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The state-of-the-art data assimilation methods used today in operational weather prediction centers

around the world can be classified as generalized one-way coupled impulsive synchronization. This

classification permits the investigation of hybrid data assimilation methods, which combine dynamic

error estimates of the system state with long time-averaged (climatological) error estimates, from a

synchronization perspective. Illustrative results show how dynamically informed formulations of the

coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing

networks are sparse and how hybrid methods can lead to synchronization when those dynamic formu-

lations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean

general circulation model is also presented. Results indicate that the hybrid methods also have useful

applications in generalized synchronization, in particular, for correcting systematic model errors.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5001819]

Data assimilation is a mathematical discipline that arose

out of the development of numerical weather prediction

(NWP), which required initialization of numerical models

based on a set of relatively sparse observations. In recent

years, popular solution approaches for this state estima-

tion problem have evolved into two main categories: vari-

ational methods and ensemble-based Kalman filters. As

each approach has its own unique benefits, researchers

began creating hybrid combinations of these methods to

take advantage of the strengths of both. We describe how

data assimilation can be interpreted as a type of synchro-

nization problem in which a modeled system is driven by

observations of a natural system and extend this formal-

ism to include the aforementioned hybrid data assimila-

tion techniques.

INTRODUCTION

Data assimilation can broadly be defined as the mathe-

matical discipline dedicated to the optimal reconciliation of a

theoretical model with observed data—a primary application

being state estimation of an imperfectly known dynamical

system. It is often desired to make predictions using a theoreti-

cal model that must be initialized using information about the

current state of a dynamical system. We assume that the

dynamical system under investigation may be queried via

measurement; however, measurements may be sparse, due to

cost and technological limitations, and are subject to error. To

make accurate predictions, one must utilize all available infor-

mation from current and past measurements, incorporate

understanding of the dynamical system via a theoretical

model, and account for all errors present in the forecasting

process. At major operational weather forecasting centers

around the world, hybrid data assimilation methods that com-

bine a climatological (time-averaged) estimate of forecast

errors with a dynamic (time-varying) estimate have been

adopted as the primary approach for initializing numerical

weather prediction (NWP) models.

It has been suggested (Duane et al., 2006; Yang et al.,
2006; Carrassi et al., 2008; and Abarbanel et al., 2010) that

synchronization may be a useful mechanism to explore for

applications to data assimilation. NWP represents a relatively

general class of synchronization problem, and we suggest that

studying its successes in the prediction of geophysical systems

may benefit the general nonlinear dynamics community. In

turn, we hope that the nonlinear dynamics community may

help to elucidate the behaviors of operational data assimilation

systems used for operational NWP.

To help bridge these two communities, we attempt to

form a rigorous definition of data assimilation with respect

to synchronization. We interpret sequential data assimilation

as a form of generalized (Rulkov et al., 1995 and Hunt et al.,
1997) one-way coupled impulsive synchronization in which

the following statements hold:

(1) The driver (nature) system f(N) and its state are unknown.

The driver system is typically a natural system (e.g., for

example, a geophysical system such as the ocean, atmo-

sphere, or complete Earth system).

(2) The response (model) system f(M) is a numerical model

that is capable of resolving and forecasting a selection of

spatiotemporal scales of the nature system.

(3) The response (model) state x(M) is related to the driver

(nature) state x(N) by an unknown function, x(M) ¼/(x(N)).

In NWP, estimating this relationship is the critical role of

the forecaster and is related to “post-processing” method-

ologies such as Model Output Statistics (MOS) (Glahn

and Lowry, 1972).

(4) There is a measurement operator H(N) that maps the nature

state to the observation space yo ¼ H(N)(x(N),go), which has

possible errors and biases represented by parameter go. A
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physical sensor device typically performs this operation

and may be satellite-based or in situ.

(5) There is an observation operator H(M) that maps the model

state x
(M)to the observation space yb¼ H(M)(x(M),gb), which

has possible errors and biases represented by parameter gb.

(6) Using a Gaussian approximation, there are statistical

covariance estimates for the error characteristics of the

forecast (P), model (Q), and observations (R), while the

true error characteristics are unknown.

The last point is perhaps the largest departure from tradi-

tional synchronization studies. The nonlinear error dynamics

are encoded into the forecast error covariance matrix to enable

coupling of a potentially sparsely observed driver system with

a numerical model as the response system. In NWP, this fore-

cast error covariance information is either estimated from a

long time-averaged history of the system’s forecast errors

(i.e., a climatology) typically denoted as B, produced adap-

tively to estimate the instantaneous “errors of the day”

(Kalnay, 2003) typically denoted as Pb, or some combination

of the two (Hamill and Snyder, 2000; Wang et al., 2007a,

2007b, 2008a, 2008b, 2010, 2013; Kleist 2012; Penny, 2014;
Penny et al., 2015; Hamrud et al., 2014; and Bonavita et al.,
2015). Such methods that combine static and dynamic error

representations are typically referred to as hybrid methods and

have recently been reviewed by Asch et al. (2017) and

Bannister (2017). The nonlinear dynamics of the spatially

extended response system are assumed to be reasonably well

known but are typically under-resolved, while the sub-

gridscale physics is parameterized (i.e., approximated with

simple parametric models usually dependent on the resolved

scales) in order to have some representation of processes that

cannot be resolved explicitly.

The measurement and observation operators are possibly

non-invertible and nonlinear. For example, the measurement

operator H(N) may represent a satellite-based passive sensor,

while the observation operator H(M) is realized by a numeri-

cal model (e.g., the Community Radiative Transfer Model;

Han et al., 2006) designed to emulate the measurement oper-

ator H(N). The data assimilation system is synchronized on

the observation space—an idealized space in which both the

measurement operator H(N) and observation operator H(M)

attempt to form equivalent representations. The characteris-

tics of the observation space are essential for the stability of

the system; they determine the “observability” of the system.

