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ABSTRACT

In this study, we use machine learning (ML) to improve hail prediction by postprocessing numerical
weather prediction (NWP) data from the new High-Resolution Ensemble Forecast system, version 2
(HREFV2). Multiple operational models and ensembles currently predict hail, however ML models are
more computationally efficient and do not require the physical assumptions associated with explicit
predictions. Calibrating the ML-based predictions toward familiar forecaster output allows for a com-
bination of higher skill associated with ML models and increased forecaster trust in the output. The ob-
servational dataset used to train and verify the random forest model is the Maximum Estimated Size of Hail
(MESH), a Multi-Radar Multi-Sensor (MRMS) product. To build trust in the predictions, the ML-based hail
predictions are calibrated using isotonic regression. The target datasets for isotonic regression include
the local storm reports and Storm Prediction Center (SPC) practically perfect data. Verification of the ML
predictions indicates that the probability magnitudes output from the calibrated models closely resemble the
day-1 SPC outlook and practically perfect data. The ML model calibrated toward the local storm reports
exhibited better or similar skill to the uncalibrated predictions, while decreasing model bias. Increases in
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reliability and skill after calibration may increase forecaster trust in the automated hail predictions.

1. Introduction

Hail is a high-impact severe weather hazard, annually
causing in excess of $1 billion (U.S. dollars) of prop-
erty damage and $1 billion of crop damage (Jewell and
Brimelow 2009). Isolated hail events, especially those
impacting large urban areas, are particularly damaging.
For example, a single hailstorm during the afternoon
rush hour in the Denver, Colorado, metropolitan area
on 8 May 2017 resulted in $2.3 billion of insurance

Corresponding author: Amanda Burke, aburkel@ou.edu

DOI: 10.1175/WAF-D-19-0105.1

claims (Svaldi 2018). The economic impacts of severe
hail underscore the need for accurate and timely pre-
dictions, which allow individuals and businesses to
take action toward mitigating risk to their property and
safety. Accurate predictions of hail remain a challenge
given the rapid evolution of hail-producing convective
storms, coupled with uncertainties and limitations of
atmospheric observation data needed to properly re-
solve the small-scale convective environment.

To produce skillful hail forecasts through explicit hail
prediction, numerical weather prediction (NWP) models
must accurately predict the development of convective
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storms, as well as produce reasonably accurate repre-
sentations of hail within the model’s microphysical
scheme (Labriola et al. 2017). At these small scales,
model forecast errors can lead to large uncertainties
in the timing and location of convective storms (e.g.,
Kain et al. 2010b; Durran and Weyn 2016). For hail
prediction on longer time scales (up to 48h), most
methods rely on approximating environmental data at
the convective scale (e.g., Johns and Doswell 1992).
However, the spatial and temporal coverage of atmo-
spheric soundings are generally insufficient to provide
accurate initial conditions for explicit prediction of
storms on the convective scale.

Where limitations in scale cause uncertainties in local
storm characteristics, convection-allowing models (CAMs)
have shown skill in predicting convective morphologies
(e.g., Weisman et al. 2008). In recent years, CAMs have
been employed in NOAA’s Hazardous Weather Testbed
(HWT) Spring Forecasting Experiment (SFE). For ex-
ample, during the 2010 HWT SFE operational forecasters
subjectively indicated that the CAM guidance improved
convection forecasts, compared to traditional convective-
parameterizing schemes (Clark et al. 2012). Also, Gallo
et al. (2017) noted that CAMs played an important role
in reliable short-term forecasts, especially hourly fore-
casts, during the 2015 HWT SFE. For day-ahead fore-
casts (12-36-h lead time), CAM ensemble forecasts have
shown improved skill compared to individual determin-
istic CAM forecasts (Loken et al. 2017).

Explicit hail prediction using storm-scale ensembles
has been previously studied (e.g., Adams-Selin and
Ziegler 2016; Snook et al. 2016; Labriola et al. 2017,
2019). However, limitations exist when explicitly pre-
dicting hail, including the sensitivity of microphysical
scheme choice, initial and boundary conditions varying
across ensembles, and physical assumptions needed to
predict hail with computational efficiency. Additionally,
the multitude of operational models and ensembles
predicting hail that are available to forecasters can lead
to cognitive overload. Wilson et al. (2017) found that
forecaster overload increased with an increase in the
number of datasets monitored, especially when multiple
warning decisions are needed.

Recently, studies have focused on using machine
learning (ML) to synthesize large amounts of atmo-
spheric data, reducing the amount of monitored data
while producing skillful forecasts products without
explicit prediction assumptions (e.g., Gagne 2016;
Gagne et al. 2017, hereafter G17; McGovern et al.
2017; Lagerquist et al. 2017; Herman and Schumacher
2018b,a). Instead of explicit prediction, ML models
map a set of inputs to a given output by optimizing the
model’s structure, such that the differences between
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the ML predictions and the output observations, or
‘ground truth’’, are minimized. Using these learned
structures, ML models are able to make predictions
on new sets of model data with relatively minimal
computational expense. Low computational expense,
compared to other postprocessing methods applied
to gridded NWP output for hail prediction (e.g.,
Adams-Selin and Ziegler 2016), is a major advantage
of ML forecasts. ML-based hail prediction studies
over the contiguous United States (CONUS) have
demonstrated that ML predictions exhibit greater
forecasting skill over direct prediction of hail from
NWP model output or the use of proxy variables
(Gagne 2016; G17). However, subjective commentary
from the 2018 HWT SFE indicated that forecasters
do not trust ML guidance if the output is unfamiliar or
dissimilar to human-produced forecasts."

