Comparing the Assimilation of Radar Reflectivity Using the Direct GSI-Based Ensemble?Variational (EnVar) and Indirect Cloud Analysis Methods in Convection-Allowing Forecasts over the Continental United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Comparing the Assimilation of Radar Reflectivity Using the Direct GSI-Based Ensemble?Variational (EnVar) and Indirect Cloud Analysis Methods in Convection-Allowing Forecasts over the Continental United States

Filetype[PDF-4.83 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Description:
    Two methods for assimilating radar reflectivity into deterministic convection-allowing forecasts were compared: an operationally used, computationally less expensive cloud analysis (CA) scheme and a relatively more expensive, but rigorous, ensemble Kalman filter–variational hybrid method (EnVar). These methods were implemented in the Nonhydrostatic Multiscale Model on the B-grid and were tested on 10 cases featuring high-impact deep convective storms and heavy precipitation. A variety of traditional, neighborhood-based, and features-based verification metrics support that the EnVar produced superior free forecasts compared to the CA procedure, with statistically significant differences extending up to 9 h into the forecast. Despite being inferior, the CA scheme was able to provide benefit compared to not assimilating radar reflectivity at all, but limited to the first few forecast hours. While the EnVar is able to partially suppress spurious convection by assimilating 0-dBZ reflectivity observations directly, the CA is not designed to reduce or remove hydrometeors. As a result, the CA struggles more with suppression of spurious convection in the first-guess field, which resulted in high-frequency biases and poor forecast evolution, as illustrated in a few case studies. Additionally, while the EnVar uses flow-dependent ensemble covariances to update hydrometers, thermodynamic, and dynamic variables simultaneously when the reflectivity is assimilated, the CA relies on a radar reflectivity-derived latent heating rate that is applied during a separate digital filter initialization (DFI) procedure to introduce deep convective storms into the model, and the results of CA are shown to be sensitive to the window length used in the DFI.
  • Source:
    Monthly Weather Review, 147(5), 1655-1678
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.21