For example, Whartenby et al. (2013) began to address this

issue for shallow water equations, Bocquet et al. (2017) pro-

vided the analytic connection between observability in the

unstable-neutral subspace and the filter stability for deter-

ministic linear dynamics, while the nonlinear deterministic

case is investigated numerically by Carrassi et al. (2008). Ni

and Zhang (2016) described the relationship between observ-

ability and filter stability for a deterministic linear system.

For a number of practical reasons, sequential data assim-

ilation methods used for operational NWP typically apply an

impulse at constant time intervals (called an analysis cycle).

These intervals are determined primarily by the delay in col-

lecting and processing observations at the operational center

and by computational limitations on the forecast frequency,

typically performed at regular intervals throughout the day

(e.g., every 6 h). Incremental analysis updates (Bloom et al.,
1996) are a common technique used to spread the impact of

the analysis update into smaller constituent parts at each

model timestep. Such incremental updates are quite similar

to those typically applied in synchronization studies; how-

ever, they are held constant over multiple model timesteps

until recomputed by a new analysis. Recently, there have

been efforts to extend this method to provide some time

dependence to the increments.

A straightforward synchronization application might be

to couple a particular set of gridpoints of the driver and

response systems (e.g., Kostuk, 2012). With imperfect mod-

els, noisy observations, and potentially sparse observing net-

works, direct insertion of observations is not a viable option

for NWP in practice (Kalnay, 2003). We must include as

much dynamical information as possible from the model to

ensure that all information from the observations is utilized,

while still maintaining a state that is consistent with the

numerical model. Such was the motivation for iterative tech-

niques such as the “Running in Place” method (Yang et al.,
2012 and Penny et al., 2013).

However, through a series of simplifying assumptions,

we can recover a traditional (Pecora and Carroll, 1990 and

Pecora et al., 1997) one-way coupled synchronization:

(1) The driver and response systems are identical so that f
¼ f(N) ¼ f(M) (i.e., a “perfect model” scenario),

(2) The measurement operator H(N) and observation operator

H(M) are identical (i.e., H ¼ H(N) ¼ H(M)),

(3) The observational noise is zero,

(4) The estimated statistical error covariance matrices are

diagonal (i.e., errors are spatially uncorrelated).

The history of operational NWP has seen an evolution

from direct nudging to observations, to optimal interpolation

(OI) and the 3D-variational (3DVar) method, to the 4D-

variational (4DVar) and ensemble Kalman filter (EnKF) meth-

ods, and most recently to various hybrid methods combining

elements of both variational and ensemble methods. Kalnay

(2003) and Ghil and Malanotte-Rizzoli (1991) provided thor-

ough reviews of this history, supplemented by Asch et al.
(2017) and Bannister (2017) for more recent developments.

We give a synopsis here for context.

An early data assimilation approach called “nudging”

(e.g., see Kistler, 1974 and Hoke and Anthes, 1976) is very

similar to the direct insertion of observations used in many

synchronization studies. Nudging adds a forcing term to the

prognostic equations, which relaxes the dynamics toward the

observed value with a timescale specified by a tuning parame-

ter. Statistical estimation theory inspired later developments in

DA, leading to a collection of multivariate least squares meth-

ods that remain the most commonly used today. These are gen-

erally aimed at minimizing a cost functional at each time step

ti derived from a multivariate Gaussian distribution, such as

J xið Þ ¼
1

2
ðxi � x

f
i Þ

T
P�1

i ðxi � x
f
i Þ

þ 1

2
yo

i � Hi xið Þ
� �T

R�1
i yo

i � H xið Þ
� �

: (1)
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The techniques for minimizing (1) can be broadly cate-

gorized into “sequential” and “variational” methods (Lorenc,

1986), with the former achieved by a direct algebraic solu-

tion (e.g., Optimal Interpolation (OI) and variants of the

Kalman Filter; Kalman,1960) and the latter achieved by a

numerical minimization of the cost functional (Sasaki,

1970). For a number of years, these two alternative branches

developed somewhat independently (and competitively).

The OI and 3D-Variational (3DVar) methods in their basic

formulation are algebraically equivalent (see Kalnay, 2003

for proof); however, implementation details introduce mean-

ingful differences in practice. All approaches analyze the

forecast and observations at a particular time or in a time

range to determine an optimal combination of the two sets of

information given their respective assumed known (but in

practice estimated) errors.

The variational methods (Le Dimet and Talagrand,

1986) were improved by allowing observations to be ana-

lyzed not only at one time per analysis but instead over a lon-

ger time window. Thus, synoptic weather oscillations

observed over 12–24 h could be fitted to a specific model tra-

jectory that would ideally minimize the disagreement with

all available observations within that window. This 4D-

Variational (4DVar; e.g., Talagrand and Coutier, 1987 and

Thepaut and Courtier, 1991) method has been very success-

ful, with the caveats that finding the trajectory that mini-

mizes Eq. (1) over a time window requires (a) the gradient of

the cost functional and thus the development of a Tangent

Linear Model (TLM; a numerical approximation of the linear

evolution operator) of the entire NWP model and (b) multi-

ple integrations of this model must be repeated over the

same time period as part of the minimization algorithm.

While the European Centre for Medium-Range Weather

Forecasts (ECMWF) has dedicated resources to maintain a

TLM for their operational NWP model, thus enabling the use

of 4DVar for operational forecasts, it is not common practice

for developers of large-scale geophysical models to maintain

a TLM.

