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OPEN - Approaching 80 years of snow
DATA DESCRIPTOR water equivalent information by
merging different data streams

Laurie S. Huning®2* & Amir AghaKouchak?3

Merging multiple data streams together can improve the overall length of record and achieve the
number of observations required for robust statistical analysis. We merge complementary information
from different data streams with a regression-based approach to estimate the 1 April snow water
equivalent (SWE) volume over Sierra Nevada, USA. We more than double the length of available
data-driven SWE volume records by leveraging in-situ snow depth observations from longer-length
snow course records and SWE volumes from a shorter-length snow reanalysis. With the resulting data-
driven merged time series (1940-2018), we conduct frequency analysis to estimate return periods and
associated uncertainty, which can inform decisions about the water supply, drought response, and flood
control. We show that the shorter (~30-year) reanalysis results in an underestimation of the 100-year
return period by ~25 years (relative to the ~80-year merged dataset). Drought and flood risk and water
resources planning can be substantially affected if return periods of SWE, which are closely related to
potential flooding in spring and water availability in summer, are misrepresented.

Background & Summary

Merging a variety of data streams together (e.g., remote sensing products and in-situ observations) is a valuable
technique for hydrologic estimation'™. When complementary information is leveraged, different data streams
can be fused together to develop a longer dataset for statistical analysis. Statistical approaches, such as hydrologic
frequency analysis, necessitate a sufficient number of observations to estimate representative return periods>®.
Drought and flood risk and water resources planning can be substantially affected if return periods of snow water
equivalent (SWE or the amount of water stored in the snowpack), which are closely related to potential flooding
in spring and water availability in summer, are misrepresented or cannot be reasonably estimated due to a short
record length.

Return periods provide insight into the likelihood of the occurrence of a natural phenomenon or hazard (e.g.,
flood, drought, hurricane, earthquake, tornado) of a given magnitude. They can guide engineering designs and
plans. The classic “100-year storm” is an event where the expected time between the occurrences of its magnitude
or greater is on average once every 100 years. In other words, such an event has a return period of 100 years or a
1% chance of occurring during any given year. For frequency analysis of annual phenomena (e.g., annual maxi-
mum precipitation, SWE, or streamflow), at least a 30-year record is recommended®. Various data sources (e.g.,
satellite, airborne, and ground-based remote sensing, and in-situ snow courses and pillows, precipitation gauges,
soil moisture sensors, and streamflow gauges) provide information about hydrologic variables, each with their
own advantages and disadvantages. This is the case when estimating SWE and other snow characteristics’. For
instance, satellite remote sensing has led to many advancements in estimating the snowpacK’s areal extent, albedo,
grain size, depth, and SWE over large, mountainous environments’~; however, the remotely-sensed information
does not predate the launch of the relevant satellite. Therefore, the number of observations may be insufficient
for statistical analysis. Although some remote sensing products may have adequate record lengths, longer time
series may still be desirable for more robust statistical analysis with a larger sample size. On the other hand, many
in-situ observational networks (e.g., snow courses) can provide measurement records extending back decades
before remotely-sensed information was available. However, in-situ observations are often point-based and/or
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Fig. 1 Sierra Nevada domain and verification of regressed 1 April SWE. (a) Elevation map from the Sierra
Nevada snow reanalysis (SNSR). Shading denotes elevations above 1500 m in the SNSR domain. Locations

of snow courses used in this study are demarcated within the 20 delineated river basins. Basins are grouped
regionally across the northern (N) and southern (S) Sierra Nevada. (b) Sierra-wide regressed SWE from the
linear regression model built using snow courses versus SNSR SWE for 1985-2016. The correlation coefficient
(r), root-mean-squared error (RMSE), mean error (ME), and Nash-Sutcliffe Efficiency (NSE) are provided.

spatially-sparse. As we demonstrate herein, fusing multiple data streams together can be used to overcome the
mismatch between the number of observations required for robust statistical analysis and the actual amount of
data available.

In this study, we focus on merging different sources of SWE information since the seasonal snowpack serves
as a critical water reservoir for many regions around the world. It stores precipitation in the winter and releases it
as melt runoff in the spring and summer. California, for example, derives one-third of its water from the melting
Sierra Nevada snowpack on average'*, with southern California relying on it for approximately 60% of its water
supply’®. Not only does the snowpack provide vital water resources to people worldwide for agricultural, domes-
tic, municipal, and industrial uses, but snow also supports the multibillion dollar per year global ski industry and
tourism'® and a variety of ecosystems. We merge SWE volumes from a spatially-distributed, remote sensing-based
snow reanalysis with SWE depth measurements from in-situ snow courses to extend the SWE volume record for
Sierra Nevada, USA. Merging these data streams together, we leverage complementary information from the
longer-length in-situ measurements and shorter-length reanalysis to estimate Sierra-wide and regional 1 April
SWE volumes for nearly 80 years. The resulting 79-year SWE volume records could not have been quantified
directly using one of these datasets independently. These derived (data-driven) SWE time series are more than
twice as long as existing data-driven distributed SWE time series (e.g., snow reanalyses/reconstructions that rely
on remote sensing) that can be used to quantify the SWE volume across this mountain range>>!71°. As an exam-
ple application, we perform hydrologic frequency analysis to illustrate the importance of leveraging multiple data
streams to generate longer time series for return period estimation. We show the extent to which return periods
of the 1 April SWE volume can be misrepresented and how these overestimations/underestimations vary with
increasing return periods.

