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ABSTRACT—Stephanie C. Herring, Nikolaos Christidi, Andrew Hoell, James P. Kossin, Carl J. Schreck III, and Peter A. Stott

This sixth edition of explaining extreme events of the 
previous year (2016) from a climate perspective is the 
first of these reports to find that some extreme events 
were not possible in a preindustrial climate. The events 
were the 2016 record global heat, the heat across Asia, 
as well as a marine heat wave off the coast of Alaska. 
While these results are novel, they were not unexpected. 
Climate attribution scientists have been predicting that 
eventually the influence of human-caused climate change 
would become sufficiently strong as to push events 
beyond the bounds of natural variability alone. It was also 
predicted that we would first observe this phenomenon 
for heat events where the climate change influence is most 
pronounced. Additional retrospective analysis will reveal 
if, in fact, these are the first events of their kind or were 
simply some of the first to be discovered.

Last year, the editors emphasized the need for ad-
ditional papers in the area of “impacts attribution” that 
investigate whether climate change’s influence on the 
extreme event can subsequently be directly tied to a 
change in risk of the socio-economic or environmental 
impacts. Several papers in this year’s report address this 
challenge, including Great Barrier Reef bleaching, living 
marine resources in the Pacific, and ecosystem productiv-
ity on the Iberian Peninsula. This is an increase over the 
number of impact attribution papers than in the past, and 
are hopefully a sign that research in this area will continue 
to expand in the future.

Other extreme weather event types in this year’s 
edition include ocean heat waves, forest fires, snow 
storms, and frost, as well as heavy precipitation, drought, 
and extreme heat and cold events over land. There were 

a number of marine heat waves examined in this year’s 
report, and all but one found a role for climate change 
in increasing the severity of the events. While human-
caused climate change caused China’s cold winter to be 
less likely, it did not influence U.S. storm Jonas which hit 
the mid-Atlantic in winter 2016.

As in past years, the papers submitted to this report 
are selected prior to knowing the f inal results of 
whether human-caused climate change influenced the 
event. The editors have and will continue to support the 
publication of papers that find no role for human-caused 
climate change because of their scientific value in both 
assessing attribution methodologies and in enhancing 
our understanding of how climate change is, and is not, 
impacting extremes. In this report, twenty-one of the 
twenty-seven papers in this edition identified climate 
change as a significant driver of an event, while six did 
not. Of the 131 papers now examined in this report over 
the last six years, approximately 65% have identified a 
role for climate change, while about 35% have not found 
an appreciable effect.  

Looking ahead, we hope to continue to see improve-
ments in how we assess the influence of human-induced 
climate change on extremes and the continued inclusion 
of stakeholder needs to inform the growth of the field and 
how the results can be applied in decision making. While 
it represents a considerable challenge to provide robust 
results that are clearly communicated for stakeholders 
to use as part of their decision-making processes, these 
annual reports are increasingly showing their potential 
to help meet such growing needs.
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11. WAS THE JANUARY 2016 MID-ATLANTIC SNOWSTORM 
“JONAS” SYMPTOMATIC OF CLIMATE CHANGE?

Klaus Wolter, Martin Hoerling, Jon K. eiscHeid, and dave allured 

Model simulations indicate that anthropogenic climate change has made extreme snowstorms  
less likely over the mid-Atlantic United States. Empirical evidence shows no decline since 1901, with  

recent storms colder than before.

Introduction. The biggest winter storm of 2016 named 
“Jonas”1 over the eastern United States hit the mid-
Atlantic states around 23 January, dumping up to 1 
m of snow from Virginia to New York (Fig. 11.1a)2, 
inflicting around $1 billion (U.S. dollars) in damages 
and causing 55 fatalities3,4. 

This motivated our exploratory inquiry about how 
heavy winter precipitation events overall, and heavy 
snowstorms in particular, have changed in the mid-
Atlantic region due to long-term climate change. In 
the eastern United States, heavy rain- and snowstorms 
have become more frequent during recent decades 
(Kunkel et al. 2013; Lawrimore et al. 2014). Both El 
Niño (Smith and O’Brien 2001; Lawrimore et al. 2014) 
and the negative phase of the NAO (Hoerling et al. 
2010; Seager et al. 2010) increase the odds of heavy 
snow in this region. Given these natural drivers to-
gether with the regional rarity of major snowstorms 
(Changnon et al. 2006), identifying human-induced 
contributions requires model experimentation, results 
of which are presented here to augment empirical 
diagnosis of historical data. 

