
Warm tropical SST biases in coupled climate models can be improved through a focus on 

identifying and rectifying systematic biases in individual models and on the representation of 

specific processes in the upwelling regions.
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M	ost contemporary coupled atmosphere–ocean  
	general circulation models (CGCMs) produce  
	a climate that is significantly more symmetric 

about the equator than in observations (Mechoso et al. 
1995; Davey et al. 2002; Biasutti et al. 2006; de Szoeke 
and Xie 2008; Richter et al. 2016; Richter 2015; Siongco 
et al. 2015). Outstanding features include positive sea 
surface temperature (SST) errors south of the equator 
(Fig. 1a), collocated in part with an intertropical con-
vergence zone (ITCZ) precipitation band (Fig. 1b) much 
stronger than that observed in nature. The “double 
ITCZ” error is further implicated in the simulated 
Hadley circulation, seasonal cycle and winds on the 
equator, and equatorial modes of variability, such as 
El Niño–Southern Oscillation (ENSO) in the Pacific, 

casting doubt on the ability to model and predict both 
regional and global climate. These positive SST biases 
are apparent only in the Pacific and Atlantic basins 
(Fig. 1a), indicating the Indian Ocean’s precipitation 
biases have other origins. Phase 5 of the Coupled Model 
Intercomparison Project (CMIP5) models demonstrate 
only a slight improvement in the mean from CMIP3 
[Fig. 2a; see also Richter et al. (2014b) and Zhang et al. 
(2015)], revealing the stubbornness of the biases, al-
though some individual models are more successful 
(Fig. 2b; Richter et al. 2014b).
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Another interhemispheric asymmetry with which 
models have difficulty is subtropical stratocumulus 
clouds. The planetary stratocumulus decks are not 
symmetric about the equator, but rather about the 
ITCZ located at approximately 10°N. The equatorial 
climate is linked directly to the Southern Hemisphere’s 
subtropical highs and stratocumulus cloud decks 
through the westward trade winds (Ma et al. 1996; 
Bellomo et al. 2014, 2015). The longwave stratocumu-
lus radiative cooling further strengthens the tropical 
atmospheric circulation (Bergman and Hendon 2000; 
Peters and Bretherton 2005; Fermepin and Bony 2014). 
Global models have struggled to capture the low-level, 
geometrically thin but optically significant stratocu-
mulus clouds. The lack of clouds may then seem to be 
an agent for the warm SST biases, by allowing excessive 
sunlight to reach the surface (e.g., Huang et al. 2007). 
However, CMIP models often overcompensate by cool-
ing excessively through their surface turbulent fluxes 
(de Szoeke et al. 2010; Xu et al. 2014b).

At the equator, the ocean’s thermocline structure 
is sensitive to atmospheric wind perturbations, and 
positive air–sea feedbacks amplify SST variability 
(Bjerknes 1966, 1969; Philander 1981; Zebiak and 

Cane 1987). While Pacific zonal SST gradients tend 
to be realistic and have a magnitude comparable to 
the observation, those in the Atlantic can have the op-
posite sign to that observed (Fig. 2b). Gulf of Guinea 
SSTs can be too warm (Fig. 2b), with biases beginning 
in the boreal spring and peaking in summer (DeWitt 
2005; Song et al. 2015). The smaller Atlantic basin 
means its equatorial climate is inf luenced by the 
monsoons over Africa, North America, and perhaps 
even Asia (Rodwell and Hoskins 1996; Okumura 
and Xie 2004; Siongco et al. 2015). More recently ap-
preciated is that the most severe SST biases, reaching 
6°–8°C, occur in the coastal southeast Atlantic (SEA) 
away from the equator (Xu et al. 2014a; Toniazzo and 
Woolnough 2014). Observational studies have sug-
gested oceanic Kelvin waves link the equatorial and 
southeast Atlantic Oceans since Hirst and Hastenrath 
(1983), a process also diagnosed in CMIP5 models 
(Xu et al. 2014a).

A brief description of the two basins sets the stage 
for further discussing their physical processes. The 
Southern Hemisphere SST distributions differ, in 
keeping with a different spatial structure to the oce-
anic eastern boundary currents (Fig. 3) that reflects 
different bathymetry (Mazeika 1967) and land to-
pography (Philander 1979). The surface winds stream 
toward the ITCZ in both basins (not shown), but the 
near-equatorial eastern basin coastal surface current 
is poleward in the Atlantic and equatorward in the 
Pacific (Fig. 3). The eastern Pacific boundary current 
ultimately merges with equatorial waters cooled by 
upwelling. In contrast, the equatorward Benguela 
Current off the coast of southern Africa is met by the 
warmer waters of the poleward Angola Current, form-
ing the Angola–Benguela Front (ABF) that migrates 
seasonally between 15° and 17°S. Furthermore, a raised 
upwelling oceanic thermocline north of the ABF, the 
Angola Dome, has no counterpart in the southern 
Pacific (Doi et al. 2007).

The warm Atlantic near-equatorial waters coin-
cide with a reduction in the cloud fraction that does 
not exist in the Pacific (Fig. 4). To the south, the 
southern boundary of the Atlantic stratocumulus 
decks abuts the northern edge of coastal atmospheric 
wind jets (Fig. 4). All basins possess significant low-
level atmospheric coastal jets above oceanic upwell-
ing regions, but these winds are most pronounced 
in the Southern Hemisphere. The wind spatial dis-
tribution is important for establishing the upwelling 
structure (Fennel and Lass 2007; Small et al. 2015). 
In the southeast Pacific (SEP), the wind jet exit into 
the Arica Bight supports an elevated, cloudy coastal 
boundary layer (Zuidema et al. 2009). In the Atlantic, 
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the coastal surface winds 
south of 20°S are guided 
northwestward along with 
the Benguela Current by the 
convex Angolan–Namibian 
coastline (Nicholson 2010), 
and the stratocumulus deck 
is primarily offshore. The 
monthly mean SSTs are 
1–2 K warmer in the south-
east Atlantic than in the 
Pacific (Fig. 4b), reducing 
the monthly mean atmo-
spheric lower-tropospher-
ic stabilities accordingly. 
Nevertheless, the SEA cloud 
fraction exceeds that of 
the SEP during the austral 
spring (Fig. 4c), despite be-
ing thinner clouds (Fig. 4d), 
coinciding with a time when 
the aerosol optical depth 
(AOD) over the SEA is also 
greater (Fig. 4f).

Our discussion cannot 
be fully comprehensive of 
this vast, complex, and long-
studied problem (see also 
Richter 2015). The main 
goal is to articulate the ra-
tionale for recommended 
near-future improvements 
in individual models’ mean 
tropical climate. The following section (“The surface 
energy balance in models and observations”) further 
assesses the surface energy balance in models and 
observations. The “Main regional processes contrib-
uting to coupled climate model SST biases” section 
discusses regional error sources for the SST biases, 
selected for their perceived importance: the stratocu-
mulus cloud deck, deep convection, oceanic eddies, 
surface winds, and model resolution. The “Model 
error growth attribution” section highlights attribut-
ing bias through evaluating fast versus slow SST error 
growth. The “Remote impacts of eastern tropical SST 
biases” section discusses the impact of basin-specific 
SST biases upon the global climate, and the “Gaps 
and recommendations” section concludes with 
recommendations.

