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Abstract

This article verifies 1- to 10-day probabilistic precipitation forecasts in June, July,
and August 2016 from an experimental dual-resolution version of the European
Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction sys-
tem. Five different ensemble combinations were tested. These comprised subsets
of the 51-member operational ECMWF configuration (18-km grid) and an exper-
imental 201-member lower-resolution configuration (29-km grid). The motivation
of the dual-resolution ensemble forecast is to trade some higher-resolution members
against a larger number of lower-resolution members to increase the overall ensemble
size at constant overall computational cost. Forecasts were verified against precip-
itation analyses over Europe. Given substantial systematic errors of precipitation
forecasts, both raw and post-processed dual-resolution ensemble predictions were
evaluated. Postprocessing consisted of quantile mapping, tested with and without an
objective weighting of sorted ensemble members using closest-member histogram
statistics. Reforecasts and retrospective precipitation analyses were used as train-
ing data. However, the reforecast ensemble size and the dual-resolution ensemble
sizes differed, which motivated the development of a novel approach for develop-
ing closest-member histogram statistics for the larger real-time ensemble from the
smaller reforecast ensemble. Results show that the most skilful combination was
generally 40 ensemble members from the operational configuration and 40 from the
lower-resolution ensemble, evaluated by continuous ranked probability scores, Brier
Scores at various thresholds, and reliability diagrams. This conclusion was generally
valid with and without postprocessing. Reliability was improved by postprocessing,
though the improvement of the resolution component is not so clear. The advan-
tages of many members at higher resolution was diminished at longer lead times;
predictability of smaller scale features was lost, and there is more benefit in increas-
ing the ensemble size to reduce sampling uncertainty. This article evaluates only
one aspect in deciding on any future ensemble configuration, and other skill-related
considerations need to be taken into account.
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1 | INTRODUCTION

When deciding on the future configuration of an operational
ensemble prediction system, it is common to assume that
some fixed amount of computational resources and wall
time will be available for real-time production. Evaluations
of the potential tradeoffs of ensemble size versus resolution
may then be performed to determine a final configuration
meeting these constraints. Currently, the European Centre
for Medium-Range Weather Forecasts (ECMWF) generates
51 real-time ensemble predictions twice daily at TCo639
resolution, of approximately 18-km grid spacing, with 91 ver-
tical levels (Haiden er al., 2018). The optimal configuration
depends in part on the fidelity of the ensemble predictions,
which generally improves with each upgrade. Fewer mem-
bers might be computed at higher resolution, improving each
member’s forecast (Buizza, 2010), but with increased sam-
pling variability due to fewer members (Buizza and Palmer,
1998; Richardson, 2001). Alternatively, a larger ensemble
system with potentially greater biases for each member but
with reduced sampling variability could be generated. From
previous testing, the meteorological community has learned
that the relative tradeoff of ensemble size and resolution may
have complex dependences, changing with the variable of
interest, the metric used for evaluation (Lei and Whitaker,
2017), the forecast lead time (Ma et al., 2012), and whether
statistical postprocessing was applied or not (Baran er al.,
2019).

The ECMWF 2016-2025 Roadmap' describes the orga-
nization’s goal of producing some operational ensemble
forecasts at 5-km grid spacing by 2025. This has moti-
vated ECMWEF to conduct investigations with dual-resolution
ensemble prediction with some members at higher resolution
(eventually 5 km), to exploit the value of high resolution, and
additional members at lower resolution, to decrease the sam-
pling error. The main motivation of this dual-resolution con-
figuration is to trade some higher-resolution members against
a larger number of lower-resolution members to increase the
overall ensemble size at constant overall computational cost.
Other research is ongoing at ECMWF to determine the poten-
tial tradeoffs of such a dual-resolution system: see Baran et al.
(2019).

The research question to be addressed in this article
is the relative skill of probabilistic forecasts of precipita-
tion in various configurations of a dual-resolution version
of the ECMWF ensemble prediction system. Accurate
probabilistic precipitation forecasts are important to many
customers, including hydrologists. For example, improved
precipitation guidance for hydrological models can improve
flood prediction. This is one of the goals of the European
Union (EU) 2020 Improving PRedictions and management

'https://www.ecmwf.int/en/about/what-we-do/strategy
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of hydrological EXtremes (IMPREX) project (Van den
Hurk er al., 2016). Hence, probabilistic precipitation fore-
cast skill and reliability should be evaluated carefully when
making decisions on future ensemble prediction system
configurations.

Despite the many improvements in numerical weather
predictions (NWP) over the last two decades (Buizza and
Leutbecher, 2015), probabilistic precipitation forecasts are
still typically unreliable, in part because of limitations in the
underlying prediction system (Hamill et al., 2017). These lim-
itations include simple sampling variability, but also a lack
of spread (Hamill and Colucci, 1998; Buizza et al., 2018)
and biases, both location- and state-dependent. For example,
Hamill (2012) found that light precipitation in operational
global ensemble predictions was commonly overforecast and
heavy precipitation underforecast. Such biases in precipita-
tion may also change from one season to the next (Hamill,
2018). For these reasons, statistical postprocessing of the
output of deterministic and ensemble prediction systems is
commonly an integral part of the numerical weather pre-
diction process. With statistical postprocessing, the statisti-
cian develops relationships between past model forecasts and
observations, which are then used to adjust the real-time fore-
cast. These commonly improve the skill and reliability of
the probabilistic quantitative precipitation forecasts (PQPF:
Hamill et al., 2006; 2008; 2013; Hamill and Whitaker, 2007;
Wilks and Hamill, 2007; Ben Bouallégue, 2013; Baran and
Nemoda, 2016). Since careful statistical postprocessing can
add greatly to PQPF skill and reliability and might change
the resolution/ensemble size tradeoff, an evaluation of possi-
ble ensemble configurations would be more informative if the
skill of post-processed PQPFs were also considered.