The sequential methods progressed from OI, which uses

a fixed forecast error covariance estimate, to the Kalman fil-

ter, which uses an evolving forecast error covariance esti-

mate. This essentially allows for an adaptive weighting of

the synchronization strength that depends on anticipated

forecast accuracy. Because the nonlinear adaptation of the

Kalman filter, the extended Kalman filter (EKF), was too

expensive to apply with the state-of-the-art numerical

weather models, a Monte-Carlo approach was introduced

called the ensemble Kalman filter (EnKF; Evensen, 1994).

Early applications of the EnKF used multiple concurrent but

independent DA cycles with each one assimilating randomly

perturbed observations. Later, deterministic methods were

developed that formed the new initial states of the ensemble

using a linear transform applied to the forecast states

(Bishop et al., 2001 and Whitaker and Hamill, 2002).

Ensemble methods like the EnKF have been popular

due to their ease of use, particularly in that they automati-

cally generate the forecast error covariance information

relating unobserved variables to observed variables. There

are two major caveats to the use of EnKFs, however. The

first is the computational cost—they typically require the

integration of a minimum O(10)-O(100) simultaneous

instances of the model. As the model dimension of opera-

tional NWP systems can exceed O(109), this point in nontriv-

ial. The second caveat is the susceptibility to model

deficiencies. Systematic errors in the numerical model can

lead to biases in long-term error statistics and thus are often

called “model biases.” The EnKF uses an ensemble of model

states to represent the first two statistical moments of the

forecast error. If the model has a systematic error, then all

members may closely cluster around an inaccurate state,

thereby underestimating the model error and ignoring mean-

ingful corrections that should be made due to observations.

Given the strengths and weaknesses of the EnKF and

4DVar methods, there were a number of years of debate over

which one would prove to be the superior approach (Lorenc,

2003 and Kalnay et al., 2007). Through that debate, it

became clear that neither approach on its own would be suf-

ficient, but rather the strengths of both should be leveraged

in hybrid methods (Lorenc 2003). Such strengths included

the dynamically varying estimate of the EnKF forecast error

covariance and the carefully tuned climatological forecast

error covariance estimate used for the variational methods.

Here, we focus on a widely used deterministic EnKF

variant, the Local Ensemble Transform Kalman Filter

(LETKF; Hunt et al., 2007), and a hybridization method

called Hybrid-Gain (Penny 2014, 2015; Hamrud et al., 2014;
and Bonavita et al., 2015). We will examine the role the

components of the Hybrid-Gain method play in stabilizing

the filter. Trevisan and Palatella (2011) conjectured that the

minimum required ensemble size to prevent filter divergence

is equal to the number of unstable and neutral Lyapunov

exponents. Ng et al. (2011) extended the proposition by

Trevisan and Palatella (2011) to account for the dynamics of

the system under investigation, indicating that if exposed to

noise, an EnKF must account for not only the unstable and

neutral Lyapunov modes but also a subset of stable modes

that have transient unstable dynamics that could project onto

the unstable and neutral modes as a result of nonlinear inter-

actions. Palatella and Trevisan (2015) further extended the

work by Trevisan and Palatella (2011) to consider the effects

of nonlinear deviations from the linear assumption of the

EKF, related to the results from the study by Ng et al.
(2011). Recently, Bocquet and Carrassi (2017) indicated that

the ETKF belongs to the class of deterministic EnKFs for

which the relationship between error convergence and the

unstable-subspace holds, and provided a proof of the rela-

tionship between the required minimum ensemble size and

the number of nonnegative Lyapunov modes for linear sys-

tems. It was shown that the analysis error drops to its mini-

mum when a full geometrical alignment is achieved between

the EnKF perturbations and the unstable subspace.

Samoilenko and Perestyuk (1995) presented stability

results in the context of nonlinear impulsive differential

equations. Given a nonlinear impulsive dynamical system,

simple constraints (essentially a global Lipschitz condition)

on the nonlinear part are sufficient to allow the linearized

dynamics to determine the asymptotic stability of the system

(Thm. 37, Samoilenko and Perestyuk, 1995). We explore
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this first in the context of a simplified model and then con-

sider the applicability of these results to a more realistic

high-dimensional geophysical system as used in an opera-

tional environment.

We make one final distinction. Although the traditional

definition of synchronization typically assumes that the

driver and response systems will remain synchronized

beyond the coupling period, we only require synchronization

during a finite forecast period. In geophysical data assimila-

tion applications for example, it is common to examine the

forecasts from one analysis cycle (impulse interval) to the

next. This is due to the sensitive dependence on initial condi-

tions (Lorenz 1963 and Lorenz 1969), which cannot be

known with complete accuracy.

MATHEMATICAL FOUNDATIONS

We commence with a coupled nonlinear dynamical sys-

tem that includes the driver/nature (N) dynamics

dx

dt
¼ f Nð Þ t; x tð Þð Þ; (2)

and the response/model (M) dynamics

dx

dt
¼ f Mð Þ t; x tð Þð Þ t 6¼ si

Dxjt¼si
¼ gi xð Þ t ¼ si:

8><
>: (3)

The function g is an impulsive control that will be applied to

the response system at regular intervals to produce synchroni-

zation with the driver system. Without loss of generality, we

will study the error system, which is equivalent to the response

system with the zero vector as its solution (where x is defined

to be the state in the error phase space, i.e., x¼ x(N) � x(M)).

This may be formed from the nonlinear system by the change

in coordinates (p. 120, Samoilenko and Perestyuk, 1995).