Previous studies on applying automation in the
forecasting process emphasize human interaction
(e.g., Snellman 1977; Bosart 1989; Moller et al.
1994), and the importance of reliable guidance over
simple competence (Hoffman et al. 2013). Similar to
the 2018 HWT SFE, forecasters during the 2014
HWT SFE did not trust guidance without knowing
the reliability and skill of new products (Karstens
et al. 2015). However, Karstens et al. (2018) found
that when proper training and forecast verification
results are provided, the addition of automation can
increase forecaster productivity. One way to increase the
skill and reliability of probabilistic forecasts is through
calibration (e.g., Raftery et al. 2005; Hagedorn et al. 2008;
Hamill et al. 2008). In addition to increases in forecast
performance, calibrating ML output to resemble existing
operational forecasts, specifically those produced by the
Storm Prediction Center (SPC), could result in greater
trust in automated guidance for operations.

In this study, adapted from Burke (2019), we present
newly-developed hail forecast guidance products using
ML algorithms and output from the operational HREFv2
model. We demonstrate that these day-ahead forecast
products can be successfully calibrated to increase reli-
ability and skill, as well as resemble SPC hail products, all
to increase forecaster trust in automated hail guidance.

2. Data and methods

a. Data

The ML-based hail prediction models investigated
in this study use HREFv2 (Jirak et al. 2018) model
output as input data. Starting in April 2017, the SPC

! Forecasters from 2018 HWT SFE on14-18 May.
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TABLE 1. Configuration for the eight-member High-Resolution Ensemble Forecast system, version 2 (HREFv2), model output, in-
cluding planetary boundary layer (PBL) schemes and an additional conditional random forest (RF) threshold for classifying member
storm objects as producing hail. The ensemble members include the high-resolution window (HiResW) Advanced Research version of the
Weather Research and Forecasting (WRF) Model (ARW), HiResW Nonhydrostatic Multiscale Model on the B-grid (NMMB), HiResW
National Severe Storm Laboratory (NSSL)-like version of the WRF-ARW, and nested North American Mesoscale Model (NAM-NEST).

Members Initializations PBL Microphysics Vertical levels Grid spacing (km) Threshold
HiResW ARW 0000 UTC YSU WSM6 50 32 0.17
HiResW ARW 1200 UTC YSU WSM6 50 32 0.17
HiResW NMMB 0000 UTC MYJ Ferrier-Aligo 50 32 0.14
HiResW NMMB 1200 UTC MYJ Ferrier-Aligo 50 32 0.23
HiResW NSSL 0000 UTC MYJ WSM6 40 32 0.12
HiResW NSSL 1200 UTC MYJ WSM6 40 32 0.15
NAM Nest 0000 UTC MYJ Ferrier-Aligo 60 3 0.22
NAM Nest 1200 UTC MY] Ferrier—Aligo 60 3 0.14

began running the High-Resolution Ensemble Forecast
system, version 2 (HREFv2). The HREFV2 is based off
the Storm Scale Ensemble of Opportunity (SSEO), a
“poor man’s ensemble” (Ebert 2001) that combines
existing operational CAMs produced by NOAA (Jirak
et al. 2012) to produce a computationally efficient
ensemble. Between the 2012-15 HWT SFEs, the SSEO
scored positively in both objective and subjective met-
rics and provided a baseline for evaluation of CAM
model guidance during the 2016 HWT SFE (Clark et al.
2016). The success of the SSEO in probabilistic severe
weather prediction has brought attention to the HREFv2
dataset for use in skillful weather prediction. Compared
to the SSEO, the HREFV2 produces slightly smaller grid
spacing and includes an Advanced Research version of
the Weather Research and Forecasting (WRF) Model
(WRF-ARW; Skamarock and Klemp 2008) for a total
of eight members.

Developed by National Centers for Environmental
Prediction (NCEP)/Environmental Modeling Center
(EMC), the HREFV2 is run daily by NCEP Central
Operations (NCO).? The HREFv2 is an eight-member
ensemble, with time-lagged members initialized at 0000,
0600, 1200, and 1800 UTC. Only the members initial-
ized at 0000 and 1200 UTC were available for use in this
study. The HREFV2 is a diverse ensemble consisting
of multiple microphysical schemes, including the WRF
single-moment six-class (Hong et al. 2010) and Ferrier—
Aligo (Aligo et al. 2014) scheme, as well as multiple initial
conditions. The planetary boundary layer (PBL) schemes
are the Yonsei University (YSU) (Hong et al. 2006) and
the local Mellor—Yamada (MYJ) (Janji¢ 1990, 1994). All
members use a horizontal model grid spacing of ap-
proximately 3km. The number of vertical levels at
which data are produced differs between ensemble

2 https://www.spc.noaa.gov/exper/href/.

members; the four high-resolution window (HiResW)
members, including the time-lagged members, produce
50 vertical levels, the two ‘“National Severe Storm Lab
(NSSL) like” ARW models output 40 vertical levels,
and the two nested North American Mesoscale Model
(NAM-NEST) members include 60 vertical levels.
Forecast products are generated from 1200 UTC to
1200 UTC the next day, the same period as a SPC day-1
convective outlook. A detailed description of the eight
members of the HREFv2 ensemble is provided in
Table 1.

