

# PNAS

www.pnas.org

1

2 **Main Manuscript for**

3 **Summertime Stationary Waves Integrate Tropical and Extratropical Impacts on**  
4 **Tropical Cyclone Activity**

5

6 Zhuo Wang<sup>a\*</sup>, Gan Zhang<sup>b</sup>, Timothy J. Dunkerton<sup>c</sup> and Fei-Fei Jin<sup>d</sup>

7 <sup>a</sup>Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign

8 <sup>b</sup>Atmospheric and Oceanic Sciences Program, Princeton University, and

9 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

10 <sup>c</sup>Northwest Research Associates, Inc., Redmond, Washington, USA

11 <sup>d</sup>Department of Meteorology, University of Hawaii at Manoa

12 \*Corresponding author: Zhuo Wang, [zhuowang@illinois.edu](mailto:zhuowang@illinois.edu)

13 **Classification:** Earth, Atmospheric, and Planetary Sciences

14 **Keywords:** tropical cyclone variability, tropical upper-tropospheric troughs, stationary waves,  
15 Rossby wave breaking, tropical and extratropical interaction, weather-climate connection

16 **Author Contributions:** ZW designed the research; ZW and GZ analyzed the data and made the  
17 plots; ZW wrote the manuscript; GZ, TD and FJ all participated in discussion and provided  
18 feedback on the manuscript.

19 **This PDF file includes:**

20 Main Text, Figures 1 to 4, Table 1

21

## Abstract

22 Tropical cyclones (TC) are one of the most severe storm systems on Earth and cause significant  
23 loss of life and property upon landfall in coastal areas. A better understanding of their variability  
24 mechanisms will help improve the TC seasonal prediction skill and mitigate the destructive  
25 impacts of the storms. Early studies focused primarily on tropical processes in regulating the  
26 variability of TC activity, while recent studies suggested also some long-range impacts of  
27 extratropical processes, such as lateral transport of dry air and potential vorticity by large-scale  
28 waves. Here we show that stationary waves in the Northern Hemisphere integrate tropical and  
29 extratropical impacts on TC activity in July through October. In particular, the tropical upper-  
30 tropospheric troughs (TUTTs), as part of the summertime stationary waves, are associated with  
31 the variability of large-scale environmental conditions in the tropical North Atlantic and North  
32 Pacific and significantly correlated to the variability of TC activity in these basins. TUTTs are  
33 subject to the modulation of diabatic heating in various regions and are the preferred locations for  
34 extratropical Rossby wave breaking (RWB). A strong TUTT in a basin is associated with enhanced  
35 RWB and tropical-extratropical stirring in that basin, and the resultant changes in the tropical  
36 atmospheric conditions modulate TC activity. In addition, the anticorrelation of TUTTs between  
37 the North Atlantic and North Pacific makes the TC activity indices over the two basins compensate  
38 each other, rendering the global TC activity less variable than otherwise would be the case if  
39 TUTTs were independent.

40

## **Significance Statement**

41        Skillful seasonal prediction of tropical cyclone (TC) activity helps hurricane preparedness  
42        and mitigation, especially when the storm impacts are expected to worsen with increasing sea level  
43        and water vapor capacity in a warming climate. Slowly varying tropical oceanic conditions have  
44        been regarded as a primary source of predictability for TC activity, but recent studies suggested  
45        that TC activity is also subject to some long-range impacts of extratropical processes. We show  
46        that summertime stationary waves in the Northern Hemisphere, including tropical upper-  
47        tropospheric troughs, integrate tropical and extratropical impacts into a unified framework and  
48        provide a hemispheric perspective that helps understand the variability and predictability of TC  
49        activity over the North Atlantic and North Pacific.

50 **Main Text**

51 **1. Introduction**

52 The impacts of tropical cyclones (TC) are expected to worsen with increasing sea level and  
53 water vapor capacity in a warming climate. Prior to a hurricane season, the public is concerned  
54 whether the upcoming season will be more, or less, active than average. Skillful seasonal  
55 prediction of TC activity provides valuable information for storm preparedness and has received  
56 increased attention in recent years. While TC prediction has benefitted substantially from advances  
57 in numerical models with higher resolution and improved physics parameterizations, a better  
58 understanding of the variability mechanisms will also contribute to improved TC prediction.

59 Tropical cyclone formation, intensification and motion are strongly modulated by tropical  
60 atmospheric conditions, including vertical wind shear and tropospheric humidity (1, 2). Although  
61 the evolution of individual storms cannot be predicted deterministically beyond the synoptic time  
62 scale, TC statistics spanning a longer time scale may be predictable because the large-scale  
63 atmospheric circulation in the tropics is closely coupled to slowly varying tropical oceans (3, 4),  
64 which are regarded as the primary source of predictability for tropical atmosphere and TC activity  
65 (5-9). In addition to coupling to tropical oceans, tropical atmospheric circulation also interacts  
66 actively with extratropical atmosphere. On the one hand, the tropics, as the primary terrestrial  
67 source of heat, moisture, and angular momentum for the global climate system, modulate  
68 extratropical atmospheric circulation via teleconnections and the meridional overturning  
69 circulation (10). On the other hand, tropical atmospheric circulation is subject to the impacts of  
70 extratropical processes. In a seminal study (11), Charney proposed the view that the large-scale  
71 tropical atmospheric circulation is driven by the lateral coupling with precipitating regions and

72 with the extratropics given the weak coupling between vertical motion and horizontal circulation  
73 in the tropics. In other words, the extratropics not only respond to but also feed back to the tropics.

74 Rossby waves represent an important process for extratropical atmospheric circulation to  
75 feed back to tropical atmospheric circulation. Extratropical Rossby wavetrains and the attendant  
76 Rossby wave breaking (RWB), aided by westerly ducts (12), may penetrate into the tropics and  
77 affect tropical convection and change the atmospheric tracer distribution (13-15). In contrast to  
78 teleconnections associated with low-frequency climate modes, RWB is a transient, nonlinear  
79 process (16). Although RWB occurs on the synoptic time scale, repeated occurrence of RWB  
80 enhances the mixing between the tropics and extratropics and can lead to significant anomalies in  
81 wind, temperature and humidity fields on the subseasonal and longer time scales and thereby  
82 modulate TC activity (17-20). Rossby wave breaking is affected by both tropical and extratropical  
83 processes (21-23). Semi-idealized regional numerical experiments demonstrate that the  
84 extratropical processes contribute to the interannual variability of Atlantic TC activity and that the  
85 impacts can exceed the direct impacts of local SST in some years (24, 25). Overall, these studies  
86 suggest that we need to look beyond the tropics to understand the variability of TC activity.

87 The objective of this study is to provide a unified framework integrating tropical and  
88 extratropical impacts on TC activity, highlighting the tropical-extratropical connection. We will  
89 invoke the concepts of tropical upper-tropospheric troughs (TUTTs) and summertime stationary  
90 waves. TUTTs, also known as mid-ocean troughs (26, 27), are the preferred locations for RWB  
91 (28, 29). Characterized by reduced meridional potential vorticity (PV) gradient, TUTTs “break”  
92 the barrier of strong PV gradient along the subtropical jet that hinders geostrophic mixing (Fig. S1)  
93 and can be regarded as “windows” for active tropical-extratropical interaction (12, 30). Along with

94 the upper-level monsoon anticyclones, TUTTs constitute the summertime subtropical stationary  
95 waves (31, 32). The variability of TUTTs can be understood in the context of stationary waves,  
96 which are planetary waves modulated by global diabatic heating, topographic effect, and transient  
97 eddy feedback (31, 32). We will show that summertime stationary waves integrate tropical and  
98 extratropical impacts and provide a hemispheric perspective on the variability of TC activity over  
99 the North Atlantic and North Pacific basins.

100 **2. Results**

101 *2.1 TUTTs and the large-scale circulation anomalies modulating TC activity*

102 TUTTs are characterized by a cold-core, shallow structure in the upper troposphere (27).  
103 They are present over the North Pacific and North Atlantic in boreal summer and extend  
104 equatorward and westward from the subtropics to the tropics (Fig. S1). To quantify the relationship  
105 between TUTTs and TC activity, a TUTT index is defined based on the equatorward extension of  
106 the upper-level westerly flow over a subtropical ocean (see the definition of a TUTT index in “Data  
107 and Methods”). We focus on the bulk of TC season over the North Atlantic and North Pacific,  
108 July-October (JASO), during 1979-2018. Two TUTT indices are derived, one representing the  
109 North Pacific TUTT (TUTT\_Pac) and the other the North Atlantic TUTT (TUTT\_Atl) (Fig. S2a).  
110 TUTT\_Pac extends from the subtropical East Pacific to the tropical Central Pacific, while  
111 TUTT\_Atl has a smaller latitude range but spans the entire Atlantic in the east-west direction,  
112 including the Caribbean Sea in most years. It is worth noting that the tropical Central Pacific,  
113 where TUTT\_Pac resides, is relatively devoid of climatological TC activity, with most TCs to its  
114 west or east, whereas the Atlantic has considerable activity that is highly variable both in regard  
115 to the basin-wide storm frequency and regional distribution.

116 We will first explore the link between TUTTs and the large-scale atmospheric circulation  
117 anomalies that modulate TC activity. Composite differences are constructed between strong and  
118 weak TUTT years in the respective basins (see composite years in Table S1). As shown in Figs.  
119 1a and 1b, strong TUTT\_Atl years are characterized by enhanced vertical wind shear (VWS,  
120 defined as the magnitude of the vector wind difference between 200 and 850 hPa) and reduced  
121 column water vapor (CWV) in the tropical/subtropical Atlantic, including a major portion of the  
122 main development region (MDR; defined here as 10°–25°N, 20°–80°W). Since TUTT\_Atl is  
123 defined based on the zonal wind, a strong link between the TUTT index and VWS is expected,  
124 consistent with enhanced upper-level westerlies for a deepened TUTT. Additionally, strong CWV  
125 composite anomalies suggest that the TUTT index also relates to the thermodynamics of  
126 atmospheric circulation. Furthermore, a strong TUTT is associated with a stronger subtropical high  
127 in the lower troposphere and higher sea level pressure over the tropical/subtropical Atlantic (33).