THE SURFACE ENERGY BALANCE IN 
MODELS AND OBSERVATIONS. Differences 
in CMIP5 model-mean surface flux biases, shown in 

Fig. 5 with respect to the objectively analyzed air–sea 
fluxes (OAFlux) product (Yu et al. 2008), suggest dif-
ferent processes dominate the SST biases in the two 
basins. The CMIP5 net radiative [shortwave (SW) and 
longwave (LW)] surface fluxes are more biased in the 
southeast Pacific, where they are spatially collocated 
with the thicker SEP cloud deck, than in the southeast 
Atlantic. In contrast, the turbulent (primarily latent 
heat) fluxes are more biased in the Atlantic, where 
they ultimately dominate the net CMlP5 surface flux 
biases. Analysis of Atmospheric Model Intercom-
parison Project (AMIP) simulations has shown that 
even with observed SSTs, surface energy flux biases 
of the same sign remain, if reduced (Zheng et al. 2011; 
Vanniere et al. 2014a; Xu et al. 2014a).

Issues with the surface flux products used to as-
sess CGCM biases will also affect the assessment. 
For example, OAFlux does not have a globally closed 
surface energy budget, in that the turbulent fluxes are 
derived from National Centers for Environmental 

Fig. 1. (a) CMIP5 ensemble annual-mean SST error in the historical 1960–2004 
integrations of 25 Fifth Assessment Report (AR5) coupled GCMs relative to 
the Hadley SST climatology. (b) CMIP5 ensemble 1979–2004 annual-mean 
precipitation errors in the same 25 models relative to Climate Prediction 
Center (CPC) Merged Analysis of Precipitation (CMAP) data, and mean 
wind (arrows) errors in 22 models relative to ERA-I 10-m winds. Arrows 
plotted only where all individual model wind errors fall within 90° from the 
mean. White hatching denotes areas where the sign of the error agrees in 
all models; black dots denote where all but one [Commonwealth Scientific 
and Industrial Research Organisation Mark 3.6.0 (CSIRO Mk3.6.0)] agree. 
[Adapted from Toniazzo and Woolnough (2014).]
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Prediction (NCEP) data and the radiation f luxes 
from the International Satellite Cloud Climatology 
Product (ISSCP). A further assessment uses data 
from two buoys that measure all the surface energy 
components of the net heat f lux: the Woods Hole 
Oceanographic Institution Stratus buoy at 20°S, 
85°W, and a Prediction and Research Moored Array 

in the Tropical Atlantic 
(PIRATA; Bourlès et al. 
2008) buoy at 10°S, 10°W 
(Fig. 4). Approximately 20 
buoys worldwide measure 
the full surface energy bud-
get, with the primary limi-
tation being the availability 
of a pyrgeometer (longwave 
radiation sensor), as it is 
difficult to calibrate and 
maintain (Yu et al. 2013). 
Our assessment neglects 
spatial weighting issues 
(Josey et al. 2014).

Figure 6 shows the buoys’ 
climatological annual cycle, 
the OAFlux, and the Clouds 
and the Earth’s Radiant 
Energy System (CERES) 
surface radiative f luxes 
(Kato et al. 2013). The buoy 
radiation measurements 
indicate more surface long-
wave radiation loss, and 
less shortwave radiation 
flux going into the ocean, 
than in either the CERES or 
OAFlux dataset, consistent 
with Fig. 8 of de Szoeke 
et al. (2010). The shortwave 
bias is generally larger than 
the longwave bias, leading 
to an approximate positive 
bias (an ocean warming) in 
the net heat flux of 10 W m−2 
at the Stratus site.

A more quant itat ive 
comparison of the buoy, 
CERES, and OAFlux annu-
al means is shown in Table 
1, and includes values from 
the European Centre for 
Medium-Range Weather 
Forecasts (ECMWF) inter-
im reanalysis [ERA-Interim 

(ERA-I)] and the TropFlux project. TropFlux is a grid-
ded energy-balanced surface flux product developed 
explicitly to drive ocean dynamical simulations. 
TropFlux combines ERA-I with ISCCP shortwave 
fluxes and includes buoy-based bias and amplitude 
corrections (Kumar et al. 2012, 2013). Buoy, OAFlux, 
and TropFlux turbulent flux calculations all rely 

Fig. 2. (a) CMIP5 minus CMIP3 model-mean SST differences reveal little 
improvement, while (b) the equatorial Atlantic SST gradient is only slightly 
improved in CMIP5 (blue) from CMIP3 (red; solid line denotes model mean and 
color-fill denotes standard deviation), with the Reynolds climatological mean 
values as the black line. The three models capable of reproducing the correct 
asymmetry are highlighted [Meteorological Research Institute Coupled Atmo-
sphere–Ocean General Circulation Model, version 3 (MRI-CGCM3), Hadley 
Centre Global Environment Model, version 2–Earth System (HadGEM2-ES), 
and Beijing Normal University–Earth System Model (BNU-ESM)].

2308 DECEMBER 2016|
Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/17/21 06:52 PM UTC



on the Coupled Ocean–
At mosphere  Re sp on s e 
Exper iment  (COARE), 
version 3, bulk algorithm 
(Edson et al. 1998; Colbo 
and Weller 2009). CERES, 
OAFlux, and ERA-I report 
a larger net radiation flux 
into the ocean than the buoy 
at both locations, with the 
CERES–buoy difference 
exceeding the reported 
CERES uncertainties (Kato 
et al. 2013). In contrast, 
TropFlux does not allow 
enough radiation to enter 
the ocean.

T h e  o v e r e s t i m a t e d 
OAFlux net radiative flux-
es combine with underes-
timated turbulent f luxes 
to yield too much net sur-
face warming, by almost 
20 W m−2, at both buoy sites. 
In contrast, weak TropFlux 
and ERA-I net fluxes do not 
warm the ocean enough at 
the Stratus buoy location, by 10–25 W m−2, primarily 
because the turbulent fluxes overcompensate. At the 
Atlantic PIRATA buoy, the ERA-I net fluxes similarly 
do not produce enough warming, but here the indi-
vidual biases in the TropFlux fluxes compensate to 
yield a reasonable net flux. Overall the ERA-I—and, 

to a lesser extent, TropFlux—biases are similar in 
sign to that of CMIP3 models (not enough ocean 
warming; de Szoeke et al. 2010). An annual-mean 
2001–09 time series of the Stratus buoy and OAFlux 
surface f lux components confirms the consistency 
of the OAFlux (ISCCP) radiation biases (Fig. 7). An 

Fig. 3. The surface currents help bring colder waters up near the equator 
in the Pacific, whereas in the Atlantic, the warm Angola Current flows 
south from the equator to 15°S, establishing a strong SST gradient with the 
northward-flowing cool Benguela Current to its south. Annual-mean SST and 
surface current data from the Simple Ocean Data Assimilation reanalysis.