The target data to train the ML models are the
Maximum Expected Size of Hail (MESH) (Witt et al.
1998) derived from NOAA/NSSL Multi-Radar Multi-
Sensor (MRMS) radar data (Zhang et al. 2011; Smith
et al. 2016). Because MESH outputs exhibit greater
skill for values exceeding 19 mm (Wilson et al. 2009),
only values greater than 19 mm are considered. Although
MESH has known biases, such as overprediction of
higher values (e.g., Wilson et al. 2009; Cintineo et al.
2012; Ortega 2018; Murillo and Homeyer 2019), MESH
was chosen over the local storm reports (LSRs) as the
observational dataset for training the ML models be-
cause of the known population and size biases with
LSRs (e.g., Schaefer et al. 2004; Cintineo et al. 2012).
Also, Melick et al. (2014) found that MESH hail
swaths were more skillful than LSRs in observing hail
objects and act as a useful independent dataset in low
population areas.

The ML models are trained on data between 1 April
and 31 July 2017, and tested on data from 1 May
through 31 August 2018. Different years are used for
training and testing to create independent datasets
and reduce the chance of overfitting. The duration of
the training period (April-July) is selected based on
greater hail potential and number of observations over
the CONUS in the spring and early summer. The testing
period includes the 2018 HWT SFE, from 30 April
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TABLE 2. The 29 HREFV2 storm and environment variables extracted during object tracking. Multiple levels indicate the variable was
investigated at each separate level. CAPE is convective available potential energy, CIN is convective inhibition, MAXUVYV is the
maximum hourly upward vertical velocity, and MAXDVYV is the maximum hourly downward vertical velocity.

Storm Environmental
Variable Level(s) Variable Level(s)
MAXUVV — Precipitable water —
Storm relative helicity 1 and 3km
Hourly max reflectivity 1 km Temp ' 500, 700, 850, and 1000 hPa
MAXDVYV o Dewpoint temp
Hourly max UH 2-5km Geopotential height 500, 700, and 850 hPa

U wind
V wind

Hourly max U wind —
Hourly max V wind —
Surface lifted index —
CAPE —
CIN —

through 1 June 2018, during which forecasts were pro-
vided to HWT SFE participants for evaluation and
feedback. April 2018 is not included for testing because
of incomplete HREFV2 data.

b. Data preprocessing

Both the input and observational datasets are pre-
processed with object tracking to address the relative
rarity of hail (and severe weather in general) at any
given location within the CONUS. The object-tracking
method and ML models evaluated for hail prediction
are based upon those used in G17. This object-tracking
algorithm identifies potential storm objects where a chosen
variable field exceeds a user-specified threshold. For the
HREFv2 dataset, storm objects are identified using the
maximum hourly upward vertical velocity (MAXUVYV)
with a threshold of 8ms™!, rather than column total
graupel greater than 3kgm ™2 from G17. The selection
of updraft speed rather than updraft helicity or column
total graupel, and the use of a relatively low threshold
value, were designed to capture all possible hail storms
rather than only high-end supercells. Although super-
cells are typically responsible for the most severe hail
events, marginal hail is also important to the public, the
insurance industry, and agriculture. For observations,
potential MESH storm objects are generated for values
exceeding 19 mm, differing from the 12-mm threshold
used in G17, for reasons outlined above.

After identification, potential storm objects are matched
in time and space to create storm tracks. For the HREFv2
storm tracks, additional hourly maximum variables are
extracted at each grid point throughout the tracks. While
instantaneous model fields may miss variations in storm
intensity at time scales less than 1 h, hourly maximum fields
can record maximum intensities without needing to output

model data at every time step. Kain et al. (2010a) found
that hourly maximum values provide skill for severe
weather forecasting, particularly in determining hail
threats in nonsupercellular storms. In addition, hourly
maxima have been found skillful as guidance when
forecasting severe weather, with minimal calibration
needed (Sobash et al. 2011). Although CAMs, which
output hourly maximum variables, cannot resolve in-
dividual hazards (such as severe wind, severe hail, or
tornadoes), they can resolve severe hazard proxies
such as updraft helicity or updraft speed.