1http://nypost.com/2016/01/28/winter-storm-jonas-ranks-4th 
-worst-among-northeast-snowstorms/

2https://weather.com/storms/winter/news/winter-storm-jonas 
-record-snowstorm-new-york-city

3https://en.wikipedia.org/wiki/January_2016_United_States 
_blizzard

4www.washingtonpost.com/local/dc-politics/dcs-credit-card-was 
-shut-off-and-that-wasnt-the-worst-of-snowzilla-audit-finds/ 
2017/01/11/5b84921a-d7f9-11e6-b8b2-cb5164beba6b_story 
.html?utm_term=.3c72de60003e&wpisrc=nl_localheads 
-draw6&wpmm=1

 

Data and methods. A database of 987 climate sta-
tions (GHCN-D) of daily precipitation records since 
1901 (Wolter et al. 2016) is used to identify heavy 
daily precipitation (≥25.4 mm). In the mid-Atlantic, 
19 stations (Fig. 11.1b) have nearly complete records 
of precipitation, snowfall, and temperature during 
December–March 1900/01 through 2015/16. We 
define heavy daily snow (≥15.2 cm) in conjunction 
with heavy daily precipitation. Average temperatures 
during heavy precipitation days are used to derive an 
empirical relation of rain/snow transition thresholds 
for this region, inspired by Collins et al. (2004) and 
Kienzle (2008). 

A 30-member ensemble of historical AMIP-style 
simulations is conducted with the T159 resolution 
(~85 km) ECHAM5 atmospheric model (Roeckner et 
al. 2003). This so-called “factual” simulation—using 
observed boundary and external radiative forcings—
is compared to a parallel 30-member ensemble 
of “counterfactual” simulations. Linear trends of 
observed post-1880 sea surface temperatures (SST) 
are removed from the full time-varying SST; sea 
ice conditions are set to an early twentieth century 
climatology; and radiative forcings are altered to their 
1880 values in counterfactual runs, thus retaining 
interannual and decadal variations of boundary 
forcings related to internal variability (Seager and 
Hoerling 2014; Sun et al. 2017, manuscript submitted to 
Wea. Climate Extremes). Simulated daily precipitation 
and temperature are analyzed for the mid-Atlantic 
domain of Fig. 11.1b. Heavy daily precipitation events 
are identified as in observations, and simulated 
snowstorms are inferred using the empirical relation 
of rain–snow temperature thresholds derived 
from observations. We compare factual versus 
counterfactual statistics of heavy precipitation 
and snowstorms for 2001–16 to maximize the 
climate change signal. A model’s ability to simulate 
realistic storm tracks is an important attribute when 
considering heavy snowstorms. In this regard, we note 

AFFILIATIONS: Wolter, eiscHeid, and allured—University of 
Colorado, Cooperative Institute for Research in Environmental 
Sciences and NOAA Earth System Research Laboratory, Boulder, 
Colorado; Hoerling—NOAA Earth System Research Laboratory, 
Boulder, Colorado

DOI:10.1175/BAMS-D-17-0130.1

A supplement to this article is available online (10.1175 
/BAMS-D-17-0130.2)
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that storm tracks in the mid-Atlantic region are well 
represented in CMIP5 models with spatial resolution 
similar to that of our ECHAM5 experiments (Colle 
et al. 2015). 

Results. (a) Empirical: Winter storm Jonas walloped our 
mid-Atlantic 19-station network: 12 stations reported 
daily totals of at least 23 cm of snow (25.4 mm of 
precipitation); see online supplement for more details. 

Figure 11.1c documents the average number of 
heavy precipitation days per winter season and station 
on a decadal basis (overall average: 2.2). Figure 11.1d 
does the same for heavy snow days (average: 0.26). 
While both time series show an increase over the last 
12 decades, their linear trends are not statistically sig-
nificant due to large decadal variability. Nevertheless, 

our results for the mid-Atlantic corroborate upward 
trends in heavy snowstorms since 1901 in the North-
east (Kunkel et al. 2013).

When binned by daily average temperatures (Tave; 
Table 11.1), heavy precipitation events above +2°C 
contain little snow [snow-to-rain ratio (S/R) < 1], while 
those below −6°C guarantee heavy snow days (S/R > 
8). We calculated heavy snow water equivalent (SWE; 
15.2 mm) days based on assuming that no snow fell 
above +2°C, all snow below −6°C, and linear fractions 
in-between. This is similar to Collins et al. (2004) 
who inferred snowfall in the NCAR CAM3 model 
using 0°C and −5°C for their all-rain and all-snow 
thresholds. For the 19 mid-Atlantic stations, a total of 
518 calculated heavy SWE days correspond well to 538 
observed heavy snow days since 1901. 