The article will thus evaluate PQPF skill and reliability
from a dual-resolution ensemble in different configurations,
both raw and after postprocessing. The evaluation will include
24-hr PQPFs over Europe from five different dual-resolution
ensemble combinations and lead times from +1 to +10 days.
In this study, each ensemble member is calibrated separately.
Readers interested in optimal combination of multimodel
ensembles can refer to Ben Bouallegue (2013) and references
therein.

While many precipitation postprocessing methods have
been proposed in the literature, we choose to use one that has
recently been demonstrated to perform well in a US-based
application (Hamill and Scheuerer, 2018). This approach
sequentially applies two commonly used postprocessing com-
ponents, quantile mapping (Hopson and Webster, 2010) and
an approach inspired by best-member dressing (Roulston
and Smith, 2003; Fortin et al., 2006; Hamill and Scheuerer,
2018). Quantile mapping leverages cumulative distribution
functions (CDFs) of forecasts and observations in a training
dataset. The quantile in the CDF associated with a partic-
ular forecast amount is determined. The forecast amount is
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then replaced with the amount associated with the same
quantile in the observed/analysed CDF, thereby ameliorating
amount-dependent bias. Subsequently, each quantile-mapped
member is weighted objectively, and the final event probabil-
ities are estimated from the weighted relative frequency. The
statistical characteristics of the weights are determined from
past ensemble forecasts, specifically the frequency of a given
sorted, quantile-mapped member closest to the observed
event.

There are particular challenges associated with the statis-
tical postprocessing of precipitation. Postprocessing of other
variables, such as short-lead temperature forecasts, may yield
improved probabilistic forecasts when trained with shorter
training data sets (Stensrud and Yussouf, 2003; Yussouf
and Stensrud, 2007; Hagedorn et al., 2008; Hamill, 2012).
Unfortunately, the successful calibration of heavier precipi-
tation amounts typically requires larger training sample sizes
(Hamill et al., 2017). Also, precipitation forecast errors may
be strongly location-dependent, and, because heavier pre-
cipitation amounts are uncommon, there may be an insuf-
ficient number of similarly heavy precipitation forecasts at
a given location in a short training data set to estimate
the location-dependent forecast-error characteristics properly.
Two possible approaches to help address this problem are
the use of supplemental locations (Hamill ez al., 2008; 2017;
Lerch and Baran, 2017) and the use of a longer, more com-
plete time series of reforecasts. With the former approach, at
every location where calibration is desired, other locations
are identified that have similar precipitation climatologies and
geographic characteristics. The assumption is that the sys-
tematic errors will be similar at the original location and
the supplemental locations, and thus the training data for
the original location can be bolstered by training data at the
supplemental locations. With the latter approach, the limita-
tions of a short time series of past forecasts is acknowledged
explicitly. The prediction centre thus generates as many retro-
spective forecasts as is practical with the same model version
and ideally the same data assimilation system used to gen-
erate the real-time forecasts. This “reforecast” procedure has
been applied for several model versions of the US National
Weather Service Global Ensemble Forecast System (GEFS)
(Hamill et al., 2004; 2006; 2007; 2013) and reforecasts are
now regenerated for each model version in the ECMWF
ensemble (Hagedorn, 2008; Vitart et al., 2019). A compli-
cation in the use of reforecasts with the proposed objective
dressing approach is that the ECMWF reforecast ensemble
has only 11 members, while the real-time configuration has 51
members. Previously, the quantification of dressing statistics
(Hamill and Scheuerer, 2018) assumed that training ensemble
size and real-time ensemble size were the same. In this appli-
cation, we will thus discuss a novel algorithmic modification
that permits objective estimation of dressing statistics for a
larger, real-time ensemble to be estimated from training data

comprised of a smaller ensemble. That is a secondary goal of
this article.

The article now provides more detail on the specifics of
the postprocessing technique and the results of an evaluation
with a dual-resolution ensemble. Section 2 contains a descrip-
tion of the data to be used in the study (sections 2.1-2.3),
the calibration methodology (section 2.4), and the verification
methodologies (secion 2.5). Section 3 provides the evaluation
of the different dual-resolution ensemble tests with several
verification scores and reliability diagrams. Finally, section 4
contains the discussion and conclusions of this study.

2 | DATA, CALIBRATION, AND
VERIFICATION METHODOLOGY

21 |

For the calibration process, we utilize the 11-member refore-
casts (one control forecast and 10 perturbed forecasts) that
were computed twice weekly (Mondays and Thursdays)
covering the June—July—August (JJA) 1996-2016 period.
Data up to +246-hr lead time were utilized here. The
11-member reforecasts were computed for both resolutions of
the dual-resolution system, TC0639 and TC0399, simulating
the availability of dual-resolution reforecast training data in a
hypothetical future operational prediction system.

Reforecast training data

22 |

The European Flood Awareness System (EFAS: Ntegeka
et al., 2013) provided 24-hr gridded accumulated precipita-
tion validation and training data. The EFAS analysis extended
domain database covers Europe and some surrounding coun-
tries (Figure 1). The data set used contained 24-hr accu-
mulated daily precipitation analyses from 0600 UTC of a
given day to 0600 UTC of the following day. Data were
archived on a Lambert Azimuthal Equal Area projection
grid (5-km grid spacing). The interpolation algorithm from
the station observations to the EFAS extended domain grid
was SPHEREMAP (Willmott et al., 1985), with the spher-
ical adaptation of the interpolation scheme developed by
Shepard (1968). EFAS data were available for years from
1996-2016, covering both training (1996-2015) and valida-
tion (2016) periods. This data set is used as the observation
analysis input to initialize the EFAS hydrological model.
The IMPREX project has as main goal the improvement of
meteorological and hydrological predictions for a better fore-
cast of floods. As a final step to achieve this objective, this
calibration and the different dual-resolution ensemble config-
urations will be tested as forcings in the EFAS hydrological
model, and for this reason we decided to use the same analy-
sis database. This test will be developed in another scientific
article.

