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ABSTRACT

The role of sampling variability in ENSO composites of winter surface air temperature and precipitation
over North America during the period 1920-2013 is assessed for observations and ensembles of coupled
model simulations in which sea surface temperature anomalies in the tropical eastern Pacific are nudged to
those of the real world. The individual members of each model ensemble show a surprising amount of di-
versity in their ENSO composites, despite being constructed from the same observed set of 18 El Nifio and 14
La Nifia events. For a given model, this ensemble spread can only be due to sampling variability, that is,
aliasing of internal variability that is unrelated to ENSO, which in turn is shown to arise from internal at-
mospheric dynamics rather than coupled ocean—atmosphere processes. Analogous ensemble spread is evident
in 2000 synthetic ENSO composites based on observations using random sampling techniques. These syn-
thetic composites provide information on the range of spatial patterns and amplitudes associated with im-
perfect estimation of the forced ENSO signal in the observational record. In some locations, the amplitude of
the estimated ENSO signal can vary by more than a factor of two. This observational uncertainty necessitates
an approach to model assessment that considers not only the model’s forced response to ENSO, given by its
ensemble-mean ENSO composite, but also its representation of internal variability unrelated to ENSO. Such
an approach is used to reveal fidelities and shortcomings in the Community Earth System Model, version 1.

1. Introduction Halpert 1986; Larkin and Harrison 2005; Chiodi and
Harrison 2013; L’Heureux et al. 2015; and many others).
During ENSO’s positive phase (El Nifio), anomalous
southerly winds advect warmer air over Alaska and
Canada while anomalous northerlies bring cooler air to
the southeastern United States, and a strengthened and
southward-shifted storm track brings above-normal
precipitation to the southern tier of the United States
and drier conditions to the Ohio and upper Mississippi
River valleys. Opposite conditions tend to prevail dur-
ing ENSO’s negative phase (La Nifia). While the im-
pacts described above are typical of ENSO events, they
do not necessarily occur during every episode. A recent
case in point is the El Nifio of 2015/16, which failed to
bring anticipated and much-needed rains to Southern
California and the U.S. Southwest desert, despite the
fact that it was as strong as the El Nifio events of 1982/83
and 1997/98, which did bring copious amounts of pre-

The largest known source of seasonal climate forecast
skill over North America is El Nifio — Southern Oscil-
lation (ENSO), the leading mode of interannual vari-
ability of the tropical ocean—atmosphere system (Shukla
et al. 2000; Tippett et al. 2012; L’Heureux et al. 2015).
ENSO affects North American climate through changes
in the large-scale atmospheric circulation driven by
anomalous deep convection and associated latent heat
release in the tropical Indo-Pacific (e.g., Bjerknes 1969;
Horel and Wallace 1981; Held et al. 1989). These in-
fluences generally maximize in boreal winter and early
spring when atmospheric conditions are favorable for
Rossby wave propagation from the tropics to the
Northern Hemisphere and when the SST anomalies in
the tropical Pacific are the largest (Ropelewski and
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cipitation to this region. Similarly, the strong El Nifio
events of 1991/92 and 1987/88 also lacked many of the
expected impacts over North America, as did the strong
La Nifia events of 1973/74 and 2007/08 (www.climate.
gov). These counterexamples are consistent with the
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fact that ENSO generally accounts for <25% of the
variance of winter and spring climate anomalies over
North America, despite it being a dominant source of
predictability (not shown, but see www.climate.gov).

The canonical impacts of ENSO may be obscured
during any given El Nifio or La Nifia event by com-
peting influences from other sources of natural climate
variability. In addition, differences in the character
of each event (e.g., Rasmusson and Carpenter 1982;
Deser and Wallace 1987; Capotondi et al. 2015;
Takahashi and Martinez 2018) may affect their atmo-
spheric teleconnections and associated climate im-
pacts over North America (e.g., Garfinkel et al. 2013;
Johnson and Kosaka 2016). These issues motivate the
question: how well do we know ENSO’s canonical in-
fluence on North American climate? Empirical studies
typically attempt to isolate ENSO-forced signals by
compositing over a large number of events or by ap-
plying regression analysis to a long period of record.
With a sufficiently long dataset (i.e., a large enough
sample of ENSO events), the noise due to variability
that exists in the absence of ENSO will be minimized,
revealing the true forced response. To what extent is
the observational record adequate to identify the
forced response to ENSO without significant aliasing of
unrelated variability?

While empirical studies based on composite or re-
gression analysis almost always include an assessment of
statistical significance on the estimated ENSO signals,
this information does not necessarily convey the mag-
nitude of the uncertainty at each location, nor does it
convey the spatial pattern of the uncertainty. For ex-
ample, if the uncertainty arises from large-scale atmo-
spheric variability, then the ‘“noise” imparted to
observationally derived ENSO signals will also be
characterized by large-scale spatial patterns. In view of
these issues, Deser et al. (2017, hereafter D17) proposed
an approach that integrates information on both pattern
and amplitude uncertainty that accompanies any em-
pirical estimate of ENSO response based upon limited
data. In addition, they showed the utility of this in-
tegrated perspective when evaluating the realism of
ENSO signals in climate models, which have the luxury
of much larger samples sizes. The focus of D17 was on
the NH atmospheric circulation response to ENSO in
boreal winter. Here we extend this approach to in-
vestigate the surface air temperature (SAT) and pre-
cipitation (PR) responses to ENSO over North
America. To be consistent with D17, we use the same
period of record (1920-2013) and random sampling
technique (with replacement) to construct synthetic
ENSO composites, each of which could have plausibly
happened had a different temporal sequence of natural
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variability, unrelated to ENSO, occurred. These syn-
thetic ENSO composites provide important context for,
and uncertainty bounds on, the one composite that ac-
tually occurred. Issues related to ENSO diversity and
nonlinearity within these synthetic composites are also
addressed.

We also evaluate ENSO composites of SAT and
PR over North America from a multimodel ensemble
of coupled simulations (the same used in D17) whose
tropical eastern Pacific sea surface temperature anom-
alies (SSTA) are nudged to observations during 1920-
2013. Each model provides an ensemble of simulations
starting from slightly different initial conditions. For
each, we construct an ENSO composite using the same
set of events as in our observational analysis. The re-
sulting range of composites across the individual
members of a given model ensemble provides a direct
assessment of the uncertainties associated with any
single composite sample (i.e., the model’s ensemble
spread is the counterpart of the spread across the ob-
servationally based synthetic composites, for which
there is only one actual composite sample). That is,
each composite within a given model ensemble repre-
sents an estimate of the model’s true forced response
to ENSO combined with a different sampling of its
(unrelated) internal variability (throughout this paper,
we shall use the terms “‘internal” and ‘‘natural” in-
terchangeably). Using the uncertainties derived for the
observed ENSO composite, we discriminate between
true biases in the models’ forced response to ENSO
and apparent biases that arise from limited sampling of
non-ENSO-related natural variability. In this way, we
also evaluate whether the spread across the ensemble
members of a given model is realistic. We focus on
December-February (DJF), the season when ENSO
generally has its largest impact over much of North
America. We also briefly show results for February—
April (FMA).