128 It is worth noting that the composites of VWS and CWV based on TUTT\_Atl resemble  
129 closely the corresponding composites based on an RWB index that represents the seasonal  
130 frequency of RWB over the North Atlantic (Fig. 8 in ref. 18). The similarities can be explained by  
131 the strong correlation between the RWB and TUTT\_Atl indices ( $r=0.80$ ). RWB frequency  
132 increases significantly in strong TUTT years (Fig. 1c), especially over the western Atlantic, which  
133 transports cold and dry extratropical air equatorward and increases the thickness gradient and  
134 tropospheric dryness to its south (17-19). The extensive upper-level westerlies associated with a  
135 deepened TUTT facilitate equatorward Rossby wave propagation (12) and breaking. Meanwhile,  
136 transient eddy feedback likely helps maintain or amplify a TUTT (28, 30). The seasonal variability  
137 of TUTTs thus reflects the cumulative impacts of RWB beyond the synoptic time scale.

138 Large-scale circulation anomalies are also found associated with TUTT\_Pac (Figs. 1d-f).  
139 During strong TUTT\_Pac years, CWV is reduced over the central and eastern tropical Pacific and  
140 enhanced in the western Pacific; VWS increases in the central and eastern tropical Pacific and  
141 decreases in the western tropical Pacific. Similar to TUTT\_Atl, TUTT\_Pac is related to the  
142 variability of RWB, and RWB occurs more frequently over the Central Pacific during strong  
143 TUTT\_Pac years. However, we caution that the large-scale circulation anomalies associated with  
144 TUTTs should not be entirely attributed to RWB. As shown in section 2.3, other factors also  
145 modulate TUTTs in addition to the transient eddy feedback related to RWB.

146 *2.2 TUTTs and Tropical Cyclone Activity*

147 Previous studies have shown that upper-level troughs or TUTT cells may facilitate the  
148 development of a TC and affect the TC track at the synoptic time scale (34, 35). Here we will focus  
149 on the seasonal time scale. Given the circulation anomalies (Fig. 1), it is not a surprise to see a  
150 strong link between the seasonal TC activity and TUTTs. As shown in Fig. 2a, strong Atlantic  
151 TUTT years are characterized by a basin-wide reduction of track density function (TDF) in the  
152 North Atlantic, consistent with reduced CWV and enhanced VWS over the Atlantic MDR (33).  
153 Significant negative correlations are found between TUTT\_Atl and the basin-wide TC frequency  
154 (TCF), hurricane frequency (HURR) and accumulative cyclone energy (ACE) (Table 1). In fact,  
155 the seasonal correlations of the Atlantic TC indices with TUTT\_Atl are much stronger than the  
156 corresponding correlations with the Nino3.4 or the Atlantic MDR SST index (Table 1).

157 Over the eastern Pacific, reduced CWV and enhanced VWS in strong TUTT\_Pac years (Figs.  
158 1d-f) lead to a decrease in TC activity except in a small region south of the Gulf of California (Fig.  
159 2b), where enhanced TC activity may be related to Central American gap winds (36). Over the

160 western Pacific, the changes of CWV and VWS have a more complicated spatial pattern (Figs. 1d-  
161 f). East of 150°E, negative CWV anomalies and positive VWS anomalies are dominant between  
162 10°–25°N, the main latitude band for TC genesis, while positive CWV anomalies and negative  
163 VWS anomalies largely occur poleward or equatorward of this latitude band. West of 150°E,  
164 enhanced CWV occurs off the coast along with weak VWS anomalies. As a consequence, tropical  
165 cyclogenesis frequency decreases east of 150°E and does not change much west of 150°E (Fig. S3),  
166 corresponding to a westward shift (37) in addition to a basin-wide reduction. The reduced genesis  
167 frequency east of 150°E contributes to decreased TDF both locally and downstream. Negative TDF  
168 anomalies thus prevail over the western Pacific except in the East China Sea region, where the  
169 environmental conditions are favorable. The pattern bears a resemblance to the TC activity  
170 anomalies related to the El Niño-Southern Oscillation (ENSO) reported in previous studies (38,  
171 39), but the significant negative correlations between TC indices and TUTT\_Pac over the western  
172 and eastern Pacific are stronger than the corresponding correlations with an ENSO index, some of  
173 which are insignificant or even close to zero (Table 1; also see 40).

174 Another interesting feature in the TDF composites is the out-of-phase TC variability between  
175 the Atlantic and Pacific basins, which is consistent with the seesaw tendency of the Pacific and  
176 Atlantic TUTTs (Fig. S2b). The anticorrelation between TUTT\_Pac and TUTT\_Atl ( $r=-0.59$ ) can  
177 be explained by the PV impermeability theorem (41). If the atmosphere is in a quasi-steady state  
178 and the PV fluxes associated with diabatic heating and friction are negligible, the PV  
179 impermeability theorem requires that the poleward advective PV flux closely balance the  
180 equatorward advective PV flux (42, 43). The poleward advective PV flux is mainly determined by  
181 the zonal mean meridional overturning circulation, while the equatorward advective PV flux  
182 occurs primarily in the TUTT regions during summer (41). The variability of equatorward PV

183 fluxes over the two basins tends to compensate each other unless there is a substantial change in  
184 the poleward advective PV flux. An important implication is the out-of-phase relationship of TC  
185 activities between the Atlantic and Pacific basins [ $r=-0.47$ ,  $-0.44$  and  $-0.42$  for TCF, HURR and  
186 ACE between the North Pacific (the sum of the western and eastern Pacific) and North Atlantic,  
187 respectively]. Since the North Pacific and North Atlantic together account for more than 60% of  
188 the global TC frequency, the anticorrelation between the two basins makes the global TC activity  
189 less variable (44, 45). This TC anticorrelation between the North Pacific and North Atlantic has  
190 been examined in some previous studies and attributed to the modulation by the Walker circulation  
191 or changes in tropospheric static stability related to relative SST (46-49). TUTTs offer an  
192 additional mechanism for this inter-basin relationship. Further analysis shows that the  
193 anticorrelation between TUTT\_Atl and TUTT\_Pac is much weaker on the monthly time scale,  
194 possibly because the quasi-steady state assumption breaks down on the shorter time scales.

195 *2.3 Summertime Stationary waves*

196 Given the strong link between TUTTs and TCs, one may ponder what drives the variability  
197 of TUTTs. Recalling that TUTTs are part of the summertime stationary waves, we carried out an  
198 empirical orthogonal function (EOF) analysis to extract the dominant mode of variability of 200-  
199 hPa streamfunction field between  $15^{\circ}\text{S}$ - $75^{\circ}\text{N}$ . To focus on stationary waves, the zonal mean was  
200 removed and the data were detrended prior to the EOF analysis. The leading EOF mode (EOF1)  
201 explains 46% of the total variance and is well separated from the remaining modes (Fig. S4). It  
202 consists of a wavenumber-one pattern in the tropics/subtropics and higher wavenumber patterns  
203 in the extratropics (Fig. 3a). The former is associated with the variability of the Walker circulation,  
204 reminiscent of the impacts of the ENSO (Fig. S5). In the extratropics, of particular interest to this

205 study is a wavetrain pattern emanating from the Central Pacific. It spans across the North Pacific  
206 and North America and extends to the subtropical North Atlantic, following a great-circle route.  
207 The wavetrain contributes to an out-of-phase relation between the subtropical Central Pacific and  
208 the subtropical Atlantic, and it resembles the wavetrain that modulates RWB occurrence over the  
209 West Atlantic (Fig. 1d in ref. 23). The time series of EOF1 is significantly correlated with  
210 TUTT\_Pac ( $r=0.72$ ) and TUTT\_Atl ( $r=-0.82$ ) (Fig. 3b) and also strongly correlated to the HURR  
211 and ACE indices in the three basins (Table 1).

212 EOF1 is characterized by a baroclinic vertical structure in the tropics/subtropics and a  
213 barotropic structure in the extratropics (Fig. S6). The different vertical structures are consistent  
214 with previous studies and indicate the role of diabatic heating in maintaining the stationary waves  
215 in the tropics/subtropics and the importance of Rossby wave energy dispersion, topographic effect,  
216 and transient eddy feedback in the extratropics (32, 50). To investigate the forcing mechanisms of  
217 EOF1, correlations are calculated between the time series of EOF1 and SST/precipitation at each  
218 grid point.

219 A horseshoe pattern of SST signals (Fig. 4a) is present over the Pacific, with significant  
220 positive correlations over the Central and East Pacific and negative correlations extending from  
221 the equatorial West Pacific poleward in both hemispheres. The pattern has stronger signals in the  
222 extratropical Pacific than the ENSO pattern (Fig. S5), and resembles the Pacific Decadal  
223 Oscillation (PDO). Meanwhile, negative correlations prevail over the tropical and extratropical  
224 North Atlantic and are reminiscent of the Atlantic tripolar SST pattern. EOF1 is found significantly  
225 correlated to the ENSO and PDO indices (Table S2). Additionally, the positive phase of EOF1 is  
226 associated with reduced precipitation over the tropical Central and East Pacific and enhanced

227 precipitation over the Indian summer monsoon region, the Maritime Content, Australia, Central  
228 America, the tropical/subtropical Atlantic, and the African monsoon region (Fig. 4b).

229 Although the SST and precipitation correlation maps strongly resemble the impacts of the  
230 ENSO (Fig. S5), we stress that the variability of the summertime stationary waves or TUTTs  
231 cannot be completely attributed to the ENSO, which is much weaker in summer than in winter. To  
232 better illustrate this point, the linear impacts of the ENSO are removed from the time series of  
233 EOF1 and the field variables of interest using the linear least squares regression on the Nino3.4  
234 index, and correlation maps are constructed with the residual signals (right panels in Fig. 4). After  
235 the removal of the ENSO, the SST signals are weakened in the tropical Pacific but remain largely  
236 unchanged in the extratropical Pacific and are slightly enhanced in the North Atlantic; significant  
237 correlations with precipitation remain over the subtropical Pacific, the Maritime Continent, the  
238 Indian summer monsoon region, Central America and the tropical Atlantic; and the partial  
239 correlation map between EOF1 and H200 has weaker signals over the tropical Pacific, but the  
240 signals in the northern extratropics, including the wavetrain spanning from the Central Pacific to  
241 the subtropical North Atlantic, remain significant or are even slightly enhanced (Figs. 4c and 4f).  
242 These results are consistent with previous findings that the diabatic heating over various monsoon  
243 regions helps maintain stationary waves (32, 50). In particular, it was suggested that a monsoon  
244 anticyclone and the TUTT to its east are associated with an east-west overturning circulation, and  
245 the dryness in the descending branch over the ocean helps maintain the TUTT via radiative cooling  
246 (51, 33). Since the subtropical stationary waves have a first-baroclinic mode structure (31, 32), the  
247 enhanced shear is a byproduct of a stronger upper-level trough sitting over a stronger low-level  
248 subtropical high. Over the Pacific, a strong TUTT is also accompanied by a weakened monsoon  
249 trough over the western Pacific (Fig. S7). These conditions all contribute to suppressed TC activity

250 in strong TUTT years. The large spatial scale of stationary waves highlights the global nature of  
251 TC variability.