EFAS gridded precipitation analyses
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FIGURE 1
verification region (grey shaded area)

Extended EFAS domain, encompassing the

For training of the postprocessing algorithm, all EFAS
grid points were considered, a practical necessity given the
use of the supplemental locations algorithm. For verifica-
tion, forecast characteristics were validated only at a smaller
number (2,400) of more trustworthy analysis grid points, cor-
responding to the locations of European SYNOP stations.
These points are usually used in ECMWF forecast verifica-
tion (Haiden et al., 2018). Tests using all grid points were
also performed, with quite similar verification results (not
presented).

2.3 | Dual-resolution ensemble
configurations

In this examination of dual-resolution ensemble forecast
characteristics, two horizontal resolutions of the ECMWF
Integrated Forecast System (IFS) were examined: TCo639
(~18km resolution) and TC0399 (~29km resolution). 51
members were produced at TCo639 and 201 members
at TCo399, but in the dual-resolution ensemble investiga-
tion we will only use the perturbed ensembles (50 and
200 ensemble members, respectively) and not the con-
trol members. Each ensemble system (higher-resolution and
lower-resolution) is calibrated separately before setting up the
different dual-resolution ensemble combinations. Five differ-
ent dual-ensemble combinations with HH higher-resolution
and LL lower-resolution perturbed members were tested with
the structure HH/LL: 50/0, 40/40, 20/120, 10/160, and 0/200,
all with similar computational expense. To choose the sub-
sample of each ensemble forecast system to create the dif-
ferent dual-ensemble combinations, we select the first HH
(from high-resolution) or LL (from low-resolution) from the

Royal Meteorological Society

original ensemble members (not from the sorted ones when
we apply the weighting step) and give them the same weight
in the dual combination. This means that, for the combi-
nation 40/40, we will select the first 40 ensemble mem-
bers from the high-resolution system and the first 40 from
the low-resolution one and all 80 members will contribute
equally to the combined dual-resolution ensemble forecast.
These ensemble forecast systems will be referred to as the
“real-time” ensembles hereafter. Both higher-resolution and
lower-resolution ensembles use IFS model cycle 41r2, the
operational model version during the verification period. All
initial conditions and the stochastic representation of model
uncertainties were the same for both ensemble resolutions;
Leutbecher (2018) describes further details.

The real-time dual-resolution ensemble forecasts were
generated once daily during the JJA 2016 period up to to
246-hr lead time (10 days), with all forecasts initialized at
0000 UTC. To match the validation data periods, discussed
below, 24-hr accumulated precipitation was calculated from
0600 UTC of the corresponding study day to 0600 UTC of
the following day, for example from +6 to +30 hr lead time
(day +1). This was chosen to coincide with the accumu-
lated period for the EFAS precipitation analyses. Both the
2016 dual-resolution simulated operational forecast data and
the reforecast training data were interpolated to the EFAS
horizontal grid, discussed below, before the calibration and
verification processes, using a nearest-neighbour technique.
That is, the forecast value at the EFAS grid point is obtained
simply by taking the value from the nearest model grid point.

24 |

A schematic providing high-level details of the calibration
method is presented in Figure 2. Each ensemble system
(higher-resolution and lower-resolution) is calibrated sepa-
rately before setting up the different dual-resolution ensemble
combinations. The procedure will be explained as applied
to the single-resolution, 51-member real-time ensemble fore-
cast system. An identical procedure was applied to calibrate
the lower-resolution ensemble with 201 ensemble members.
The dashed line on the diagram separates the processing of
reforecast data (above the line) from the real-time processing
(below the line). We first outline the calibration procedure at
a high level of abstraction, followed by a detailed description
of each component. Much of the algorithmic detail follows
that outlined in Hamill and Scheuerer (2018).

The reforecast processing begins with generation of the
cumulative distribution functions (CDFs) for the reforecasts
and EFAS analyses. These will leverage a precomputed set
of supplemental locations that indicate what other grid points
are suitable for increasing the sample size used to estimate
the CDFs. With reforecast and analysed CDFs generated,
the reforecasts are quantile-mapped. These quantile-mapped

Calibration
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re-forecasts

Generate
re-forecast CDFs

Re-forecast CDFs

Supplemental
locations

1996-2016
EFAS precip Analysis

Supplemental
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EFAS CDFs

‘ Apply quantile mapping ‘

1996-2016 quantile

mapped forecasts

Develop 11-D
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histograms
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) Re-weighted
Verify ensemble forecasts

Fit B distribution &
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51-D closest member
histograms

FIGURE 2 Dataand process flow diagram for the quantile mapping and closest-member weighting calibration procedures. Rectangles denote

processing steps; parallelograms represent data stores

reforecasts are then compared with the analysed data to deter-
mine the closest-member histograms.

The rest of the processing in Figure 2 is performed on
the real-time ensemble, and both the perturbed and con-
trol were calibrated. The 51-member real-time ensemble is
quantile-mapped using CDFs developed from reforecast and
EFAS data using supplemental locations. We will apply
the postprocessing to the 51-member ensemble system, as
might be applied in current operations; however, only the
50 perturbed members will be used to create the experi-
mental dual-resolution ensemble combinations. Given the
differing sizes of the reforecast and real-time ensembles,
the 11-dimensional closest-member histograms are unsuit-
able for determining weights to apply to a sorted 51-member
ensemble and determination of probabilities for 51 intervals
between O and 1. For calculation of the weights, we assume
that the analysed state was more likely to be near to one
sorted member than the others and we will create a vector of
weights associated with the sorted members that reflect this

likelihood. This procedure will be explained in more detail
in section 2.4.2. Weighted probabilities can then be gener-
ated in a straightforward manner. Estimated 51-dimensional
closest-member histograms are thus determined through a
procedure that involves fitting a Beta distribution. The result-
ing raw, quantile-mapped, and quantile-mapped and weighted
ensembles can then each be verified using standard methods.