Fig. 11.1. (a) Jonas snowfall totals (inches); (b) 19 mid-Atlantic stations with 100yr+ precipitation records (Wolter 
et al. 2016) that also have more than 90% extant snowfall and temperature records during heavy precipitation 
days; gridding and shading refer to coverage by ECHAM5 for mid-Atlantic (~37°–41°N, ~74°–82°W); (c) Aver-
age annual counts of observed daily precipitation totals of 25.4 mm or higher from Dec–Mar 1900/01 through 
2015/16 (last decade 2010/11 to 2015/16) for 19 mid-Atlantic stations; linear regression-based increase over 116 
years: +20%; (d) As in (c) but for observed daily snowfall totals of 15.2 cm or higher (the number of usable sta-
tions varied from 16 to 19 per decade); linear regression-based increase over 116 years: +47%. [Source for (a): 
NWS Burlington.]
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Heavy snow counts show no significant change 
since 1901. Surprisingly, heavy snow days have be-
come significantly colder (−2.55°C), in contrast with 
heavy rain-only days which have warmed slightly 
(+0.35°C; both in Fig. ES11.1).

(b) Model: Figure 11.2 shows results for the mid-Atlan-
tic region from our model simulations. The Dec–Mar 
temperature difference between the factual and coun-
terfactual experiments is +0.84°C (Fig. 11.2a) which is 
lower than the observed trend since 1900 (+1.1°C; Fig. 
ES11.2a). The corresponding precipitation difference 
for the same set of runs shows little change (+0.2%; 
Fig. 11.2b), compared to an observed decline of −4% 
(Fig. ES11.2b). 

For each grid box and ensemble member, heavy 
precipitation events are extracted for Dec–Mar 
2000/01 through 2015/16. Consistent with a wet bias 
of the model, the average number of such events is 
3.7 per grid box in the factual case (Fig. 11.2c), high-

er than the observed 
frequency per climate 
station (2.3; Fig. 11.1c). 
Model snowstorms are 
derived by applying 
the same algorithm 
to calculate SWE as 
for observed data. The 
number of simulated 
heavy snow days is 0.17 
cases per winter and 
grid box in the factual 
case (Fig. 11.2d), lower 
than observed (0.34; 
Fig. 11.1d). 

Given t he  la rge 
model sample size, 
we f ind statistically 
significant changes in 
the frequency of heavy 
precipitation and snow 
days as a consequence 
of long-term climate 
change. An increase 
in the average num-
ber of heavy precipi-
tation days of 7.0% is 
99% significant for the 
means, but not for the 
full distribution [Fig. 
11.2c; Komolgorov–
Smirnov (K–S) value 

of 0.13]. A decrease by 17.5% for the average number 
of heavy snow days (Fig. 11.2d) is significant (t-test: 
99%; K–S = 0.07). Comparing the number of events 
per winter in factual versus counterfactual climates 
indicates that 68.5% of the factual precipitation sea-
sons exceed the counterfactual median (3.5 events per 
winter; Fig. 11.2c), a 37% increase in the relative risk 
of heavy precipitation events. By contrast, for heavy 
snowstorms, only 24.1% of the factual model seasons 
exceed the counterfactual median (0.2 events per 
winter; Fig. 11.2d), a 52% decrease in the relative risk 
of heavy snowstorms. Thus, the modeled likelihood 
of experiencing a heavy snowstorm has decreased in 
recent decades, as a result of climate change alone. 

Comparing the probability distributions of both 
factual and counterfactual runs shows a wide spread 
in outcomes for heavy precipitation and snow events 
(Fig. 11.2c,d). This suggests low confidence in de-
tecting the forced signal from a single sample of 
historical data. Concerning the model’s forced signal, 

Table 11.1. Nineteen mid-Atlantic stations with more than 90% daily data for Dec–Mar 
1900/01–2015/16, focusing on heavy daily precipitation events (25.4 mm+). “Tave” 
refers to daily average temperature bins (in 1°C steps between +6°C and −6°C); 
“#rain” refers to total number of rain-only events; “#snow” lists total number of 
heavy precipitation events with more than trace of snow; “%snow” gives percentage 
of the snowy days to total count [#snow*100/(#rain+#snow)]; “<S/R>” refers to total 
amount of snow divided by total amount of precipitation in each temperature bin; 
and “%6+:1” refers to percentage of snowy days with snow:rain ratio of 6:1 or higher. 
In each column, biggest values are highlighted in green, lowest in red.