Table 1. Annual-mean surface fluxes (W m−2) from buoy, CERES, OAFlux, TropFlux, and ERA-I da-
tasets. Net CERES fluxes in parentheses are calculated using the OAFlux turbulent fluxes. All values 
are positive downward. The buoy turbulent fluxes are calculated using the COARE 3.0 bulk formulas, 
with an estimated error of 5 W m−2 (Colbo and Weller 2009; Edson et al. 1998). These algorithms are 
also used in OAFlux and TropFlux. The Stratus buoy sensors were evaluated and calibrated annually 
for 9 yr (Colbo and Weller 2007; Holte et al. 2014).
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Buoy 191.0 −42.6 148.4 −111.9  −7.4 36.5 219.8 −48.7 171.1 −150.5  −5.4 20.6

CERES 201.1 −39.4 161.7 — — (52.4) 224.7 −49.5 175.2 — — (38.0)

OAFlux 195.3 −30.0 165.3 −109.3 —    56 223.0 −42.3 180.7 −137.2  −9.9 43.5

TropFlux 175.8 −42.7 133.1 −121.2 −16.8 11.9 209.5 −46.4 163.1 −143.3 −12.0 19.9

ERA-I 207.0 −47.0 160.0 −137.8 −15.4 21.8 229.1 −51.0 178.1 −170.7 −15.0  7.7
1 1 Jan 2001–31 Dec 2009.
2 1 Jan 2009–31 Dec 2009.
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interesting increase in the turbulent fluxes is attrib-
uted to increasing winds by Weller (2015), which are 
more weakly apparent in the OAFlux time series.

Net gridded flux terms indicate either too little or too 
much heat going into the ocean, by ±10–20 W m−2, com-
pared to buoy values, depending on the product. This 
influences the interpretation of CMIP model surface 
energy budget biases. The main constraint on using buoy 
data for climate model validation is the lack of longwave 
radiation data and data gaps.

MAIN REGIONAL PROCESSES CONTRIB-
UTING TO COUPLED CLIMATE MODEL 
SST BIASES. OAFlux allows for more ocean warm-
ing than is observed, an error that implies the CMIP5 

model net f lux biases are even larger, by at least 
10 W m−2, than reported in Fig. 5. This only reinforces 
the sense of the net CMIP5 errors, particularly in the 
cloudier regions. We next focus on how the CGCM 
representations of clouds, deep convection, oceanic 
eddy mixing, winds, and the model resolution con-
tribute to perceived model SST biases.

Clouds. Improvements in cloud radiation fields im-
prove the equatorial climate through altering equato-
rial winds, SSTs, and ITCZ rainfall (Ma et al. 1996; 
Hu et al. 2008; Wahl et al. 2011). More recently the 
underrepresentation of clouds in the Southern Ocean 
has also been linked to the spurious double ITCZ 
in CMIP models (Hwang and Frierson 2013). The 
cloud measure most directly relevant to the surface 

Fig. 4. The September-mean SST, cloud, and coastal wind climatology, and annual cycle in cloud and atmospheric 
properties for the two basins. (a) Based on 2000–10 September-mean SST (°C) from the TRMM Microwave Im-
ager (colored contours), 2001–10 Moderate Resolution Imaging Spectroradiometer (MODIS; Terra) cloud fraction 
(gray-filled contours, values spanning 0.6–1.0), and 1999–2009 QuikSCAT coastal wind maxima (yellow-red-filled 
contours, values spanning 7.5–9.0 m s−1, isolated from other wind speed maxima). Domain-mean annual cycles in 
(b) SST, (c) cloud fraction, (d) daily mean liquid water paths, (e) LTS (here, the 2000–10 ERA-I 700–1000-hPa po-
tential temperature difference), and (f) MODIS aerosol optical depths shown for the two indicated boxes: 10°–20°S, 
80°–90°W and 10°–20°S, 0°–10°E averages, following Klein and Hartmann (1993). Liquid water paths from 2002–11 
Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Locations with indicated 
buoys (Stratus and 10°S, 10°W) are assessed in “The surface energy balance in models and observations” section.
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energy balance is the cloud impact on the radiation. 
A cloud radiative effect (CRE), defined as the differ-
ence between the net top-of-atmosphere radiation 
(longwave plus shortwave) when clouds are present 
and when clouds are absent, can be directly compared 
to satellite-derived values. The CRE avoids compli-
cations in different cloud cover measures (Kay et al. 
2012), although models tuned to produce a “reason-
able” CRE pattern may compensate between cloud 
cover and optical thickness (Nam et al. 2012). Mean 
CMIP5 net CRE biases are very large, up to 40 W m−2, 
relative to CERES values (Figs. 8a and 8b; see also Lin 
et al. 2014). This is especially the case in the Pacific, 
consistent with Fig. 5. The CMIP5 models generally 
continue to underestimate subtropical stratocumulus 
cloud cover relative to observations (Fig. 9), similar to 
CMIP3 (Klein et al. 2013), although fewer subtropical 
clouds are overly optically thick (Klein et al. 2013).

A natural question to ask is whether the strong 
SST bias initially creates the cloud bias, or vice versa. 
The CMIP5 archive also includes atmosphere-only 
simulations that prescribe observed SST (the so-called 
AMIP simulations). These provide a test of the 
model’s atmospheric errors, with cloud errors coupled 
with the circulation but not with the SSTs. The AMIP 
ensemble-mean CRE bias relative to CERES shows 
remarkable similarity to the coupled GCM results. 
Closer inspection reveals that the biases in the cou-
pled models do tend to be larger than in the AMIP 
models, suggesting some role for surface temperature 
feedbacks in exacerbating the atmosphere’s cloud bias 

(Figs. 8e and 8f). In addition, more of the AMIP simu-
lations show negative biases, which implies that fixing 
the SST can lead to an overcorrection in the clouds, 
a feature also noted in some regional climate models 
(Richter 2015). The atmospheric model component is 
thus implicated as the main cause of the cloud errors 
(see also Lauer and Hamilton 2013).

The question is then whether climate models fail to 
produce the large-scale conditions conducive to cloud 
formation, in particular the lower-tropospheric stabil-
ity (LTS), or if climate models struggle to depict low 
clouds realistically even when the large-scale circula-
tion is correct. Most CMIP5 models possess a lower 
troposphere over the stratocumulus regions that are 
less stable than in ERA-I, but with reasonable seasonal 
phasing (Figs. 9e and 9f). Yet, many CMIP5 model 
annual cycles in stratocumulus cloud amount and 
liquid water path are opposite of that in observations 
(Figs. 9a–d), with too much cloud during January–
March, when the atmosphere is less stable. Models 
with stronger correlations between low cloud cover and 
the LTS generally possess more realistic cloud annual 
cycles (see also Noda and Satoh 2014; Lin et al. 2014).