Methods
Snow information. We use a combination of datasets (a snow reanalysis and in-situ snow courses) to derive
the long-term SWE volume time series presented and analyzed here. We integrate SWE from the 90-m gridded,
daily snow reanalysis® across the Sierra Nevada (Fig. 1a) to compute the mountain range’s integrated SWE volume
on 1 April from 1985-2016. Neither measurements from snow courses nor sensors were assimilated during the
generation of the Sierra Nevada snow reanalysis (SNSR). Rather, Landsat fractional snow covered area images
were assimilated in a Bayesian framework, and the in-situ observations were left for independent verification of
the resulting SWE fields. Hence, Margulis et al.” and Huning & Margulis®® highly verified the 1 April SWE and
cumulative snowfall from the SNSR with in-situ observations from snow courses and sensors. The 32-year SNSR
provides only part of the information for the construction of our regression model that also uses snow courses.
To extend the 1 April SWE volume time series beyond the 32 years available directly from the SNSR, we use
the average 1 April SWE depth from the California Department of Water Resources (CADWR) snow courses
(http://cdec.water.ca.gov/snow/) from 1940-2018. Snow courses tend to be located at low to mid-elevation in rel-
atively flat areas, which may not fully represent the large spatiotemporal heterogeneity of the snowpack or higher
elevation SWE across mountainous terrain'”?'-2%, The snow courses used in this study are located at elevations
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Input Data Source Link
Sierra Nevada Snow . .
Reanalysis (SNSR) Margulis et al. (2016) https://ucla.app.box.com/v/SWE-REANALYSIS

California Department of Water

Snow Courses Resources (CADWR)

http://cdec.water.ca.gov/snow/

Table 1. Input SWE information.

above 1500 m, which is often seasonally snow-covered* and defines the SNSR domain (Fig. 1a). CADWR does
not always conduct snow surveys on 1 April, but usually within a few days of the date. Nonetheless, those meas-
urements are considered to be representative of the 1 April snow state. For individual snow courses to be included
in the construction of our 79-year SWE volume time series, they must have observations for both 80% of the
overlap period with the SNSR and 80% of the entire period of 1940-2018. Figure la shows the location of the
snow courses utilized. We do not consider snow sensors in this study since they have a shorter record than the
courses, and therefore, they would not allow us to substantially increase our temporal window of analysis. We
ultimately use the combined information from the SNSR and snow courses to derive the SWE volume over the
longer time period, 1940-2018.

Since water managers commonly use 1 April SWE measurements as an indicator of the seasonal snowmelt
runoff in the western United States, we focus on this quantity herein. We construct a time series for the entire
Sierra Nevada. Since there is high heterogeneity in orographic precipitation and SWE distributions across the
mountain range?>>~%, resulting from a combination of factors including elevation, land cover, sensitivity and
response to warming®*’, and differences in storm tracks and characteristics®'-*4, we employ the same methods as
described for the Sierra-wide domain for both its northern and southern regions (Fig. 1a).

Table 1 summarizes the sources of information for the generation of the merged SWE volume time series.
Below, we describe the construction of the merged datasets using a least squares regression.

Regression and merging data streams.  We regress the average SWE depth observed from snow courses
and the SNSR SWE volume from 1985-2016 to develop a linear model that maps the average in-situ SWE depth
to the integrated SWE volume for the mountain range on 1 April. We use this relationship to extend the SWE vol-
ume time series to include years 1940-2018. In particular, we construct a merged 79-year dataset, which we call
“SWEg(” because it uses the reanalysis SWE volume for 1985-2016 (denoted with the subscript “R”) and the SWE
volume derived from the regression with snow courses (denoted with the subscript “C”) for 1940-1984 and 2017-
2018. We use a similar naming convention for the regional merged datasets— SWEgc y and SWEg ¢ respectively
correspond to the merged 1 April SWE volume time series for the northern (N) and southern (S) Sierra Nevada.