If we assume that x is a small perturbation from the true

state determined by the driver system and apply a Taylor

series decomposition evaluated at 0, then we have

f t; x tð Þð Þ ¼ A tð Þxþ f̂ t; x tð Þð Þ; (4)

where A¼Df is the Jacobian matrix of f. We then separate

the response system into terms representing its linear and

nonlinear parts

dx

dt
¼ A tð Þxþ f̂ t; x tð Þð Þ t 6¼ si

Dxjt¼si
¼ ~Kixþ ĝi xð Þ t ¼ si:

8><
>: (5)

Next, we consider the first order approximation of the

system (Samoilenko and Perestyuk, 1995)

dx

dt
¼ A tð Þx t 6¼ si

Dxjt¼si
¼ ~Kix t ¼ si:

8><
>: (6)

Let X be the fundamental matrix solution of the linear-

ized driver system

dX

dt
¼ A tð ÞX: (7)

The evolution operator U is a mapping of solutions from

one time to the next

X tð Þ ¼ U t; t0ð ÞX t0ð Þ: (8)

The nonlinear system is asymptotically stable as long as

the linearized system is asymptotically stable, and the nonli-

nearities in the system are not too large. For example,

Samoilenko and Perestyuk (1995, Thm. 37, p. 120) gave the

condition that, if

kU t; tið Þk � Le�c t�tið Þ; with L � 1 and c > 0; (9)

for all t and ti, t0� ti� t, and the nonlinear parts are bound so

that

kf̂ t; xð Þk � akxk; kĝi xð Þk � akxk; (10)

for all t � t0 and i¼ 1,2,…, for kxk � h and with h> 0, then

for sufficiently small constants a, the zero solution of the lin-

earized system is asymptotically stable.

The linear operator ~K is the gain applied to the impul-

sive correction. When ~K is a constant diagonal matrix (e.g.,

Abarbanel et al. 1993; Pecora et al., 1997; and Chen et al.,
2013), this system describes the traditional one-way coupled

synchronization formulations. For example, a basic synchro-

nization formulation was given by Pecora et al. (1997), with

notation adjusted to match that here as

dx Nð Þ

dt
¼ f ðxðNÞÞ; (11)

dx Mð Þ

dt
¼ f ðxðMÞÞ þ a ~KðxðNÞ � xðMÞÞ: (12)

Let Hl�m act as an indicator function that identifies which

model grid points are observed and then maps those points

into the reduced observation dimension. Further, let Cl�l be

a diagonal matrix indicating the coupling strength in the

observation space (with subscripts indicating the matrix

dimension). If we let Km�l¼HTC, then the matrix ~K ¼ KH

is the coupling matrix as described by Pecora et al. (1997).

The simplest data assimilation methods used in opera-

tional NWP centers, such as 3DVar and OI, use ~K that may

be idealized as constant but not diagonal. They can be

defined using the Kalman gain matrix

K ¼ BHT HBHT þ Rð Þ�1
; (13)

where B is a climatological (i.e., time-averaged) forecast (also

called the “background”) error covariance matrix. Matrix R is

the observation error covariance, and H is the linearized

observation operator. In this case, we have assumed a static

observing network.

For a more accurate time-varying estimate, EnKFs use

an adaptive scheme where Ki is the time-dependent Kalman

gain and Hi is the time-dependent linearized observation

operator. The Kalman gain of the EnKF at a particular time-

step is then defined
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Ki ¼ Pb
i HT

i HiP
b
i HT

i þ Ri

� ��1
: (14)

Here, the true forecast error covariance matrix is represented

by a reduced-rank estimate (i.e., the ensemble size k�m the

model dimension)

Pb
i ¼

1

k � 1ð ÞXiX
T
i ; (15)

where Xi is an m� k matrix whose columns are perturbations

from the ensemble mean state �x. The ensemble mean is

assumed close to the true state so that small perturbations

from the mean are representative of the error dynamics

within the tangent linear subspace. Matrix Ri is an estimate

of the true observation error covariance matrix, and Hi is the

linearized observation operator for an evolving observing

network, all specified at time ti.
The impulse matrix ~K applied to achieve synchroniza-

tion using the EnKF can thus be given as

~Ki ¼ �KiHi: (16)

We note that at each analysis time, the dimensions of

the impulse matrices resulting from the EnKF are determined

by the model dimension (m), observation count (l), and

ensemble size (k), labeled in subscripts

Km�lHl�m ¼
1

k� 1
Xb

m�kXbT
k�mHT

m�l

� 1

k� 1
Hl�mXb

m�kXbT
k�mHT

m�lþRl�l

� ��1

Hl�m:

(17)

Thus, the rank of KiHi is at most min{m,l,k}, which in prac-

tice is typically the ensemble size k. In general, k� l� m,

although in conditions with sparse observing networks, it is

possible that l< k. Further, since Xb is composed of pertur-

bations from the ensemble mean state, the matrix Xb (and

thus KiHi) can have rank only as large as (k � 1).

The most computationally intensive part of the data

assimilation process is typically the integration of the for-

ward model, putting a high cost on increasing the rank of

KiHi. This has resulted in two successful techniques that

have been widely adopted: (1) localization and (2) hybridi-

zation. Localization essentially reduces the problem size to

a series of manageable sub-domains so that a given ensem-

ble size is sufficient to achieve synchronization. For

geophysical problems, the physical justification for this is

based on the decorrelation length scales of the fluid.

Hybridization essentially increases the effective rank of

KiHi to enable synchronization, even when the ensemble

size k is smaller than the number of non-negative Lyapunov

exponents.

THE TANGENT LINEAR MODEL

The TLM is used in NWP as a numerical representation

of the evolution operator (8), also known as the linear propa-

gator (Kupstov and Parlitz, 2012), state transition matrix

(Balci et al., 2012), or matricient (Samoilenko and Perestyuk,

1995). This evolution operator can be defined as

U t; t0ð Þ ¼ X tð ÞX t0ð Þ�1; (18)

where X is a fundamental matrix solution, as in (7), and has

the following properties:

U t; tð Þ ¼ I; 8t; (19)

U t2; t0ð Þ ¼ U t2; t1ð ÞU t1; t0ð Þ; (20)

U t1; t0ð Þ ¼ U�1 t0; t1ð Þ; (21)

dU t; t0ð Þ
dt

¼ A tð ÞU t; t0ð Þ: (22)

The singular values of the matrix U determine the time averaged

expansion and contraction rates over the interval [t0,t] along the

local Lyapunov vectors (LLVs) defined in that interval.