In Fig. 9, the Community Earth System Model, 
version 1 {Community Atmosphere Model, version 
5 [CESM1 (CAM5)]} is best able to reproduce a 
realistic seasonal cycle. In CAM5, underestimates of 
the offshore stratocumulus can be thought of as an 
overeager transition to trade cumulus (Medeiros et al. 
2012). Near the coast, land-induced subsidence sig-
nificantly adds to the larger-scale subsidence (Muñoz 

Fig. 5. (a)–(d) CMIP5 biases for the eastern Pacific show different spatial structures than those for the eastern 
Atlantic. (a),(e) Net SW, (b),(f) net LW, (c),(g) turbulent [sensible plus latent heat (SH + LH) fluxes], and (d),(h) 
net surface flux CMIP5 biases averaged from 1984 to 2004 relative to OAFlux. (i),(j) CMIP5 SST biases relative 
to the Reynolds climatology. Buoy locations considered in Figs. 6 and 7 and Table 1 are indicated with black 
and yellow boxes, respectively.
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A	  long history of interest exists in  
	 solving “the double-ITCZ problem,” 

beginning with meetings in the late 
1980s–early 1990s focused on the Pa-
cific, co-organized by George Philander 
and others in Toledo, Spain, then Paris, 
France, and later in Los Angeles, Cali-
fornia (Mechoso et al. 1995; Mechoso 
and Wood 2010). A consensus that 
available datasets for the eastern tropi-
cal Pacific were not sufficient to support 
a detailed model validation spawned the 
1995–2005 U.S. PanAmerican Climate 
Studies (PACS) program, which oversaw 
the development of the Eastern Pacific 
Investigation of Climate Processes in 
the Coupled Ocean–Atmosphere 
System (EPIC) field campaign in 2001. 
EPIC connected observations in the 
eastern Pacific ITCZ (Raymond et al. 
2004) to the stratocumulus-covered 
southeastern Pacific (Bretherton et al. 
2004b). The newly created panel on 
VAMOS of the World Climate Research 
Programme (WCRP)’s U.S. Climate 
Variability and Predictability Program 
(CLIVAR) thereafter developed and 
implemented the more comprehensive 
VOCALS Regional Experiment held in 
2008 (Mechoso et al. 2014). This com-
prehensively documented the southeast 

Pacific aerosol–cloud environment, and 
VOCALS datasets have been used to 
constrain climate model microphysics 
(Gettelman et al. 2013) and turbulence 
(Kubar et al. 2015). A subsequent 
workshop in 2011 focused on the physi-
cal processes underlying model biases 
in the tropical Atlantic (Zuidema et al. 
2011a,b).

In parallel with PACS, meetings more 
specifically focused on the performance 
of CGCMs continued. A 2003 meet-
ing directed by the National Science 
Foundation (NSF) specifically sought a 
modeling strategy for reducing the bi-
ases through a “mini-CMIP” multimodel 
comparison, followed by workshops 
in 2005–07. A further concept intro-
duced at the 2003 meeting was to bring 
smaller teams of observationalists and 
modelers together in climate process 
teams (CPTs), to develop and improve 
relevant and specific model parameter-
izations (Bretherton et al. 2004a). CPTs, 
with lifetimes of approximately 3 years, 
have addressed cloud parameterizations, 
oceanic deep mixing, and oceanic eddies 
to date, building on datasets from the 
southeast Pacific and the oceanic Dia-
pycnal and Isopycnal Mixing Experiment 
in the Southern Ocean (DIMES).

U.S. oceanographic activity in the 
Atlantic primarily occurs through 
cooperation with France and Brazil in 
PIRATA (Bourlès et al. 2008), as well 
as within internationally coordinated 
multiyear process studies focusing on 
the eastern equatorial Atlantic cold 
tongue [see Johns et al. (2014), and 
corresponding special issue] and the 
variability of the African monsoon 
[African Monsoon Multidisciplinary 
Analysis (AMMA); see also Roehrig 
et al. 2013]. A recent large European 
Union consortium is now conducting 
the oceanographic Enhancing Pre-
diction of Tropical Atlantic Climate 
and Its Impact (PREFACE) campaign, 
focusing on the near-coastal south-
eastern Atlantic SST bias. Significant 
atmospheric fieldwork in the southern 
Atlantic, originating largely outside of 
the WCRP CLIVAR framework, is now 
underway (Zuidema et al. 2016). These 
campaigns are part of a strategy to 
understand low-cloud adjustments to 
biomass-burning aerosols from African 
continental fires and further feedbacks 
to regional climate. Efforts to improve 
SST biases in global aerosol models 
will improve climate simulations of the 
aerosol effects as well.

A 30-YEAR HISTORY CONTINUES

and Garreaud 2005; Toniazzo et al. 2011), generating 
a positive correlation between boundary layer depth 
and cloud cover that contrasts with that offshore 
(Garreaud and Muñoz 2005). Model intercomparisons 
in the southeast Pacific reveal model underestimates 
in the near-coastal boundary layer depth (Wyant et al. 
2010, 2015), related to relatively low model vertical 
resolution and poor treatment of cloud-top entrain-
ment mixing in some models (Sun et al. 2010). The 
dynamic and thermodynamic environments occupied 
by the coastal and offshore stratocumulus regions may 
be best considered individually, particularly for the 
Pacific (Fig. 4). The direct radiative effect of aerosols 
as a cause for SST biases must be small simply because 
aerosol optical depths are small compared to that of 
clouds (Fig. 5f). Interest in aerosol–cloud interactions 
nevertheless aid useful low-cloud parameterizations 
efforts (e.g., Mechoso et al. 2014; see also the sidebar).

The atmospheric model component is implicated as 
the cause for too few low clouds in coupled models.

Deep convection. Tropical precipitation in coupled 
climate models is offset from observations (Fig. 1b), 
and the large-scale circulation links the precipitation 
to the SST biases. In and around the smaller Atlantic 
basin, South America and Africa also compete for the 
precipitation, affecting the hemispheric distribution, 
evident in AMIP runs already (Siongco et al. 2015). 
Although the process(es) linking the precipitation 
and SST biases is (are) still under debate (Richter and 
Xie 2008; Zermeno-Diaz and Zhang 2013; Richter 
et al. 2014a), it is self-evident that models with better 
precipitation representations can more accurately 
capture realistic air–sea coupling.