24.1 | Quantile mapping

The statistical adjustment of ensemble forecasts begins with
quantile mapping. Assume we have a raw forecast amount X,
which provides an estimate of the true (unknown) precipita-
tion amount x. Assume we have climatological CDFs ®¢(x)
and @,(x) for the forecasts and analyses, respectively. Given
a precipitation amount, the CDFs return the nonexceedance
probability g. The inverse function, ®;'(g), is the analysis
quantile function, which here returns the corresponding anal-
ysed amount associated with that quantile. Quantile mapping
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thus adjusts the forecast to be consistent with the analysed
CDF:

7= [@0)] M

CDFs were needed to perform the quantile mapping. The
reforecasts are split into 19 years of training data to popu-
late the CDFs (using the nine reforecast dates of the year
closest to the Julian day of the reforecast). Then, the remain-
ing year of training data is quantile-mapped. The procedure
is repeated to provide quantile-mapped precipitation amounts
spanning 20 years and we repeat the procedure for each one of
the 11 reforecast members separately. CDFs were built using
only the corresponding reforecast ensemble member and not
using all 11 members. It was decided after several tests to
keep a balance between computational cost and improvement
of the forecast skill (adding extra ensemble members to build
the CDFs did not have a big impact on the skill; however,
the computation cost increased considerably). These data are
then used in a second step of the training process, as input
for developing closest-member histograms, discussed below.
Reforecasts and corresponding analyses at 50 unique sup-
plemental locations were used at each EFAS grid point to
provide extra training data. The CDFs were estimated with
a fraction zero, that is, a fraction of samples with zero pre-
cipitation, and with the shape a and scale f parameters of a
fitted Gamma distribution for nonzero amounts. At each grid
point there were thus 20 years X 1 member (each member is
calibrated separately) X 9 dates X 50 supplemental locations
= 9,000 samples used to populate the forecast CDFs for the
quantile mapping of each the 11 ensemble members, and the
same nine dates to populate the EFAS analysis CDFs. The 50
supplemental locations were selected based on the similari-
ties of analysed climatologies and terrain characteristics and
were different for each month of the year, directly following
the Hamill and Scheuerer (2018) methodology. Figure 3 pro-
vides an example of the chosen supplemental locations for
Madrid (Spain), illustrating how the supplemental locations
are chosen to match the underlying precipitation climatology
characteristics.

Quantile mapping was also applied to the real-time ensem-
ble as the first step in the correction of systematic error. In
this case, the CDFs for the quantile mapping were developed
from the full 20 years X 1 member (control forecast) X 9
cases X 50 supplemental locations, thus providing 9,000 total
samples from real-time forecast and EFAS analysis precipita-
tion to generate the empirical CDF. This step is only applied
to the verification period that corresponds to JJA 2016 (three
months).

Because of the model’s tendency to overforecast light
precipitation, quantile mapping sometimes adjusted a fore-
cast light precipitation amount to zero. Suppose the CDFs
indicated an underforecasting of light precipitation. In this
case, there were multiple quantiles of ®¢(x) that were likely
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FIGURE 3 Tllustration of supplemental locations (black dots) of

a point near Madrid (Spain, large dot) for the month of June. The
location for which supplemental locations are desired is indicated by
the large black dot. Chosen supplemental locations are identified by the
smaller black dots. Climatological precipitation distribution parameters
are comprised with a fraction zero, that is, the fraction of samples with
zero precipitation, and using the shape () and scale (f) parameters of a
fitted Gamma distribution for nonzero amounts. Colours on the maps
denote the underlying EFAS 24-hr precipitation analysis climatology of
(a) fraction zero, (b) a, and (c) f
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associated with zero, and we face a nonuniqueness problem
when zero precipitation is forecast: is this representing the Oth
percentile of the forecast CDF, or perhaps the Sth percentile?
This problem was avoided by implementing an ad hoc rule,
such that zero raw forecast amounts were retained without
quantile mapping.

2.4.2 | Generating weights to apply to
sorted ensemble members

The second corrective step during the training process was
applied after quantile mapping of ensemble members. Sup-
pose, for the moment, there was a rational basis to believing
that the analysed state was more likely to be near to one sorted
member than the others. Let us assume we have a vector of
weights W = [wy), ..., Wy ] associated with the sorted mem-
bers that reflect this likelihood, where (;y denotes the ith rank.
Weighted probabilities can then be generated in a straightfor-
ward manner. When considering the probability of exceeding
the threshold amount ¢, we define an indicator function for the
ith sorted member:

1G) = 0
)1

Weighted probabilities of exceeding the amount ¢ are then
generated as follows:

if )7([) <t,

)
if §iy > 1.

Px> 0= ) 1()wg . 3)
i=1

The question then turns to how to generate weights asso-
ciated with each sorted member objectively. A procedure for
doing so was described in Hamill and Scheuerer (2018) using
the previously mentioned closest-member histograms. To
generate closest-member histograms from reforecasts, after a
set of cases of ensemble training data for a particular lead time
has been quantile-mapped, we have an 11-dimensional vector
¥ = [J1, ..., ¥11] of estimates of the unknown precipitation
amount. For the training sample (each date and each grid
point), these quantile-mapped ensemble data were sorted,
¥ = [Juy, .., ¥anl, and then compared with the analysed
precipitation amount. The rank of the nearest sorted member
was determined, and the histogram count associated with that
was incremented by one. Closest-member histograms were
thus generated by tallying over these many samples which
sorted member was closest to the analysed amount. Follow-
ing Hamill and Scheuerer (2018), separate closest-member
histograms were generated in this application for different
quantile-mapped ensemble-mean amounts. However, sepa-
rate histograms were not estimated separately for each grid
point; it was assumed that the previous quantile mapping
removed any location-dependent biases.

How can one use the 11-dimensional closest-member his-
tograms from reforecasts to estimate weights in a sorted,

51-member ensemble? Closest-member histograms for a
51-member ensemble can be estimated through the fitting of
Beta distributions (Wilks 2011, section 4.4.4). A Beta dis-
tribution provides a continuous probability density function
associated with a quantile g in the range (0,1). The probability
density function f (g, a, f) of the Beta distribution is

[la+p)\ o p-1.
9’ b = = s A< 1 - b
f(q,a,p) <F(a)r(ﬂ)>q (I-q)

0<g<l1; a,f>0. 4)

Here a and g are the parameters of the Beta distribution,
and I'(-) is the Gamma function. Parameter estimates & and f
are commonly generated from the method of moments as

_21__
a=T0 g ©)
S
~ a(l — g
j=2=2 ©)
q

where ¢ and s? are the sample mean and standard deviation,
respectively. Beta distributions have flexible shapes and can
be fitted to resemble the closest-member histograms.