Numerical approximations to the matrix U can be made

via series truncation or other means. For example, Balci et al.
(2012) approximate U for some finite number n of intermedi-

ate time steps dt using the exponential Euler method.

Assuming that Ai¼A(ti) is fixed for some small finite time dt

U nð Þ t; t0ð Þ � eAn�1dteAn�2dt � � � eA1dteA0dt: (23)

Because the matrix A(t) will in general be non-commutative,

the exponentiation rules for scalar quantities do not apply,

i.e.,

eAeB 6¼ eAþB: (24)

Thus even in the limit,

lim
n!1

eAn�1dteAn�2dt � � � eA1dteA0dt 6¼ e

Ð t

t0
A tð Þdt

: (25)

However, U can be defined by the generalized Peano-

Baker series and may be calculated with reasonable accuracy

using geometric numerical integration methods. For exam-

ple, the Magnus expansion (Magnus, 1954) permits the

familiar exponential solution form

U t; t0ð Þ ¼ exp X tð Þð Þ; (26)

X tð Þ ¼
X1
k¼1

Xk tð Þ: (27)

Each term of the Magnus series is defined using the matrix

commutator [A,B]¼AB-BA. The first three terms of the

series are

X1 ¼
ðt

0

A s1ð Þds1;

X2 ¼
1

2

ðt

0

ds1

ðs1

0

ds2 A s1ð Þ;A s2ð Þ
� �

;

X3 ¼
1

6

ðt

0

ds1

ðs1

0

ds2

ðs2

0

ds3 ½Aðs1ð Þ; ½A s2ð Þ;A s3ð Þ		

þ A s3ð Þ; A s2ð Þ;A s1ð Þ
� �� �

Þ:

(28)
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Blanes et al. (2009) provided a generic recursive definition

for all terms Xl of the Magnus expansion.

Evaluating the TLM is useful because it acts as a linear

map from one discrete time to the next, emulating the numer-

ical modeling procedure used in data assimilation. Also, it is

required by the minimization algorithms used by the 4DVar

methods. The data assimilation analysis update (impulse)

applied to this system can be expressed by

Uþ ti; ti�1ð Þ ¼ I�KiHið ÞU� ti; ti�1ð Þ: (29)

Trevisan and Uboldi (2004), Uboldi et al. (2005), and

Carrassi et al. (2008) have identified that the stability proper-

ties of this type of DA system is dependent on both the

Kalman gain matrix Ki and the observing network as defined

by Hi. As demonstrated by Ng et al. (2011) and later

expanded by Bocquet and Carrassi (2017), the stability of

the EnKF is affected by whether there are sufficient ensem-

ble members to represent all the unstable and neutral

Lyapunov modes (as determined by the covariant Lyapunov

vectors with nonnegative Lyapunov exponents). When there

is an insufficient number of members, the EnKF experiences

“catastrophic filter divergence.” It has been found that hybrid

methods, which compensate ensemble methods with a clima-

tological component, are able to account for the “missing”

representation of the unstable modes by including a static

component of full rank (m).

HYBRID-GAIN DATA ASSIMILATION

One can consider a further decomposition of the linear-

ized system into static and time varying component

dx

dt
¼ �Axþ Â tð Þx t 6¼ si

Dxjt¼si
¼ ~K

B
xþ ~K

P

i x t ¼ si;

8><
>: (30)

where ÂðtÞ is a piecewise continuous matrix. Samoilenko

and Perestyuk (1995, Thm. 35, p. 117) showed that solutions

of the linearized system are exponentially stable as long as

kÂðtÞk � c, k ~K
P

i k � c, for sufficiently large t and i and suf-

ficiently small c. Thus, if the mean “climatological” dynam-

ics can be constrained by a static gain matrix (e.g., via

3DVar), then the time-varying gain is only required to con-

strain the climatological anomalies.

In order to improve the stability of the data assimilation

system, traditional hybrid methods attempt to modify the

gain matrix Ki via the constituent background error covari-

ance matrix Pb (Hamill and Snyder, 2000; Wang et al.,
2007a, 2007b, 2008a, 2008b, and 2013). A simpler and more

direct approach is to apply additional contractions to the evo-

lution operator (Penny 2014; Penny et al., 2015; Hamrud

et al., 2014; and Bonavita et al., 2015). For example, after

the contraction is determined by the reduced-rank dynamic

ensemble estimate of the forecast error covariance Pb, a sec-

ond contraction can be applied based on a full-rank static cli-

matological estimate B,

Uþ tiþ1; tið Þ ¼ I�KB
i Hi

� �
I�KP

i Hi

� �
U� tiþ1; tið Þ: (31)

Through a simple algebraic reformulation, this process

can be depicted in a form that allows the consecutive con-

tractions to be represented by a single gain matrix

I�KB
i Hi

� �
I�KP

i Hi

� �
¼ I� KP

i þKB
i �KB

i HiK
P
i

� �
Hi

� �
:

(32)

Thus, we have

KBP
i ¼ KP

i þKB
i �KB

i HiK
P
i

� �
: (33)

Because each of these component gain matrices are approxi-

mations, Penny (2014) allowed a constant scaling to adjust the

impact of each term in the assimilation

Ki ¼ b1KP
i þ b2KB

i � b3KB
i HiK

P
i

� �
: (34)

The stability of the linearized system can be diagnosed

by examining the linear propagator applied over the full time

horizon of the data assimilation experiment [t0,tN], as noted

by Trevisan and Uboldi (2004) and Carrassi et al. (2008),

U tN; t0ð Þ ¼
YN
i¼1

I�KiHið ÞU� ti; ti�1ð Þ: (35)

We reiterate that when the filter is divergent for a determinis-

tic EnKF, this indicates that the unstable and neutral modes

are not adequately represented in the corresponding reduced-

rank gain matrix K
P. Sakov and Oke (2008) and Carrassi

et al. (2009) provided distinctions of the properties of the

stochastic versus deterministic versions of the EnKF. The

hybrid gain matrix K provides a convenient mechanism for

representing these missing modes, thus allowing error reduc-

tion in these directions. Further, the climatological gain

matrix KB can be constructed using knowledge of the model

errors, thus providing a mechanism for making corrections

to systematic errors in the model forecasts where it is

expected that the ensemble will not provide a sufficient rep-

resentation of uncertainty.