252 The correlations between TUTT indices and various climate indices are examined as well.  
253 Each TUTT index is significantly correlated to several climate indices, including the Nino3.4,  
254 PDO, the Atlantic meridional mode (AMM, 7), the Atlantic Multidecadal Oscillation (AMO), and  
255 the Atlantic MDR SST (Table S2) (52, 53, 33). The PDO and TUTT\_Pac, and the AMO and  
256 TUTT\_Atl, may be linked via RWB in the respective basins (54, 55). Although the ENSO  
257 contributes to the anticorrelation between TUTT\_Pac and TUTT\_Atl, the partial correlation  
258 between TUTT\_Pac and TUTT\_Atl remains significant ( $r=-0.39$ ) after the influence of the ENSO  
259 is removed using linear regression. Additionally, the negative correlation between the TUTT and  
260 ACE indices of the same basin remains significant after the removal of the linear impacts of the  
261 ENSO (Fig. S8).

262 We stress that TUTTs (or stationary waves) not only reflect the contribution from the slowly  
263 varying tropical SST but also extratropical impacts. The latter is supported by the strong statistical  
264 link between TUTT indices and RWB (Fig. 1). To further demonstrate this point, the Atlantic ACE  
265 index is reconstructed using a linear regression model with various indices. The MDR SST alone  
266 explains 30.3% of the ACE variance during 1979-2018; the MDR SST and the tropical mean SST  
267 (averaged between 30°S-30°N) together explain 39.7% of the variance; and the explained variance  
268 increases to 62.4% by adding TUTT\_Atl (Fig. S9). This suggests that skillful prediction of  
269 stationary waves and TUTTs will help improve TC seasonal prediction.

270 *2.4 A statistical assessment of TUTT predictability*

Given the abovementioned statistical linkages, we attempt to predict the EOF1 and TUTT indices in JASO using SST indices during April-June. We tested different pairs of possible predictors among the AMO, PDO, Nino3.4 and the Atlantic MDR SST, and constructed multiple linear regression (MLR) models. The AMO and Nino3.4 are the best pair to predict TUTT\_Atl and EOF1, and the PDO and Atlantic MDR SST are the best pair to predict TUTT\_Pac (Fig. S10), suggesting that a TUTT is modulated by SST in both the local basin and a remote basin. The anomaly correlation coefficients between the predicted and observed time series using the leave-five-out method (see data and methods) are 0.72, 0.53 and 0.57 for TUTT\_Atl, TUTT\_Pac and EOF1, respectively. The prediction skill using this simple statistical model represents the lower bound of the seasonal predictability of summertime stationary waves and TUTTs with the caveat that the sample size is not very large and cross validation may overestimate the prediction skill (56). Although the predictors have information on tropical SST, we caution that the AMO and PDO both include extratropical information, and that the physical processes linking tropical SST and TUTTs (or stationary waves) may not be purely tropical as implied by the recent semi-idealized numerical model studies (24, 25). A better understanding of the TUTT variability that is unrelated to tropical SST will help better understand the predictability of TC activity and merits further study.

### 3. Summary and Discussion

We demonstrated the strong link between TUTTs and TC activity over the North Pacific and North Atlantic. As part of the summertime stationary waves, TUTTs are related to tropical and extratropical SST and precipitation anomalies in various regions, including the ENSO and monsoons. Additionally, TUTTs are the preferred regions for RWB, and reflect the cumulative

293 effects of RWB beyond the synoptic scale. Active RWB in a strong TUTT year contributes to  
294 enhanced vertical wind shear and reduced tropospheric humidity, and may help amplify the TUTT  
295 via the transient eddy feedback. Radiative forcing associated with the changes in the humidity field  
296 may play a role in maintaining TUTTs as well (33). Our analysis suggests that stationary waves  
297 integrate tropical and extratropical impacts on TC activity and provide a hemispheric perspective  
298 on the variability of TC activity over the North Pacific and North Atlantic. In addition, the Atlantic  
299 TUTT and the Pacific TUTT tend to vary out of phase due to the PV impermeability nature, and  
300 the seesaw relationship of the Pacific and Atlantic TUTTs contributes to an anticorrelation of TC  
301 activity between the two basins, which makes the global TC activity less variable. Finally, because  
302 TUTTs are connected to monsoons and extratropical Rossby waves, they introduce a factor other  
303 than tropical SST for the variability of TC activity. Overall, this study advocates a hemispheric  
304 perspective that helps understand the variability and predictability of TC activity over the North  
305 Atlantic and North Pacific. This view may also help understand the projection of TC activity in  
306 future climate.

307 **4. Materials and Methods**

308 The JASO seasonal mean data on isobaric surfaces from the ERA-Interim reanalysis are  
309 used to examine the atmospheric circulation anomalies, and the 6-hourly PV field on the 350-K  
310 isentropic surface is used to detect anticyclonic RWB (57, 17). RWB frequency is in units of  
311 percent and is defined as the frequency of high-PV tongue centroids associated with RWB in a  $5^\circ \times$   
312  $5^\circ$  resolution grid mesh, smoothed with four-point averaging. Additionally, we use precipitation  
313 data from the Global Precipitation Climatology Project, SST from the Extended Reconstructed Sea  
314 Surface Temperature Version 5, and TC track and intensity data from the IBTrACS. The Nino3.4

315 SST index is used to represent the ENSO, and along with the other indices, is downloaded from  
316 the NOAA Physical Science Laboratory.

317 To quantitatively evaluate the variability of the TUTTs and their links to TCs and RWB, a  
318 TUTT index is defined using the 200-hPa geopotential height (H200) field. First, the geostrophic  
319 zonal wind is derived from H200 with a fixed Coriolis parameter ( $f$ ) at 15°N (denoted as  $u_g$ ). The  
320 zonal mean latitude of the circumglobal contour of the long-term seasonal mean  $u_g = 1.0 \text{ m s}^{-1}$ ,  
321 which turns out to be just south of 20°N, is chosen as a reference latitude, and the area where the  
322 circumglobal contour of the seasonal mean  $u_g = 1.0 \text{ m s}^{-1}$  extends equatorward of the reference  
323 latitude is defined as the TUTT index of an oceanic basin. We chose to use the constant- $f$   
324 geostrophic zonal wind rather than the total zonal wind because the weak westerly flow in the  
325 latter field occasionally extends across the equator and connects to westerlies in the Southern  
326 hemisphere. The choice of a small positive value  $1.0 \text{ m s}^{-1}$ , instead of zero, helps increase the  
327 robustness of the results, and varying this value from 0.5 to  $1.5 \text{ m s}^{-1}$  does not qualitatively  
328 change our results. Varying the Coriolis parameter in the calculation of  $u_g$  is equivalent to  
329 choosing a different contour threshold for  $u_g$ . A TUTT index defined this way focuses on the  
330 westerly flow in the eastern half of a TUTT and mainly describes the extent of a TUTT, although  
331 one can define the intensity and the longitudinal and latitudinal locations of a TUTT as well.

332 The leave-five-out method is used to assess the skill of an MLR model. For a time series of  
333  $n$  observations, we leave five consecutive observations out as a test dataset (e.g., 1, 2, ..., 5) and  
334 develop an MLR based on the remaining  $n-5$  observations (e.g., 5, 6, ...,  $n$ ). The model is then  
335 used to predict the five test data points. This procedure is repeated for different test datasets (1-5,  
336 6-10, etc.) to predict all observations, yielding a time series of the predicted variable. The

337 correlation between the predicted and observed time series is calculated to assess the prediction  
338 skill. The leave-five-out cross validation is chosen over leave-one-out to take care of the biennial  
339 tendency of the large-scale atmospheric variability.

340 ***Data Availability***

341 The IBTrACS data are available at <https://www.ncdc.noaa.gov/ibtracs/>. The climate indices are  
342 available from the NOAA Physical Science Laboratory (<https://www.psl.noaa.gov/data/>). The  
343 normalized TUTT indices are available in Dataset S1. The ERA-Interim reanalysis data are  
344 downloaded from the National Center for Atmospheric Research (NCAR) Research Data  
345 Archive (<https://rda.ucar.edu/datasets/ds627.0/>). The GPCP precipitation data are available at  
346 [https://psl.noaa.gov/data/gridded/data\\_gpcp.html](https://psl.noaa.gov/data/gridded/data_gpcp.html). The ERSST data are available at  
347 <https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5>.

349 ***Acknowledgements***

350 This work is supported by the National Oceanic and Atmospheric Administration (NOAA) Grant  
351 NA16OAR4310080 and NA18OAR4310271.