The procedure for generating closest-member histograms
for the real-time, 51-member ensemble was thus as fol-
lows. (a) Fit a Beta distribution to the 11-dimensional
closest-member histogram based on the ECMWEF reforecast
training data. (b) Create closest-member histogram weights
associated with the larger HH = 51-member ensemble by inte-
grating the Beta distribution into 51 equally spaced regions
spanning 0 to 1. For step (a), sample means and variances
were needed to apply the method of moments to estimate the
Beta distribution parameters. Let w!! represent the appropri-
ate 11-dimensional closest-histogram vector of weights from
the reforecast ensemble based on the quantile-mapped ensem-
ble mean. Let us also define a vector a that provides the
corresponding central value associated with each rank in the
closest-member histogram when mapped to the interval (0,1):

0 1 10 1
a= (a"""a”> = <ﬁ+2x11"”’ﬁ+ 2><11>' @
The sample mean ¢ is
11
g= ) aw!' (®)

and the sample variance 1is calculated from a
closest-histogram weighted sum of squared differences from
the sample mean:

11
»_ 10 2 1
= ﬁ;(ai—zp xwl' . ©)
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Closest-member histograms and histogram from fitted Beta distribution, 30-hour forecasts
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Illustration of estimated 11-dimensional closest-member histograms (red) and histograms from fitted Beta distributions (blue) for

the July 14, 2016 ECMWF reforecast ensemble, +6 to +30 hr forecasts. Histograms for (a) light, (b) moderate, and (c) heavy ensemble-mean
precipitation, as defined in the text. Panels (d), (), and (f) provide estimates of the closest-member histograms for a 51-member ensemble and for

light, moderate, and heavier precipitation, respectively. These histograms were generated through integration of the fitted Beta distributions into 51

equally spaced bins

In the second step, the closest-member histogram weights
are computed through integration of the fitted Beta distri-
bution. Let j indicate the rank in the sorted, 51-member
ensemble and the index in the closest-member histogram vec-
tor w>!. The closest-member histogram weight for this rank
was calculated as

i/m
w;' = / f(q.a. pydx. (10)
G=D/m

Examples of closest-member histograms  and
Beta-distribution fits are provided in Figure 4. Figure 4a—c
provides the closest-member histograms for light precip-
itation, moderate precipitation, and heavier precipitation,
respectively. Light precipitation was defined as 0.01 mm < X

< 2.0 mm, moderate precipitation was defined as 2.0 mm < X
< 6.0mm, and heavy precipitation was defined as 6.0 mm
< X, where X was the raw ensemble-mean precipitation
amount. When ensemble-mean precipitation was less than
0.01 mm, a uniform closest-member histogram was assumed.
From Figure 4, we see that when light mean precipitation
was forecast, there was a U-shaped histogram that indicated
some underdispersion of the bias-corrected forecasts. When
heavier precipitation was forecast, the lower ranks were more
heavily weighted; this would have the effect of decreasing
heavy-precipitation event probabilities relative to an equally
weighted ensemble. Figure 4a—c also shows histograms gen-
erated from the integration of the fitted Beta distributions into
11 bins. These appear to provide a reasonable estimate of the
shape of the original closest-member histograms. Figure 4d—f
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then provides an example of the estimated 51-dimensional
closest-member histograms, illustrating similar histogram
shapes, but with finer discretization.

With the 51-dimensional closest-member histograms
generated from the training data, the statistical adjust-
ment of the real-time forecasts proceeded. Note that the
calculation of the closest-member histogram was devel-
oped for the 51-member ensemble (high-resolution) and
201-member ensemble (low-resolution) systems, thus before
the dual-resolution combinations were built. Then, each
real-time ensemble member will be weighted based on its
corresponding ensemble system closest-member histogram
(51 or 201), before extracting the number of ensembles that
we need to create each dual combination. The weights could
be different if the closest-member histograms were built for
each dual-resolution combination (for instance, considering
40 members from HH and 40 from LL), and this could be a
topic for further research.

Real-time forecasts quantile-mapped  using
reforecast-based CDFs (Equation 1). Based on the
ensemble-mean precipitation amount, the appropriate
closest-member histogram was selected. Then, to reweight
the ensemble forecast, we will use the quantile-mapped
ensemble forecast for a particular lead time and grid point
and the associated 51-dimensional closest-member his-
togram. Now, for the weighting procedure to be applied to
adjust the quantile-mapped forecast members we will use the
quantile-mapped reforecast and it will perform a stretching
of the original ensemble, so that members are more equally
likely in their statistical character.

For the procedure here to adjust the quantile-mapped
members to have characteristics more like equally likely
members, ®@¢(x) will no longer represent a CDF of past fore-
casts. Instead, it now depicts a distribution for a particular
grid point fitted to today’s quantile-mapped members, under
the assumption that all members are given equal weight. Sim-
ilarly, ®@,(x) now depicts a distribution for a particular grid
point fitted to today’s quantile-mapped and closest-histogram
weighted ensemble.

The procedures for estimating the fitted distributions for
the prior (quantile-mapped) and posterior (quantile-mapped
and weighted) are functionally equivalent. In the latter case,
weights in the procedure are supplied by the closest-member
histograms. In the former, weights are constant, 1/51. Fraction
zero and positive precipitation will be separately processed,
following the Hamill and Scheuerer (2018) procedure.

With the fraction zero and gamma-distribution parame-
ters estimated separately for quantile-mapped unweighted and
weighted ensembles, we have fitted ®¢(x) and ®,(x) and
the original ensemble of quantile-mapped values. The second
mapping procedure is now applied.

In the limit of infinite training data, the quantile mapping
should produce a climatological distribution of the forecasts

were

that is identical to the climatological distribution of the anal-
yses, provided the real-time forecasts are consistent with the
reforecasts. The weighting introduced in this second step
discussed in this section can, in principle, deteriorate the cli-
matological distribution of the quantile-mapped forecasts. It
will be an important question for future research to exam-
ine whether this is a limitation of the method in practical
applications.