The question arises whether the convective param-
eterizations are themselves to blame for the precipita-
tion biases, or whether other model aspects affect how 
the precipitation is distributed. Little progress is evident 
moving from CMIP3 to CMIP5 (Zhang et al. 2015), de-
spite significant efforts to improve some of the convec-
tive parameterizations (e.g., Gent et al. 2011). Increases 
in model resolution (both atmospheric and oceanic) 
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do slightly improve the precipitation placement (Gent 
et al. 2011; Patricola et al. 2012), related by Siongco 
et al. (2015) to an improved continental geography sur-
rounding the Atlantic basin but not to the convective 
parameterizations. It is only at resolutions that begin 

Fig. 6. The mean annual cycles in the net SW, net LW, 
turbulent (SH + LH) fluxes, and their sum (net) at the 
(a) Stratus WHOI buoy (20°S, 85°W) and (b) PIRATA 
(10°S, 10°W) buoys (see also Figs. 4 and 5), from buoy 
data (black solid line), CERES Energy Balanced and 
Filled (EBAF) radiation data (red and blue solid lines), 
and OAFlux (ISCCP) data (dashed and green solid lines). 
Annual-mean buoy values are indicated to the right of 
each panel. The Stratus buoy annual cycles are based on 
complete data spanning 1 Jan 2001–31 Dec 2009, while 
the PIRATA buoy annual cycles span intermittent and 
differing time lengths: Mar 2000–Nov 2013 for CERES, 
Oct 1997–May 2014 for the buoy turbulence and SW 
radiation data with occasional data gaps, and Aug 2005–
May 2014 for the buoy LW radiation data with missing 
data in 2011–12. The OAFlux dataset spans 1985–2009. 
The CERES EBAF data have a resolution of 25 km, and 
the OAFlux dataset has a 1° resolution, averaged over 
2° × 2° at the two buoys.

to permit convection explicitly—10 km or less—that 
convective representations clearly improve (Dirmeyer 
et al. 2012), supporting the use of a multiscale model-
ing framework that intersperses explicit simulations of 
convection into climate models (Randall et al. 2003).

Until climate model resolutions of 10 km or less 
are readily available to many, efforts to improve con-
vective parameterizations remain warranted. A well-
known shortcoming of cumulus parameterizations 
is their insensitivity to the environmental air and 
particularly to humidity (Derbyshire et al. 2004; Del 
Genio 2012). This curtails climate models’ ability to 
capture the full range of ITCZ convective variability 
(shallow, congestus, and upper-level stratiform in 
addition to the prototypical deep convective towers) 
and mesoscale organization. The inability to repre-
sent small-scale convection–humidity interactions 
(entrainment, rain evaporation) affects the sensitivity 
of ITCZ precipitation to larger-scale local changes 
versus remotely driven changes in the atmospheric 
thermodynamics. Higher grid resolutions challenge 
a basic assumption of most convection schemes—
namely, that the updraft fraction is small within a grid 
box, introducing new difficulties in parameterizing 
mesoscale organization (Arakawa 2004; Arakawa 
et al. 2011; Del Genio 2012). Convection–humidity 
interactions may be particularly difficult to capture 
well for the narrow Atlantic and eastern Pacific ITCZ 
regions because of their strong meridional SST and 
free-tropospheric pressure and humidity gradients 
(Zuidema et al. 2006; Zhang et al. 2008).

Some skill in reproducing observed relationships 
between convection, relative humidity, and vertical ve-
locity has been demonstrated using stochastic physics 
(Watson et al. 2015). Systematic biases in model physics 
can also be uncovered through comparison to observa-
tions at high temporal and vertical resolution (Phillips 
et al. 2004; Webb et al. 2015; Nuijens et al. 2015).

Efforts to improve tropical precipitation biases require 
both increased model resolution and sustained param-
eterization development in individual models.

Oceanic eddy mixing. Warm SST biases are also appar-
ent—if sharply reduced—in ocean model–only [Ocean 
Model Intercomparison Project (OMIP)] simulations 
forced using realistic atmospheric forcing estimates, 
such as the Common Ocean Reference Experiment, 
version 2 (CORE2; Yeager and Large 2008); see Fig. 10. 
This suggests that model ocean processes also do not 
provide sufficient surface cooling. Furthermore, an 
early assessment of 4 years’ worth of subsurface data 
from the Stratus buoy suggested the mean ocean 
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Fig. 7. The 2001–09 annual-mean time series in (a) net SW, (b) net LW, (c) 
turbulent (SH + LH) fluxes, and (d) their sum (net) at the Stratus WHOI buoy 
(20°S, 85°W) spanning 2001–09, using buoy data (black solid line), CERES 
EBAF radiation data (colored solid lines), and OAFlux (ISCCP) data (dashed 
lines). Mean values are shown at right.

circulation did not advect enough cool water to bal-
ance the time-mean upper-ocean heat budget (Colbo 
and Weller 2007, 2009). These observations motivated 
work during the Variability of the American Monsoon 
Systems (VAMOS) Ocean–Cloud–Atmosphere–Land 
Study (VOCALS) to understand the role of ocean ed-
dies in redistributing heat.

Subsequently, several regional eddy-resolving ocean 
modeling studies have highlighted the contribution 
of eddies to the SST (Colas et al. 2012, 2013), most 
pronounced within several hundred kilometers of 
the South American coast, but with little influence by 
eddy transport over 1,000 km offshore (Toniazzo et al. 
2009; Zheng et al. 2010, 2011). A longer buoy time series 
providing an additional 5 years of data, combined with 
Argo floats, drifters, and satellite altimeter data, now 
suggests that the mean oceanic circulation, rather than 
eddies, does provide sufficient surface cooling 1,000 km 
offshore (Holte et al. 2013, 2014).

An important lesson 
may be that one isolated 
buoy is not adequate for 
robustly determining an 
eddy contribution. A long 
time series, approaching 
20 years, is needed to es-
tablish the mean upper-
oceanic heat budget be-
cause of the slow evolution 
of individual eddies. This 
is because the three or 
four eddies passing a buoy 
annually provide consid-
erable interannual and 
perhaps even interdecadal 
variability to the terms 
in the upper-ocean heat 
budget. More crucia l ly 
perhaps, other means are 
required to establish the 
spatial context. Modeling 
challenges still remain, as 
robustly modeling oceanic 
eddies requires high reso-
lution at both the spatial 
and vertica l sca les and 
attention to diffusion and 
numerical schemes. The 
emergent properties of ed-
dying versus noneddying 
models may allow for a 
more definitive evaluation 
of the effect of eddies.

Atlantic turbulent fluxes are more biased than in 
the Pacific, with large near-coastal model SST biases 
(Fig. 5j) that are not collocated with the shortwave 
errors (Fig. 5e). This is consistent with ocean models 
contributing more to the SST biases in the Atlantic 
than the Pacific, in keeping with Xu et al. (2014a). For 
the coastal region, the extent of the eddy contribution 
to maintaining the Angola–Benguela Front is still 
unknown but may be significant, given the strong 
frontal structure and density gradient (Fig. 3).

Available evidence now suggests a contribution by 
oceanic eddy mixing to SEP SST 1,000 km offshore that 
is less than the still significant sampling error from one 
buoy, while the contribution of eddies to the SEA SST 
is still unknown.