Margulis et al.* utilized a similar regression-based approach, but leveraged measurements from snow courses
to quantify the Sierra-wide peak SWE volumes for water years (1 October-30 September) 1951-2015. Note that
the timing of the peak SWE often differs from 1 April. During water years 1985-2016 for instance, the peak SWE
for this mountain range occurred from January to May, and on average, it occurred in mid-March?!. We use a
linear regression approach for its simplicity since the Mann-Kendall test* did not detect a trend in the input
data or resulting merged dataset at the 0.05 significance level. The p-values from the Mann-Kendall test range
from 0.21-0.32 for the SNSR SWE volume (years 1985-2016), 0.13-0.41 for the average SWE depth from the
snow courses (1940-2018), and 0.06-0.30 for the merged SWE volume (1940-2018) over the three mountainous
domains (northern, southern, and entire Sierra Nevada). Although we do not detect statistically significant SWE
trends here, Mote et al.*” found statistically significant trends in SWE depth from ~35% of the snow courses they
examined and ~21% of grid points from a hydrologic model across the western USA. Since we consider SWE
aggregated across larger scales, trends occurring at individual sites may not be similarly detected.

Our study verifies that the linear assumption described above provides a reasonable model for building the
merged SWE time series over the Sierra-wide, northern, and southern domains. Similarly, if an analysist applies
the methods described herein to different regions, variables, etc., the suitability of a linear assumption should also
be verified.

Statistical analysis application. We demonstrate the utility of merging data streams and the extent that
capturing additional extreme values can alter the estimation of return periods. We use the Generalized Extreme
Value (GEV) distribution to gain a better understanding of the probability of occurrence of the most extreme
1 April SWE volumes across the Sierra Nevada. We fit the GEV distribution using the Processed-informed
Nonstationary Extreme Value Analysis (ProNEVA) package®® since it provides uncertainty associated with the
return level curves through a Markov Chain Monte Carlo (MCMC) approach. Although ProNEVA facilitates
both stationary and nonstationary frequency analysis, we use a stationary approach since, as mentioned above,
we do not detect a statistically significant trend in the data. As demonstrated below, the appropriateness of a GEV
distribution must be determined when fitting a distribution to data for hydrologic frequency analysis.

Data Records

The merged 1 April SWE volume time series (1940-2018) for the Sierra Nevada domain and the northern and
southern regions are publicly available through an online repository®. For each domain/region, the dataset is
distributed as an ASCII formatted file of the form: Year (column 1) and SWE in km? (column 2).
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Fig. 2 Sierra-wide 1 April SWE volume time series. (a) Comparison of SNSR SWE (light blue) and regressed
SWE using snow courses (dark blue). The red curve indicates the number of snow course observations. (b) Light
and dark blue curves combine to form the merged time series, SWEg. (c) Comparison of SWEg to modeled
SWE from literature. (d) Difference between SWE from datasets in (c) and Mao et al.*> (SWE,5). SWEy17 swu
(SWM) and SWEyy,; vose (VOSE) correspond to SWE values from Wang et al.*’. Boxplots summarize annual
differences. ‘ x > markers demarcate the mean difference values. Whiskers extend to the most extreme difference
values.

Technical Validation

Sierra-wide performance and uncertainty. A strong relationship emerges between the regressed SWE
and SNSR SWE volumes in Fig. 1b during the 32 years of overlap. Summary statistics in Fig. 1b provide infor-
mation about the performance and uncertainty of the regression model. For instance, the correlation coefficient
is only one metric that indicates that exploiting information from the snow courses results in a representative
regression model (r=0.96). The regressed SWE has a root-mean-squared error (RSME) of 2.3 km? and is rela-
tively unbiased with a mean error (ME) of 0.3 km® in relation to the SNSR SWE.

We also use the Nash-Sutcliffe Efficiency (NSE)*° to further evaluate model performance. NSE values can
range from -oo to unity, where the latter indicates a perfect fit between the regressed SWE and the SNSR SWE, in
this case. Models yielding positive NSE values closer to 1.0 are generally taken to exhibit acceptable model per-
formance, whereas values of zero or lower indicate unacceptable model performance where the long-term mean
value of the SNSR would provide a better estimate than the proposed regression model*'. Therefore, the NSE
value of 0.92 further supports our use of a simple linear regression and each of the abovementioned performance
metrics indicate that this model can reasonably quantify the 1 April SWE volume (relative to the SNSR).

Spanning their individual record lengths, Fig. 2a shows both the SNSR (light blue) and regressed (dark blue)
SWE volume time series. As demonstrated here, the regressed SWE captures the hydroclimatology of the Sierra
Nevada by exhibiting wetter and drier patterns (peaks and troughs) during the same years as the SNSR. From
1940-2018, 117-176 courses (Fig. 2a, red curve) were used annually to generate the regressed SWE. Prior to
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Fig. 3 1 April SWE volume verification and time series for the northern (N) and southern (S) Sierra Nevada.
(a) Regressed SWE from the linear regression model built using snow courses versus SNSR SWE for 1985-2016.
Performance metrics (same as in Fig. 1b) are color coded by region. (b) Number of snow course observations
each year. (c) Regional merged time series for the northern (SWEg¢ ) and southern (SWEg) regions.

the 32 years of overlap, fewer snow course observations were available, especially between the 1940s and 1960s.
Therefore, greater uncertainty in the SWE time series exists during years with fewer observations and farther
away from the period of overlap (i.e., likely earlier in the record).