The rest of this study is organized as follows. The
observational datasets, model simulations, and meth-
odology are described in section 2. Results are presented
in section 3, beginning with observed and simulated
ENSO composites of temperature and precipitation
(section 3a), evaluation of the forced ENSO response
and internal variability in Community Earth System
Model, version 1 (CESMI; section 3b), the range of
observationally based synthetic ENSO composites
(section 3c), comparison of ENSO composites across
models (section 3d), the contributions of ENSO non-
linearity (section 3e) and ENSO diversity (section 3f) to
the synthetic observational composites, and ending with
observed ENSO composites for late winter (section 3g).
Discussion and summary are provided in section 4.
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2. Data and methods
a. Observational data

We use SAT from Berkeley Earth Surface Tempera-
ture (BEST; Rohde et al. 2013) and PR from Global
Precipitation Climatology Centre (GPCC), version 7
(Schneider et al. 2014), both on a 1° latitude X 1° lon-
gitude grid. In addition, we make use of sea level pres-
sure (SLP) and PR from the Twentieth Century
Reanalysis (20CR), version 2¢ (Compo et al. 2011), on a
2° latitude X 2° longitude grid, PR from ERA-20C (Poli
et al. 2016) on a 1.5° latitude X 1.5° longitude grid, and
PR from the Global Precipitation Climatology Project
(GPCP), version 2.3 (Adler et al. 2003), on a 2.5°
latitude X 2.5° longitude grid. Our analysis is based on
the period 1920-2013, except for GPCP, which is based
on the years 1979-2013.

b. Model simulations

We use the same model simulations as D17, which are
briefly summarized here; additional information is pro-
vided in D17. First, we make use of a coordinated set of
tropical Pacific pacemaker experiments (referred to as
PACE) performed with three state-of-the-art coupled
climate models: CESM1; Climate Model, version 2.1
(CM2.1); and MIROCS. These experiments follow the
protocol of Kosaka and Xie (2013), in which monthly
SSTAs in the eastern tropical Pacific (10°S-10°N, 160°-90°W,
with a linearly tapering buffer zone of 10° in latitude
and 20° in longitude) are nudged with a 2-day damping
time scale to those from the NOAA Extended Re-
construction Sea Surface Temperature, version 3b
(ERSSTv3Db), dataset; note that the SST mean state in
each model is maintained. An ensemble of experiments
was conducted with each model (10 for CESM1 and
CM2.1, and 5 for MIROCS), produced by randomly
perturbing the initial atmospheric temperatures in
each member by a small (order 10~ '*K) amount. These
coupled model simulations arguably provide the most
realistic setting for evaluating the models’ ENSO com-
posites, since only SSTAs in the eastern tropical Pacific
are nudged to observations, leaving the rest of the global
climate system free to respond in an appropriately cou-
pled manner (e.g., with two-way ocean—atmosphere in-
teraction; Alexander et al. 2002). Our analysis is based on
the 1920-2013 period common to each model.

We also make use of a companion 10-member en-
semble conducted with the atmosphere-land configu-
ration of CESM1 in which the observed SST evolution is
specified throughout the tropics (within 28° latitude
and a linearly tapering buffer zone to 35° latitude) and
the observed SST climatological seasonal cycle is pre-
scribed elsewhere [the so-called Tropical Ocean and
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Global Atmosphere (TOGA) protocol]. While these
simulations have the advantage of a realistic tropic-wide
distribution of SST anomalies during ENSO (and a re-
alistic SST mean state), they are more idealized than the
PACE experiments in the sense that they lack two-way
ocean—atmosphere coupling and extratropical SST var-
iability. All simulations (PACE and TOGA) include the
historical (and RCP8.5 after 2005) radiative forcing
protocols of CMIP5 (Taylor et al. 2012).

Last, we make use of a 2600-yr preindustrial control
simulation (1850 radiative conditions) of the atmosphere—
land configuration of CESM1 with a prescribed repeating
seasonal cycle of SSTs and sea ice conditions taken from
the long-term climatology of a companion 2200-yr pre-
industrial control run of the fully coupled CESM1 (see
Kay et al. 2015). This lengthy “‘atmosphere only’’ control
simulation provides robust statistics on the simulated level
of atmospheric circulation variability that exists in the
absence of ENSO and other SSTA forcing.

c. Methods

We use the same methodology as D17, of which a
summary is given below. We compute monthly anoma-
lies by subtracting the long-term monthly means based
on the period 1920-2013 from the corresponding month
of each year. We then form DJF and FMA averages
from the monthly anomalies and linearly detrend each
seasonal time series to reduce potential effects from
secular climate change. Following D17, we evaluate
statistical significance using a two-sided Student’s ¢ test
at the 10% significance level as well as a random sam-
pling approach discussed below. We identify 18 El Nifio
(EN) and 14 La Nina (LN) events during 1920-2013
according to the criterion that the observed detrended
DJF Nifio-3.4 (5°S-5°N, 120°-170°W) SST index exceeds
1 standard deviation (o) or falls below —1 o, re-
spectively [using November-January (NDJ) in place of
DJF does not change the event selection]. We form
ENSO composites by subtracting the average of the 14
LN events from the average of the 18 EN events. Unless
noted otherwise, all results are based on DJF.

To evaluate the influence of sampling variability, we
form 2000 synthetic ENSO composites for observations
and for each model simulation by randomly sampling
with replacement from among the 18 EN events and the
14 LN events, always retaining 18 samples for the former
and 14 samples for the latter (these samples will neces-
sarily omit some events and repeat others). As shown in
D17, the majority of these “bootstrapped” ENSO com-
posites consist of 11-12 unique EN events and nine unique
LN events and a maximum repetition of three events
of either sign. We also form 2000 synthetic ENSO com-
posites for each model by drawing from all ensemble
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F1G. 1. ENSO composites of DJF SAT (°C) from each of the 10 CESM1 PACE simulations (labeled 1 through 10) and from (lower right)
observations. Each composite is based on the same set of 18 El Nifio events minus 14 La Nifia events during 1920-2013. Values not
significant at the 10% confidence level based on a two-sided ¢ test are stippled.

members simultaneously (resulting in a larger number of
unique events and lower repetition rate).

3. Results
a. Observed and simulated ENSO composites

The observed ENSO SAT composite shows a statis-
tically significant dipole pattern of positive anomalies
over much of Canada and Alaska (maximum values
~4°C) and negative anomalies over the southeastern
United States (maximum amplitudes ~2°C; Fig. 1,
lower right panel). This pattern is evident to some de-
gree in all of the CESM1 PACE simulations, although
the magnitudes and exact locations of significant SAT
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anomalies vary considerably (Fig. 1). For example, the
warming over western Canada and Alaska is nearly
twice as large in simulation 8 compared to simulation 5,
and the cooling over the United States is located in the
Southeast (as observed) in simulation 1 and over the
Southwest in simulation 8. Notably, simulations 2 and 4
show weak (amplitudes <1.5°C) and generally in-
significant SAT anomalies throughout North America.
A similar level of diversity in ENSO SAT composites is
apparent in the GFDL and MIROC PACE (Figs. S1
and S2 in the online supplemental material) and
CESM1 TOGA (Fig. S3) ensembles, although the latter
shows generally larger amplitudes compared to its
PACE counterpart. Recall that each simulated com-
posite is based on the same set of ENSO events as the
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CESM1 Pacemaker ENSO Composites

[T 1

-0.5 -0.2 -0.1 0.1
Precipitation (mm day™)

02 05 1

FIG. 2. As in Fig. 1, but for PR (mm day !).

observed composite, highlighting the role of sampling
uncertainty.