Winds and model resolution. The history in under-
standing the wind contribution to SST error growth 
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▶ Fig. 8. (top) Composite annual-mean net CRE biases 
with respect to CERES values reveal larger cloud ra-
diative biases in (a) the Pacific than in (b) the Atlantic, 
based on 22 CMIP5 models. The largest biases occur at 
the coast. (middle) Fixed-SST (AMIP) simulations re-
veal similar annual-mean cloud biases in (c) the Pacific 
and (d) the Atlantic, implicating the atmosphere as the 
source for low-cloud errors, based on 28 models span-
ning 1950–99 when available, with most simulations 
beginning in 1979. The AMIP ensemble is composed 
of different models than the CMIP5 ensemble, based 
on data availability. (bottom) CREs from atmosphere-
only vs coupled simulations of the same model are 
compared in (e) the Pacific (10°–20°S, 80°–90°W) and 
(f) the Atlantic (10°–20°S, 0°–10°W), where the dashed 
line indicates y = x. CMIP5 “historical” simulations 
span 1950–99, all months, and CERES EBAF [Edition 
2.8 (Ed2.8)] spans 2000–13. No attempt is made to 
account for model independence (Caldwell et al. 2014).

is closely tied to that of model resolution. Along the 
equatorial Atlantic, the most robust process contri-
bution to SST error growth occurs through reinforc-
ing too-weak easterlies. The wind bias is linked to 
incorrect model-dependent distributions of tropical 
precipitation (Biasutti et al. 2006; Richter and Xie 
2008; Richter et al. 2012; Siongco et al. 2015) and is 
also present in AMIP simulations (e.g., Zermeno-Diaz 
and Zhang 2013), although the ocean model can also 
contribute through too-weak entrainment through 
the ocean thermocline (Song et al. 2015).

The most significant improvements in the equato-
rial climate have come from improvements in model 
resolution both in the atmosphere and ocean, argu-
ably first noted in the eddy-resolving regional ocean 
simulation of Seo et al. (2006). Equatorial and eastern 
Pacific SSTs improved in higher-resolution versions 
of the Community Climate System Model (CCSM; 
McClean et al. 2011) and the Geophysical Fluid 
Dynamics Laboratory Climate Model, version 2.5 
(GFDL CM2.5; Delworth et al. 2012). A notable suc-
cess is the first realistic climate model depiction of the 
Atlantic cold tongue and ITCZ location using a high-
resolution version of CESM (Small et al. 2014). Thus, 
equatorial SST biases ultimately appear solvable once 
individual CGCMs can acquire sufficient resolution in 
their individual atmosphere and ocean components to 
resolve the dynamics unique to the equator. That said, 
a remaining question is how the equatorial Atlantic 
westward winds are maintained when they oppose the 
sea level pressure gradient (Richter et al. 2016).

Improvements in the equatorial winds do, through 
coastal Kelvin waves, improve the coastal climate at the 
eastern basin boundaries (Richter et al. 2012). However, 
this is not sufficient to remove the coastal SST biases 

altogether, in particular in the southeast Atlantic. 
Further work has clarified that increased resolution in 
the atmospheric model component is more important 
than in the oceanic component, once the latter is on 
the order of 0.25° resolution (Fennel and Lass 2007; 
Small et al. 2014, 2015).

The relationship between model resolution and 
SST biases is explored in Fig. 11 using low- and 
high-resolution versions of the CCSM4 and CESM1 
(CAM5). The low-resolution models are approximately 
1° in both the atmosphere and ocean, while the two 
higher-resolution versions both possess 0.1°-resolution 
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Fig. 9. CMIP5 model seasonal cycles (gray lines) in stratocumulus cloud are often out of phase with observations. 
Total/low-cloud amount in southeast (a) Atlantic and (b) Pacific, liquid water path in southeast (c) Atlantic 
and (d) Pacific, and LTS (θ700hPa minus θ1000hPa) in southeast (e) Atlantic and (f) Pacific. In (a) and (b), MODIS low 
cloud indicated in blue, ISCCP total cloud in red, and International Comprehensive Ocean–Atmosphere Data 
Set (ICOADS) surface observations of total cloud cover in aqua [Hadley Centre Global Environmental Model, 
version 2—Atmosphere (HadGEM2-A)] In (c) and (d), AMSR-E 2002–12 liquid water paths are in red. Models 
most highly correlated with observations are highlighted in black and labeled [Beijing Climate Center, Climate 
System Model, version 1.1 (moderate resolution) and Australian Community Climate and Earth-System Simu-
lator, version 1.0 (ACCESS1.0)]. The model with the highest dual correlation is CESM (CAM5) and CSIRO is 
second. Domains are as shown in Fig. 4.

oceans, but a 0.5° atmosphere for CCSM4 (Kirtman 
et al. 2012) and 0.25° atmosphere for CESM1 (CAM5) 
(Small et al. 2014). Both high-resolution simulations 
show improvements in the broader, more meandering 
western boundary currents, with the overall warm bias 
in the CCSM4 simulation reflecting a large sea ice melt 
event. The narrower, more southeast Atlantic coastal 
region is basically unchanged with improvement in 
ocean resolution in the CCSM4 simulations. The 
CESM (CAM5) high-resolution model, with a 25-km 
atmosphere, does show clear improvement over the 
low-resolution version, also in the southeast Atlantic 
region. Nevertheless, the improvement may not be 
happening for the right reasons. The way the Parallel 
Ocean Program, version 2 (POP2), receives the wind 
data includes partially land-covered atmosphere cells 
that bias the wind speed low close to the coast, and an 
area of large wind stress curl is created between the 
coast and the offshore atmospheric jet, displacing the 
location of the upwelling offshore.

The sensitivity of the upwelling to the structure of 
the coastal winds is shown for a regional climate model 
in Xu et al. (2014b) and by embedding a high-resolution 
ocean model within the CCSM4 in Small et al. (2015). 
Part of the warm coastal SST bias is related to meridi-
onal ocean transport by an erroneous warm southward 
current near the coast that is forced by an excessive 
cyclonic wind stress curl. Indeed, Xu et al. (2014a) 
attribute approximately 50% of the southeast Atlantic 
SST bias to the poor simulation of the wind stress curl 
in CMIP5 models. The excessive cyclonic wind stress 
curl then forces an erroneous warm southward coastal 
current (Xu et al. 2014a; Small et al. 2015). The largest 
model SST improvements were found by adjusting the 
model coastal wind structure to observations within a 
narrow (2°) coastal zone (Small et al. 2015).

The differences in how CMIP5 models, the ocean-
forcing CORE2 dataset, and satellite winds resolve 
the surface winds and their stress curl for the coastal 
southeast Atlantic are shown in Fig. 12. The CMIP5 
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winds and stress curl region 
is broad and pronounced, 
with the wind stress curl 
maximum displaced too far 
offshore, related by Richter 
(2015) to the offshore place-
ment of the CMIP5 winds 
and too-weak near-coastal 
CMIP5 winds. The impor-
tance of the spatial wind dis-
tribution (Jin et al. 2009) can 
mean that even the reanaly-
sis-derived CORE2 surface 
forcing dataset, with its ap-
proximately 1°–1.5° spatial 
resolution (Fig. 12b; Large 
and Yeager 2008), will ad-
versely affect OMIP simula-
tions when compared to the 
Scatterometer Climatology 
of Ocean Winds (SCOW; 
Fig. 12a; Risien and Chelton 
2008). Only at a spatial reso-
lution of approximately 10 km do the two wind 
maxima evident in the SCOW climatology become 
fully resolved (Fig. 12d).