EXPERIMENTAL SETUP

We examine results using the Hybrid-Gain method for

synchronization in two systems. First, we examine the sim-

ple Lorenz (1996) model (L96) with forcing term F¼ 8.0 in

reduced dimension (m¼ 6) as explored by Ng et al. (2011).

We conduct a series of experiments showing the impact of

applying impulsive synchronization with a diagonal coupling

term, with a coupling term determined via a variational

method using static forecast error covariances, with a cou-

pling term informed by correlations determined through the

ensemble-derived error covariance matrix, and with a

hybridization of static and dynamically varying coupling

terms.

All observations are made at the analysis time. Thus, for

simplicity, we chose 3DVar as the variation method. If

observations are taken over an interval between analysis

times, the higher-dimensional extension 4DVar has generally

been shown to be more accurate (Lorenc and Rawlins, 2005

and Yang et al., 2009). Bonavita et al. (2015) showed
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performance gains with the Hybrid-Gain method combining

4DVar and LETKF compared to using either alone when

applied to the operational forecast system of the European

Centre for Medium-Range Weather Forecasts (ECMWF).

The 3DVar static forecast error covariance B is assigned

as in Penny (2014) as a unit diagonal matrix with exponential

decay on the off-diagonals with a radius of two grid points.

We note that for stability in the conjugate gradient minimiza-

tion used by 3DVar, the initial guess for the solution should

be the forecast state. For the traditional synchronization

approach using a diagonal coupling matrix, we use as a con-

stant multiplier the ratio of the forecast error variance to the

observation error variance. Due to the small system size, we

use LETKF without localization and designate this ETKF.

For the hybrid method, we use a¼ 0.5.

We first assume that the observation network is fixed so

that Hi ¼ H and Ri ¼ R. Thus, the only source of the time

dependence that we investigate here is that of the dynamics,

indicated by the background error covariance matrix P
b
i. In

later experiments, we relax that constraint and allow obser-

vation locations to vary randomly so that Hi is time-

dependent. Observational error is assigned from a Gaussian

distribution using standard deviation rr ¼ 0:01 to minimize

the impacts of observational noise as in Ng et al. (2011). We

examine three cases: (1) using an observing network with

full spatial coverage, (2a) a case using a sparse stationary

observing network, and (2b) a case with a sparse but non-

stationary observing network. The Hybrid-Gain method has

been demonstrated with L96 using larger observational error

(rr ¼ 0:5), larger system dimensions (m¼ 40), and larger

forcing (F¼ 20.0) by Penny (2014).

Next, we examine the bias-correction effects in a realis-

tic global ocean model, namely, the Geophysical Fluid

Dynamics Laboratory (GFDL) Modular Ocean Model

(MOM4p1) that is used by NCEP for climate forecasts (Saha

et al., 2006, 2010, 2014). Briefly, it is a hybrid combination

of the LETKF-based gain and the NCEP operational 3DVar-

based gain applied to a 1=2
 global ocean model. For the

results presented, the system assimilates observed vertical

profiles of temperature and salinity, primarily available from

the Argo float program (Roemmich and Owens, 2000). The

LETKF component of the hybrid global ocean data

assimilation system uses 56 ensemble members, each forced

with atmospheric surface forcing perturbations from the

20th-Century Reanalysis (Compo et al., 2011), which are re-

centered at NCEP/DOE (Department of Energy) Reanalysis

2 (R2; Kanamitsu et al., 2002). The stand-alone 3DVar sys-

tem uses the same model forced by the R2. Further details of

the system configuration are provided by Penny et al. (2015).

RESULTS

Lorenz-96

We examine the L96 model with forcing term F¼ 8.0 in

its reduced dimension (m¼ 6). The system has 1 unstable and

1 neutral Lyapunov mode, with the remaining 4 modes being

asymptotically stable (Fig. 1). In a given analysis cycle, there

may be any number of transient finite-time Lyapunov expo-

nents that are nonnegative (unstable or neutral).

We list the characteristics of the six-dimensional (6D)

L96 system over a fixed time period in Table I and indicate

our expectations for the behavior of the system when we

apply data assimilation. The starting point on the attractor

was determined by integrating the L96 model using the 4th-

order Runge-Kutta method started from a random initial con-

dition and iterated 28 000 timesteps with dt¼ 0.001.

FIG. 1. (a) Nature run for the L96 sys-

tem with parameters F¼ 8.0 and

m¼ 6, from which observations were

sampled, (b) error from a free run

started with a small perturbation from

the true state, and (c) numerically esti-

mated Lyapunov exponents for the

L96 system over 1000 time units. The

y-axes in (a) and (b) indicate that the

analysis cycles 0 through 600 (cover-

ing the first 30 time units).

TABLE I. System statistics for the Lorenz 96 experiments.