The observed ENSO PR composite shows significant
positive anomalies over the southernmost U.S. states
and significant negative anomalies over southern
Ontario, Quebec, and the Ohio Valley—-Upper South
(the region encompassing Ohio, Michigan, Indiana,
Kentucky, Tennessee, and West Virginia), as well as
interior British Columbia, Alberta, western Manitoba,
and parts of the U.S. Northwest (Fig. 2k). The CESM1
PACE ensemble generally reproduces this observed
pattern, but the amplitude and statistical significance of
the regional PR anomalies vary across the members. For
example, California rainfall anomalies are considerably
weaker and more in line with observations in members
2, 5, and 10 compared to members 1, 4, 6, and 8. Simi-
larly, the spatial extent, amplitude, and significance of
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drying over western Canada range considerably across
the simulations (note the contrast between members 2
and 8), as well as over the Ohio Valley—Upper South
(note the absence of drying in members 4, 9, and 10). A
similar level of diversity in ENSO PR composites is
evident in the other models and the CESM1 TOGA
ensemble (Figs. S4-S6).

These results highlight that a sample size of 18 EN
and 14 LN events may be insufficient to accurately
determine the ENSO-forced SAT and PR responses in
models because of the presence of unrelated internal
variability that may obscure the ENSO signal. They
also raise the related issue of how well the observed
response to ENSO is known, even with 94 years of data
(1920-2013). Finally, the results underscore the chal-
lenge of evaluating the ENSO response in models given
sampling uncertainty in both the observational target
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FI1G. 3. (top row) ENSO composites of DJF SAT (°C) for (a) ensemble mean of the 10 CESM1 PACE simulations, (b) observations, and
(c) their difference. Stippling in (a) and (b) indicates values not significant at the 10% confidence level based on a two-sided ¢ test. Stippling
in (c) indicates that the observed value lies outside of the 5%-95% values from the model’s 2000 bootstrapped composites, and red
contours (which occur only over Baja California) indicate the observed value lies outside any of the model’s bootstrapped composites.
(middle row) 5%-95% Cls (°C) on the SAT ENSO composites based on 2000 bootstrapped samples for (d) CESM1 PACE simulations,
(e) observations, and (f) their difference. Stippling in (f) indicates regions where the observed value falls within the spread of values from
the individual simulations. (bottom row) As in middle row, but for (g) the CAMS atmospheric control simulation and (h) observations

after removing ENSO. (i) As in (c), but applying the observed CIs to the model simulations. See text for details.

and in each model simulation. We address these
issues next.

b. Evaluating CESM1’s response to ENSO

1) TEMPERATURE

The ensemble mean of the 10 CESM1 PACE ENSO
composites provides a robust estimate of the model’s
true response to ENSO, as it is based on a total of 180
EN events and 140 LN events. Accordingly, the
ensemble-mean SAT response is significant over most of
the continent, with warming in Canada and Alaska
(maximum values >3°C in the Yukon and Alaska) and
weaker-amplitude cooling over most of the contiguous
United States (Fig. 3a). The pattern and amplitude of
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the ensemble-mean response is generally similar to the
observed composite except that the simulated warming
does not penetrate as far southeastward into the central
Canadian provinces and the north-central United States
(cf. Figs. 3a and 3b). (Note however that individual re-
alizations of the model, most notably simulations 1 and 8,
do show a more southerly extension than the ensemble
mean; recall Fig. 1). Differencing the observed composite
from the ensemble-mean composite reveals a significant
cold bias in the model’s ENSO response in the central
Canadian provinces and U.S. Upper Midwest; all other
regions show insignificant differences (Fig. 3c). Here,
differences are deemed statistically significant if the
value of the observed composite is lower than the 5th
percentile or greater than the 95th percentile of the
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2000 model bootstrapped ENSO composite values
obtained by randomly sampling from among all 10
PACE ensemble members.

To properly evaluate whether the model has a realistic
forced response to ENSO, one must also assess its in-
ternal variability. This is because a bias in the model’s
forced response might not be detected if the simulated
internal variability is overestimated (i.e., the spread
among ENSO composites is too large), or it might be
falsely detected if the simulated internal variability is
underestimated (i.e., the spread among ENSO com-
posites is too small). Here we assess the model’s internal
variability by comparing the spread between the 5th and
95th percentiles of the 2000 bootstrapped ENSO com-
posites for observations and CESM1 PACE (the latter
computed using all ensemble members).

The spatial distribution of the model’s confidence in-
tervals (CIs) (Fig. 3d) is similar to observations (Fig. 3e),
with the largest values extending southeastward from
Alaska toward the U.S. Great Lakes. However, their
amplitudes exceed the observed values in western
Alaska, the far western United States, and the eastern
third of the continent by up to 1°-2°C (nonstippled re-
gions in Fig. 3f). In these regions, the observed Cl is less
than the minimum CI of any of the 10 PACE runs, in-
dicating that the model has enhanced variability com-
pared to the real world (the CIs for each PACE
simulation are shown in Fig. §7). The larger CIs in the
model might obscure a true bias in the model’s forced
response. To address this possibility, we apply the ob-
served ClIs to the model’s ensemble-mean ENSO SAT
composite and reevaluate the significance on the dif-
ference between the SAT values from the ensemble-
mean composite and the observed composite (Fig. 3i).
The area with statistically significant differences ex-
pands slightly to encompass the southern Great Lakes
region compared to using the model’s CIs (cf. Figs. 3¢
and 3i). This additional region is thus an area where
there is a true bias in the model’s forced ENSO re-
sponse, which had been obscured by the model’s over-
estimated CI. The model’s underestimated CIs over
far northeastern Canada do not affect assessment of
its forced ENSO response (cf. Figs. 3¢ and 3i). The
observed CIs will also be subject to uncertainty, in
analogy with the range of Cls across the individual
members of CESM1 PACE, but this has not been
investigated here.

Next, we make use of the 2600-yr atmospheric control
simulation of CESM1 to assess the contribution of in-
ternal atmospheric variability to the CIs in CESM1
PACE. To do so, we randomly select two groups of years
(with replacement) from the control run, one consisting
of 18 winters and the other of 14 winters. We then
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average the SAT anomaly fields within each group and
take their difference, in analogy with how we formed the
ENSO composites. We repeat this procedure 2000
times, and use these 2000 random samples to compute
the CIs. The ClIs from the atmosphere-only control run
(Fig. 3g) are very similar to those from the coupled
model’s PACE simulations (Fig. 3d), indicating that
internal atmospheric variability accounts for most of the
uncertainty obtained from the model’s bootstrapped
ENSO composites. This means that the spread in ENSO
SAT composites across the members of the CESM1
PACE ensemble is primarily due to the superposition of
random (i.e., inherently unpredictable on interannual
time scales) internal atmospheric circulation anomalies
on the forced ENSO response.

While we cannot isolate the contribution of internal
atmospheric dynamics to the observed Cls, we can
evaluate the contribution of non-ENSO-related SAT
variability. To do this, we compute CIs by randomly
sampling from all 93 winters during 1920-2013 after
linearly regressing out the Nifio-3.4 SST index (Fig. 3h)
or by computing CIs from the 61 ENSO-neutral years
(not shown). The CIs based on the ENSO residual
sample (Fig. 3h) are very similar to those on the ENSO
sample (Fig. 3e), indicating that internal atmospheric
variability likely underlies the uncertainty in the ob-
served ENSO composite in analogy with the model-
based results. We note that the differences between the
CIs from the atmospheric control simulation (Fig. 3g)
and the ENSO-residual observations (Fig. 3h) are even
smaller than those in Fig. 3f (not shown).