The problem of adequately attributing causes is par-
ticularly complex near the Benguela upwelling region, 
because the Angola–Benguela Front is also not well 
resolved in CMIP5 models. A southward displacement 
of the Angola–Benguela Front occurs in all CMIP5 
models and is correlated to the strength of the SST 
biases (Xu et al. 2014a). Too-diffuse coastal and equa-
torial thermoclines and warm subsurface temperature 
biases at the equator reinforce the southeast SST bias 
(Xu et al. 2014b; Small et al. 2014; Richter 2015).

Equatorial SST biases become mitigated with higher 
model resolutions, whereas eastern basin coastal SST 
biases are alleviated more by resolution improvements 
in the atmosphere surface wind stress, once the ocean 
model component is adequately resolved.

MODEL ERROR GROWTH ATTRIBUTION. 
Interim solutions for SST bias identification and cor-
rection include prescribing observed quantities for 
some variables, such as clouds (Huang et al. 2007; 
Hu et al. 2008) or surface radiative fluxes (Wahl et al. 
2011). Other studies assess process biases through 
correlations and lead–lag analyses (Richter and Xie 
2008). More recent efforts evaluate the evolution in 
time of the systematic departure from well-defined 
initial conditions (observations or reanalysis) to 

identify the processes responsible for the initial fast 
SST error growth. These are termed “initial tendency” 
assessments when data assimilation is applied to 
identify the forecast error (Klinker and Sardeshmukh 
1992; Rodwell and Palmer 2007), and hindcast or 
“transpose AMIP” (Williams et al. 2013) when weath-
er forecasts assess fixed-SST models initialized with 
conditions common to a weather forecasting center.

In coupled models, similar decadal hindcast ex-
periments can assess both fast and slow SST error 
growth over time scales between days and a few years 
(Toniazzo and Woolnough 2014). Errors more directly 
linked to the model can then be identified before larger-
scale coupled feedbacks and remote influences over-
whelm the error structure in long-term simulations. 
This is particularly effective for assessing the impact of 
parameterized fast processes, such as clouds and tur-
bulence, on the SST error growth (Ma et al. 2014). The 
initialization must reflect the full ocean–atmosphere 
system, and the biases calculated with respect to the 
same dataset used for the initialization. Care must also 
be taken that the error growth is not simply “initializa-
tion shock” (Klocke and Rodwell 2014). A challenge 
remains to establish realistic initial conditions (Ma 
et al. 2015); an alternative, albeit a technically more 
demanding approach, is to analyze variable increments 
in data assimilation systems (e.g., Jung 2011).

An ensemble-mean example from CCSM4 high-
lights that errors after 5 days can show the initial 
seeds of a warm bias that develops a year later in the 

Fig. 10. Ocean simulations with fixed atmosphere forcings (termed OMIP) 
also produce SST biases, if less pronounced than in CMIP simulations, as 
shown in the 22-ensemble OMIP SST bias relative to CORE2 surface forcing 
for (a) the Pacific and (b) the Atlantic (Danabasoglu et al. 2014). This suggests 
oceanic origins also contribute to the SST biases.
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Fig. 11. SST biases from low-resolution (approximately 1° in both the ocean and atmosphere) (a) CCSM4 and 
(b) CESM1 (CAM5) simulations and from high-resolution (c) CCSM4 (Kirtman et al. 2012) and (d) CESM1 
(CAM5) (Small et al. 2014) simulations. The high-resolution CCSM4 coupled simulation uses a 0.1° ocean with 
42 oceanic levels and a 0.5° atmosphere, and the high-resolution CESM1 (CAM5) model uses a 0.1° ocean with 
62 levels, a 0.25° atmosphere, and a spectral element dynamical core. Both high-resolution simulations use 
POP2 (Danabasoglu et al. 2012). The low-resolution simulations are averaged from 1850 through 2005 and are 
compared with the 1850–2005 merged Hadley–Optimum Interpolation Sea Surface Temperature (OISST) 
climatology (Hurrell et al. 2008). The high-resolution simulations are compared with 10-yr-mean observed 
SSTs centered on the appropriate observed annual-mean CO2 concentration [1986–1995 for CCSM4’s imposed 
CO2 forcing of 355 parts per million (ppm) and 1996–2005 for CESM1 (CAM5)’s CO2 367-ppm forcing].

southeastern Pacific, despite differences in the overall 
error structure (Fig. 13). The initialization is done 
with NCEP’s coupled reanalysis product, the Climate 
Forecast System Reanalysis (CFSR; Saha et al. 2010), 
which is generated from a coupled seasonal climate 
forecasting system, the Climate Forecasting System, 
version 2 (CFSv2; 2011; Saha et al. 2014), and its ad-
joint; a weakness remains the deficit in the low-cloud 
CRE (Hu et al. 2008). In a more thorough analysis of 
three models within the CMIP5 database (Toniazzo 
and Woolnough 2014), large surface wind biases were 
the first to appear, especially over the equatorial re-
gion, driving many of the subsequent errors. These 
initial wind errors are generally coupled with areas of 
deep convection (Richter et al. 2012), suggesting that 
atmospheric circulation errors coupled with model 

physics, especially tropical convection, originate the 
short-term systematic biases.

Analysis of fast SST error growth processes is a promis-
ing computationally efficient approach for pinpointing 
the importance of parameterized fast processes, such 
as convection, clouds, and turbulence, to short-term 
SST error growth.

REMOTE IMPACTS OF EASTERN TROPI-
CAL SST BIASES. What is the impact of the indi-
vidual basin SST biases upon the SST and precipitation 
distribution outside of the basin? This is important to 
gauge in individual models, toward establishing model 
development priorities. Large and Danabasoglu (2006) 
concluded that within-basin impacts of the coastal 
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biases, through surface current advection of the 
coastal SSTs, are substantial. At an intermediate stage 
of complexity between fully coupled and AMIP/OMIP 
experiments, we performed similar experiments with 
a succession of atmospheric models {Community At-
mosphere Model, version 3.0 [CAM3.0 (T42; Xu et al. 
2014a)], CAM4 (2° × 2°), and CAM5 (2° × 2°)} coupled 
to a slab ocean, meaning ocean dynamical adjustments 
are neglected. First, a surface heat flux representing 
the divergence of the ocean heat flux together with 
biases in the atmospheric model processes (commonly 
called the Q flux) is found, which, when included in 
the forcing of the ocean, produces a modeled annual-
mean SST climatology matching the observed SST. 
Then, two further SST bias simulations set the Q flux 
to zero—in an Atlantic region in one case and in a 
Pacific region in another case—while applying the 

original Q flux (adjusted by a constant to preserve the 
global-mean Q flux) everywhere else. As is evident in 
Fig. 14, the Q flux differences (negative changes cor-
responding to heating and positive changes to cooling) 
are smaller in magnitude in the CAM5 experiment 
than in CAM4, and in CAM4 than in CAM3, for both 
the Atlantic and Pacific cases, indicating a reduced 
role for the ocean heat fluxes and atmospheric process 
biases going from CAM3 to CAM4 to CAM5.