2.5 | Verification methods

Verification procedures were applied to the predefined
dual-resolution ensemble combinations and considering three
types of calibration: raw (no calibration), quantile-mapped
(QM), and quantile-mapped combined with a weighting using
the closest-member histogram methodology (QM+W). The
verification period covers three months (JJA) in 2016 and
we focus on 24-hr precipitation forecasts. All the verification
scores are computed from day +1 (+6 to +30 hr) to day +10
(4222 to +246 hr) lead times with a two-day step, but only
relevant results will be shown in the next section.

The Continuous Ranked Probability Score (CRPS: Math-
eson and Winkler, 1976; Unger, 1985) is the first measure
used to evaluate the overall quality of PQPFs. The CRPS
measures the integrated squared difference between the CDF
of the ensemble forecasts and the corresponding CDF of the
observations. The CRPS is sensitive to calibration and sharp-
ness (Gneiting et al., 2014). We plot the results as raw CRPS
values and CRPS differences between all the dual-resolution
combinations (raw and calibrated) and the reference cur-
rent ensemble operational configuration without applying any
calibration (raw 50/0 combination). This shows how much
improvement or degradation is obtained from different com-
binations of dual-resolution ensembles and postprocessing.

Similar results were also calculated using the Brier
Score (BS: Brier, 1950; Wilks, 2011). This score is the
mean-squared error of the probability forecasts over the veri-
fication sample (binary) for a specific threshold of a specific
variable (in our case, 24-hr accumulated precipitation). We
evaluated three different precipitation thresholds: >0.1, >5,
and >10 mm. The BS can be decomposed into reliability, res-
olution, and uncertainty components (Murphy, 1973). We will
examine the BS resolution component of the forecast for the
different precipitation thresholds. The CRPS corresponds to
the integral of the BS over all possible thresholds. Addition-
ally, reliability diagrams are provided for selected thresholds
and different lead times.

Looking at the aggregated verification scores over Europe,
one can conclude whether, on average, one ensemble com-
bination or a type of calibration improves probabilistic fore-
cast performance. However, this does not take into account
the potential spatial distribution of these improvements, and
the user might wonder if in some areas there may be a
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(a) EFAS precipitation analysis (b) Raw precipitation forecast
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FIGURE 5 Example of verifying precipitation analysis and associated probabilistic forecasts. (a) Verifying EFAS precipitation analysis for

0600 UTC on July 14, 2016, and corresponding day +5 probability forecast of precipitation greater 0.1 mm from (b) the raw 50-member ECMWF

ensemble, (c) the QM 50-member ensemble, and (d) the QM+W ensemble

degradation. Hence, the differences of the mean CRPS at each
verification point were also determined for different ensemble
dual combinations and calibration methods, compared with
the raw 50/0 as a reference. Following Baran et al. (2019),
a Diebold—Mariano test (DM: Diebold and Mariano, 2002)
was also applied at each verification point separately. This test
of equal predictive performance compares the errors of the
different ensemble forecasts and takes into account their tem-
poral dependences. We apply the test in its factor-one version
(the factor applied to each forecast error), but we acknowl-
edge that other versions of the test can lead to different results.
This test supposes that we have two forecasts f7, ..., f, and
g1,..., 8y for a time series yy,...,y, and we want to evalu-
ate which forecast is better (better prediction accuracy). The
simple approach is to select the forecast that has the smaller
error measurement. However, this test determines whether
this difference is significant (for predictive purposes) or due
simply to the specific choice of data values in the sample.
The null hypothesis is that the two methods have the same

forecast accuracy. Moreover, confidence intervals associated
with CRPS and Brier Score differences are obtained with the
help of 2,000 block bootstrap samples using the stationary
bootstrap scheme with mean block length according to Poli-
tis and Romano (1994) and following the same approach as
Baran et al. (2019).

3 | VERIFICATION OF
DUAL-RESOLUTION ENSEMBLES

31 |

We start with a case study to illustrate the typical effect of
statistical postprocessing on precipitation ensemble forecasts
visually. Figure 5a shows the EFAS precipitation analysis
for July 2016, while Figure 5b—d presents the +126 hr (day
+5) probability of precipitation greater than 0.1 mm derived
from the raw, QM, and QM+W ensembles, respectively.
High-intensity precipitation is visible over part of Central

Case study
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FIGURE 6 Top panels: CRPS as a function of the forecast lead time for all investigated dual-resolution combinations for (a) raw and QM, (b)
raw and QM+W, and (c) QM and QM+W forecasts. Bottom panels: CRPS differences with respect to the raw 50/0 forecasts (the higher the better)
for (d) the raw ensemble combination, (¢) QM dual-resolution ensembles, and (f) QM+W ensembles. 95% confidence intervals are indicated by

vertical bars

Europe in Figure 5a. In the case of the raw probabilistic fore-
cast (Figure 5b), a large red area indicating probabilities near
100% covers most of Central and Northern Europe. After QM
(Figure 5c¢), a decrease in the area covered by high probabil-
ities is observed. QM+W reduced the geographic extent of
high probabilities further (Figure 5d). The reduction of high
probabilities, except in areas of consistently high precipitation
across ensemble members, is a characteristic of the QM+W
postprocessing method.

3.2 | Domain-averaged verification

We now consider CRPS results for different configurations of
the dual-resolution ensemble (Figure 6). Results are presented
in terms of CRPS for all investigated dual-resolution combi-
nations (Figure 6a—c) and in terms of CRPS differences with
respect to the raw 50/0 ensemble, (CRPS raw 50/0 — CRPS
HH/LL), where again HH is the number of higher-resolution
members and LL is the number of lower-resolution members
(Figure 6d—f). In the former case, the lower the better, while
in the latter case, the higher the better.

