GHG- 

detrended SST fields from the CMIP5 all-forcing MMM. This method accounts for the  

potential biases in model simulated response, but may alias correlated but unforced SST  

changes into this estimate (not shown).   

3) We removed the GHG-forced changes, which is represented by the global-mean SST  

time series derived from the CMIP5 GHG-only MMM from the observed SSTs via linear  

regression, to obtain the GHG-detrend component in the observations. We also removed the  

changes and variations at each grid point associated with the forced signal, which is represented  

by the global-mean SST time series from the CMIP5 all-forcing historical MMM from the  

observed SST time series via linear regression, to derive the estimated internal variability. The  

difference between the two represents the estimated externally-forced decadal-multidecadal  

variations in observed SSTs (see Fig. 2 for details).   

Overall, three methods produce similar decadal-multidecadal forced signal, indicating that  

the results are not sensitive to the choice of estimation methods, although the magnitudes and  

variations of forced signal may slightly differ over the six regions among these approaches.    

  

S4. Greenhouse forcing effect on Indian Ocean  

For the Indian Ocean, the observed SST changes are largely accounted for by the GHG  

forcing alone, with only small multidecadal variations unexplained (not shown), which is  

consistent with Dong et al. (48), who found that anthropogenic forcing has dominated the  

Indian Ocean basin-wide warming trend since the 1950s. The large anomalies during the early  

1940s are likely due to sufficient observations and changes in data sources (38-41) during the  

2nd World War. This occurred in all other regions (Fig. 2).   

  

S5. Aerosols’ indirect effect on climate variability  

Aerosol indirect effects (AIE) through their impacts on cloud microphysics and lifetime  

account for about 50-60% of the total global aerosols’ impact, with larger impacts over oceans  

(10, 17). However, most of the climate models neglect the AIE, which could potentially lead  

to an underestimate of aerosols’ effect when using the multi-model ensemble mean.   



 

  

Fig. S1. Multidecadal SST variations in models and observations. (A) Time series of the  

principal component (PC) and (B) spatial pattern of the leading EOF mode in the global low- 

pass filtered SST fields from the CESM1 large ensemble mean of all-forcing historical  

simulations from 1920-2012 after the GHG-induced warming signal was removed. We  

detrended the CESM1 ensemble mean at each grid point using the global-mean SST time series  

derived from the CMIP5 multi-model ensemble mean (MMM) of the GHG-forcing-only  

simulations via linear regression. (C) Correlation map between the PC time series in (A) and  

the local low-pass filtered SST anomalies from observations from 1920-2012. We removed the  

GHG-induced warming signal from the observations through linear regression using the  

global-mean SST time series derived from the CMIP5 MMM of the GHG-forcing-only  

simulations. The black (gray) stippling indicates that the correlation is statistically significant  

at the 0.05 (0.1) level based on a two-sided Student's t-test with an estimated effective degree  

of freedom to account for autocorrelation. We used a 19-point Lanczos filter with a 13-year  

cutoff period to smooth the data. Results are similar using 13-year moving averaged data. The  

ensemble size is 35 for the CMIP5 GHG-forcing- only simulations.  



 

  

Fig. S2. Contributions of internal variability and external forcing. (A) Annual-mean SST  

anomalies (°C) for the two warm periods (1950-1960 and 1998-2012) relative to the  

intervening cold period (1970-1995) from observations (Obs*, gray), internal variability (IV,  

blue, as in Fig. 2), and external forcing (EX*, red) with the GHG-induced change being  

removed in the Obs* and EX* cases as in Fig. 2. The warm and cold periods were selected  

based on the EX* variations shown in Fig. 2. (B) Annual-mean SST anomalies (°C) during the  

warm periods (1950-1960 and 1998-2005) relative to the cold period (1970-1995) estimated  

from the CMIP5 natural (NAT), volcanic aerosol (VA), solar irradiance (SI) and anthropogenic  

aerosol (AA) single forcing simulations. The single forcing simulations were linearly detrended  

before calculating the anomalies in order to highlight the decadal variations. The error bars  

denote the ±1 standard deviation of the inter-model variations.   



 

 

Fig. S3. Relationship between SST and aerosol forcing. Correlation maps between the low-

pass filtered local SST anomalies from observations (with the GHG-induced warming removed) 

and the PC time series of the leading EOF in the near-global linearly detrended, low-pass 

filtered SST fields from the MMM of CMIP5 (A) VA and (B) AA forcing only simulations 

shown in Fig. 4. The black (gray) stippling indicates that the correlation is statistically 

significant at the 0.05 (0.1) level based on a two-sided Student's t-test with an estimated 

effective degree of freedom to account for autocorrelation. Results are similar if the local, 

instead of PC1, SSTs from the model simulations were used.   



 
 

  

Fig. S4. Composite analysis of the atmospheric circulation. Height-longitude cross section  

of the annual-mean anomalies for the cold period (1965-1995) relative to the warm period  

(1935-1960) for (u, ω) wind changes averaged over 10°S–10°N from the MMM of the (A)  

CMIP5 and (B) CMIP6 simulations under AA forcing only (including models with aerosol  

indirect effects only). The model simulations were linearly detrended before calculating the  

anomalies. The stippling indicates that the anomalies are statistically significant at the 5% level  

based on a Student's t-test.  



 

 
Fig. S5. Anthropogenic aerosol loading. Time series of the spatial pattern (A, B) and principal 

component (PC, C) of the leading EOF mode in the low-pass filtered ambient aerosol optical 

depth (AOD) at λ = 550 nm over (A) North America and Europe, and (B) East Asia using the 

data from the MMM of CMIP5 AA-forcing-only simulations from 1920-2005. 