352 **References**

- 353 1. W.-M. Gray, Global view of the origin of tropical disturbances and storms. *Mon. Wea. Rev.*,  
354 **96**, 669–700 (1968).
- 355 2. Tang, B. and coauthors, Recent advances in research on tropical cyclogenesis. *Tropical  
356 Cyclone Research and Review*, in press (2020).
- 357 3. J.-D. Neelin, and I. M. Held, Modeling tropical convergence based on the moist static energy  
358 budget. *Mon. Wea. Rev.*, **115**, 3–12 (1987).
- 359 4. R.-S. Lindzen, and S. Nigam, On the role of sea surface temperature gradients in forcing low-  
360 level winds and convergence in the Tropics. *J. Atmos. Sci.*, **44**, 2418–2436 (1987).
- 361 5. T.-N. Palmer, “Predictability of the atmosphere and oceans: From days to decades” in  
362 Decadal Climate Variability: Dynamics and Predictability, D. L. T. Anderson and J.  
363 Willebrand, Eds. (Springer, 1996), pp. 83–151.
- 364 6. G.-A. Vecchi, and Coauthors, On the seasonal forecasting of regional tropical cyclone  
365 activity. *J. Climate*, **27**, 7994–8016 (2014).
- 366 7. J. P. Kossin, and D. J. Vimont, A more general framework for understanding Atlantic  
367 hurricane variability and trends. *Bull. Amer. Meteor. Soc.*, **88**, 1767–1781 (2007).
- 368 8. S.J. Camargo, A.H. Sobel, A.G. Barnston, and P.J. Klotzbach, The influence of natural  
369 climate variability, and seasonal forecasts of tropical cyclone activity, Chapter 11, pp. 325-  
370 360, in Global Perspectives on Tropical Cyclones, from Science to Mitigation, 2nd edition,  
371 World Scientific Series on Earth System Science in Asia, vol. 4, J.C.L. Chan and J.D. Kepert,  
372 editors, ISBN 978-981-4293-47-1 (2010).
- 373 9. G. D. Bell, and M. Chelliah, Leading tropical modes associated with interannual and multi-  
374 decadal fluctuations in North Atlantic hurricane activity. *J. Climate*, **19**, 590–612 (2006).
- 375 10. K.-E. Trenberth, G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski,  
376 Progress during TOGA in understanding and modeling global teleconnections associated  
377 with tropical sea surface temperatures. *J. Geophys. Res.*, **103**(C7), 14291–14324 (1998).
- 378 11. J.-G. Charney, A note on large-scale motions in the tropics. *J. Atmos. Sci.*, **20**, 607–609  
379 (1963).
- 380 12. P.-J. Webster, and J. R. Holton, Cross-equatorial response to middle- latitude forcing in a  
381 zonally varying basic state. *J. Atmos. Sci.*, **39**, 722–733 (1982).
- 382 13. G.-N. Kiladis, and K. M. Weickmann, Circulation Anomalies Associated with Tropical  
383 Convection during Northern Winter. *Mon. Wea. Rev.*, **120**, 1900–1923 (1992).
- 384 14. D.-W. Waugh, and B.M. Funatsu, Intrusions into the Tropical Upper Troposphere: Three-  
385 Dimensional Structure and Accompanying Ozone and OLR Distributions. *J. Atmos. Sci.*, **60**,  
386 637–653 (2003).
- 387 15. R.-K. Scott, J. P. Cammas, P. Mascart, and C. Stolle, Stratospheric filamentation into the  
388 upper tropical troposphere, *J. Geophys. Res.*, **106**, 11835 – 11848 (2001).
- 389 16. M.-E. McIntyre, and T. N. Palmer, Breaking planetary waves in the stratosphere. *Nature*,  
390 **305**, 593–600 (1983).
- 391 17. G. Zhang, Z. Wang, T. Dunkerton, M. Peng, and G. Magnusdottir, Extratropical Impacts on  
392 Atlantic Tropical Cyclone Activity, *J. Atmos. Sci.*, **73**, 1401–1418 (2016).
- 393 18. G. Zhang, Z. Wang, M. Peng, and G. Magnusdottir, Characteristics and Impacts of  
394 Extratropical Rossby Wave Breaking during the Atlantic Hurricane Season, *J. Climate*, **30**,  
395 2363–2379 (2017).

396 19. P.-P. Papin, Variations in Potential Vorticity Streamer Activity: Development Pathways,  
397 Environmental Impacts, and Links to Tropical Cyclone Activity in the North Atlantic Basin.  
398 Ph.D. dissertation, The State University of New York at Albany, 226 pp (2017).

399 20. W. Li, Z. Wang, G. Zhang, M.S. Peng, S.G. Benjamin, and M. Zhao, Subseasonal Variability  
400 of Rossby Wave Breaking and Impacts on Tropical Cyclones during the North Atlantic  
401 Warm Season. *J. Climate*, **31**, 9679–9695 (2018).

402 21. G. Rivière, Effect of Latitudinal Variations in Low-Level Baroclinicity on Eddy Life Cycles  
403 and Upper-Tropospheric Wave-Breaking Processes. *J. Atmos. Sci.*, **66**, 1569–1592 (2009).

404 22. M. Drouard, G. Rivière, and P. Arbogast, The Link between the North Pacific Climate  
405 Variability and the North Atlantic Oscillation via Downstream Propagation of Synoptic  
406 Waves. *J. Climate*, **28**, 3957–3976 (2015).

407 23. G. Zhang, and Z. Wang, North Atlantic Rossby Wave Breaking during the Hurricane Season:  
408 Association with Tropical and Extratropical Variability. *J. Climate*, **32**, 3777–3801 (2019).

409 24. G. Zhang, T. Knutson, and S. Garner, Impacts of Extratropical Weather Perturbations on  
410 Tropical Cyclone Activity: Idealized Sensitivity Experiments with a Regional Atmospheric  
411 Model. *Geophys. Res. Lett.*, in revision (2019).

412 25. C.-C. Chang, and Z. Wang, Relative impacts of local and remote forcing on tropical cyclone  
413 frequency in numerical model simulations. *Geophys. Res. Lett.*, **45**, 7843–7850 (2018).

414 26. T.-N. Krishnamurti, Observational study of the tropical upper- tropospheric motion field  
415 during the northern hemisphere summer. *J. Appl. Meteor.*, **10**, 1066-1096 (1971).

416 27. J.-C. Sadler, A role of the tropical upper tropospheric trough in early season typhoon  
417 development. *Mon. Wea. Rev.*, **104**, 1266–1278 (1976).

418 28. G.-A. Postel, and M. H. Hitchman, A Climatology of Rossby Wave Breaking along the  
419 Subtropical Tropopause. *J. Atmos. Sci.*, **56**, 359–373 (1999).

420 29. D.-W. Waugh, and L. M. Polvani, Climatology of Intrusions into the tropical upper  
421 troposphere, *Geophys. Res. Lett.*, **27**, 3857–3860 (2000).

422 30. T. Horinouchi, F. Sassi, and B. Boville, Synoptic-scale Rossby waves and geographic  
423 distribution of lateral transport routes between the tropics and the extratropics in the lower  
424 stratosphere, *J. Geophys. Res.*, **105**, 26579–26592 (2000).

425 31. G.-H. White, An observational study of the Northern Hemisphere extratropical summertime  
426 general circulation. *J. Atmos. Sci.*, **39**, 24-53 (1982).

427 32. M. Ting, Maintenance of Northern Summer Stationary Waves in a GCM. *J. Atmos. Sci.*, **51**,  
428 3286–3308 (1994).

429 33. J.A. Knaff, Implications of Summertime Sea Level Pressure Anomalies in the Tropical  
430 Atlantic Region. *J. Climate*, **10**, 789-804, (1997).

431 34. J. Molinari, and D. Vollaro, External influences on hurricane intensity. Part 1: Outflow layer  
432 eddy angular momentum fluxes, *J. Atmos. Sci.*, **46**, 1093–1110 (1989).

433 35. J.-E. Patla, D. Stevens, and G. M. Barnes, A conceptual model for the influence of TUTT  
434 cells on tropical cyclone motion in the northwest Pacific Ocean. *Wea. Forecasting*, **24**, 1215–  
435 1235 (2009).

436 36. D. Fu, P. Chang, and C. M. Patricola, Intrabasin Variability of East Pacific Tropical  
437 Cyclones During ENSO Regulated by Central American Gap Winds. *Sci Rep*, **7**, 1658  
438 (2017).

439 37. L. Wu, C. Wang, and B. Wang, Westward shift of western North Pacific tropical  
440 cyclogenesis. *Geophys. Res. Lett.*, **42**, 1537–1542 (2015).

441 38. H.H. Chia, and C. F. Ropelewski, The interannual variability in the genesis location of  
442 tropical cyclones in the northwest Pacific. *J. Climate*, **15**, 2934-2944 (2002).

443 39. S. J. Camargo, A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, Cluster analysis of  
444 typhoon tracks: Part II: Large-scale circulation and ENSO. *J. Climate*, **20**, 3654-3676 (2007).

445 40. S. J. Camargo, and A. H. Sobel, Western North Pacific tropical cyclone intensity and ENSO.  
446 *J. Climate*, **18**, 2996-3006 (2005).

447 41. S. Ortega, P. J. Webster, V. Toma, and H. R. Chang, The effect of potential vorticity fluxes  
448 on the circulation of the tropical upper troposphere, *Q. J. Roy. Meteor. Soc.*, **144**, 848-860  
449 (2018).

450 42. P.-H. Haynes, and M. E. McIntyre, On the evolution of vorticity and potential vorticity in the  
451 presence of diabatic heating and frictional or other forces. *J. Atmos. Sci.*, **44**, 828-841 (1987).

452 43. P.-H. Haynes, and M. E. McIntyre, On the conservation and impermeability theorems for  
453 potential vorticity. *J. Atmos. Sci.*, **47**, 2021-2031 (1990).

454 44. M.-A. Lander, and C. P. Guard, A look at global tropical cyclone activity during 1995:  
455 Contrasting high Atlantic activity with low activity in other basins. *Mon. Wea. Rev.*, **126**,  
456 1163-1173 (1998).

457 45. B. Wang, Y. Yang, Q. H. Ding, H. Murakami, and F. Huang, Climate control of the global  
458 tropical storm days (1965-2008). *Geophys. Res. Lett.*, **37**, L07704 (2010).

459 46. K.-L. Swanson, Nonlocality of Atlantic tropical cyclone intensities, *Geochem. Geophys.*  
460 *Geosyst.*, **9**, Q04V01 (2008).

461 47. C. Wang, and S.-K. Lee, Co-variability of tropical cyclones in the North Atlantic and the  
462 eastern North Pacific, *Geophys. Res. Lett.*, **36**, L24702 (2009).

463 48. G. Zhang, and Z. Wang, Interannual variability of tropical cyclone activity and regional  
464 Hadley circulation over the Northeastern Pacific, *Geophys. Res. Lett.*, **42**, 2483-2481 (2015).

465 49. C.M. Patricola, R. Saravanan, and P. Chang, A teleconnection between Atlantic sea surface  
466 temperature and eastern and central North Pacific tropical cyclones. *Geophys. Res. Lett.*, **44**,  
467 1167-1174 (2017).

468 50. S. Nigam, and E. DeWeaver, Stationary waves (orographic and thermally forced). *Elsevier*  
469 *Science* (2015), pp.431-445

470 51. V. Magaña, and M. Yanai, Tropical-Midlatitude Interaction on the Time Scale of 30 to 60  
471 Days during the Northern Summer of 1979. *J. Climate*, **4**, 180-201 (1991).

472 52. Wang, C., and L. Wu, Interannual shift of the tropical upper- tropospheric trough and its  
473 influence on tropical cyclone formation over the western North Pacific. *J. Climate*, **29**, 4203-  
474 4211 (2016).