Figure 2b presents the final, fully-merged 79-year SWE volume time series, SWEy¢. As shown here, it com-
bines information from the two datasets presented in Fig. 2a (SNSR in light blue and regressed SWE in dark
blue). Over the 79 years, the mean SWE volume (and standard deviation) was 17.4 km? (8.1 km?). The lowest and
highest 1 April SWE occurred in 2015 and 1983, respectively corresponding to ~8 and 222% of the long-term
average value.

Lacking long records of SWE volume observations, we compare the SWEg to modeled SWE derived from a
land surface model below to better understand how the data-driven SWEg. performs relative to SWE output from
more complex and computationally expensive hydrologic modeling efforts.

Comparison to SWE from hydrologic modeling. Long-term 1 April SWE datasets for the Sierra
Nevada, spanning more than 75 years, have been previously derived using other methods such as land surface
modeling (SWE volume?***®) and reconstructions with tree rings (SWE depth**). Here we focus on the former,
since land surface modeling is more commonly used in the hydrologic sciences to provide volumetric SWE esti-
mates. In Fig. 2¢, we compare our SWE time series to SWE volumes derived by Mao et al.*> and Wang et al.%,
both of which used the Variable Infiltration Capacity (VIC) macroscale hydrologic model®.

As Fig. 2c demonstrates, the 1 April SWE volumes from our SWEy. (blue line) closely agree with the mod-
eled SWE time series from Mao et al.** (black dotted line). We estimate the Mao et al. SWE from their Fig. 2,
which they concluded compares favorably to the Snow Data Assimilation System (SNODAS)* product*?. Both
the SWEgc and Mao et al. curves fall within the range of modeled values (solid and dashed black lines) from Wang
et al.**. We estimate the Wang et al. SWE from their Fig. S7, where the SWM and VOSE curves correspond to their
datasets with the largest and smallest SWE values. Wang et al. used five different temperature forcing datasets
to illustrate how temperature variability could influence SWE, and thereby increase the uncertainty associated
with modeled SWE. Here, the Wang et al. curves thereby represent the spread in possible 1 April SWE amounts
from models. Of the four datasets presented in Fig. 2¢, these two exhibit the lowest (VOSE) and highest (SWM)
variance in SWE values from 1940-2014.

The differences between SWE from the SWM, VOSE, and SWE time series relative to that from Mao et al.*?
(i.e., the “reference”) are further illustrated in Fig. 2d. SWE agrees well with the reference dataset having a slight
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Fig. 4 Probability (a,c) and quantile (b,d) plots for the Sierra-wide SNSR (a,b) and SWEg (¢c,d) 1 April SWE
volume time series. The theoretical values are derived using the generalized extreme value (GEV) distribution.

negative bias. In fact, SWE. exhibits a mean (median) deviation from the Mao et al.*? annual SWE values of —0.3
km?® (—0.1 km?). SWE values from SWM (VOSE) display substantial positive (negative) biases relative to the
reference with average deviations of 5.5 km? (—5.8 km?). The VOSE dataset is unconditionally negatively biased.
There is only one year (2012) in which the 1 April SWE value from SWM is less than the reference.

Overall, our SWEy. dataset compares well with modeled SWE from hydrologic models over the last ~80 years.
The approach we use herein is simpler, both in structure and computational effort, than the more complex land
surface models, which can require a large number of data inputs (e.g., temperature, wind, precipitation, radiation,
soil/vegetation properties, etc.). Since our merged SWEy. dataset integrates SWE across the entire Sierra Nevada to
quantify the 1 April SWE volume at the mountain range scale, it does not fully reveal the underlying regional (pre-
sented below) or basin scale SWE patterns that can be analyzed using the direct output from the (shorter-length)
SNSR or a spatially-distributed hydrologic model. We acknowledge, however, that while distributed hydrologic
models provide spatial estimates of SWE, they have their own limitations and sources of errors (e.g., forcing data
inputs, model physics parameterizations, etc.). To complement our Sierra-wide data and analysis, we also generate
and verify regional 1 April SWE time series for the northern and southern Sierra Nevada below.

Regional performance and time series. Here, we present and verify the regional regression-based SWE
datasets for the northern and southern Sierra Nevada. Figure 3a indicates good agreement between the regressed
and SNSR SWE for the northern (pink) and southern (blue) areas. The performance metrics (r, RMSE, ME, and
NSE in Fig. 3a) indicate that the regression model built for the southern Sierra Nevada exhibits better perfor-
mance than that for the northern region where fewer observations were used to generate the time series (Fig. 3b).
Alike the Sierra-wide case, the uncertainty in regional SWE (Fig. 3¢) is larger during years with less snow courses
and those that are more distant from the overlapping period with regional SNSR SWE. Both the northern and
southern merged 1 April SWE time series display similar interannual patterns (Fig. 3c).