In both experiments, large SST biases appear 
in those regions where the Q f lux is set to zero. 
Everywhere else, the changes in surface temperature 
and precipitation result from the remote influence of 
the original bias. The local impact of the Atlantic Q 
flux adjustment on the SST is prominent, in agreement 
with Small et al. (2015). The precipitation impact in 
CAM3 exhibits a pronounced southward shift of the 

Fig. 12. Coastal southeast Atlantic (a)–(d) meridional winds at 10 m and (e)–(h) surface wind stress curls differ 
significantly between observations and models and depend on spatial resolution: (a),(e) 0.25° SCOW ocean surface 
wind vectors, averaged 1999–2009; (b),(f) 1° CORE2 ocean forcing dataset, averaged 1999–2009; (c),(g) CMIP5 multi-
model mean, averaged 1984–2004; and (d),(h) a 9-km simulation with the Weather Research and Forecasting Model, 
averaged 2005–08. See further discussion in Patricola and Chang (2016, manuscript submitted to Climate Dyn.).
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Fig. 13. (a) Fast and (b) slow SST error growth, de-
rived from a 10-member ensemble of retrospective 
CCSM4 forecasts initialized every 12 h starting at 
0000 UTC 27 Dec of each year from 1982 to 2009 with 
NCEP’s coupled reanalysis product CFSR (Saha et al. 
2010), showing similarities between the (a) mean SST 
anomaly error of all the forecasts averaged over the 
first 5 days and (b) error average from days 361 to 365. 
Both represent an average over 1370 forecast days.

Atlantic ITCZ as well as a northward shift in the Pacific 
low-latitude precipitation. The impact on precipitation 
in CAM4 has a structure similar to that in CAM3 but 
with weaker amplitude, while the impact on precipi-
tation in CAM5 is an east–west dipole rather than a 
north–south shift in the Atlantic, with little remote 
impact in the Pacific. In the Pacific Q flux experiments, 
all three model versions show eastern Pacific warm 
bias–like patterns of SST impacts in the changed Q 
flux region, but they are strongest in CAM3, reduced 
in CAM4, and weakest and more coastally trapped in 
CAM5. The remote SST impacts have globally similar 
patterns in all three models. The impact of the Pacific 
Q flux change on precipitation is an equatorward shift 
across the Pacific in all three model versions, strongest 
in CAM3 and smallest in CAM5. Overall, the most 
recent and highest-resolution model version shown 
here demonstrates the smallest impacts.

When the CAM3 Q f lux change was used to force 
CAM5, the SST and precipitation responses were 
quite similar to those found in CAM3. This indi-
cates that the primary cause of the weak response in 
CAM5 compared to CAM3 is the larger Q flux forcing 

inferred for CAM3, rather than a difference in the 
response of the atmospheric dynamical and physical 
processes to the SST forcing in the two versions. This 
neglects why the Q f luxes differ initially between the 
three models, but it does provide a clue to isolating the 
processes responsible for the coupled model biases.

Pacific SST biases have more pronounced remote im-
pacts than Atlantic SST biases in three atmospheres 
coupled to slab-ocean models.

GAPS AND RECOMMENDATIONS. One 
consistent theme is that the dominant causes for the 
tropical ocean SST biases can vary between individ-
ual models. Given that the improvement in reducing 
coupled climate model SST biases between CMIP3 and 
CMIP5 was small in model-mean assessments, we sus-
pect that CMIP6 will only produce further incremental 
improvement in its mean. We therefore recommend a 
continuing focus on identifying and addressing the 
causes of biases in individual models, and restricting 
multimodel assessments to processes and regions that 
remain at the frontier of our understanding, such as 
the coastal upwelling regions. Individual model ex-
perimentation ideally includes comparisons between 
high- and low-resolution versions of the same model 
toward elucidating the contribution of the smaller-
scale processes (e.g., oceanic eddies) and has wider 
benefits, for example, for improving the predictability 
of extreme events (Walsh et al. 2015; Murakami et al. 
2015). Simultaneously, since higher model resolutions 
can highlight other model difficulties, a continuing 
focus on the difficult work of parameterization is 
encouraged, particularly on processes affected by 
finescale vertical structure, such as cloudy turbulence 
and mixing, and ocean thermocline depth and mixing.

We further encourage confronting models with 
data. Campaign datasets elucidate causes for SST 
and cloud errors in the southeast Pacific but not yet 
the Atlantic. Ongoing relevant European-funded 
Atlantic fieldwork is focusing on oceanic processes, 
while upcoming U.S.-funded efforts, also useful for 
climate model improvement, will examine the south-
east Atlantic atmosphere (see the sidebar "A 30-Year 
History Continues").

Reduction in the maximum Atlantic SST biases 
requires more work to better understand and rep-
resent the coupled atmosphere–ocean processes of 
the coastal upwelling region. The vertical structure 
and offshore evolution of the nearshore winds along 
the southwest African coast needs more detailed 
documentation. Plans for dedicated atmospheric 
observations at and slightly south of the oceanic 
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Fig. 14. Ocean heat flux divergences (Q fluxes), initially computed by constraining the modeled SST to match 
observations, are reduced to zero within a slab-ocean coupled to CAM3, CAM4, and CAM5 atmospheres in 
(a)–(i) the southeast Atlantic (5°–30°S, 15°E–50°W) and (j)–(r) the southeast Pacific (5°–30°S, 70°–135°W), with 
the total Q flux held constant. SST biases are depicted in (a)–(c) and (j)–(l), and precipitation biases in (d)–(f) 
and (m)–(o). The Q flux differences are shown in (g)–(i) and (p)–(q).
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Angola–Benguela Front are still lacking. Because 
the ocean upwelling responds quickly to changes in 
the surface wind structure (Desbiolles et al. 2014), 
assessments of fast SST error growth can potentially 
readily identify the importance of wind errors for the 
upwelling regions for individual models. A search for 
the commonalities across models in the upwelling 
regions can help narrow down the root causes.

A further recommendation is to enhance the value 
of existing buoys for climate model validation through 
focusing on their data return and quality control while 
continuing their web-based dissemination. Currently 
only six of the buoys in the Atlantic also include a 
downwelling longwave radiation sensor (Fig. 1 of Yu 
et al. 2013), and only one full year of Atlantic buoy data 
was available for our assessment (Table 1), although a 
new full-flux buoy has been placed at 8°S, 6°E, under-
neath the aerosol optical depth maximum (Rouault 
et al. 2009). The buoy observational array in the Pacific 
is currently being redesigned for the next-generation 
Tropical Pacific Observing System. In this capacity, 
we recommend more buoys capable of measuring all 
components of the surface energy balance, including 
at least one at a stratocumulus-dominated location. We 
further emphasize the workshop recommendation of 
Yu et al. (2013) for a working group to establish metrics 
for surface flux evaluations and improvements.

Other recent work points to remote sources that 
are connected to the tropics through the Hadley cir-
culation (Wang 2006; Wang et al. 2010), which is con-
sistent with recent studies suggesting that the ITCZ 
is drawn toward heating even outside the tropics 
(Hwang and Frierson 2013; Kang et al. 2014). Efforts 
to improve the hemispheric distribution of atmo-
spheric heating in CGCMs (in part through the cloud 
parameterizations) are therefore also encouraged.
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