The HREFv2 maximum hourly variables, statistically
evaluated over each storm track after extraction, include
storm and environmental variables (Table 2). Storm vari-
ables are directly related to convection, such as hourly
maximum reflectivity, storm relative helicity (SRH), hourly
maximum updraft helicity (UH), and so on. Environmental
variables consist of near-storm fields, such as temperature,
dewpoint temperature, geopotential height, and so on. The
environmental variables are extracted from the previous
forecast hour to mitigate contamination of storms on en-
vironmental conditions, with storm variables extracted at
the current forecast hour. Statistical evaluations of the
storm tracks for both variable types include the mean,
maximum, minimum, standard deviation, skewness, and
10th, 50th, and 90th percentiles. The HREFv2 hourly
maximum variable statistics serve as the input data to the
ML models. The number of HREFv2 storm tracks identi-
fied for training the ML models ranges from 10000 to
25000 per member, and from 23 000 to 63 000 per member
in the input test set. The 2018 test set is larger as it contains
more days with model runs, while the 2017 data was limited
because it was the first year of running the HREFv2 op-
erationally. Increasing the number of storm tracks in the
2017 dataset would be ideal, however, any changes would
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also increase the track number in 2018, maintaining the
dataset imbalance issues.

The final preprocessing step matches the HREFv2
storm tracks to MESH tracks. Track pairings occur
where the calculated distance between member storm
tracks and observed hail tracks is less than 80 km. If
any of the fields used to calculate distance (differences
in the observed and modeled track starting times, lo-
cations, durations, and sizes) exceed the thresholds
defined in G17, the tracks are not matched. Match
classifications, a binary dataset, as well as the shape
and scale parameters of the paired MESH tracks
provide the observational datasets for training the
ML models.

¢. Machine learning methods

The algorithm for operationally calibrating the ML
hail predictions includes three models (Fig. 1): a ran-
dom forest (RF) (Breiman 2001) classification model,
RF regression model, and an isotonic regression (IR)
model (Niculescu-Mizil and Caruana 2005). Both RF
model configurations include 500 trees, a square root
number of features chosen per tree, and a requirement
of 1 sample per leaf. The number of random features
chosen for each tree is relatively low (about 14) to
reduce the chance of overfitting to the limited training
dataset. The regression model optimizes the mean
square error, while the classification RF optimizes the
Gini index. These hyperparameters are similar to
those in G17 and are relatively standard. The choice of
RFs for producing operational severe hail forecasts is
partly due to the speed for both training and fore-
casting. Computational efficiency and cost are large
considerations for operations in addition to skillful
forecasts. For forecasting rare events, RFs have shown
greater skill over other models that assume linearity,
such as logistic regression or elastic nets (G17; Herman
and Schumacher 2018a). The randomness associated
with RFs decreases model bias and variance, creating
strong classifiers and regressors (Breiman 2001). Finally,
RFs are easily interpretable (Herman and Schumacher
2018a), which is also a large consideration when
employing a postprocessing method for operations.

Before calibration, described in section 2d, a RF clas-
sification model is trained to predict the probability of
HREFV2 member storm tracks being matched with hail
observations, where the binary truth dataset is described
in section 2b. For each ensemble member, fivefold
cross validation (Breiman and Spector 1992) pro-
duces five probability predictions, one per valida-
tion test fold, from the training dataset. Calculation
of contingency table metrics over all five probability
estimations, at 1% intervals, determines the threshold
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with the highest equitable threat score (ETS). This
threshold “‘filters out”” ensemble member storm ob-
jects because only storm tracks with probabilities ex-
ceeding the estimated threshold are classified as hail
producing. Table 1 includes the thresholds for each
HREFv2 member.

The member storm tracks classified as hail producing
(with probability values exceeding the threshold values
mentioned above, about 600-2000 storm tracks per
ensemble member in the training dataset and 4000-
7500 tracks in the testing set) are evaluated using a RF
regression model. The regression model predicts the
scale and shape parameters of a MESH gamma distri-
bution for each input storm track. As in G17, the scale
and shape parameters of the hail size gamma distribution
are log-normalized and predicted together, to maintain
the negative correlation between the shape and scale
parameters. Comparing the predicted shape and scale
parameters from each ensemble member to the values
found through object-tracking produces average root
mean squared error (RMSE) values of 0.64 for the shape
parameter, and 4.51 for the scale parameter. The average
ensemble mean absolute error (MAE) values are 0.51
and 3.28 for the shape and scale parameters, respectively.
A higher scale parameter error could indicate that the RF
regression model predicts a larger range of hail size values
than observed.

Using the predicted shape and scale parameters, hail
sizes from the gamma distribution are extracted such
that the highest storm object values, MAXUVYV in this
case, in a track are associated with the largest MESH
values. Unlike G17, the distribution of storm objects
created for each member are based off data from the
entire training period. To output hail sizes for a given
storm object, G17 matched percentiles from a daily
hail size distribution with a daily storm object distri-
bution. However, if the range of storm objects on a
given day is relatively low, higher percentile hail
values are matched to storm object values that would
not result in large hail on a different day. Preliminary
testing identified a subjective high MESH bias on mar-
ginal days when using the daily values.