Tave 
(°C) #rain #snow %snow <S/R> %6+:1

≥6°C 1783 43 2.4% 0.05 0.1%

≥5/<6 372 33 8.1 0.17 0.7

≥4/<5 256 38 12.9 0.26 1.0

≥3/<4 324 67 17.1 0.36 1.5

≥2/<3 208 88 29.7 0.77 3.7

≥1/<2 203 127 38.5 1.21 5.8

≥0/<1 119 177 59.8 2.51 15.9

≥−1/<0 060 117 66.1 2.85 20.8

≥−2/<−1 036 173 82.8 4.06 30.6

≥−3/<−2 017 093 84.5 4.88 40.0

≥−4/<−3 018 094 83.9 5.48 45.6

≥−5/<−4 012 054 81.8 5.41 45.5

≥−6/<−5 005 031 86.1 7.28 61.1

<−6°C 003 117 97.5% 8.14 69.2%
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a key ingredient in its decrease of heavy snowstorms 
must be its increase in average temperature during 
modeled heavy precipitation days. More frequent 
heavy precipitation events alone—a plausible symp-
tom of increased water vapor in a warmer climate 
(Hartmann et al. 2014)—would have implied more 
snowstorms. However, an increase in temperature 
more than countervailed the increase in moisture, 
yielding less heavy snowstorms.

Concluding remarks. Jonas was one of the most severe 
mid-Atlantic snowstorms of the last century (see 
http://nypost.com/2016/01/28/winter-storm-jonas 

-ranks-4th-worst-among-northeast-snowstorms/). We 
address how a class of such storms rather than Jonas 
itself are affected by anthropogenic climate change. 
Heavy snowstorm statistics derived from parallel 
climate experiments, one subjected to current climate 
conditions, the other subjected to conditions of the late 
nineteenth century, indicate a 52% decrease in the rela-
tive risk of experiencing a heavy snowstorm. Warmer 
temperatures dominated over the occurrence of more 
frequent heavy precipitation events in the model lead-
ing to fewer heavy snowstorms in the current climate. 
By contrast, the long-term observational record shows 
more heavy snowstorms in recent decades.

Fig. 11.2. ECHAM5 output for Dec–Mar 2000/01 through 2015/16. (a) Map of average change in seasonal tem-
peratures (°C) of 30 factual runs compared to 30 counterfactual runs (+0.84°C) for mid-Atlantic (stippled 
outline); (b) As in (a) but for seasonal precipitation (+0.2%); (c) Probability distributions for mid-Atlantic region 
(57 grid boxes in Fig. 11.1b) for daily precipitation totals ≥ 25.4 mm, with median of 3.5 such events per season 
and grid box in counterfactual case (blue stippled vertical line); (d) As in (c) but for heavy snow events (SWE 
≥ 15.2 mm), with median of 0.20 such events per counterfactual season and grid box. Probability distributions 
are nonparametric estimates of frequency distributions based on Kernel density and have been smoothed us-
ing Gaussian filter. 



S58 JANUARY 2018|

We reconcile these differences between the mod-
eled and observed changes in heavy snowstorms by 
noting the large spread among the 30-members of 
ECHAM5 simulated mid-Atlantic snowstorm chang-
es, implying low detectability of a change signal at this 
time. Heavy snowstorms are rare in the mid-Atlantic 
region, and their probability is affected by various 
natural drivers (El Niño, atmospheric blocking). Re-
cent mid-Atlantic snowstorms were colder than those 
of the earlier twentieth century, contrary to a general 
winter warming trend in the region. It is plausible that 
internal variations in weather patterns responsible 
for mid-Atlantic snowstorms have dominated the 
observed increase. For instance, an eastward shift of 
storm tracks to slightly more offshore could cool the 
air mass during heavy precipitation events, allowing 
for heavy snow to fall over a wider reach of the mid-
Atlantic (Changnon et al. 2008). In this regard, our 
results show a temperature increase of +0.3°C dur-
ing model snowstorms, in contrast with the cooling 
trend in observed snowstorms since 1901 (−2.55°C), 
which may be due to natural decadal variations in 
storm tracks.