While we provide both mountain range scale and regional SWE volume time series, some applications may
require further detail at the basin scale. Since not all basins are (equally) sampled with snow courses, or more
generally, in-situ observations, we focus on SWE volumes over larger areas in this study. The methods described
herein may pose useful for creating basin scale datasets where additional spatial resolution or longer-term, merged
records are needed; however, in each case, steps must be taken to verify the appropriateness or goodness-of-fit of
models/methods used.
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Fig.5 1 April SWE return level curves for the Sierra-wide SNSR (a) and SWE¢ (b) datasets. Solid red and
dotted black lines correspond to the median and 5" and 95" percentiles from the Markov Chain Monte Carlo
(MCMC) ensemble of simulations. Shading denotes the spread or 90% confidence interval. (c) Comparison of

the median SNSR and SWE return level curves. Dots along the vertical axis denote the 32 SWE volumes from
the SNSR time series (i.e., “data”).

Usage Notes

Given the broad importance of snow to climatic, hydrological, and biogeochemical processes, and the significance
of the Sierra Nevada’s 1 April SWE to flood control and water supply in California, we now demonstrate one
application of the merged SWE records through hydrologic frequency analysis.
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Fig. 6 Hydrologic frequency analysis for Sierra-wide 1 April SWE using the SNSR and SWEc. (a) Comparison
of return periods for specified return levels. Selected return levels are the 1 April SWE values from the SWEy¢
dataset that have 2-, 5-, 10-, 25-, 50-, and 100-year return periods. Circles demarcate the ensemble median

and whiskers correspond to the 5" and 95" percentiles based on the return level curves shown in Fig. 5. The
95% percentiles for the SNSR exceed 200 years for the largest two return levels, whereas this only occurs for

the SWEg in relation to the largest return level. (b) Difference between the SNSR and SWEg return periods
(SNSR - SWEy¢) based on the ensemble median return level curves. Vertical orange lines and values denote
the median return periods from the SWEg that correspond to the same selected return levels as in (a). Positive
(negative) values correspond to overestimation (underestimation) of the return periods in (b) with the SNSR.

Sierra-wide hydrologic frequency analysis. The probability and quantile plots in Fig. 4 indicate that the
generalized extreme value (GEV) distribution can be used to represent the Sierra-wide SNSR SWE and SWE¢
data for frequency analysis. Applying the GEV distribution using ProNEVA?, the return level curves for these
two datasets are shown in Fig. 5. Figure 6a,b compare the SNSR SWE and SWE return periods for specified 1
April SWE amounts or return levels. Relative to the SWEg(, the SNSR has greater uncertainty in the return peri-
ods associated with a given amount of SWE (Figs. 5 and 6a). In fact, the spread in the return periods for the SNSR
is more than two to three times larger than for SWEg (Fig. 6a) because of the difference in the record lengths.
Now we focus on the ensemble median values as shown in Figs. 5 and 6. For values between 16.5 and 34.7 km?,
which correspond to return periods of 2 and 27.5 years for the SWEg, the SNSR overestimates the return period
by a maximum ~1.4 years. This means that when we use the shorter dataset, it is slightly less likely for those 1
April SWE amounts to be achieved than when estimated with SWEg. (Fig. 6). For perspective, the SWE volume
of ~35 km? is comparable to the total capacity of Lake Mead - the largest reservoir in the USA by volume*. For
return periods larger than 25 years, however, the differences between the two datasets become more pronounced.
As an example, when using the SWEg, the 50-year and 100-year 1 April SWE volumes are 38.0 and 41.5 km?,
respectively. However for these same return levels, the SNSR underestimates the respective return periods by
roughly 5 and 25 years. This means that what the short-term record (i.e., SNSR) indicates as the 100-year event
is approximately just a 75-year event in the long-term record (i.e., SWEgc). Put differently, the short-term record
significantly overestimates the frequency (i.e., underestimates the corresponding return period) of extreme SWE
conditions (e.g., the 100-yr event) - see Fig. 6. Hence, as the SWE volume increases beyond ~35 km?, the point
where the difference between return periods from the two datasets is zero, the return periods increasingly diverge
for a given amount of SWE. Figure 6 suggests a consistent and substantial underestimation of the return period
associated with extremely large SWE amounts when using the shorter SNSR dataset. In other words, the largest
1 April SWE accumulations have larger return periods than suggested by the SNSR, and therefore, the SWEg¢
indicates that these volumes of SWE are less likely to occur than if the shorter SNSR is used for frequency analysis.
It is worthwhile mentioning that depending on the specific variables considered and temporal periods of
analysis, the point where one time series transitions from overestimating to underestimating the return periods
(or vice versa) does not always occur. In other words, depending on when extreme values occur, their distribution
over time, and their magnitudes, a consistent overestimation or underestimation could occur when comparing
return periods from various datasets. Nonetheless, the intersection of the two return level curves in Fig. 5¢, and
reflected in Fig. 6, should not be unexpected. The curves are derived from datasets differing in length by a factor
of more than two (32 versus 79 years) that have distributions with different extreme (and non-extreme) values.