At short lead times (up to day +5), the 40/40 ensemble is
the most skilful combination, followed by the 50/0 ensemble
(Figure 6a,d). Atlonger lead times, CRPS for the raw forecasts
has similar values for all combinations except 50/0, which is
the worst combination. Figure 6b,c show that all ensemble
combinations benefit from postprocessing (QM or QM+W),
in particular at short lead times, and with more positive
significant changes with the second technique (QM+W).

The skill improvement when applying QM with respect to
the raw 50/0 forecasts is shown in Figure 6e. Note the dif-
ference in scale of the y-axis with respect to Figure 6d. In
this configuration, the 40/40 ensemble is also the most skilful
combination across all lead times. The difference is signifi-
cant up to day 5, but at longer lead times all QM-calibrated
combinations have comparable skill.

Figure 6f shows differences in skill with respect to
the raw 50/0 ensemble when applying QM+W. Comparing
Figure 6e and f (note the different scaling of the y-axis),
we see that QM+W improves the forecast performance
further, though differences are small at long lead times.
In that case, the mean CRPS differences between all the
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FIGURE 7 Brier score differences for the dual-resolution ensemble configurations as a function of the forecast lead time, presented in the
form BS raw 50/0 — BS HH/LL (the higher the value, the better). Rows indicate the event threshold (0.1, 5, and 10 mm, from top to bottom) and
vertical bars indicate 95% confidence intervals. Columns indicate the type of calibration (raw ensembles, QM ensembles, and QM+W ensembles,

from left to right)

combinations are small, which is consistent with results in
Baran et al. (2019).

Figure 7 shows Brier score differences for all the inves-
tigated ensemble configurations and different postprocessing
approaches. For a given configuration HH/LL, results are
presented in the form (BS raw 50/0 — BS HH/LL), with
positive differences indicating a forecast improvement with

respect to the 50-member higher-resolution ensemble. As in
the results for the CRPS (Figure 6), the 40/40 combination
appears to be either the best or among the best dual-resolution
configurations. The 40/40 ensemble clearly outperforms the
other configurations when focusing on high-intensity events
and short lead times. Similarly to the CRPS results, the dif-
ferences between the different dual-resolution combinations
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FIGURE 8 Reliability diagrams for different lead times (rows) and for different event thresholds (columns): day +1, +5, and +10 forecasts
(from top to bottom) and thresholds >0.1, >5, and >10 mm (from left to right). The blue colour corresponds to results for the raw ensemble forecast,
red is for the QM forecast, and orange for the QM+W forecast. Continuous lines indicate results for the 50/0 dual-resolution ensemble combination,
while dashed lines indicate results for the 40/40 ensemble. The bottom right subplots show the frequency of forecast falling in each of the probability
categories for the 50/0 combination only

decrease with QM calibration and even more so with QM+W lack of reliability of the raw ensemble is evident at short
calibration. lead times and very low precipitation thresholds (Figure 8a).

Figure 8 provides reliability diagrams for the 50/0 and  Figure 8a,d shows the substantial impact of QM on light pre-
40/40 combinations, focusing on three different lead times cipitation, with an especially pronounced positive effect on
(rows) and three different thresholds (columns). Similar the reliability at day +1. QM+W provides further improve-
results are obtained with other combinations (not shown). ment in terms of reliability, which is consistent with the
Indeed, we see that changing the dual resolution configuration results in Hamill and Scheuerer (2018). At longer lead time,
from 50/0 to 40/40 has little impact on the reliability curves. the raw ensemble is much better calibrated and postprocess-
Reliability is affected more strongly by postprocessing. The ing has therefore less of an impact. The limited sample size
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FIGURE 9 Brier score resolution component (the higher the better) as a function of the dual-resolution ensemble combination for different

lead times. Rows indicate the forecast lead time, with day +1, day +5, and day +10 (from top to bottom). Each column corresponds to a different

threshold: >0.1, >5, and >10 mm (from left to right). The blue colour corresponds to the raw ensemble forecast, red to the QM forecast, and orange

to the QM+W forecast

due to the short verification period explains the increased
noise of the reliability curves at long lead times and for high
precipitation thresholds (Figure 8h,i).

To complement the reliability diagrams, we present results
in terms of the BS resolution component. Figure 9 shows BS
resolution (the higher the better) for lead times of day +1

(first row), day +5 (second row), and day +10 (third row), and
for different precipitation thresholds: >0.1 mm (first column),
>5 mm (second column), and >10 mm (third column). While
reliability is improved after postprocessing for all investigated
event thresholds and lead times (Figure 8 ), the impact of post-
processing on the forecast resolution is less unequivocal: we
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see a large improvement with QM and QM+W at day 1 for
low-intensity events, some improvement with QM at day 5,
but a degradation with both QM and QM+W at day 10. We
would expect that postprocessing would retain (or improve)
the resolution of the raw forecast. This is not achieved here,
which suggests that there may be room for improvement of
the weighting postprocessing method.

It is also interesting to note that BS resolution as a function
of the ensemble configuration shows a peak (maximum) for
the 40/40 combination for nearly all thresholds and lead times.
This is an indication that the superiority of the 40/40 combi-
nation (seen in Figures 6 and 7) originates from an increased
forecast information content.

3.3 | Spatial variation of CRPS

We now investigate the following question: are there any spa-
tial patterns of improvement or degradation associated with
the results presented so far? To answer this question, we con-
sider the geographical distribution of the PQPF performance
differences and their significance for different ensemble con-
figurations and postprocessing approaches. We evaluate the
statistical significance of CRPS differences at each verifi-
cation point using the DM test with a p-value threshold of
0.05.

Figure 10 shows a spatial representation of local CRPS dif-
ferences and their significance for day +1 (left) and day +10
(right). The area shown on the map is a zoom of the study area,
covering 90% of the verification points. Stations with sta-
tistically insignificant differences are represented with small
dots, while stations with statistically significant differences
are shown with larger triangles. The symbol colour indicates
the value of the mean CRPS differences at the station level:
bluish colours indicate an improvement, while reddish colours
indicate a degradation with respect to the reference (the raw
50/0 operational ensemble). Large CRPS differences (deep
blue or deep red) are not always associated with statistical
significance, because the mean difference may be affected by
outliers.