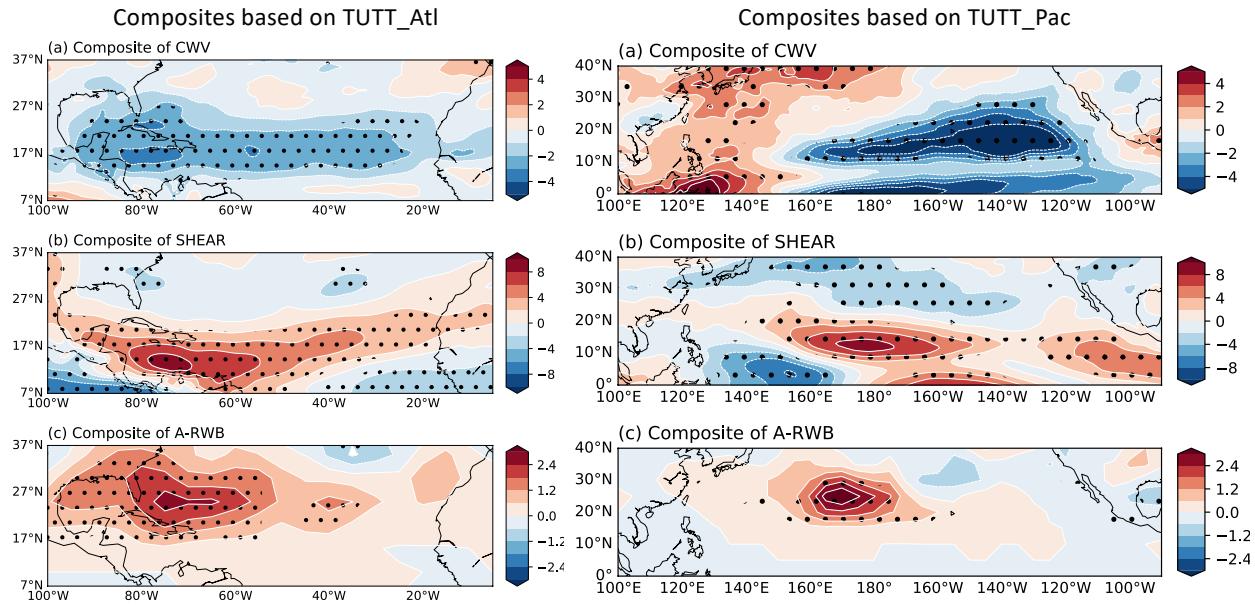
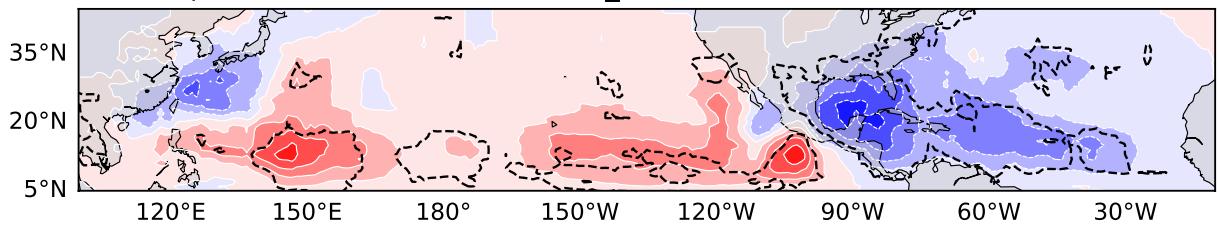
475 53. M. Lu, K. Deng, S. Yang, G. Zhou, and Y. Tan, Interannual and interdecadal variations of  
476 the mid-Atlantic trough and associated American-Atlantic-Eurasian climate. *Atmosphere-*  
477 *Ocean*, **55**, 284-292 (2017).

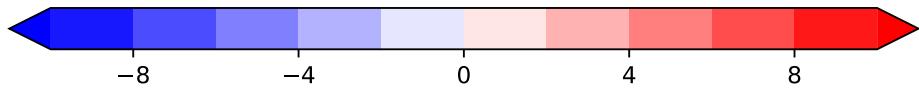
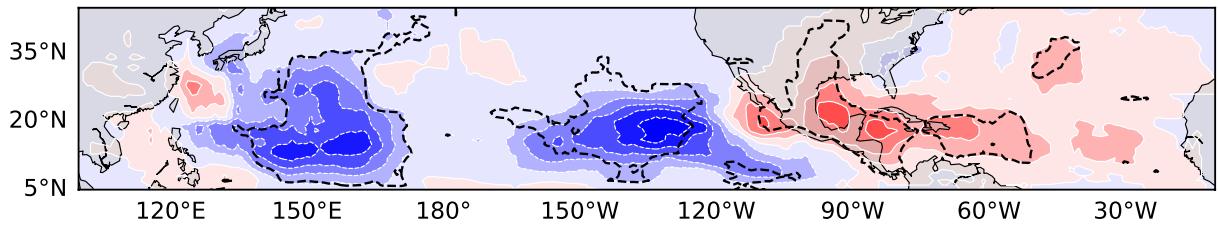
478 54. C. Strong, and G. Magnusdottir, The Role of Tropospheric Rossby Wave Breaking in the  
479 Pacific Decadal Oscillation. *J. Climate*, **22**, 1819-1833 (2009)

480 55. P. Davini, J. von Hardenberg, and S. Corti, Tropical origin for the impacts of the Atlantic  
481 Multidecadal Variability on the Euro-Atlantic climate. *Environ. Res. Lett.* **10**, 094010 (2015).

482 56. P. W. Mielke, K. J. Berry, C. W. Landsea, and W. M. Gray, Artificial Skill and Validation in  
483 Meteorological Forecasting. *Wea. Forecasting*, **11**, 153-169 (1996).

484 57. C. Strong, and G. Magnusdottir, Tropospheric Rossby wave breaking and the NAO/NAM. *J.*  
485 *Atmos. Sci.*, **65**, 2861-2876 (2008).



487  
488  
489  
490  
491  
492



Figure 1 Composite anomalies of (a, d) column water vapor (mm), (b, e) vertical wind shear ( $m s^{-1}$ ), and (c, f) anticyclonic RWB frequency (%) for the Atlantic basin based on the TUTT\_Atl index (left) and for the Pacific basin based on the TUTT\_Pac index (right). Black dots highlight the anomalies exceeding the 95% confidence level. Note that the latitude-longitude ranges of the plots are different for the two basins.