2) PRECIPITATION

The ensemble-mean PR composite in CESM1 PACE
shows statistically significant drying in British Columbia,
the U.S. Pacific Northwest, and the Ohio Valley, and
statistically significant wetting along the southern coast
of Alaska and throughout the southern United States,
with maximum amplitudes in California and the
Southeast (Fig. 4a). This pattern resembles the observed
composite (Fig. 4b), except for the lack of pronounced
drying in the Ohio Valley—-Upper South; however, as
noted earlier, this region is subject to large member-to-
member variation (recall Fig. 2). The larger area of
statistically significant PR anomalies in the model
composite compared to observations is likely a result of
averaging over 10 times as many ENSO events. Differ-
encing the observed composite from the ensemble-mean
composite reveals that the model significantly over-
estimates the amplitude of the PR response to ENSO in
Southern California, Nevada, western Utah, and coastal
British Columbia, and significantly underestimates it in
the Ohio Valley—Upper South and Florida (Fig. 3c).
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FIG. 4. As in Fig. 3, but for PR (mm day ).

The modeled (Fig. 4d) and observed (Fig. 4¢) CIs on
the ENSO PR composites show similar patterns, with
the largest amplitudes along the Pacific coast (maximum
values ~2-3mmday ') and the southeast United States
(maximum values ~1-2mm day'). However, the model’s
CIs are larger over most of the western United States
and the Ohio Valley, and smaller over portions of the
southeast United States (Fig. 4f) compared to obser-
vations. In these regions of overestimation (un-
derestimation), the minimum (maximum) CI of any of
the 10 CESM1 PACE simulations exceeds (is less than)
the observed CI, indicating that the model’s variability
is likely different from that of the real world in these
locations (see Fig. S8 for the CIs of each individual
simulation).

Applying the observed CIs to the model’s ensemble-
mean PR composite accentuates the statistical signifi-
cance of the model’s overestimated PR response to
ENSO in the western United States (California, Nevada,
Utah, western Colorado, and northwestern Arizona), as
the ensemble-mean composite PR values are found to
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be larger than those in any of the 2000 observed boot-
strapped composite samples (area outlined in red in
Fig. 4i). Similarly, the model’s underestimated PR re-
sponse in the Ohio Valley and southern portions of
Ontario and Quebec becomes statistically significant
because of the smaller observed CIs. This additional
region is thus an area where there is a true bias in the
model’s forced ENSO response, which had been ob-
scured by the model’s overestimated CI.

Finally, internal atmospheric variability accounts for
almost all of the uncertainty on the model’s ENSO PR
response (cf. Figs. 4g and 4d). Likewise, non-ENSO-
related variability (which we posit stems mostly from
internal atmospheric variability) accounts for most of
the uncertainty on the observed ENSO PR composite
(cf. Figs. 4h and 4e).

¢. Range of ENSO composites using bootstrapped
observations

How well do we know the spatial pattern and ampli-
tude of SAT and PR responses to ENSO in the real
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Observational Bootstrapped ENSO Composites
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FIG. 5. (a)—(i) Ten randomly selected bootstrapped ENSO composites of DJF SAT (°C) based on observations. Values not significant at
the 10% confidence level based on a two-sided ¢ test are stippled.

world? As discussed above, the number of ENSO events
available for compositing during 1920-2013 may be in-
sufficient to accurately separate the ENSO-forced re-
sponse from unrelated climate variability. We make use
of the 2000 bootstrapped ENSO composites based on
observations to address this question. To begin, we show
nine of these composites selected at random for SAT
(Fig. 5) and PR (Fig. 6). In analogy with the 10 PACE
simulations shown in Figs. 1 and 2, these synthetic ob-
servational composites display a range of amplitudes
and patterns. This range arises from a combination of
the different sets of ENSO events in each observational
composite (recall the bootstrapping methodology out-
lined in section 2) and the different sample of climate
anomalies unrelated to ENSO in each composite (recall
that only the latter contributes to the spread within a
given model’s PACE simulations). Although the gen-
eral patterns are similar across the nine synthetic com-
posites, there is considerable variation in amplitude and
level of statistical significance. For example, statistically
significant warming (4-6°C) over western Canada and
Alaska is found in one randomly selected composite
(Fig. 51) but not in another (<2°C; Fig. 5g). Similarly,
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significant wetting occurs over Northern California
(>3mmday ') in one composite (Fig. 6g) but not in
another (<0.5mmday~'; Fig. 6d), while pronounced
drying is widespread over the Ohio Valley—Upper South
and southern Quebec in one composite (Fig. 6f) but not
in another (Fig. 6g).

Next, we perform a more systematic investigation of
the 2000 observational bootstrapped ENSO composites,
sorting them according to their area-weighted ampli-
tudes in selected regions of interest. For SAT, these
regions are the Northwest (NW: 54°~70°N, 175°-98°W)
and Southeast (SE: 25°-37°N, 102°-85°W) portions of
North America where the actual observed composite
shows significant warming and cooling, respectively. For
PR, we select the Pacific Northwest (PNW: 42°-58°N,
125°-112°W), Gulf states (GULF: 25°-34°N, 100°-
77°W), and California (CA: 32°-42°N, 125°-119°W),
regions within which the majority of grid boxes show
significant rainfall signals in the actual observed com-
posite (drying for PNW and wetting for GULF and CA).
These regions are depicted in Fig. 7 (SAT) and Fig. 9
(PR). For illustration purposes, we display the 10th- and
90th-percentile composite samples based on each
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regional index. Table S1 lists the particular EN and LN
events and the number of times they are sampled for
each of the 10th- and 90th-percentile composite samples
for each regional index. A minimum of 11 distinct EN
events and 7 distinct LN events comprise each com-
posite sample, and no single event is sampled more than
4 times (Table S1).

Figures 7a and 7b (7c and 7d) show the observed SAT
bootstrapped ENSO composites that lie at the 10th
and 90th percentiles, respectively, based on the NW
(SE) SAT index. As expected, the index regions show
clear differences in SAT anomaly amplitude between
the lower- and upper-percentile composites on which
they are based. For example, the warming across
western Canada and Alaska ranges from ~1°-3°Cin the
10th-percentile NW composite (Fig. 7a) compared
to ~3°-6°C in the 90th-percentile NW composite
(Fig. 7b). Similarly, the cooling over the southeastern
United States reaches —3°C in the 10th-percentile SE
composite (Fig. 7c) compared to —2°C in the 90th-
percentile composite (Fig. 7d). In addition to these local
differences in SAT amplitude, there are differences in
magnitude, pattern, and statistical significance over the
rest of continent. For example, the 90th-percentile SE
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composite, which has low-amplitude cooling over the
SE United States, shows high-amplitude warming over
western Canada and Alaska. This is in contrast to the
90th-percentile NW composite, which shows similar-
magnitude warming over western Canada and Alaska
but stronger and more widespread areas of significant
cooling over the southern United States compared to
the 90th-percentile SE composite. Similarly, the am-
plitude and spatial extent of the cooling over the
southern United States is comparable between the 90th-
percentile NW and 10th-percentile SE composites, yet
the warming over Canada and Alaska is much larger
and more widespread in the former compared to the
latter. These results illustrate that composite SAT am-
plitudes in one region may be decoupled from those in
another.