We further speculate that the wide observed range 
of temperatures during heavy snowstorms, many of 
them colder than −6°C, should allow for a continu-
ation of at least some heavy snowstorm activity well 
into the future. This is consistent with O’Gorman’s 
(2014) projection of only a slight decrease in the fre-
quency of future extreme snowstorms compared to a 
much bigger decrease in seasonal snowfall totals for 
much of the northern midlatitudes. Meanwhile, the 
number of heavy mid-Atlantic snowstorms during 
the month of March has indeed declined compared 
to previous decades (Table ES11.1). Perhaps the future 
is showing its hand after all.
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Table 1.1. SUMMARY of RESULTS
ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED

Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Ch. 3: Global

Ch. 7: Arctic

Ch. 15: France

Ch. 19: Asia 

 Heat

Ch. 3: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 7: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 15: Flow analogues conditional on circulation types

Ch. 19: MIROC-AGCM atmosphere only model conditioned on SST patterns

Cold
Ch. 23: China

Ch. 24: China
Cold

Ch. 23: HadGEM3-A (GA6) atmosphere only model conditioned on SST and SIC for 2016 and data fitted to  
GEV distribution

Ch. 24: CMIP5 multimodel coupled model assessment

Heat & 
Dryness Ch. 25: Thailand Heat & Dryness Ch. 25: HadGEM3-A N216 Atmosphere only model conditioned on SST patterns

Marine Heat

Ch. 4: Central Equatorial Pacific

Ch. 5: Central Equatorial Pacific

Ch. 6: Pacific Northwest

Ch. 8: North Pacific Ocean/Alaska

Ch. 9: North Pacific Ocean/Alaska

Ch. 9: Australia

Ch. 4: Eastern Equatorial Pacific Marine Heat

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 5: Observational extrapolation (OISST, HadISST, ERSST v4)

Ch. 6: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 8: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 9: Observational extrapolation; CMIP5 multimodel coupled model assessment

Heavy 
Precipitation

Ch. 20: South China

Ch. 21: China (Wuhan)

Ch. 22: China (Yangtze River)

Ch. 10:  California (failed rains)

Ch. 26: Australia

Ch. 27: Australia

Heavy 
Precipitation

Ch. 10: CAM5 AMIP atmosphere only model conditioned on SST patterns and CESM1 CMIP single coupled  
model assessment

Ch. 20: Observational extrapolation; CMIP5 and CESM multimodel coupled model assessment; auto-regres-
sive models

Ch. 21: Observational extrapolation; HadGEM3-A atmosphere only model conditioned on SST patterns; 
CMIP5 multimodel coupled model assessment with ROF

Ch. 22: Observational extrapolation, CMIP5 multimodel coupled model assessment 

Ch. 26: BoM seasonal forecast attribution system and seasonal forecasts

Ch. 27: CMIP5 multimodel coupled model assessment

Frost Ch. 29: Australia Frost Ch. 29: weather@home multimodel atmosphere only models conditioned on SST patterns; BoM seasonal 
forecast attribution system

Winter Storm Ch. 11: Mid-Atlantic U.S. Storm "Jonas" Winter Storm Ch. 11: ECHAM5 atmosphere only model conditioned on SST patterns

Drought
Ch. 17: Southern Africa

Ch. 18: Southern Africa
Ch. 13: Brazil Drought

Ch. 13: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on  
SST patterns; HadGEM3-A and CMIP5 multimodel coupled model assessent; hydrological modeling 

Ch. 17: Observational extrapolation; CMIP5 multimodel coupled model assessment; VIC land surface  
hdyrological model, optimal fingerprint method 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

Atmospheric 
Circulation Ch. 15: Europe

Atmospheric

Circulation
Ch. 15: Flow analogues distances analysis conditioned on circulation types

Stagnant Air Ch. 14: Western Europe Stagnant Air Ch. 14: Observational extrapolation; Multimodel atmosphere only models conditioned on SST patterns 
including: HadGEM3-A model; EURO-CORDEX ensemble; EC-EARTH+RACMO ensemble

Wildfires Ch. 12: Canada & Australia (Vapor  
Pressure Deficits)

Wildfires Ch. 12: HadAM3 atmospere only model conditioned on SSTs and SIC for 2015/16

Coral 

Bleaching

Ch. 5:  Central Equatorial Pacific

Ch. 28: Great Barrier Reef
Coral  

Bleaching

Ch. 5: Observations from NOAA Pacific Reef Assessment and Monitoring Program surveys

Ch. 28: CMIP5 multimodel coupled model assessment; Observations of climatic and environmental conditions 
(NASA GES DISC, HadCRUT4, NOAA OISSTV2)

Ecosystem 
Function

Ch. 5: Central Equatorial Pacific (Chl-a 
and primary production, sea bird abun-
dance, reef fish abundance)

Ch. 18: Southern Africa (Crop Yields)

Ecosystem 

Function

Ch. 5: Observations of reef fish from NOAA Pacific Reef Assessment and Monitoring Program surveys; visual  
observations of seabirds from USFWS surveys. 

Ch. 18: Empirical yield/rainfall model

El Niño Ch. 18: Southern Africa Ch. 4: Equatorial Pacific (Amplitude)                    El Niño

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

total 18 3 9 30
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