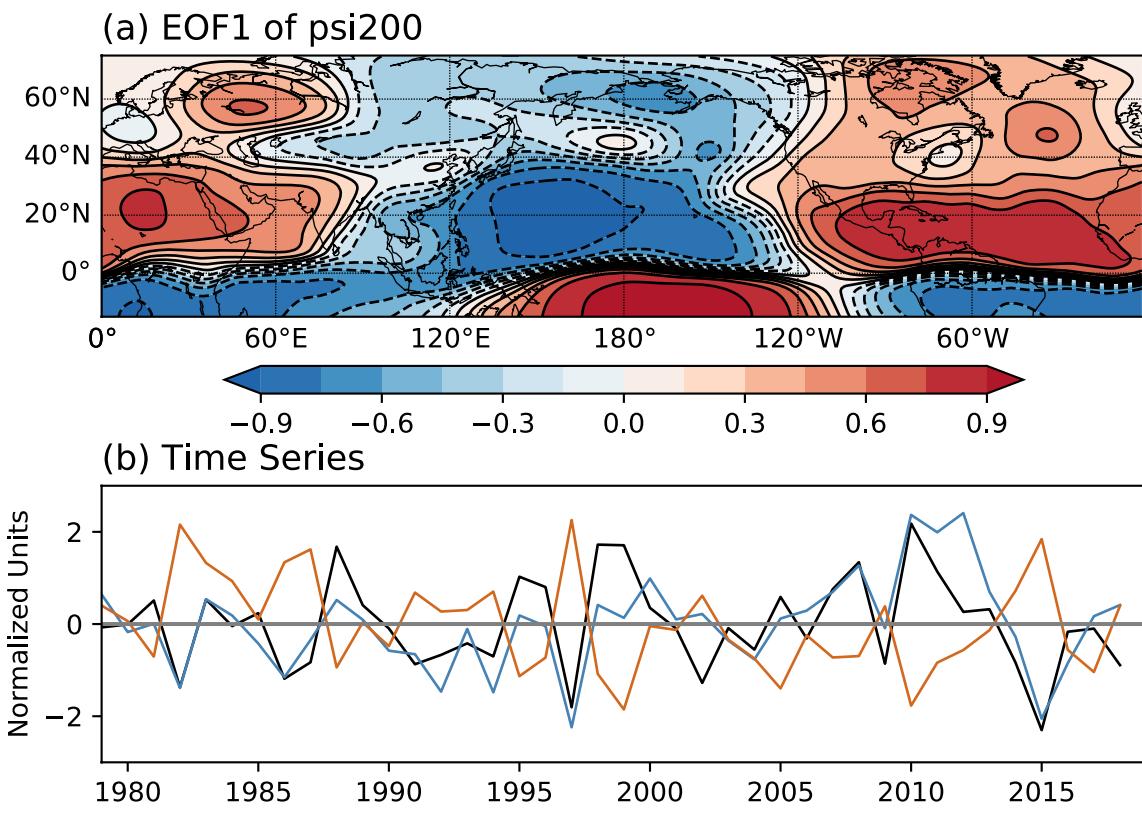
493

(a) Composites of TDF based on TUTT\_Atl



(b) Composites of TDF based on TUTT\_Pac




494

495

496

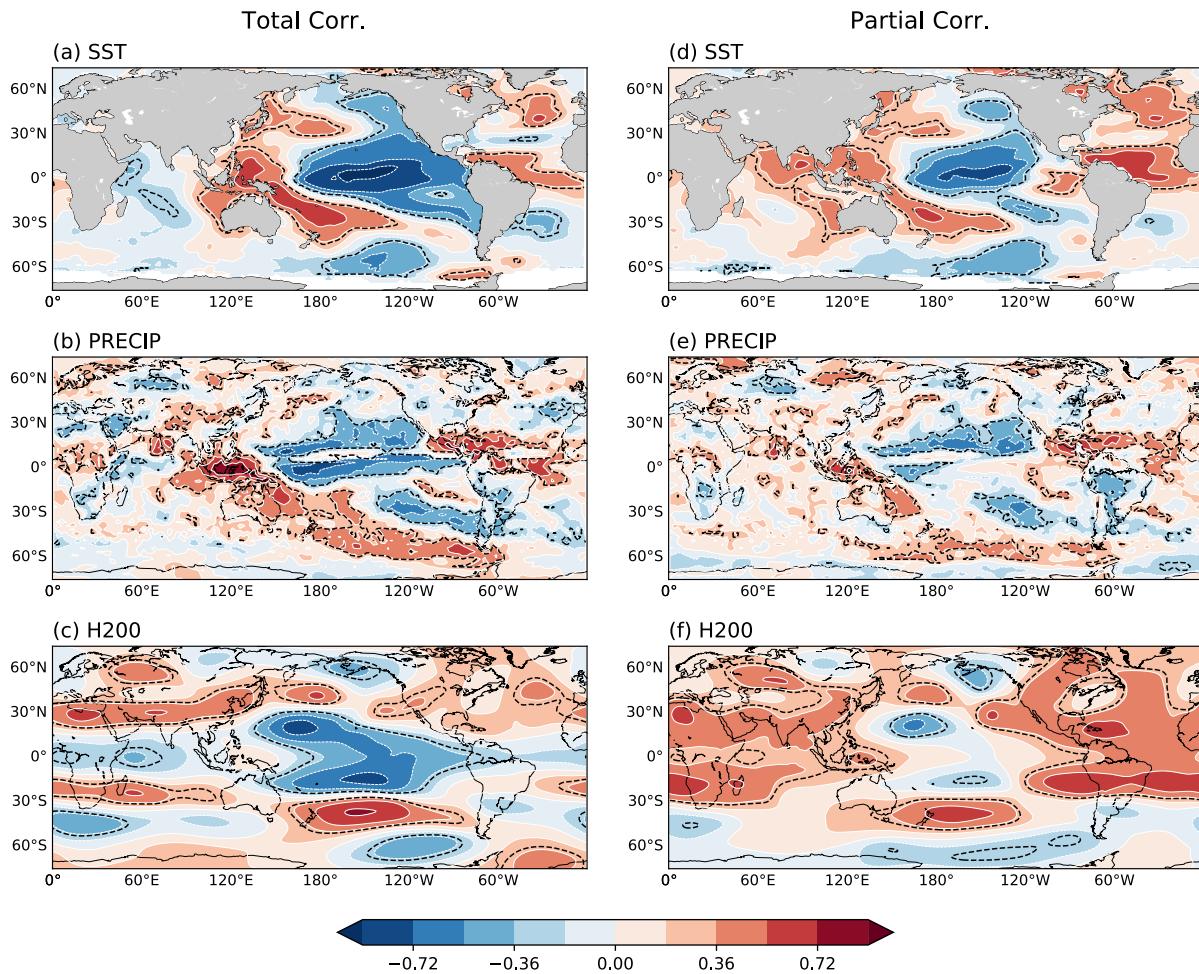

497

Figure 2 Composites of tropical cyclone track density function (units: number of TCs per month within a  $10^\circ \times 10^\circ$  grid box) based on (a) TUTT\_Atl and (b) TUTT\_Pac. Dashed contours depict the anomalies exceeding the 95% confidence level.



498  
499  
500

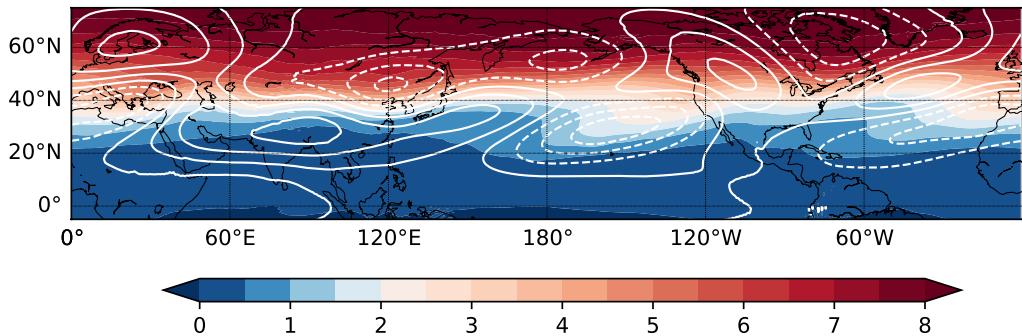
Figure 3 (a) The first EOF mode of 200-hPa streamfunction (scaled to unit variance); (b) the normalized time series of EOF1 (black), TUTT\_Pac (blue), and TUTT\_Atl (brown).



501  
 502 Figure 4 Correlations of the EOF1 time series with (top) SST, (middle) precipitation and  
 503 (bottom) 200-hPa geopotential height. The total correlations are shown in the left column (a-c),  
 504 and the right column (d-f) shows the partial correlations with the Niño3.4 index controlled.  
 505 Dashed contours depict the correlation coefficients exceeding the 95% confidence level.

506 Table 1 Correlation coefficients between different climate indices and the TC activity indices over  
 507 three basins during JASO 1979-2018. RWB is the RWB frequency between 10-85°W, south of the  
 508 jet axis and north of 20°N (see Zhang et al. 2017 for more details). Most correlations exceed the  
 509 95% confidence level, and those below the 95% confidence level are highlighted by an asterisk.  
 510

| Corr.                          | TCF    | HURR  | ACE   |
|--------------------------------|--------|-------|-------|
| <b>Atlantic TC Indices</b>     |        |       |       |
| <b>TUTT_Atl</b>                | -0.73  | -0.76 | -0.75 |
| <b>MDR</b>                     | 0.59   | 0.56  | 0.55  |
| <b>Nino3.4</b>                 | -0.34  | -0.38 | -0.32 |
| <b>RWB</b>                     | -0.46  | -0.56 | -0.68 |
| <b>EOF1</b>                    | 0.54   | 0.58  | 0.50  |
| <b>East Pacific TC Indices</b> |        |       |       |
| <b>TUTT_Pac</b>                | -0.60  | -0.58 | -0.63 |
| <b>Nino3.4</b>                 | 0.39   | 0.28* | 0.46  |
| <b>EOF1</b>                    | -0.60  | -0.50 | -0.58 |
| <b>West Pacific TC Indices</b> |        |       |       |
| <b>TUTT_Pac</b>                | -0.45  | -0.53 | -0.61 |
| <b>Nino3.4</b>                 | 0.01*  | 0.18* | 0.56  |
| <b>EOF1</b>                    | -0.30* | -0.46 | -0.69 |

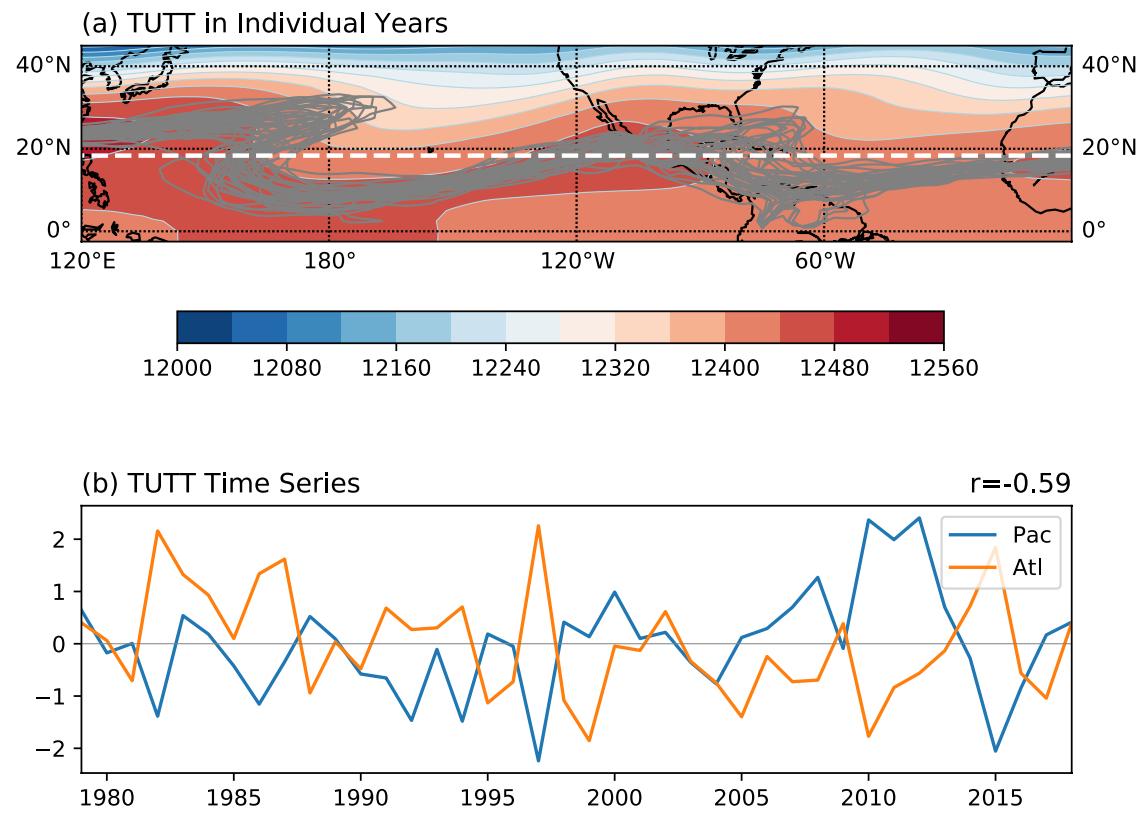

511  
 512

# PNAS

www.pnas.org

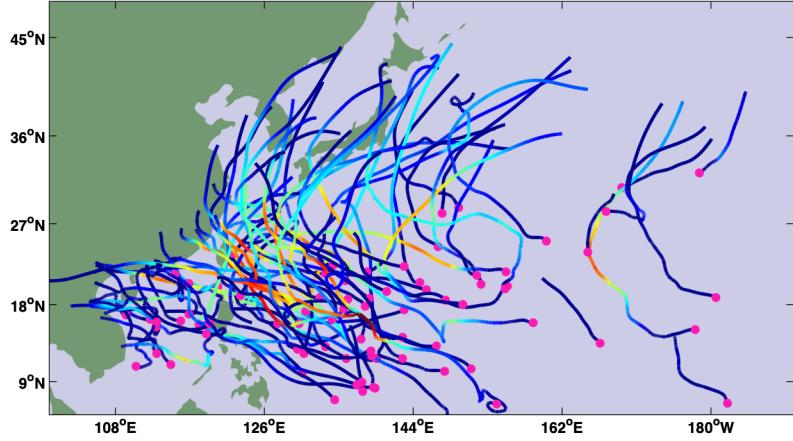
513  
514  
515  
516  
517  
518  
519   Supplementary Information for  
520  
521   **Summertime Stationary Waves Integrate Tropical and Extratropical Impacts**  
522   **on Tropical Cyclone Activity**  
523   Zhuo Wang, Gan Zhang, Timothy J. Dunkerton and Fei-Fei Jin  
524  
525   **corresponding author:** Zhuo Wang  
526   Email: zhuowang@illinois.edu  
527  
528  
529   **This PDF file includes:**  
530       Figures S1 to S10  
531       Tables S1 to S2

### Long-Term Mean PV200 and Eddy H200

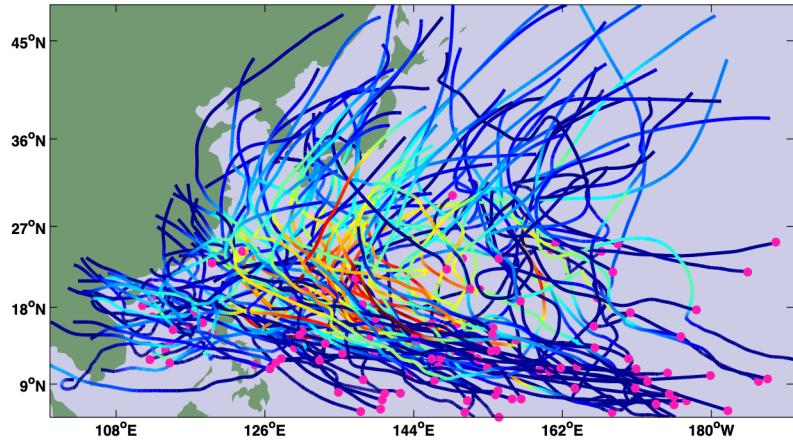



532  
533  
534  
535

Fig. S1 Long-term mean (1979-2018) 200-hPa potential vorticity (shading: units: PVU) and 200-hPa geopotential height (contours with the interval of 250 m). The zonal mean component is removed from the geopotential height field.