After predicting hail sizes from each ensemble member,
the ensemble maximum size and neighborhood maximum
ensemble probability (NMEP) of hail within 42 km
of a point are calculated from 1200 UTC to 1200 UTC
the following day. The NMEP predictions, based off the
definition of ensemble probabilities in Schwartz and
Sobash (2017), are evaluated at the severe (>25mm)
and significant severe (>50mm) hail thresholds on
the 3-km HREFv2 grid. The grid is further smoothed
with a 2D Gaussian filter (o0 = 42 km). In addition to
managing the uncertainty of severe weather, the
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FIG. 1. Process for producing and calibrating machine learning hail predictions. The random forest classifica-
tion and regression models are trained using input from each HREFv2 member separately, while the aggregated
ensemble predictions are input to the isotonic regression model for training.

smoothed grid allows for direct comparison of pre-
dictions to SPC products for verification. The un-
calibrated NMEP predictions were generated daily
at 0700 UTC during the test period, valid at 1200 UTC.
For a complete description of the data preproces-
sing and machine learning methods, we refer the
reader to G17.

d. Calibration methods

In the uncalibrated NMEP hail predictions, proba-
bilities range from 0% to 100% while SPC hail outlooks
never predict probabilities of hail exceeding 60%.
Ideally, to build forecaster trust in the ML-based
model, the hail forecasts should be reliable and com-
parable in probability magnitude with operational
products such as the SPC hail outlook. To address
these issues, an IR model, chosen for its computational
efficiency and lack of linearity assumptions, calibrates
the RF output for operations. Previous studies have
shown that RF probabilistic forecasts are more reli-
able after calibration using IR (Niculescu-Mizil and
Caruana 2005; Lagerquist et al. 2017). With IR, which
uses a nondecreasing function to map an input dataset
toward a target dataset, only nonzero values are altered.

The operational target datasets used to calibrate the
RF NMEP hail forecasts include the local storm reports
(LSRs) and SPC practically perfect (PP) (Davis and
Carr 2000; Hitchens et al. 2013) probability of severe

hail occurrence. The LSR target dataset is a binary field,
such that the observed hail grid points are within 40km
of at least one severe or significant severe hail report.
The SPC PP probability field serves, during the HWT
SFE, as an estimate of the optimal outlook a forecaster
would issue if all LSR locations were known before-
hand. After identifying the LSRs as a binary field,
application of a two-dimensional Gaussian smooth-
ing filter (o0 = 2 for operations) creates PP smoothed
probabilistic forecasts to account for uncertainties in
LSR placement.

The calibration model trains and tests over the RF
predictions (121 days between 1 May and 31 August
2018), as the model for creating calibrated probabilities
can only be applied to existing probability predictions. A
total of 84 training (70% of data) and 37 testing (30% of
data) days were randomly selected to limit biases result-
ing from synoptic or seasonal patterns. We acknowledge
that including a validation dataset would be ideal, as well
as separate years of training and testing data to de-
crease the chances of overfitting. We plan to split the
data accordingly in future iterations when a larger
dataset is available. The calibrated probabilities range
in time from the day-ahead forecasts to three 4-h pe-
riods used by 2018 HWT SFE forecasters (1700-2100,
1900-2300, and 2100-0100 UTC). The target PP data
does not include data from the full 24-h period, instead
considering only a 20-h period from 16 to 36 h of forecast
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time. However, the IR model maps the two datasets
together for calibration purposes.

3. Results

The calibrated day-ahead NMEP predictions are quali-
tatively verified against the SPC daily hail outlook and the
20-h PP output, valid the same forecast day. We analyze
two case studies to examine the robustness of the ML
model to accurately predict hail occurrence over var-
ied weather regimes. Both the severe and significant
severe (sig-severe) thresholds are mapped for consis-
tency with the G17 study. Additional quantitative
evaluations over the IR test period (37 random days
between 1 May and 31 August 2018) investigate the
ML-based hail predictions, both uncalibrated and cali-
brated, against the PP dataset, the 1200 UTC SPC hail
outlook, and a hail proxy variable (updraft helicity).
The 2-5-km HREFv2 UH data at thresholds related
to severe (>75m?s”') and sig-severe (>150m?s™')
hail (G17) provide another non-ML baseline.

a. Marginal hail case study

On 8 May 2018, a trough and surface cold front moved
into Oregon, where a deep mixed layer provided enough
support for a few nonsevere hail-producing storms de-
spite relatively weak convective available potential
energy (CAPE) values. Storms over the mid to lower
Missouri Valley had ample CAPE, but a dry boundary
layer restricted growth ahead of a surface trough. The
SPC hail outlook valid 1200 UTC displays two regions
with 5% probability of severe hail (Fig. 2a), located over
Oregon and portions extending from South Dakota to
Missouri. The PP probability of severe hail on 8 May
2018 includes values between 5% and 15% highlighting
South Dakota, Minnesota, and northwestern Iowa
(Fig. 2b). There were no areas of sig-severe hail proba-
bility (Fig. 2¢) and no severe hail reports received over
the western United States.

The uncalibrated ML NMEP prediction, valid 1200 UTC
8 May 2018, displaces the severe hail probabilities up to
35% over portions of Iowa, South Dakota, Nebraska,
and Missouri to the southeast of the observed severe hail
reports (black dots) (Fig. 3a). Portions of Oklahoma,
Kansas, and Oregon also exhibit severe probabilities up
to 22%, however the PP output does not contain prob-
abilities in these regions (Fig. 2b). Although severe hail
was not reported in Oregon, the SPC hail outlook
(Fig. 2a) displays a similar area of probabilities as the
uncalibrated prediction. At the sig-severe threshold
(Fig. 3b), the uncalibrated model outputs probabilities
up to 4% in eastern Iowa and southern Minnesota,
while the PP output does not produce sig-severe
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probabilities (Fig. 2¢). Overall, the uncalibrated pre-
diction exhibits higher magnitude probabilities than
the SPC outlook and PP output, however the severe
hail prediction produces spatially similar areas of
nonzero hail threat as the SPC outlook.