To the extent that our random sampling methodology
does not introduce additional diversity due to differ-
ences among ENSO events (addressed below), the range
of ENSO SAT composites in Fig. 7 illustrates what na-
ture might have produced given a different sequence of
internal variability independent of ENSO. That is, even
with a sample of 18 EN and 14 LN events, the amplitude
and to a lesser extent the pattern of the North American
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FIG. 7. Tenth- and 90th-percentile bootstrapped ENSO composites of observed DJF SAT (°C) based on the (a),(b) NW and (c),(d) SE
SAT indices (index regions outlined in black). Values not significant at the 10% confidence level based on a two-sided ¢ test are stippled.
Panel insets show the accompanying SST (°C) composites in the tropical Pacific.

SAT response to ENSO are subject to considerable
uncertainty.

To what extent does the different composition of
ENSO events in each of the observed bootstrapped
composites shown in Fig. 7 contribute to their different
SAT anomalies? As a first step in addressing this ques-
tion, we show maps of the composite SST anomalies
in the tropical Pacific that accompany each SAT com-
posite (insets in Fig. 7). All four SST composites show
similar patterns and amplitudes, with positive anomalies
along the equator (maximum values ~3°-4°C in the
central basin 165°-105°W) flanked by weaker-amplitude
(<1 C) negative values to the Northwest and Southwest.
If anything, the 90th-percentile composite based on the
NW SAT index, which features higher-amplitude warm-
ing across Canada and Alaska, shows weaker SST
anomalies in the central equatorial Pacific compared toits
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10th-percentile counterpart (cf. Figs. 7a and 7b). How-
ever, this difference is likely a result of random chance,
since there is no systematic relationship between the
Nifio-3.4 SST and NW SAT indices across the 2000 ob-
served composite bootstrapped samples as shown by the
scatterplot in Fig. 8a. The large scatter indicates that the
precise pair of values of any particular composite, and
by extension the pair of spatial patterns shown in Figs. 7a
and 7b, is likely due to chance.

For example, for a given value of the NW SAT index
such as 3.1°C, which is close to the value of the 90th-
percentile sample (3.2°C), there is a wide range of
possible composite Nifio-3.4 SSTA values (2.2° to
3.0°C) across the 2000 bootstrapped ENSO composites
(Fig. 8a). Thus, the small difference in Nifio-3.4 SST
values (0.2°C) between the 10th- and 90th-percentile
NW SAT index composites is unlikely to be the cause of
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the approximately twofold difference in their NW SAT
values (1.6°° vs 3.2°C). Conversely, for a given value of
the Nifio-3.4 SST index, say 2.6°C, the NW SAT index
can range from 1° to 4°C. Similar remarks apply to the
10th- and 90th-percentile composites based on the SE
SAT index (Fig. 8b). Finally, although there is a weak
linear dependence of the NW SAT index on the Niflo-
3.4 SST index across the 2000 bootstrapped ENSO
composites (correlation coefficient = —0.20), and to a
lesser extent of the SE SAT index on Niflo-3.4 (corre-
lation coefficient = 0.01), removing this dependency via
linear regression analysis has virtually no effect on the
results (not shown), underscoring that differences
among the 2000 individual bootstrapped composites are
unlikely to be the result of sampling slightly different
sets of ENSO events.

To extend this analysis to all of North America, we
calculate the contribution to the observed CI that arises
from the linear dependence of the SAT composite
values at each grid box upon the Nifio-3.4 composite
values across the 2000 bootstrapped samples. To obtain
this “ENSO contribution,” we first compute the CIs
using the 2000 SAT values of the bootstrapped composites
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from which the composite Nifio-3.4 SST index has been
linearly removed via regression analysis, and then
subtract it from the original CIs. This ENSO contri-
bution is <0.5°C at all grid boxes, corresponding
to <5% of the total CI, except near the Great Lakes
and a few isolated locations where it can reach up to
5%-15% (Fig. S9).

Repeating these analyses for PR, Fig. 9 shows the
observed bootstrapped ENSO composites that lie at the
10th and 90th percentiles based on the PNW, GULF,
and CA PR indices defined above. All six composites
show similar spatial patterns, consisting of PR increases
over the Gulf states and along the Pacific coast of Can-
ada and Alaska, and PR decreases over the Pacific
Northwest and Ohio Valley—Upper South, similar to the
ensemble-mean composite (recall Fig. 4a). However,
their magnitudes and areas of statistical significance vary
considerably. For example, drying over the U.S. North-
west and Upper South is greater in amplitude and area of
significance in the 10th-percentile PNW composite com-
pared to its 90th-percentile counterpart (Figs. 9a and 9b,
respectively). Similarly, PR increases over the southern
United States are larger and extend farther north in the
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FIG. 9. Asin Fig. 7, but for observed PR (mm day ™~ '). Tenth- and 90th-percentile composites based on the (a),(b) PNW, (c),(d) GULF, and
(e),(f) CA PR indices (index regions outlined in black).

90th-percentile GULF composite compared to the 10th-
percentile composite (Figs. 9d and 9c, respectively). Fi-
nally, the only case with significant wetting over all of
California is the one based on the 90th percentile of the
CA PR index (Fig. 9f). The 10th-90th percentile PR
range within each index region is —0.60 to —0.24 mm day '
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for PNW, 0.62 to 1.13mmday71 for GULF, and 0.03 to
1.43mmday " for CA.

Similar tropical SSTA patterns accompany each PR
composite, with small variations in amplitude (panel
insets in Fig. 9). The 10th-percentile PNW composite
(which has larger drying over the Pacific Northwest)
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FIG. 10. Histograms of ENSO composite values of the (a) NW and (b) SE SAT indices (°C). Gray bars denote values from the 2000
bootstrapped samples and red bars indicate actual values. From top to bottom: PACE simulations from MIROC (5 members), GFDL
CM2.1 (10 members) and CESM1 (10 members), and CAMS5 TOGA simulations (10 members). Horizontal blue bar above each histogram
indicates the 5%-95% CI range based on 2000 bootstrapped samples.

shows slightly weaker SSTA in the central equatorial
Pacific (160°-130°W), compared to its 90th-percentile
counterpart (Figs. 9a and 9b, respectively). However,
this is likely a result of random chance since the PNW
index shows no systematic dependence on the Nifio-3.4
SST index across the 2000 bootstrapped composite
samples (correlation coefficient = 0.01; Fig. 8c). The
GULF and CA PR indices show slightly stronger de-
pendencies on Nino-3.4 SST (correlation coefficients of
0.51 and 0.30, respectively), confirming the visual im-
pression from the scatterplots (Figs. 8d,e) and consistent
with the slightly larger SSTA in the central equatorial
Pacific in the 90th-percentile composite sample (Figs. 9d
and 9f, respectively) compared to the 10th-percentile
sample (Figs. 9c and 9e, respectively). However, the
magnitude of the ENSO contribution to the CIs on the
observed PR composite is <10% over the Gulf states
and California, and <5% everywhere else except
southern Florida, where it reaches 20%-25% (Fig. S9).