536

537  
538




539  
540 Fig. S2 (a) Long-term mean 200-hPa geopotential height (shading; units: m), the reference  
541 latitude for TUTTs (white dashed line; see text for details), and the contours of  $u_g =$   
542  $1.0 \text{ m s}^{-1}$  for individual years from 1979-2018; (b) the time series of the normalized TUTT\_Pac  
543 and TUTT\_Atl indices. The correlation between TUTT\_Atl and TUTT\_Pac is shown at the  
544 upper right corner of panel (b).

(a) TUTT\_Pac: positive (87 TCs)



(b) TUTT\_Pac: negative (127 TCs)



545

546 Fig. S3 Composites of TCs over the western North Pacific during (a) eight strong TUTT\_Pac years  
547 and (b) eight weak TUTT\_Pac years. Pink dots represent genesis locations, and colors along TC  
548 tracks indicate TC intensity in terms of the maximum surface wind speed. The numbers inside  
549 parentheses show the total number of TCs for each composite plot.

550  
551

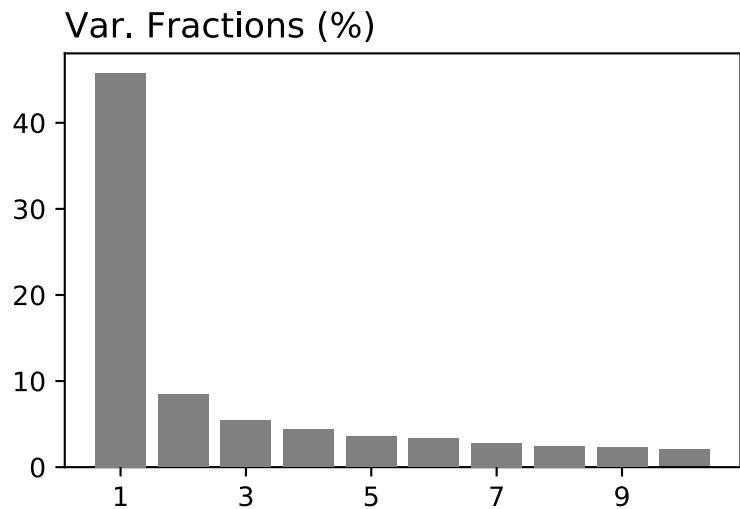
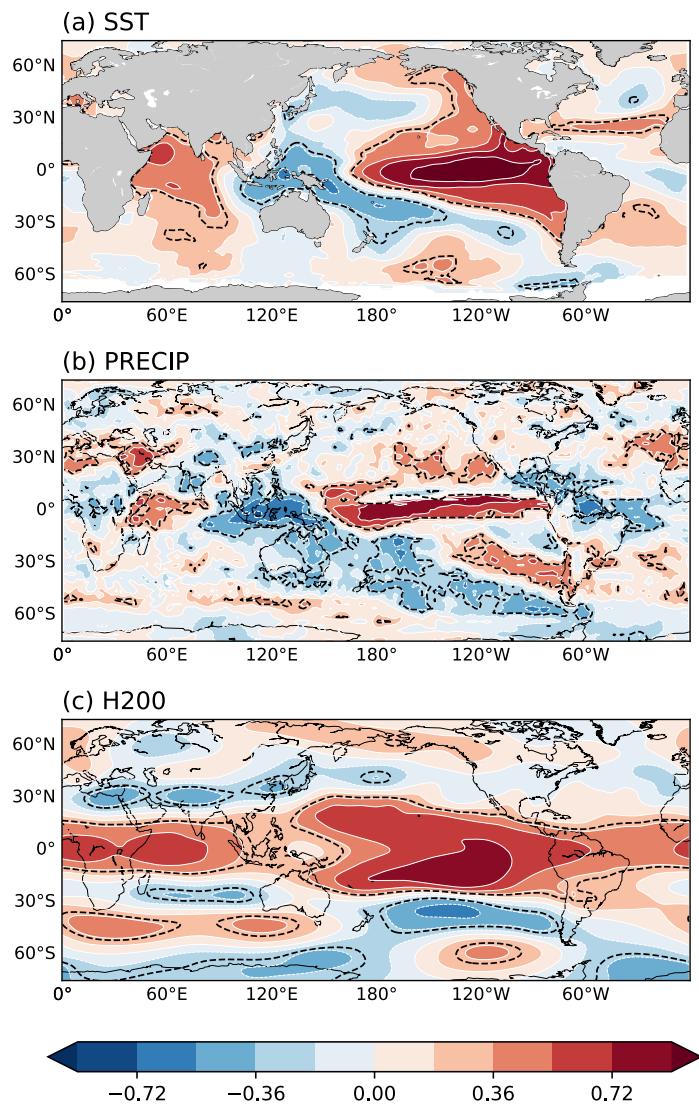
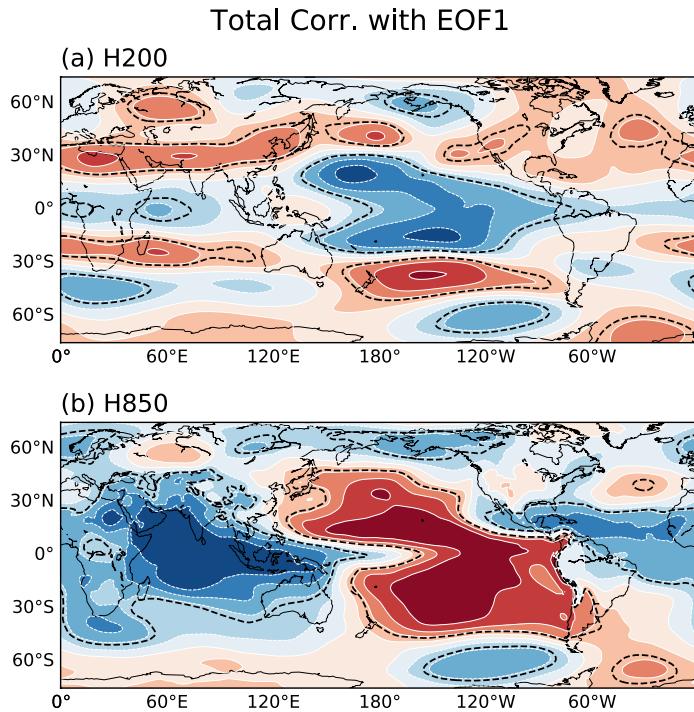




Fig. S4 The fractional contribution of the first ten EOF modes to the total variance.