The top panels in Figure 10 show the differences between
the raw 50/0 and 40/40 configurations. From visual inspec-
tion, we do not see any specific pattern in the differences
between both raw combinations at day +1. At day +10, local
improvements and degradations of the performance are more
balanced and some pattern is observed: the raw 50/0 ensemble
outperforms the 40/40 combination over coastal and moun-
tainous areas (for example, along the Atlantic coast and over
the Alps), while the 40/40 combination improves the forecast
significantly over continental areas over Northern and Central
Europe.

The middle and bottom panels in Figures 10 show the dif-
ferences between the raw operational forecast and both types
of calibration, QM and QM+W, respectively. The dominant

blue colours indicate that postprocessing improves the skill of
the forecast. At day 1, an improvement with statistical signif-
icance is registered over the whole area of study. At day +10,
large areas with degradation are observed, mostly over East-
ern Europe with QM (Figure 10d) and mostly over Western
Europe with QM+W (Figure 10f). At day +10, the positive
impact of postprocessing is identified over coastal areas in
Northern Europe and mountainous areas in Central Europe,
matching the areas where the 40/40 combination shows less
skill than the operational ensemble.

4 | CONCLUSION

This article explores the skill and reliability of probabilistic
quantitative precipitation forecasts (PQPFs) over Europe for
various dual-resolution ensemble combinations. The evalu-
ation is performed for raw ensemble forecasts, but also for
statistically post-processed forecasts with (a) quantile map-
ping and (b) quantile mapping combined with an objective
weighting of the sorted ensemble members. Five differ-
ent combinations of HH higher-resolution members and LL
lower-resolution members, which have approximately equal
computational cost, are tested. The intent is to determine
(a) whether combinations of lower- and higher-resolution
ensembles provide improved PQPFs with respect to a
single-resolution ensemble, and (b) whether the optimal com-
bination was notably different after postprocessing. This arti-
cle, which focuses on 24-hr precipitation, complements other
studies on the probabilistic skill of dual-resolution ensemble
forecasts, and the statistical postprocessing of 2-m tempera-
ture dual-resolution ensemble forecasts (Baran et al., 2019).

The postprocessing methodology applied here follows
Hamill and Scheuerer (2018): a quantile mapping with
the use of supplemental locations to increase the train-
ing sample size. In addition, closest-member histogram
statistics are used for a reweighting of sorted ensem-
ble members. The methodology as applied here provided
some novel aspects. In particular, training data are sup-
plied by reforecasts. Since the reforecasts have a differ-
ent ensemble size (11 members) from the real-time fore-
casts considered, for example, 51 higher-resolution members,
closest-member histogram statistics from the 11-member
reforecasts cannot be used directly for the objective reweight-
ing of the 51-member real-time ensemble. This problem is
addressed by fitting a Beta distribution to the closest-member
histogram.

Regarding the impact of postprocessing, verification
results reveal similar conclusions to previous studies. As
Hamill and Scheuerer (2018) concluded, the primary ensem-
ble forecast deficiency corrected by quantile mapping is the
overprediction of light precipitation amounts, especially at
very short lead times. On the other hand, the primary defi-
ciency of forecasts of heavier amounts is overconfidence and
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FIGURE 10 Spatial distribution of mean CRPS differences for lead times of day +1 (left) and day +10 (right). The first row presents the
mean CRPS of raw 50/0 minus the CRPS of the raw 40/40 combination. The second row presents the mean CRPS of the raw 50/0 compared with
QM 50/0. The third row presents the mean CRPS of the raw 50/0 compared with QM+W 50/0. Large triangles indicate stations that are significantly
different statistically and smaller dots indicate stations that are not

it is addressed through the closest-histogram rank weight- locations in some mountainous or low-precipitation areas,
ing. Reliability is improved at all lead times and precipitation because of the absence of grid points with similar orographic
thresholds, in particular at short lead times and low thresh- characteristics and/or precipitation climatology. In addition,
olds. However, and this is a new result, forecast resolution is the weighting step might undo some of the benefits of quan-
decreased by the calibration process at longer lead times. This tile mapping. Whether this is an actual issue for longer lead
could be explained by a suboptimal choice of supplemental times remains to be investigated in future work.
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Moreover, postprocessing is applied to higher- and
lower-resolution ensembles separately. Dual-resolution
ensembles would benefit further from an optimal combination
of (calibrated) ensembles, which can be achieved following,
for example, Ben Boualleégue, personal communication.

Regarding the dual-resolution ensemble performance, the
best dual-resolution ensemble, among the ones tested in this
study, is a balance between both resolution ensembles, namely
the 40/40 combination. At short lead times, the second best is
the ensemble with 50 higher-resolution members, which cor-
responds to the current operational configuration. At longer
lead times, the difference in performance is small between
ensembles with large numbers of members. The interpreta-
tion of these results is that higher-resolution forecasts are
more valuable at short lead times, where predictable fea-
tures are resolved better with the higher-resolution system. At
longer lead times, the predictability of the small-scale features
is lost and sampling error, which favours larger ensembles,
dominates.

Regarding the dual-resolution ensemble performance after
postprocessing, the results presented in this article confirm
the conclusion of Baran ef al. (2019). Postprocessing tech-
niques, in particular quantile mapping combined with a mem-
ber weighting, strongly reduce the differences in skill between
all dual ensemble configurations. This could imply that the
choice of ensemble configuration, that is, the balance between
horizontal resolution and ensemble size, might be less impor-
tant for users making decisions based on calibrated forecasts
than for those using raw forecasts.

The evaluation presented in this article provides some
guidance on the skill of different ensemble configurations.
However, a multitude of applications and other skill-related
considerations, together with technical and practical aspects,
all need to be taken into account when deciding on any
operational configuration. Future work will address these
other considerations. As we discussed at the beginning of
the article, this will include the evaluation of the different
dual-resolution ensemble configurations in the EFAS hydro-
logical model and exploration of the benefits of each cali-
bration process in small and large catchments for different
seasons (summer and autumn).
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