Regional hydrologic frequency analysis. Since the GEV distribution fits the merged SWEy¢ y and
SWEg¢ s well (see Fig. 7a,b), we calculate the SWE volumes corresponding to select return periods (Fig. 7¢). By
comparing return levels for specified return periods, we provide insight into the likelihood of various amounts of
SWE on 1 April in the northern and southern domains. For brevity, we focus on the frequency analysis associated
with each of the regional merged datasets, independent of a comparison to the regional SNSR.

The uncertainty associated with both regions increases with increasing return period. The southern Sierra
Nevada exhibits larger uncertainty than the northern part (Fig. 7c). For each return period larger than 2 years, the
corresponding median return level is larger in the southern portion of the mountain range (Fig. 7¢). In fact, the
50-year SWE value of 20.6 km? in the southern area is larger than both the 50-year and 100-year volumes in the
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Fig. 7 Verification of GEV fit and hydrologic frequency analysis for regional merged 1 April SWE. Probability
(a) and quantile (b) plots for the northern (pink) and southern (blue) SWE volume time series. The theoretical
values are derived using the GEV distribution. (c) Regional return levels for specified return periods of 2-, 5-,
10-, 25-, 50-, and 100-year. Circles demarcate the ensemble median and whiskers correspond to the 5th and 95th
percentiles.

northern domain (18.4 and 20.1 km?, respectively). The 100-year 1 April SWE volume is therefore also larger in
the southern Sierra Nevada with a value of 22.9 km®. Overall, larger 1 April SWE volumes are more likely to occur
in the southern Sierra Nevada than in the northern region.

Regional data and frequency analysis may provide additional insight that is important for operational use and
other applications not possible with only Sierra-wide SWE information. Analysts are encouraged to explore addi-
tional applications of the datasets and methods beyond those described in this study. However as noted above,
further (spatial) refinement may still be necessary for some analyses (e.g., ecological studies).

In this study, we derive 79-year time series of SWE volumes for the entire Sierra Nevada and the northern and
southern parts of this mountain range using a regression-based approach. Performing frequency analysis with the
time series, we demonstrate that the shorter Sierra-wide SWE record misrepresents the 100-year 1 April SWE vol-
ume by underestimating the return period by roughly 25 years. Since engineering design and planning utilize fre-
quency analysis related to flood control, water supply, and drought mitigation, it is important to understand how
data merging techniques can be used to provide new information and/or longer time series for statistical analysis.
Figure 6 elucidates how a dataset’s record length and/or the years that it spans can influence return period and
risk assessment. Biases in return periods in risk assessment and engineering design and planning applications
can substantially alter a population’s level of safety and the costliness of a given project. Robust estimations of
return periods and their uncertainty are vital for mitigating natural hazards, safeguarding human well-being, and
designing reliable critical infrastructure.
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Although we focus on the 1 April SWE given its relevance to reservoirs and flood control, we present a com-
putationally efficient, simple method that could prove valuable for agencies, such as CADWR, when quantify-
ing various hydrologic variables by making use of existing and publicly available long-term in-situ records and
shorter state-of-the-art remote sensing-related products. We acknowledge that more complicated data merging
and fusion techniques exist and they may be required for quantifying other variables or SWE across different
locations. Moreover, merging data streams together within a data-driven framework can be more efficient than
running complex hydrologic models, which often require a large number of atmospheric and land surface inputs.
Overall, our results highlight the strength of combining multiple data streams for hydrologic applications even
with a simple regression-based approach.

Given the importance of snow cover to other fields (e.g., climatology, forest and resource management, etc.),
our merged datasets should lend themselves to a variety of other applications (e.g., assessing wildfire risk) and
also pose new opportunities to better understand hydrologic variability (e.g., the frequency of drought and wet
periods) over longer records of time.

Code availability
The ProNEVA code is available at http://amir.eng.uci.edu/software.php.

Received: 16 April 2020; Accepted: 19 August 2020;
Published online: 06 October 2020

References
1. Painter, T. H. et al. The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling
for mapping snow water equivalent and snow albedo. Remote Sens. Environ. 184, 139-152 (2016).
2. Guan, B. et al. Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations.
Water Resour. Res. 49, 5029-5046 (2013).
. Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98, 704-716 (2010).
4. Chiang, Y.-M., Hsu, K.-L., Chang, E-J., Hong, Y. & Sorooshian, S. Merging multiple precipitation sources for flash flood forecasting.
J. Hydrol. 340, 183-196 (2007).
. Dalrymple, T. Flood-frequency analyses. Manual of hydrology: Part 3. Flood-flow techniques. https://pubs.usgs.gov/wsp/1543a/report.pdf
(1960).
6. Luke, A., Vrugt, J. A., AghaKouchak, A., Matthew, R. & Sanders, B. E. Predicting nonstationary flood frequencies: Evidence supports
an updated stationarity thesis in the United States. Water Resour. Res. 53, 5469-5494 (2017).
7. Dozier, ]., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. WIREs
Water 3, 461-474 (2016).
8. Painter, T. H. et al. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 113, 868-879
(2009).
9. Margulis, S. A., Cortés, G., Girotto, M. & Durand, M. A Landsat-era Sierra Nevada snow reanalysis (1985-2015). J. Hydrometeorol
17,1203-1221 (2016).