Collectively, these results demonstrate that while
there is some effect associated with sampling different
sets of EN and LN events in the observed bootstrapped
composites, it does not make a large contribution to the
uncertainty in the SAT and PR ENSO composites, with
some regional exceptions as noted above. Thus, the di-
versity of amplitudes, patterns, and degree of statistical
significance among the ENSO composites shown in
Figs. 5-9 is primarily due to internal variability rather
than slightly different samples of ENSO events. In this

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 04:38 PM UTC

context, it is worth recalling the diversity in SAT and PR
composites across the individual members of the PACE
ensembles for which the set of ENSO events is identical.

d. Comparison across models

We summarize the amplitudes of the regional SAT
and PR indices across all 2000 bootstrapped ENSO
composites from observations and models in the histo-
grams shown in Figs. 10 and 11. The actual composite
values are shown as red bars: one for observations; 10 for
each member of the CESM1 PACE, CESM1 TOGA, and
CM2.1 PACE ensembles; and five for each member of
the MIROCS PACE ensemble. While the observed value
must lie in the middle of its bootstrapped samples by
construction, this need not be the case for the models since
their bootstrapped samples were constructed by drawing
from among all ensemble members (although the average
across all members will lie at the peak of the distribution
of the bootstrapped samples for a given model). The
horizontal blue bar above each dataset indicates the 5%-95%
CI range based on the bootstrapped samples.

As expected based on the results already presented, the
CESM1 PACE ensemble shows a realistic mean value of
the NW SAT index but slightly overestimates the width of
its distribution (Fig. 10a). Also consistent with Fig. 1, two
of the CESM1 PACE ensemble members are obvious
outliers, falling in the lowest 1% of the distribution (by
chance). The width and mean value of the NW SAT his-
tograms based on the CM2.1 and MIROC5 PACE
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ensembles are similar to those from the CESM1 PACE
ensemble, but the individual members are more evenly
distributed across the range of bootstrapped samples than
those in CESM1 (Fig. 10a). The NW SAT histogram based
on the CESM1 TOGA ensemble is shifted to the right of
those based on observations and PACE simulations,
overestimating the observed value (2.4°C) by more than
50% in the ensemble mean (3.7°C). For the SE SAT index,
the models generally show realistic distributions and Cls,
except for MIROC, which simulates an ensemble-mean
value close to zero that is significantly different from
the observed value of —1.2°C (Fig. 10b). In all cases, the
widths of the distributions are considerably smaller for the
SE SAT index compared to the NW SAT index.

All model ensembles show realistic distributions for
PR in the PNW region, although MIROCS is on the
drier side (Fig. 11a). There is more variation across
models for PR in the GULF and CA regions, with all
members of MIROCS substantially overestimating the
observed wetting, although there is overlap between the
simulated and observed bootstrapped Cls (Figs. 11b,c).
The most realistic distributions for GULF are those
from CESM1 PACE and TOGA (Fig. 11b), while those
for CA are CESM1 TOGA and CM2.1 (Fig. 11c). Like
CESM1 PACE and TOGA, CM2.1 shows one member
that falls at the very dry end of the distribution for
GULF (Fig. 11b). The models generally simulate re-
alistic CIs for all three PR indices, with the possible
exception of CESM1 PACE for CA, which is consider-
ably larger than observed, although there is some
member-to-member variation (Fig. S8).

These portrayals of the bootstrapped ENSO com-
posites for selected regional climate indices highlight the
need for large model ensembles, since a single simula-
tion can alter the mean value, and to a lesser extent the
width, of the distribution just by chance, confounding
model evaluation and model intercomparison.

e. El Niiio versus La Niita composites

Up to now, we have focused on the linear compo-
nent of ENSO. Here we examine whether there are any
appreciable nonlinearities aside from polarity by com-
paring observed composites of the 18 EN events and
the 14 LN events separately. For ease of comparison
with EN, we show the LN composite with inverted sign
(denoted —LN). While the SAT composites show re-
gional differences in amplitude associated with a
southward displacement of the continental-scale dipole
pattern in EN (Fig. 12a) compared to —LN (Fig. 12b),
these differences are not significant except near the
Great Lakes (Fig. 12c). Similarly, the PR composites
show local differences in magnitude associated with
southward-shifted dipoles over the eastern United
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sign), and (c),(f) their difference (EI Nifio + La Nifia). Values not significant at the 10% confidence level based on a two-sided ¢ test are

stippled.

States and along the Gulf of Alaska in EN (Fig. 12d)
compared to —LN (Fig. 12¢), but none are significant
except those along the southern coast of mainland
Alaska (Fig. 12f). Our EN and LN composites are con-
sistent with the analogous one-sided regression maps in
Hoerling et al. (2001); however, that study did not assess
differences between their one-sided regressions.

f- Flavors of El Niiio

To what extent might different ‘“flavors” of El Niflo
affect the range of SAT and PR anomalies across the
2000 observed bootstrapped composites? In particular,
if we sample only east Pacific (EP) or central Pacific
(CP) El Nifio events [defined according to the consensus
method of Yu et al. (2012); see also Graf and Zanchettin
(2012) and Yu et al. (2015)] in our ENSO composites, do
we obtain significantly different anomalies and CIs? To
address this issue, we construct two additional 2000-
member sets of bootstrapped composites, which differ
from the original set by restricting the random sampling
of all 18 EI Nifio events to those that fall in the EP
category (7) and to those that fall in the CP category
(11); nothing is changed for the sampling of La Nina
events. Note that we maintain a total of 18 El Nifio (and
14 La Nifna) events in these new CP and EP sets of
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bootstrapped composites for consistency with the orig-
inal ““all El Nifio” bootstrapped composites.

The CI maps based on the 2000 CP and 2000 EP
bootstrapped composites are very similar in pattern and
amplitude for both SAT (Figs. 13a,b) and PR (Figs. 13c,d).
The slightly larger SAT CI values over Canada in CP
compared to EP are well within the range of what could be
expected by chance, at least according to the individual
members of CESM1 PACE, whose Cls are based on the
same set of ENSO events (Fig. S7). Similar results are
found by sampling only east Pacific nonconvecting (EPN)
or east Pacific convecting (EPC) El Nifio events (Johnson
and Kosaka 2016) in our 2000 observed bootstrapped
ENSO composites (not shown). Taken together, the re-
sults shown above reinforce the notion that ENSO di-
versity, whether in the form of differences in magnitude,
nonlinearities between EN and LN, or different ‘“flavors”
of El Nifo, does not have an appreciable effect on our
quantification of uncertainty on the observed ENSO SAT
and PR composites.

A separate but related question is whether the actual
observed CP and EP composites show significantly dif-
ferent SAT and PR anomalies. Both composites display
the familiar SAT dipole pattern across North America,
but EP exhibits larger statistically significant warming
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FIG. 13. CIs of 5%-95% on observed ENSO composites of DJF (a),(b) SAT (°C) and (c),(d) PR (mm day ") using only (a),(c) CP and
(b),(d) EP El Nifio events during 1920-2013. See text for details.

over Canada and Alaska compared to CP (maximum
values 4°-5°C vs 2°-3°C, respectively; Figs. 14a,b). In ad-
dition, the region of significant cooling is confined to the
southern tier of U.S. states in CP but penetrates into the
Mid-Atlantic states in EP. The area extending south-
eastward from northern Saskatchewan to the U.S. central
Atlantic coast shows statistically significant differences
between EP and CP, but the rest of Canada does not,
despite the nearly twofold difference in composite SAT
amplitudes (Fig. 14c). PR shows a very similar pattern
between the two sets of composites, with somewhat larger
amplitudes for EP compared to CP (Figs. 14e and 14d,
respectively), but these differences are not statistically
significant except at a few locations (Fig. 14f). SAT and
PR differences between EPN and EPC composites are
also generally not statistically significant over North
America, as shown by Johnson and Kosaka (2016).