Compared to the uncalibrated ML output, the prob-
ability magnitudes of the LSR calibrated severe hail
prediction (Fig. 3c) better resemble the SPC hail out-
look and the severe hail PP output. The LSR calibrated
output exhibits the same spatial coverage of nonzero
probabilities as the uncalibrated prediction, although
values less than 1% are not displayed. Differing from the
uncalibrated output, the LSR calibrated probabilities do
not exceed 14%, similar to the severe PP output and
SPC outlook magnitudes (Figs. 2a,b). At the sig-severe
threshold, the LSR calibrated prediction (Fig. 3d) out-
puts spatially similar probabilities as the uncalibrated
model, however again overforecasting compared to
the PP sig-severe probabilities (Fig. 2¢). In general, the
LSR calibrated model corrects the high magnitude
bias present in the uncalibrated ML severe hail fore-
casts, although a high spatial bias persists at both
thresholds.

The PP calibrated predictions, where the target dataset
for calibration is the PP dataset, output lower probabili-
ties of severe (Fig. 3e) and sig-severe (Fig. 3f) hail com-
pared to the LSR calibrated forecast (Figs. 3c,d). The
severe hail PP dataset provides higher magnitude prob-
abilities (up to 14%) than the PP calibrated prediction
(up to 4%). At the sig-severe threshold, the PP calibrated
model correctly predicts no areas exceeding a 1% chance
of sig-severe hail (Fig. 3f). For a marginal case, the PP
calibrated model decreases the severe hail threat in areas
observing hail reports but more closely resembles
observations at the sig-severe threshold.

In general, the uncalibrated hail predictions over-
estimate the probability of severe hail, both spatially and
in magnitude. An added calibration step decreases the
high magnitude bias of the uncalibrated output, where
the LSR calibrated model outputs severe hail proba-
bility values more comparable to the SPC outlook and
PP data. Conversely, the predictions calibrated to the PP
output underestimate the severe hail threat over South
Dakota and Iowa. However, the PP calibrated model
predicts the low sig-severe hail threat, compared to the
slightly overestimated threat from the LSR calibrated
model. At both size thresholds, at least one calibration
model decreases the overprediction bias associated with
the uncalibrated output.

b. Hail outbreak case study

Examination of a high-end severe hail event, occur-
ring on 29 July 2018, investigates the robustness of the
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FIG. 3. ML neighborhood maximum ensemble probabilities of hail for 8 May 2018. Both calibrated and uncalibrated
predictions are produced at the (a),(c),(e) severe and (b),(d),(f) significant severe hail thresholds. Predictions are
calibrated to the LSRs and PP probabilities. The black dots are severe and significant severe hail reports.

ML-based hail predictions in differing environments.
On this day, multiple hail-producing storms resulted
in 106 severe and 30 sig-severe hail reports concen-
trated in Colorado and extending into Wyoming,
Kansas, South Dakota, and Nebraska. A strengthen-
ing upper-level trough and midlevel jet over the
Midwest, strong diurnal heating, and a moist bound-
ary layer set the stage for severe storms over the
central high plains. The day-1 SPC hail outlook valid
1200 UTC (Fig. 4a) predicts a 15% chance of severe
hail over eastern Colorado and 5% from Montana to
Arkansas. Sig-severe hail was not anticipated until
the outlook valid 1300 UTC. The PP output indicates
severe hail probabilities up to 38% over northeastern

Colorado (Fig. 4b), and up to 23% for sig-severe hail
over eastern Colorado (Fig. 4c).

The uncalibrated hail prediction (Fig. 5a), valid
1200 UTC, features similar areas of 5% probability as
the SPC hail outlook and PP output. However, nei-
ther the uncalibrated prediction nor the SPC outlook
indicate the reported severe hail threat in North Dakota
or Minnesota. In eastern Colorado, the uncalibrated
severe hail prediction exceeds 60%, substantially over-
estimating the hail threat compared to observed PP
severe hail output and SPC outlook (Figs. 4a,b). The
uncalibrated sig-severe hail prediction (Fig. 5b) dis-
plays comparable probabilities in eastern Colorado
compared to the sig-severe PP output (Fig. 4c) where
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FIG. 5. As in Fig. 3, but for neighborhood maximum ensemble probabilities of hail valid on 29 Jul 2018.
Predictions are produced at the (a),(c),(e) severe and (b),(d),(f) significant severe hail thresholds. Calibration is
accomplished using LSRs and PP probabilities. The black dots are severe and significant severe hail reports.

values exceed 15%. Despite the overestimated hail
probabilities, the uncalibrated predictions are closely
collocated with the bulk of observed hail and spatially
more comparable with the SPC hail outlook and PP
output than in the marginal hail case.