10. Fayad, A. et al. Snow hydrology in Mediterranean mountain regions: A review. J. Hydrol. 551, 374-396 (2017).

11. Nolin, A. W. Recent advances in remote sensing of seasonal snow. J. Glaciol. 56, 1141-1150 (2010).

12. Hall, D. K, Riggs, G. A., Salomonson, V. V,, DiGirolamo, N. E. & Bayr, K. ]. MODIS snow-cover products. Remote Sens. Environ. 83,
181-194 (2002).

13. Frei, A. & Robinson, D. A. Northern Hemisphere snow extent: regional variability 1972-1994. Int. J. Climatol. 26 (1999).

14. CADWR. California’s three traditionally wettest months end with statewide snowpack water content less than average. https://water.
ca.gov/LegacyFiles/news/newsreleases/2016/030116d.pdf (2016).

15. Waliser, D. et al. Simulating cold season snowpack: Impacts of snow albedo and multi-layer snow physics. Clim. Change 109, 95-117
(2011).

16. Scott, D. & McBoyle, G. Climate change adaptation in the ski industry. Mitig. Adapt. Strateg. Glob. Change 12, 1411-1431 (2007).

17. Rittger, K., Bair, E. H., Kahl, A. & Dozier, J. Spatial estimates of snow water equivalent from reconstruction. Adv. Water Resour. 94,
345-363 (2016).

18. Zeng, X., Broxton, P. & Dawson, N. Snowpack change from 1982 to 2016 over conterminous United States. Geophys. Res. Lett. 45,
12940-12947 (2018).

19. Carroll, T. et al. NOHRSC Operations and the simulation of snow cover properties for the coterminous U.S. In Proceedings of the
69th Annual Meeting of the Western Snow Conference 14 https://westernsnowconference.org/sites/westernsnowconference.org/
PDFs/2001Carroll.pdf (2001).

20. Huning, L. S. & Margulis, S. A. Climatology of seasonal snowfall accumulation across the Sierra Nevada (USA): Accumulation rates,
distributions, and variability. Water Resour. Res. 53, 6033-6049 (2017).

21. Huning, L. S. & AghaKouchak, A. Mountain snowpack response to different levels of warming. Proc. Natl. Acad. Sci. 115,
10932-10937 (2018).

22. Wrzesien, M. L. et al. Comparison of methods to estimate snow water equivalent at the mountain range scale: A case study of the
California Sierra Nevada. J. Hydrometeorol 18,1101-1119 (2017).

23. Mote, P. W,, Hamlet, A. E, Clark, M. P. & Lettenmaier, D. P. Declining mountain snowpack in western North American. Bull. Am.
Meteorol. Soc. 86, 39-50 (2005).

24. Rice, R, Bales, R. C., Painter, T. H. & Dozier, ]. Snow water equivalent along elevation gradients in the Merced and Tuolumne river
basins of the Sierra Nevada. Water Resour. Res. 47, W08515 (2011).

25. Dettinger, M., Redmond, K. & Cayan, D. Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric
circulations and hydrologic consequences. J. Hydrometeorol 5, 1102-1116 (2004).

26. Lundquist, J. D., Minder, J. R., Neiman, P. J. & Sukovich, E. Relationships between barrier jet heights, orographic precipitation
gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeorol 11, 1141-1156 (2010).

27. Huning, L. S. & Margulis, S. A. Investigating the variability of high-elevation seasonal orographic snowfall enhancement and its
drivers across Sierra Nevada, California. J. Hydrometeorol 19, 47-67 (2018).

28. Huning, L. S., Margulis, S. A., Guan, B., Waliser, D. E. & Neiman, P. J. Implications of detection methods on characterizing
atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA. Geophys. Res. Lett. 44, 10445-10453 (2017).

29. Huning, L. S., Guan, B., Waliser, D. E. & Lettenmaier, D. P. Sensitivity of seasonal snowfall attribution to atmospheric rivers and their
reanalysis-based detection. Geophys. Res. Lett. 46,794-803 (2019).

30. Harpold, A., Dettinger, M. & Rajagopal, S. Defining snow drought and why it matters. Eos 98, (2017).

w

v

SCIENTIFIC DATA | (2020) 7:333 | https://doi.org/10.1038/s41597-020-00649-1 10


https://doi.org/10.1038/s41597-020-00649-1
http://amir.eng.uci.edu/software.php
https://pubs.usgs.gov/wsp/1543a/report.pdf
https://water.ca.gov/LegacyFiles/news/newsreleases/2016/030116d.pdf
https://water.ca.gov/LegacyFiles/news/newsreleases/2016/030116d.pdf
https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/2001Carroll.pdf
https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/2001Carroll.pdf

www.nature.com/scientificdata/

31. Guan, B., Molotch, N. P, Waliser, D. E., Fetzer, E. ]. & Neiman, P. J. Extreme snowfall events linked to atmospheric rivers and surface
air temperature via satellite measurements. Geophys. Res. Lett. 37, 12514-12535 (2010).

