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Front: ©Photo by Joe Raedle/Getty Images—A vehicle drives through flooded streets The flood was 
caused by a combination of the lunar orbit which caused seasonal high tides and what many believe is 
the rising sea levels due to climate change. (on September 30, 2015, in Fort Lauderdale, Florida) South 
Florida is projected to continue to feel the effects of climate change, and many of the cities have begun 

programs such as installing pumps or building up sea walls to combat the rising oceans.
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The GEV distribution is f lexible for modeling 
different behavior of extremes with three distribu-
tion parameters: the location parameter (μ) specifies 
the center of the distribution, the scale parameter (σ) 
determines the size of deviations around the location 
parameter, and the shape parameter (ξ) governs the 
tail behavior of the GEV distribution. In order to 

quantify the uncertainty associated with the GEV 
parameters, a Bayesian-based Markov chain approach 
is integrated into the GEV distribution (Cheng et 
al. 2014). This approach combines the knowledge 
brought by a prior distribution and the observation 
vector x⃗   = (xt)t = 1 : N of N annual/seasonal maxima 
into the posterior distribution of parameters θ = (μ, 
σ, ξ). Assuming independence between observations, 
the Bayes theorem for estimation of GEV parameters 
can be expressed as:
 
   p(θ│x⃗   ) ∝ p(x⃗  │θ) p(θ)=∏

Nt

i  =1
p(xi|θ) p(θ)         (1)

 
 where p(θ│x⃗   ) is the posterior distribution which 

Fig. S3.1. (a) Annual precipitation trends (% decade-1) from 1901–2014 for all 987 stations 
with 100-yr+ records, circles filled in if linear trend is statistically significant; (b) Linear 
trend (% decade-1) of annual fraction of extremely wet days (R99p; Sillmann et al. 2013), 
for same stations and over same period.
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Fig. S3.2. (a) Time series of South Carolina (SC) annual 20-yr event counts (% of available stations in any 
given year) since 1901, with an average percentage of 9.1% for 1901–80 (solid red line) and a standard 
deviation (sigma) of 10.0% (stippled red line for upper limit); (b) SC seasonal Sep/Oct count of 20-yr 
events (percentages of available stations), with an average of 9.8% and a sigma of 12.6%; (c) similar to (a) 
for Texas/Louisiana (TXLA), with an average of 9.4% and a sigma of 4.9%; (d) similar to (b) for TXLA, 
with an average of 9.3% and a sigma of 6.9%. A red dot marks 2015 in all four time series, denoting a 
record count in (d), and a runner-up outcome in (c).

provides information on the distribution param-
eters (μ, σ, ξ). To estimate the parameters inferred 
by Bayes, the Differential Evolution Markov Chain 
(DE-MC) is integrated to generate a large number 
of realizations from the parameters’ posterior dis-
tributions. By combining DE-MC with Bayesian 
inference, the uncertainty bounds of estimated 
return levels based on the sampled parameters can 
be obtained simultaneously. The inferred distri-
bution parameters, that is, θ = (μ, σ, ξ) will then 
be used to estimate the return levels as follows: 

                                                                               	( 2 )  
where Ty is the T − year precipitation return level,  
T=1/(1-p) and p is the non-exceedance probability of 
occurrence.
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