The LSR calibrated model also outputs similar hail
threat regions as the PP output and SPC hail outlook,
but produces calibrated probabilities closer in magni-
tude to the observed severe PP output compared to the
uncalibrated prediction (Fig. 5c). The calibrated prob-
abilities do not exceed 29% over eastern Colorado,
slightly lower than the maximum observed probabilities
in the PP output (37%), but comparable to the hail
threat in the SPC outlook. For sig-severe hail, the LSR

calibrated probabilities (Fig. 5d) do not exceed 4% over
portions of Colorado, again lower than the 22% maxima
observed in the sig-severe PP output. In general, the
LSR calibrated model predicts severe probability mag-
nitudes closer to the PP output and SPC hail outlook,
compared to the uncalibrated output, but underpredicts
the sig-severe hail probabilities.

The last ML-based severe hail prediction, calibrated
toward the PP output, underforecasts compared to both
the PP output and SPC hail outlook (Fig. 5¢). As in the
marginal hail case study, the severe PP calibrated pre-
diction exhibits very low probabilities of severe hail, not
exceeding 14% in regions of eastern Colorado that ob-
serve PP probabilities of up to 22%. The sig-severe PP
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TABLE 3. The contingency table metrics used to compare forecasts
and observed events.
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TABLE 4. ETS and bias equations for forecast verification of the
ML-based hail predictions.

Observed Metric Equation(s)
Yes No Bias TP + FP
Forecast Yes True positive (TP) False positive (FP) TP+FN
No False negative (FN) True negative (TN) ETS TP — random hits
TP + FN + FP — random hits
Random hits (TP + FN)(TP + FP)

calibrated predictions (Fig. 5f) also underforecast com-
pared to the PP output, where probabilities do not exceed
1% on this day, while the sig-severe PP probabili-
ties reach 22% in this region. Both the severe and sig-
severe PP calibrated predictions underestimate the
severe hail threat in eastern Colorado, however the cali-
brated severe hail forecast highlights the area of greatest
observed hail reports.

For the high-end severe hail case, the ML-based hail
predictions focus the highest hail threat in eastern
Colorado where the largest number of severe hail re-
ports are observed. As in the marginal hail case, cali-
bration decreases the high probability magnitude bias
associated with the severe uncalibrated ML output.
Also, the LSR calibrated severe hail predictions more
closely resemble the observed probability magnitudes
than the PP calibrated output. Last, both calibrated
models underpredict the probability of sig-severe hail.
As the uncalibrated model outputs relatively similar
probability magnitudes compared to the observed PP
output, calibration may not be necessary at the sig-
severe threshold for this case.

¢. Quantitative verification

Four metrics quantitatively verify the ML models,
PP output, 1200 UTC SPC outlook, and UH proxy
variable. The metrics [reliability, Brier skill score
(BSS; Brier 1950), equitable threat score (ETS; Clark
et al. 2010), and bias] evaluate the 24-h predictions
(12-36h) over the isotonic regression test set. ETS
and bias are favorable for evaluating gridded fore-
casts (Hamill 1999), where ETS measures the fraction
of correct forecasts to observed events and takes
into account events randomly forecasted correctly.
Higher ETS values are more skillful. Bias compares
the frequency of forecast events to the frequency of
observed events, where a bias of 1 is preferred. Both
metrics require dichotomous forecasts to calculate
contingency table metrics (Tables 3 and 4). The
probabilistic forecasts are made deterministic at 5% in-
terval thresholds, where forecasts equal to or greater
than the threshold are predicted events. The observa-
tions for calculating the contingency table metrics are
the LSRs (already binary) and PP dataset (applied
thresholds similar to the forecasts).

total

Evaluating the forecasts using reliability and BSS,
with the LSRs as observational truth, reveals that the
PP dataset consistently underpredicts while the un-
calibrated ML predictions overpredicts, at both size
hail thresholds (Fig. 6). The 1200 UTC SPC outlook is
only available at discrete intervals, however the fore-
casts exhibit near perfect reliability, slightly over-
forecasting at 45% (Fig. 6a). The severe uncalibrated
hail prediction and UH proxy exhibit comparable re-
liability, although the uncalibrated model BSS is higher
(—0.18 versus —0.4). With calibration, we expect the
predictions to have similar reliability characteristics as
their target datasets. As expected, the severe LSR
calibrated predictions exhibit near perfect reliability
up to 45%, and the severe PP calibrated predictions are
comparable with the PP output. Both calibrated pre-
dictions feature higher BSSs than the uncalibrated
dataset, UH proxy, and SPC outlook, although the PP
output displays the highest score (0.17). At the sig-
severe threshold (Fig. 6b), a high bias persists with the
UH proxy and uncalibrated dataset, while the LSR
calibrated output displays near perfect reliability up to
about 15% before overforecasting. Additionally, the
LSR calibrated model output shows a higher BSS (0.0)
than the uncalibrated output (—0.02) and UH proxy
(—0.73). The sig-severe PP calibrated probabilities are
sufficiently low that they do not appear, but achieve a BSS
of 0.01. The 1200 UTC SPC sig-severe outlook is binary
and therefore does not appear on the probabilistic reli-
ability diagram. In addition to changes in forecasting bias,
calibration decreases output probability magnitudes, as
the LSR calibrated model does not exceed 45% and 20%
at the severe and sig-severe thresholds, respectively. The
PP calibrated model predictions do not exceed 20% and
1% at the severe and sig-severe thresholds. Overall, cal-
ibration reliably maps the uncalibrated predictions to-
ward two different target datasets and increases the BSS.