System dimensions (m) 6

Experiment duration 600 analysis cycles each 0.05 time

units in length (�6 h equivalent per cycle)

Starting point on the attractor [�4.362, 0.171, 5.566, 7.483, 2.772, �0.91]

Average x(N) (nature) [1.87 2.26 2.93 2.61 2.64 2.70]

Maximum x(N) [11.88 9.58 11.31 10.58 10.73 11.80]

Minimum x(N) [�7.42 �6.40 �5.76 �6.06 �7.24 �7.42]

Number of nonnegative

Lyapunov exponents

2

Predicted required ensemble

size for EnKF without

localization

3 (so that k � 1 ¼ 2)

Predicted required ensemble

size for Hybrid-ETKF

2 (smallest possible)

Observation error 0.01
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Case 1: Full-coverage observing network

The first case we examine uses 6-h updates with obser-

vations covering the full domain, similar to the scenario

investigated by Ng et al. (2011). The ETKF has slightly bet-

ter accuracy than the 3DVar. The 3DVar and traditional

impulsive synchronization (essentially equivalent to 3DVar

with the off-diagonal elements set to zero in the forecast

error covariance matrix B) are nearly identical, and thus in

this case, the synchronization results are not shown. We

show results from the ETKF and Hybrid compared to the

3DVar as a baseline in Fig. 2. The primary advantage pro-

vided by the ETKF is that it adaptively estimates the magni-

tude of the forecast error covariance by sampling the growth

of instabilities along the system trajectory. However, as the

ensemble size decreases, the ETKF can no longer represent

all the long-term unstable and neutral modes. As predicted

above, stability is still achieved with three members, but the

filter quickly diverges when the ensemble size is reduced to

two members. The hybrid filter, while partially reducing the

accuracy of the ETKF for the “large” ensemble case (k¼ 7),

shows similar accuracy when reducing the ensemble size to

k¼ 3 and k¼ 2, preventing catastrophic filter divergence in

the latter case (Fig. 3).

Case 2: Sparse observing network

We next consider a sparse observing network, which is

more typical in geophysical applications. Using a sparse

observing network, the off-diagonal terms in the estimated

forecast error covariance matrix become much more impor-

tant. As case (2a), we consider a fixed observing network

(e.g., emulating moored buoys in the ocean), and then as

case (2b), we consider a random network (e.g., emulating

drifter observations in the ocean).

In case (2a), observations are made at alternating nodes

0, 2, and 4. We see that the 3DVar case suffers from inade-

quately specified off-diagonal error covariance estimates that

degrade the analysis compared to the traditional impulsive

synchronization approach (Fig. 4). A large ensemble (k¼ 7)

case using the ETFK however is capable of adequately repre-

senting the dynamical relationship between the observed

nodes so that the unobserved nodes can be synchronized. As

the ensemble size is reduced to two members (one fewer

than that required by the analysis of the Lyapunov expo-

nents), the ETKF quickly diverges.

Somewhat surprisingly, with the application of the static

correction derived from the 3DVar to the 2-member ETKF,

both of which are independently divergent, the hybrid filter

is stabilized. Computing the Lyapunov exponents using Eq.

(35), we see (Fig. 5) that the leading Lyapunov exponent of

the ETKF system with k¼ 2 is positive, leading us to expect

a divergent filter. The 3DVar system has a negative leading

Lyapunov exponent, but its magnitude is small, approxi-

mately �8.88 � 10�2. The small magnitude of the leading

Lyapunov exponent renders the 3DVar susceptible to noise

in the observations of a similar magnitude, and thus, the

FIG. 2. Absolute analysis error for the

(a) 7-member, (b) 3-member, and (c)

2-member ETKF minus absolute anal-

ysis error for 3DVar. The standard

deviation of Gaussian observational

error is 0.01. Negative values (dashed

contours, blue shading) indicate that

the ETKF produces lower errors. Note

the change in the scale in (c).

FIG. 3. Absolute analysis error for the

(a) 7-member, (b) 3-member, and (c)

2-member Hybrid minus absolute anal-

ysis error for 3DVar. The standard

deviation of Gaussian observational

error is 0.01. Negative values (dashed

contours, blue shading) indicate that

the Hybrid produces slightly lower

errors. It is evident that although for

the larger ensemble size, the Hybrid

lessens the advantage of the ETKF

over 3DVar, for smaller ensemble

sizes, the Hybrid stabilizes the ETKF

and provides a faster spin-up to a syn-

chronized status.
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system is unstable. The hybrid method combining both

ETKF and 3DVar reduces the leading Lyapunov exponent

and achieves stability.

In case (2b), we observe 3 random nodes per cycle. As

we allow the observations to migrate in time, we see improved

filter performance for all but the small ensemble case (k¼ 2)

for ETKF (Fig. 6). This is the result of the dynamical error

growth in L96 being relatively linear over multiple passes of

the 0.05 timestep analysis cycle, thus providing a relatively

high probability that the entire domain will be sampled within

the linear regime of error growth.

OCEAN GENERAL CIRCULATION MODEL

In realistic applications, numerical forecast models con-

tain errors that result in systematic biases. We now show

results using a global ocean model and real observations as

used by NCEP for ocean monitoring and seasonal climate

forecasts. We compare the LETKF and the Hybrid-Gain data

assimilation methods applied to the GFDL MOM4p1 ocean

model (Penny et al., 2015). We use in situ observations con-

sisting of temperature and salinity vertical profiles, focusing

particularly on the equatorial Atlantic. In the first case (a),

LETKF is used in its standard form, while in the second case

(b), the Hybrid-Gain method applies LETKF as the initial

state estimate with a mean correction applied to the ensemble

at each analysis cycle based on the NCEP operational 3DVar.

This implementation of 3DVar uses a background error

covariance matrix that is static in the horizontal direction and

slightly varying in the vertical direction depending on the sea-

sonal variation of the thermocline depth. Saha et al. (2010)

give further details of the NCEP operational 3DVar.

