Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Effect of Meteorological Variability on Fine Particulate Matter Simulations Over the Contiguous United States

Filetype[PDF-17.64 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Description:
    This study quantifies the impact of meteorological variability on the Community Multiscale Air Quality (CMAQ) model-simulated particulate matter of aerodynamic diameter 2.5 μm or smaller (particulate matter 2.5 [PM2.5]) over the contiguous United States (CONUS). The meteorological variability is represented using the Short-Range Ensemble Forecast (SREF) produced operationally by the National Oceanic and Atmospheric Administration. A hierarchical cluster analysis technique is applied to down-select a subset of the SREF members that objectively accounts for the overall meteorological forecast variability of SREF. Three SREF members are selected to drive off-line CMAQ simulations during January, April, July, and October 2016. Changes in emissions, vertical diffusion, and aerosol processes due to meteorological variability dominate changes in aerosol mass concentrations over 55-73% of the domain except in July when dry deposition dominates emissions and aerosol processes. Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) simulations reproduced the variability of surface temperature very well but overestimated the 10-m wind speed, precipitation, and at some sites the planetary boundary layer height. Averaged over CONUS, CMAQ simulations driven by all three meteorological configurations capture the observed daytime low and nighttime high PM2.5 mass concentrations but underestimated the observed concentrations likely due to faster advection and higher wet deposition in the model. PM2.5 levels across the three simulations agreed well during daytime but showed larger variability during nighttime due to dominance of aerosol, clouds, and advection processes in nighttime. The meteorology-induced variability in PM2.5 is estimated to be 0.08–24 μg/m3 over the CONUS with larger variability over the eastern United States.
  • Source:
    Journal of Geophysical Research: Atmospheres, 124(10)
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26