g. Late-winter ENSO composites

While the primary focus of this study is on DJF, we
briefly report on FMA, as rainfall over Southern California
shows a larger ENSO signal in this season (L’Heureux et al.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 04:38 PM UTC

2015; Jong et al. 2016). Repeating our observational
ENSO composites for late winter (shown in Fig. S10), we
confirm that in addition to Southern California, positive
PR anomalies occur with larger amplitudes (statistically
significant values of 0.2-0.5mmday ') in FMA compared
to DJF over the U.S. Southwest desert and portions of
Kansas, Nebraska, and South Dakota (cf. Fig. S10b with
Fig. 4b). The increased PR in FMA is accompanied
by stronger cooling (statistically significant amplitudes
of 1°-2°C) over Arizona, New Mexico, and parts of
Colorado and Kansas (Fig. S10a) compared to DJF
(Fig. 3b). Elsewhere, ENSO composite values are con-
siderably weaker in late winter than in midwinter, both
for PR and SAT. For example, warming over Canada and
Alaska is only half as strong in FMA compared to DJF,
and drying over the interior Pacific Northwest is weak and
insignificant in late winter.

4. Discussion and summary

This study has evaluated the role of sampling vari-
ability in ENSO composites of winter SAT and PR over
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North America during the period 1920-2013 in obser-
vations and ensembles of “Tropical Pacific Pacemaker”
coupled model simulations with CESM1, CM2.1, and
MIROCS. The individual members of each model en-
semble show a surprising amount of diversity in their
ENSO composites, despite the fact that they are con-
structed from the same observed set of 18 EN and 14 LN
events. For a given model, this ensemble spread can only
be due to sampling variability, that is, aliasing of internal
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variability that is unrelated to ENSO. In the case of
CESML1, for which a lengthy atmosphere-only control
simulation is available, we showed that this sampling
variability arises from internal atmospheric dynamics
rather than coupled ocean—-atmosphere processes. Sim-
ilar ENSO composite spread is evident in an uncoupled
(atmosphere-only) model ensemble with observed time-
varying tropical SSTs prescribed at the lower boundary
(the CESM1 TOGA ensemble).
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Are the observed ENSO composites subject to a
similar level of uncertainty as those in the Pacemaker
ensembles? What might the observed ENSO composite
have looked like under a different permutation of nat-
ural variability unrelated to ENSO? To address these
questions, we constructed 2000 synthetic ENSO com-
posites from the observations using random sampling
techniques. These synthetic composites provide in-
formation on the range of spatial patterns and ampli-
tudes associated with imperfect estimation of the forced
ENSO signal. The observed SAT composite shows a
statistically significant dipole pattern of positive anom-
alies over western Canada and Alaska and negative
anomalies over the southeastern United States. But al-
though all 2000 synthetic ENSO composites show posi-
tive SAT values in the NW and negative SAT values in
the SE, their amplitudes vary by approximately a factor
of 2.5 between the Sth- and 95th-percentile composite
samples (1.3° to 3.4°C for the NW and —0.7° to —1.7°C
for the SE). The observed PR composite shows signifi-
cant wetting over the Gulf states and parts of California,
Arizona, and New Mexico, and significant drying over
the Ohio Valley—Upper South and parts of the interior
Pacific Northwest. However, the 5%-95% uncertainty
range on the magnitudes of these regional composite PR
anomalies is substantial: 0.55mmday ' to 0.89 mm day
in the GULF; —0.15mmday ! to —0.69mmday ' in
the PNW (and also the Ohio Valley—Upper South);
and —0.07mmday ! to +1.18mmday ' in CA. While
previous studies highlight that the strong EN events of
1957/58, 1982/83, and 1997/98 each brought copious
amounts of rainfall to CA (Siler et al. 2017; Lee et al.
2018), our results are not unduly influenced by the number
of times these events are sampled in our synthetic com-
posites. In particular, these three events account for
<16% of the ENSO events sampled in 89% of the syn-
thetic ENSO composites, consistent with the results
shown in Figs. 8,9, and S9, and make up 9% and 12.5% of
the events sampled in the 10th- and 90th-percentile PR
composites based on CA PR, respectively (Figs. 9e,f).

Although the synthetic ENSO composites based on
observations are necessarily constructed from different
combinations of EN and LN events, differences in mag-
nitude of the composite Nifio-3.4 SST index make only a
minor (<5%) contribution to their spread over most of
North America, with slightly higher values (up to 10%)
for SAT near the Great Lakes and PR over California and
portions of the SE United States, and up to 25% for PR
over central Florida. Removing this dependence on the
composite Nino-3.4 values results in a slight (i.e., on the
order of a few grid boxes) expansion of the regions cov-
ered by robust ENSO signals, but does not quantitatively
affect the results (Fig. S11). Other forms of ENSO
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diversity, such as nonlinearities between EN and LN or
different “flavors” of El Nifio (EP vs CP), also do not
appreciably affect our quantification of uncertainty on the
observed ENSO SAT and PR composites.

Our results have implications for ENSO reconstruc-
tions based on paleoclimate proxy records of SAT and
PR over North America. In particular, such ENSO re-
constructions will also be subject to uncertainties asso-
ciated with sampling variability, even if the proxies are
perfect indicators of winter climate anomalies. Judicious
choices of proxy record locations based on the un-
certainties provided here may help to narrow this range;
another ameliorating factor may be if the proxy records
integrate climate signals over a broader seasonal win-
dow, as this may help to reduce aliasing from natural
variability unrelated to ENSO (although it may also
weaken the ENSO signal).

Our results have broad implications for how to eval-
uate the realism of ENSO signals in models. In partic-
ular, uncertainty in the pattern and amplitude of the
observed ENSO composite necessitates an approach to
model assessment that considers not only the model’s
forced response to ENSO, but also its representation of
internal variability unrelated to ENSO. In the Pace-
maker ensembles, we can determine the forced response
by averaging ENSO composites across all members of a
given model. Using the 2000 synthetic ENSO compos-
ites constructed for each model simulation and for ob-
servations, we can discriminate between true model
biases in the forced ENSO response and apparent model
biases that arise from limited sampling of internal vari-
ability unrelated to ENSO.

Applying this approach to the CESM1 Pacemaker
ensemble, we find that the model significantly over-
estimates internal variability (and hence ENSO com-
posite spread) of SAT over Alaska and parts of the
eastern and southwestern United States, and also sig-
nificantly overestimates (underestimates) internal vari-
ability of PR over the western (southeastern) United
States. Taking these differences in internal variability
into account, we are able to reveal true biases in the
model’s forced ENSO response, including a significant
underestimation of warming over the central Canadian
provinces and U.S. Upper Midwest, a significant un-
derestimation of wetting (drying) over Florida (Ohio
Valley—Upper South), and a significant overestimation
of wetting (drying) over California and Nevada (coastal
British Columbia). Somewhat different model biases in
the forced ENSO response are apparent in the un-
coupled CESM1 TOGA ensemble for reasons discussed
in the appendix. Observational uncertainty in tropical
SSTs used as boundary forcing for the models represents
an additional potential source of discrepancy between
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FIG. Al. CIs of 5%-95% on ENSO composites of DJF (a) SAT (°C) and (b) PR (mm day ') from the CESM1 TOGA ensemble based on
2000 bootstrapped samples.

the observed and simulated ENSO composites, and
merits investigation.