32. Guan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J. & Neiman, P. ]. Hydrometeorological characteristics of rain-on-snow events
associated with atmospheric rivers. Geophys. Res. Lett. 43, 2964-2973 (2016).

33. Hu, J. M. & Nolin, A. W. Snowpack contributions and temperature characterization of landfalling atmospheric rivers in the western
cordillera of the United States. Geophys. Res. Lett. 46, 6663-6672 (2019).

34. Hu, J. M. & Nolin, A. W. Widespread warming trends in storm temperatures and snowpack fate across the Western United States.
Environ. Res. Lett. 15, 034059 (2020).

35. Margulis, S. A. et al. Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought
recovery. Geophys. Res. Lett. 43, 6341-6349 (2016).

36. Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245-259 (1945).

37. Mote, P. W,, Li, S., Lettenmaier, D. P,, Xiao, M. & Engel, R. Dramatic declines in snowpack in the western US. Npj Clim. Atmospheric
Sci 1,2 (2018).

38. Ragno, E., AghaKouchak, A., Cheng, L. & Sadegh, M. A generalized framework for process-informed nonstationary extreme value
analysis. Adv. Water Resour. 130, 270-282 (2019).

39. Huning, L. S. & AghaKouchak, A. Sierra Nevada (USA) snow water equivalent (SWE) volume time series. Figshare https://doi.
0rg/10.6084/m9.figshare.c.5055518 (2020).

40. Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol. 10,
282-290 (1970).

41. Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE
50, 885-900 (2007).

42. Mao, Y., Nijssen, B. & Lettenmaier, D. P. Is climate change implicated in the 2013-2014 California drought? A hydrologic perspective.
Geophys. Res. Lett. 42,2805-2813 (2015).

43. Wang, K. J., Williams, A. P. & Lettenmaier, D. P. How much have California winters warmed over the last century? Geophys. Res. Lett.
44, 8893-8900 (2017).

44. Belmecheri, S., Babst, E, Wahl, E. R, Stahle, D. W. & Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nat. Clim.
Change 6, 2-3 (2016).

45. Liang, X., Lettenmaier, D. P,, Wood, E. E & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes
for general circulation models. J. Geophys. Res. 99, 14415-14428 (1994).

46. Holdren, G. C. & Turner, K. Characteristics of Lake Mead, Arizona-Nevada. Lake Reserv. Manag. 26, 230-239 (2010).

Acknowledgements

This work was partially supported by the National Science Foundation (NSF) Awards EAR-1725789 and OAC-
1931335, National Aeronautics and Space Administration (NASA) Grant NNX16A056G, and National Oceanic
and Atmospheric Administration (NOAA) Grant NA14OAR4310222.

Author contributions
L.S.H. and A.A. designed research; L.S.H. performed research; L.S.H. analyzed data; and L.S.H. and A.A. wrote
the paper.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

T ] icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/
applies to the metadata files associated with this article.

© The Author(s) 2020

SCIENTIFIC DATA | (2020) 7:333 | https://doi.org/10.1038/s41597-020-00649-1 11


https://doi.org/10.1038/s41597-020-00649-1
https://doi.org/10.6084/m9.figshare.c.5055518
https://doi.org/10.6084/m9.figshare.c.5055518
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Approaching 80 years of snow water equivalent information by merging different data streams

	Background & Summary

	Methods

	Snow information. 
	Regression and merging data streams. 
	Statistical analysis application. 

	Data Records

	Technical Validation

	Sierra-wide performance and uncertainty. 
	Comparison to SWE from hydrologic modeling. 
	Regional performance and time series. 

	Usage Notes

	Sierra-wide hydrologic frequency analysis. 
	Regional hydrologic frequency analysis. 

	Acknowledgements

	Fig. 1 Sierra Nevada domain and verification of regressed 1 April SWE.
	Fig. 2 Sierra-wide 1 April SWE volume time series.
	Fig. 3 1 April SWE volume verification and time series for the northern (N) and southern (S) Sierra Nevada.
	Fig. 4 Probability (a,c) and quantile (b,d) plots for the Sierra-wide SNSR (a,b) and SWERC (c,d) 1 April SWE volume time series.
	Fig. 5 1 April SWE return level curves for the Sierra-wide SNSR (a) and SWERC (b) datasets.
	Fig. 6 Hydrologic frequency analysis for Sierra-wide 1 April SWE using the SNSR and SWERC.
	Fig. 7 Verification of GEV fit and hydrologic frequency analysis for regional merged 1 April SWE.
	Table 1 Input SWE information.