Corr.with the ENSO

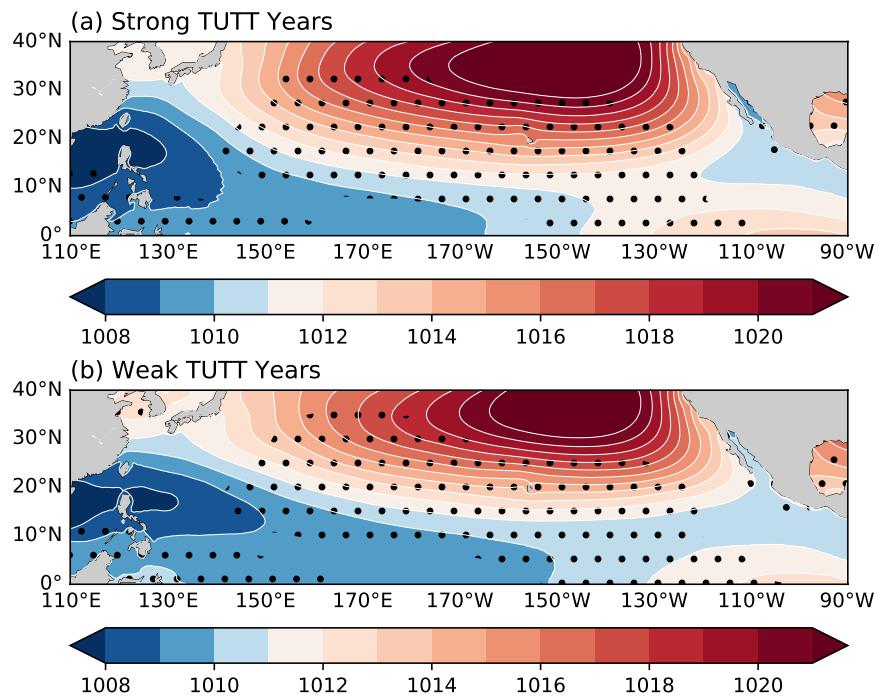



552

553

554

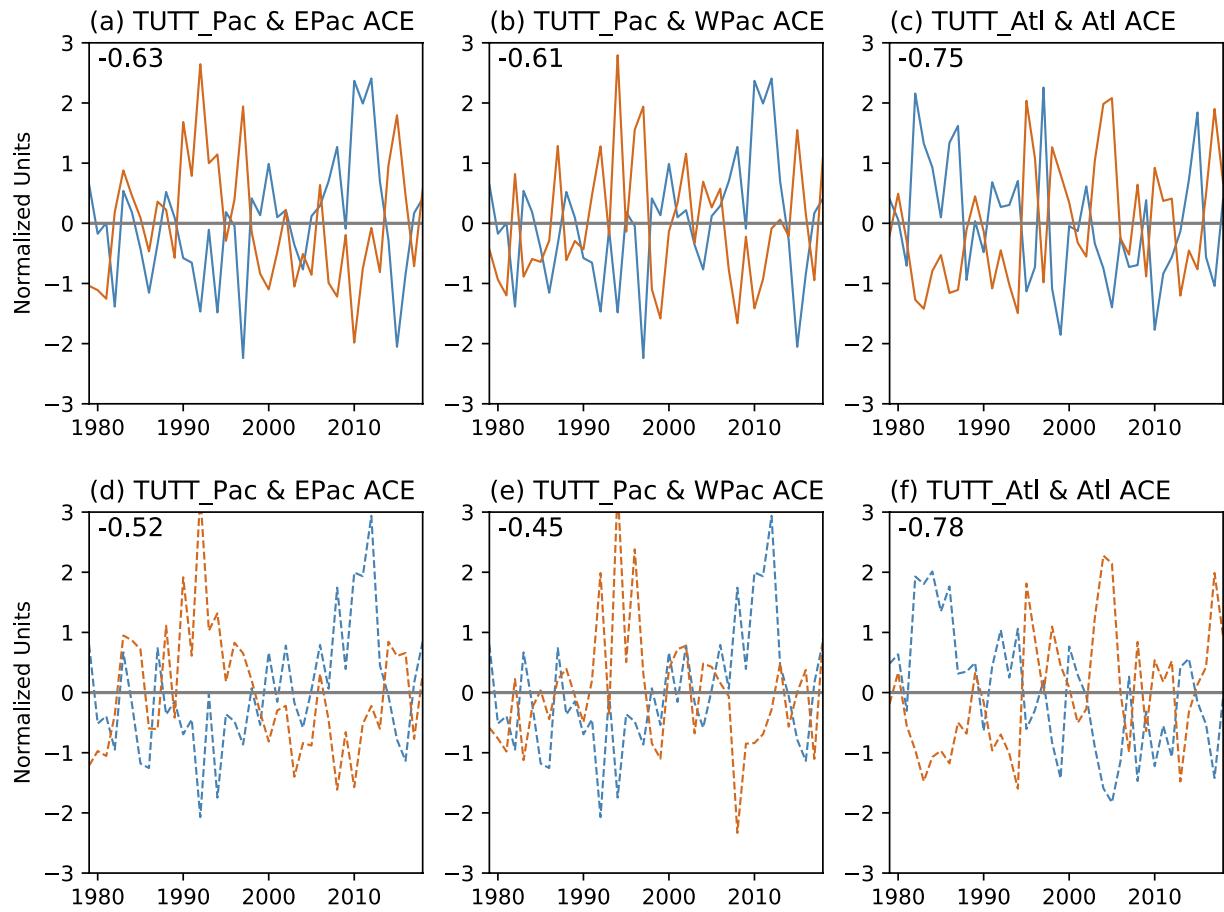
555


Fig. S5 Correlations of the Nino3.4 index with (a) SST, (b) precipitation, (c) H850 and (d) H200 during 1979-2018 JASO. Dashed contours depict the correlation coefficients exceeding the 95% confidence level.

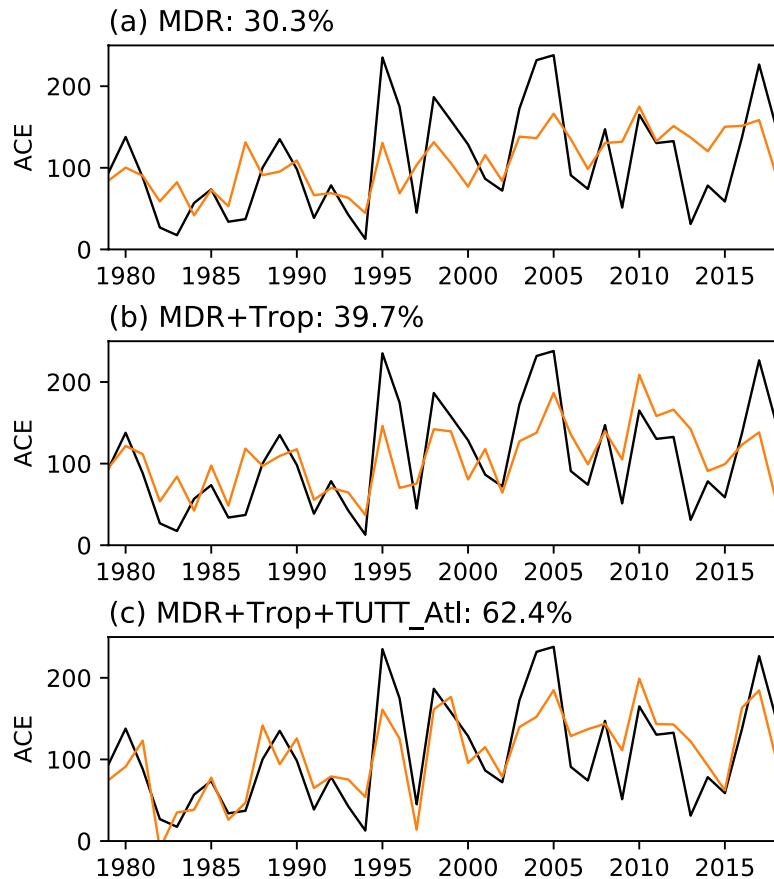


556

557 Fig. S6 Correlations of the EOF1 time series with (a) H200 and (b) H850. Dashed contours  
558 depict the correlation coefficients exceeding the 95% confidence level.

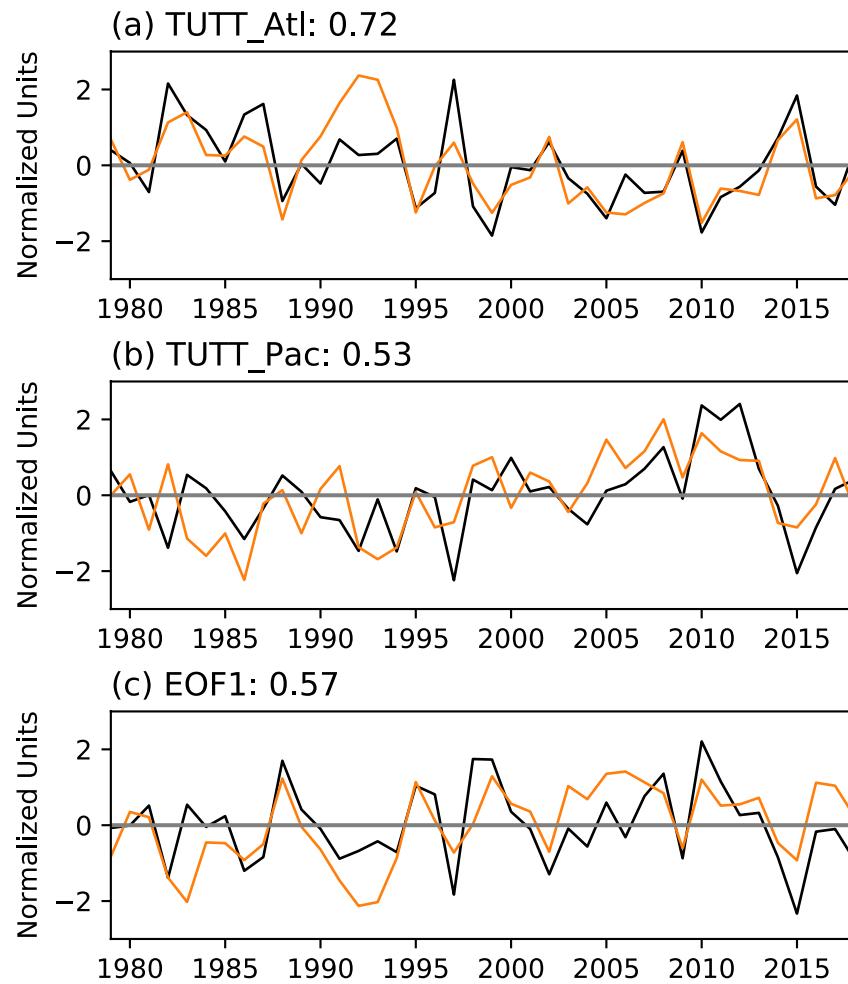

## Composites of SLP




559

560 Fig. S7 Composite mean sea level pressure (SLP; hPa) for (a) strong and (b) weak TUTT\_Pac  
561 years. Dots highlight where SLP differs significantly between the two phases.

562




564  
 565 Fig. S8 (left) Time series of TUTT\_Pac (blue) and the East Pacific ACE (brown); (middle) time  
 566 series of TUTT\_Pac (blue) and the West Pacific ACE (brown); and (right) time series of  
 567 TUTT\_atl (blue) and the North Atlantic ACE (brown). The top panels show the original data,  
 568 and the bottom panels show the time series after the linear impacts of the ENSO are removed.  
 569 The number at the upper left corner of a panel is the correlation between the illustrated time  
 570 series. All the time series are normalized and shown for 1979-2018.



571  
572  
573  
574  
575

Fig. S9 The Atlantic ACE time series derived from IBTrACS (black) and reconstructed (orange) based on the linear regression of (a) MDR SST, (b) MDR SST and the tropical mean SST (Trop), and (c) MDR SST, tropical mean SST and TUTT\_Atl. The numbers indicate the observed variance explained by the reconstructed ACE.



576  
577  
578  
579

Fig. S10 Time series of the observed (black) and predicted (orange) time series of (a) TUTT\_Atl, (b) TUTT\_Pac, and (c) EOF1 (see the main text for more information). The numbers indicate the correlations between the predicted and observed time series.

580 Table S1 Composite years for the positive and negative phases of TUTT\_Atl.

|          | TUTT_Atl                                       | TUTT_Pac                                       |
|----------|------------------------------------------------|------------------------------------------------|
| Positive | 1997, 1982, 2015, 1987, 1986, 1983, 1984, 2014 | 2012, 2010, 2011, 2008, 2000, 2013, 2007, 1979 |
| Negative | 1999, 2010, 2005, 1995, 1998, 2017, 1988, 2011 | 1997, 2015, 1994, 1992, 1982, 1986, 2016, 2004 |

581

582 Table S2 Correlations with various climate indices during JASO 1979-2018. Correlations below  
583 the 95% confidence level are highlighted by an asterisk.

|          | Nino3.4 | PDO   | PMM    | MDR   | AMM   | AMO   |
|----------|---------|-------|--------|-------|-------|-------|
| EOF1     | -0.79   | -0.59 | -0.26* | 0.24* | 0.50  | 0.25* |
| TUTT_Pac | -0.50   | -0.65 | -0.45  | 0.34  | 0.39  | 0.35  |
| TUTT_Atl | 0.71    | 0.62  | -0.03* | -0.46 | -0.65 | -0.48 |

584