In summary, even with nearly a century of observa-
tions, quantification of the canonical influence of ENSO
on North American climate is subject to considerable
uncertainty due to aliasing of unrelated climate vari-
ability. This observational uncertainty must be properly
accounted for when evaluating ENSO responses in

climate models. In particular, discriminating between
true model biases in the forced response to ENSO, and
apparent model biases that arise from limited sampling
of internal variability unrelated to ENSO, is essential.
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FIG. A2. ENSO composites of DJF SAT (°C) and SLP (hPa; contours) for the (a) CESM1 TOGA ensemble mean, (b) CESM1 PACE
ensemble mean, (c) observations, and differences between (d) TOGA ensemble mean and observations, (¢) PACE ensemble mean and
observations, and (f) TOGA and PACE ensemble means. Contour interval is 2 hPa, with negative values dashed and the zero contour
thickened. Stippling in (a),(b),(c),(f) indicates SAT values not significant at the 10% confidence level based on a two-sided  test. Stippling
in (d),(e) indicates that the observed value lies outside of the 5%-95% values from the model’s 2000 bootstrapped composites, and red
contours indicate the observed value lies outside any of the model’s bootstrapped composites.
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APPENDIX

CESM1 Pacemaker versus TOGA Simulations

Are there any systematic differences in ENSO com-
posites from the coupled (PACE) and uncoupled
(TOGA) simulations with CESM1, and if so, why? The
spread across the 2000 bootstrapped ENSO composites is
very similar between TOGA and PACE, for both SAT
(cf. Fig. Ala and Fig. 3d) and PR (cf. Fig. A1b and Fig. 4d),
consistent with the dominant role of internal atmospheric
variability on ENSO composite uncertainty discussed in
section 3b. However, the ensemble-mean ENSO com-
posite (i.e., the forced response to ENSO) differs some-
what between TOGA and PACE. In particular, the
ensemble-mean SAT composite shows oppositely signed
biases, with TOGA significantly overestimating the

Brought to you

observed warming over northern Canada by up to 3°C,
and PACE significantly underestimating it over south-
central Canada by about the same amount (Fig. A2). Thus,
neither model configuration is clearly superior in terms of
SAT amplitude, although the spatial pattern is more re-
alistic in TOGA than PACE [the pattern correlation (r) of
the ensemble-mean SAT composite against the observed
SAT composite is 0.91 in TOGA compared to 0.75 in
PACE, and the lowest r of any of the individual TOGA
ensemble members (0.82) exceeds the highest 7 from any
of the individual PACE ensemble members (0.81)]. The
TOGA ensemble-mean PR composite shows realistic
magnitudes of wetting over Southern California and
Nevada and drying over coastal British Columbia,
areas where PACE was biased high; however, TOGA
overestimates the drying over parts of Oregon, Wash-
ington, and Montana and underestimates it in interior
British Columbia, areas where PACE was not signifi-
cantly biased (Fig. A3). While the spatial pattern of the
TOGA ensemble-mean PR composite bears a closer
resemblance to the observed PR composite than does
PACE (r = 0.76 for TOGA and 0.63 for PACE), there
is overlap between the lowest pattern correlation in
TOGA (0.64) and the highest in PACE (0.68) across
the individual ensemble members.

In summary, there are systematic differences in the
ENSO-forced SAT and PR responses between the
TOGA and PACE configurations of CESM1, with
TOGA showing an improved representation of the
spatial pattern but not amplitude of SAT, and of the PR
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FIG. A4. ENSO composites of DJF PR (mm day ') and SLP (hPa; contours) for the (a) CESM1 TOGA ensemble mean, (c) CESM1
PACE ensemble mean, (e) observations (20CR), and differences between (b) TOGA ensemble mean and observations, (d) PACE en-
semble mean and observations, and (f) TOGA and PACE ensemble means. Contour interval is 2 hPa, with negative values dashed and the
zero contour thickened. Stippling in (a),(c),(e),(f) indicates SLP values not significant at the 10% confidence level based on a two-sided
¢ test. Stippling in (b),(d) indicates that the observed SLP value lies outside of the 5%-95% values from the model’s 2000 bootstrapped

composites.

magnitudes over Southern California and Nevada
and coastal British Columbia, compared to PACE. A
10-member CESM1 ensemble with specified observed
time-evolving SSTs (and sea ice) over the entire globe
yields virtually identical results to TOGA (not shown);
thus, the differences between PACE and TOGA are
unlikely to result from ENSO-related SST anomalies in
the extratropics.
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What is the origin of the systematic differences in
ENSO responses between TOGA and PACE? To ad-
dress this question, it is helpful to view the surface
climate impacts of ENSO within the context of the
large-scale atmospheric circulation that drives them.
The ensemble-mean ENSO composites of SLP from
TOGA and PACE show negative anomalies over the
North Pacific, with maximum values of 8-10 hPa near
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FIG. A5. ENSO composites of DJF PR (mmday ') for (a) 20CR, (b) GPCP, and
(c) ERA20C. Stippling indicates values not significant at the 10% confidence level based on
a two-sided ¢ test. Composites based on 1920-2013 for (a),(c), and 1979-2013 for (b).

the Aleutian Islands, similar to observations (Figs. A2
and A3; see also D17). However, the orientation of the
isobars is more zonal in PACE compared to the NW-SE
tilt evident in observations and TOGA. The SLP dif-
ference between TOGA and PACE indicates onshore
flow of mild maritime air into western Canada, which
may account for the greater warming (Fig. A2f) and
wetting (Fig. A3f) in this region in TOGA relative to
PACE. Farther south, the offshore flow component in
TOGA compared to PACE is likely responsible for the
reduced wetting over California and neighboring states
(Fig. A3f).

The circulation differences in TOGA and PACE, in
turn, may be linked to differences in their tropical PR
responses via Rossby wave dynamics as shown in Fig. A4.
The tropical PR response in TOGA shows wetting over
the central Pacific and drying over the far western Pacific,
similar to observations but with reduced amplitude
(Figs. Ada,e). Here, the observed tropical PR composite
is based on 20CR, but similar results are found using
GPCP (limited to the satellite period starting in 1979) and
ERA20C (Fig. AS). In PACE, this entire pattern is shif-
ted to the west and more equatorially confined, with
maximum wetting over the western equatorial Pacific and
maximum off-equatorial drying over the eastern Indian
Ocean (Fig. Ad4c). This westward displacement likely
reflects the influence of mean-state biases in the fully
coupled CESM1, in particular a westward-extended equa-
torial SST ““cold tongue” that anchors a narrow ‘“‘double
ITCZ” on either side of the equator (not shown; similar
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mean-state biases are found in CM2.1 and MIROCS).
Thus, the PACE protocol is not a panacea because of the
influence of mean-state biases on CESM1’s response to
observed SSTA. The difference in tropical PR responses
between TOGA and PACE shows negative values in
the western Pacific of up to —10mmday ' and weaker-
amplitude positive values in the central Pacific (Fig. A4f).
This is accompanied by an arching SLP wave train over the
North Pacific that appears to emanate from the negative
precipitation center in the western tropical Pacific, possibly
indicative of a “‘short wavelength”” Rossby wave response.
This circulation response, in turn, drives the surface cli-
mate response differences noted above.
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