 

 
Fig. S6. Analysis of SST patterns with and without East Asian aerosols. Spatial patterns 

and time series of the principal component (PC) of the leading EOF mode in the near-global 

(60°S–60°N) linearly detrended, low-pass filtered SST fields from the CSIRO-Mk3.6.0 model 

simulations from 1920-2005 for (A) AA forcing only over the globe and (B) AA forcing only 

over the globe except East Asia (10°S–45°N, 65°E–150°E). The CSIRO-Mk3.6.0 model has 

parallel simulations in which anthropogenic aerosol emissions were prescribed either over the 

globe or over East Asia only. Here we used the difference between the two simulations to 

represent the response to aerosol emissions from outside East Asia in (B). The SST pattern 

remains broadly similar with and without East Asian aerosols. The data near the right end were 

derived with mirrored data in the filtering and thus are less reliable, they are marked by the 

dashed lines.  



 
 

  

Fig. S7. Composite maps for SST, SLP and surface solar radiation. Annual-mean anomalies  

for the cold period (1965-1995) relative to the warm period (1935-1960) for (A) surface winds  

(vectors, m s-1) and SST (°C, shading), (B) rainfall (mm day-1, shading) and sea level pressure  

(SLP, hPa; black line represents the zero line, while purple and red lines represent the negative  

and positive contours, respectively), (C) surface net downward solar radiation (W m-2), and (D)  

net clear-sky surface solar radiation (W m-2) from the MMM of the CMIP6 AA-forcing-only  

simulations. The model simulations were linearly detrended before calculating the anomalies.  

The black (gray) stippling indicates that the correlation is statistically significant at the 0.05  

(0.1) level based on a Student's t-test.   



 

 

Fig. S8. Power spectra comparisons. (A) The wavelet power spectrum of the AMO index 

over the past two thousand years from the Paleo Hydrodynamics Data Assimilation product 

(PHYDA, 31). The linear trend since year 1850 were removed before the analysis. We used a 

19-point Lanczos filter with a 13-year cutoff period to smooth the AMO index data. (B) Scale-

averaged wavelet power over the 60-80-year band for the AMO. (C, D): Same as (A, B), but 

for the Niño3.4 index and the 20-60-year power for the IPO. The black dots in (A) and (C) 

denote the 95% confidence level against a red noise.  



 

Table S1. Summary of CMIP5 models used in this study. List of the 38 CMIP5 models with  

all-forcing historical and RCP4.5 future simulations. The number of ensemble simulations  

forced with individual historical forcing agents. We only used models with AA forcing that  

include aerosol indirect effects (AIE) associated with aerosol-cloud interactions.  

No. Model Name forcing combinations 

  All GHG NAT VA SI AA 

1 ACCESS1.0 1      

2 ACCESS1.3 1      

3 bcc-csm1.1 1 1     

4 bcc-csm1.1-m 1      

5 BNU-ESM 1      

6 CanESM2 5 5 5  5 5 

7 CCSM4 6  4 3 3  

8 CESM1-BGC 1      

9 CESM1-CAM5 3  3 3 2 3 

10 CMCC-CM 1      

11 CMCC-CMS 1      

12 CNRM-CM5 1 6 6    

13 CSIRO-Mk3.6.0 10 5 5 5  5 

14 FIO-ESM 3      

15 GFDL-CM2p1 10      

16 GFDL-CM3 1  3   3 

17 GFDL-ESM2G 1      

18 GFDL-ESM2M 1      

19 GISS-E2-H-CC 1      

20 GISS-E2-H 16 5 5 10 10  

21 GISS-E2-R-CC 1      

22 GISS-E2-R 17 5 5 10 10  

23 HadCM3 10      

24 HadGEM2-CC 1      

25 HadGEM2-ES 4 4 4    

26 HadGEM2-AO 1      

27 inmcm4 1      

28 IPSL-CM5A-LR 4 3 3    

29 IPSL-CM5A-MR 1  3    

30 IPSL-CM5B-LR 1      

31 MIROC5 3      

32 MIROC-ESM-CHEM 1      

33 MIROC-ESM 1  3    

34 MPI-ESM-LR 3      

35 MPI-ESM-MR 3      

36 MRI-CGCM3 1      

37 NorESM1-ME 1      

38 NorESM1-M 1 1     

 



 
 

Table S2. Summary of CMIP6 models used in this study. The number of ensemble  

simulations by CMIP6 climate models forced with the anthropogenic aerosols (AA) and  

volcanic aerosols (VA).   

Model Name Ensemble runs 

AA/VA 

Aerosol indirect effect 

BCC-CSM2-MR 3 including the aerosol indirect effects in which the liquid 

cloud droplet number concentration is diagnosed using 

the aerosols masses; Radiative transfer scheme includes 

the aerosol indirect effects 

CNRM-CM6-1 10 including the first indirect effect, prescribed 

CanESM5 10/10 yes, including 1st and 2nd indirect effects 

GISS-E2-1-G 5/5 the aerosol indirect effect is parameterized 

HadGEM3-GC31-LL 4 yes, including 1st and 2nd indirect effects 

IPSL-CM6A-LR 10 no indirect aerosol effect 

MIROC6 3 yes, including 1st and 2nd indirect effects 

MRI-ESM2-0 3 yes, including 1st and 2nd indirect effects 

NorESM2-LM 3 yes, including 1st and 2nd indirect effects 
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