Brandt et al. (2011) reported observations in the equato-

rial Atlantic that indicated stacked zonal jets alternating with

the depth. However, these stacked currents are not produced

in the model. The absence of these features in the reanalysis

FIG. 4. Absolute analysis error using a

sparse observing network alternating

observations at model grid points 0, 2,

and 4 for (a) direct coupling synchroni-

zation method with eventual instabil-

ities at the unobserved nodes, (b)

3DVar with large errors at the unob-

served nodes, (c) 7-member ETKF

with negligible error, (d) 2-member

ETKF that diverges, and (e) 2-member

hybrid that is stable despite the fact

that neither of its constituent 2-

member ETKF and 3DVar components

are stable.

FIG. 5. Lyapunov exponents for the methods in case (2a) (corresponding to

Fig. 4). The ETKF and Hybrid-Gain are shown only for an ensemble size of

k¼ 2. The 3DVar data assimilation system has a negative leading Lyapunov

exponent close to 0 but diverges due to noise in the observations. The hybrid

method (with an ensemble size of k¼ 2) is stable.

FIG. 6. Absolute analysis error using a

sparse observing network consisting of

3 randomly observed nodes per cycle

for (a) direct coupling synchronization

method, (b) 3DVar, (c) 7-member

ETKF, (d) 2-member ETKF that

diverges, and (e) 2-member hybrid that

regains stability.
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may be due to either errors in the surface wind stress pro-

vided by NCEP Reanalysis 2 (Kanamitsu et al., 2002) or due

to errors in the ocean model response.

Compared to the observed features in zonal velocity at the

equator, we see in Fig. 7 that the hybrid approach (b) is able to

recover the stacked deep ocean jets that are not adequately

reproduced by LETKF alone (a). This fault occurs for LETKF

because each member of the ensemble exhibits the same model

bias, and thus, the ensemble does not adequately represent the

uncertainty in the model forecast. Thus, important observations

are largely ignored in the region of the known model defi-

ciency. By supplementing the ensemble with a static error

covariance derived from long time-averaged error information

(which may include information about known systematic

model errors), the hybrid is able to correct the state estimate

accordingly. At the deeper levels, the jets are still weak due to

the reduced vertical resolution in the model.

This is a realistic ocean application in which applying

the hybrid system reduces biases in the analysis versus an

EnKF baseline. Penny et al. (2015) demonstrated a similar

bias-correcting effect in a perfect-model experiment that

applied an imposed bias to the ensemble surface fluxes, using

the same Hybrid-Gain ocean data assimilation system that is

used for this analysis. Next, we extend the reanalysis of

Penny et al. (2015) using real historical observations to

include an additional decade of results, extending into the

modern Argo era. As the costs associated with a full-scale

stability analysis would be prohibitive on an operational sys-

tem, we use the root mean square (RMS) deviations and

global biases in the observation-minus-forecast statistics as a

proxy to evaluate the performance of the Hybrid-Gain

method in comparison to 3Dvar. We see in Fig. 8 that com-

pared to the NCEP operational 3DVar, the hybrid produces

consistently reduced RMS deviations compared to observa-

tions and also a reduction in the global upper (0–700 m)

ocean temperature and salinity biases. As the number of

salinity observations increases dramatically from the first

half to the second half of the experiment period with the

FIG. 7. Zonal currents from depths of

0 to 2000 m at the equator for (a)

LETKF and (b) Hybrid-Gain LETKF.

The latter shows a recovery of the

observed stacked alternating zonal jets

in the equatorial Atlantic (between lon-

gitudes 50W and 10E) due to the bias-

correction effects of the hybrid

approach. Model levels are shown with

ticks on the right hand side, indicating

the higher vertical resolution near the

surface.

FIG. 8. Three-month moving average

of global upper ocean (0–700 m) (a)

temperature RMSD (
C), (b) salinity

RMSD (psu), (c) temperature bias, and

(d) salinity bias. The NCEP opera-

tional 3DVar is shown in red, while

the future replacement hybrid system

is shown in blue. Dashed lines indicate

the respective linear trend. The hybrid

reduces RMS deviations compared to

observations and reduces systematic

biases.
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introduction of the Argo float program, 3DVar suffers from

assuming a static climatological relationship between tem-

perature and salinity. The hybrid method is able to adapt to

the changing observing network while producing a corre-

sponding reduction in global bias.

CONCLUSION

We have described common operational data assimila-

tion methods in the context of synchronization as generalized

one-way coupled impulsive synchronization. The stability

properties of the resulting impulsive differential equation

can be investigated through the analysis of the associated

Kalman gain matrix and observation operator.

Hybrid data assimilation methods are able to recover

lost stability in ensemble methods that have an insufficient

number of members to represent the unstable modes that cor-

respond to the positive and neutral Lyapunov exponents. The

hybrid methods can also make up for potential inadequacies

in static error covariance estimates used in variational

methods.

The benefit of utilizing forecast error covariance infor-

mation becomes clear when the observation coverage is

sparse, while the benefit of the hybridization becomes clear

when the ensemble sampling is sparse. When considering

model error (i.e., generalized synchronization), the hybrid

method is able to correct model biases that the pure ensem-

ble Kalman filter cannot.

In the future, we will examine the stability properties of

the Hybrid-Gain approach in greater detail. For the applica-

tion to large-scale systems, candidate methods for this inves-

tigation are the breeding on the data assimilation system

(BDAS) of Trevisan and Uboldi (2004) and Carrassi et al.
(2007) and the use of the Local Ensemble Tangent Linear

Model (LETLM) introduced by Bishop et al. (2017) and

Frolov and Bishop (2016) to evaluate the linearized dynam-

ics. More recent investigations of time-delay methods (Paz�o
et al., 2016 and An et al., 2017) may also provide useful sup-

plements to the current state-of-the-art data assimilation

methodologies, particularly for sparsely observed systems.
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