In Fig. 7, the LSR dataset serves as observations for
calculating ETS and bias. Of the severe hail predictions,
the LSR calibrated model outputs maxima and minima
in ETS at similar forecast probabilities as the optimal PP
output and 1200 UTC SPC outlook (Fig. 7a). However,
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FIG. 6. Reliability diagrams of the full period (forecast hours
12-36) predictions. Data plotted include the ML predictions, SPC
outlook, practically perfect output, and UH proxy over the isotonic
regression test dataset. Predictions are verified at the (a) severe and
(b) significant severe hail thresholds. The SPC outlook at the sig-
nificant severe threshold is binary and therefore not plotted.
Included in the legend is the Brier skill score for each prediction.

the PP output achieves a higher skill score (0.32), com-
pared to the LSR calibrated (0.12). The PP calibrated
probabilities also achieve an ETS value of 0.12, but ata
lower forecast probability (around 5%). Both the un-
calibrated output and UH proxy achieve higher skill
than the PP output past 20% forecast probability,
however the datasets also provide the highest bias
(Fig. 6b) with the uncalibrated model outputting
lower bias below 70%. Although the calibrated models
produce high biases at low forecast probabilities, the
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biases are lower than the SPC outlook across all forecast
probabilities. Of all the severe hail predictions, the LSR
calibrated model best resembles the PP output and SPC
hail outlook in terms of skill.

Calculations of ETS and bias, again compared to
the LSRs, at the sig-severe threshold show that the un-
calibrated model outputs the highest ETS skill (0.03) of
the ML predictions, while maintaining overall lower bias
than the UH proxy (Figs. 7c,d). Both calibrated pre-
dictions have zero skill above 20%, however the LSR
calibrated model bias is most comparable to the PP
output. As with the reliability diagram, the binary sig-
severe SPC outlook does not appear on the probabilistic
diagram. The UH field displays the greatest ETS skill
above 20%, but maintains the highest bias. Similar to
case studies, the uncalibrated ML model performs bet-
ter at the sig-severe threshold. The differences in bias
between the uncalibrated output and UH proxy, at both
size thresholds, indicates that the ML algorithm better
focuses on hail threat regions before calibration. At the
sig-severe threshold, the uncalibrated model displays
the greatest skill of the different ML predictions, how-
ever the LSR calibrated model produces bias values
closer to the PP output.

In addition to the LSRs as observations, ETS and bias
are calculated using the PP dataset to verify the hail
predictions against a probabilistic field (Fig. 8). The se-
vere PP calibrated prediction achieves similar ETS skill
as the SPC hail outlook at 5%, however decreases in
ETS and bias values above the 5% probability threshold
(Fig. 8a). The severe LSR calibrated model produces
the highest ETS skill below 30%. Above 30% the SPC
outlook achieves a higher score. For bias, the LSR
calibrated model predicts lower values than the SPC hail
outlook across all probabilities (Fig. 8b). The severe hail
uncalibrated model and UH proxy display comparable
skill, but again the uncalibrated output achieves lower
bias. Verification of the sig-severe hail predictions show
that the UH proxy achieves the highest ETS value (0.04)
(Fig. 8c), but continues to produce the highest bias of all
the datasets, similar to previous examinations (Fig. 8d).
At the sig-severe threshold, the uncalibrated model
outputs the greatest ETS skill of the ML predictions,
but the LSR calibrated model produces lower bias
values. Overall, verifying against the PP dataset indi-
cates that the severe LSR calibrated model produces
similar skill as the SPC hail outlook, but calibration
decreases ETS skill at the sig-severe threshold. Despite
decreases in ETS skill, calibration lowers bias values at
both size thresholds, compared to the PP dataset.

Due to the subjective success of the LSR calibrated
model from the previous verification metrics, model
timing information is explored. Only the severe hail



162

Probability of Hail >25mm ETS

WEATHER AND FORECASTING

VOLUME 35

Probability of Hail >25mm Bias

0.40 4 , 10 -
—— Uncalibrated —— Uncalibrated
—— PP Output 9 — PP Output
0.35 1 —— Updraft Helicity —— Updraft Helicity
—— LSR Calibrated 81 a —— LSR Calibrated
@ 0.301 —— PP Calibrated —— PP Calibrated
o 4 SPCOutlook 7 4 SPC Outlook
@ 025
© 61
2 n
E o201 .g 5
Q.
rel ]
8 o015 *
=
i 31
0.10
2
1 (b)
000 4 ——— e N 0
0 5 10 15 20 25 30 35 40 45 S0 55 60 65 70 75 80 85 90 95 100 0 S5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Forecast Probability Forecast Probability
Probability of Hail >50mm ETS Probability of Hail >50mm Bias
y 104
040 —— Uncalibrated —— Uncalibrated
—— PP Output 9 —— PP Output
0.35 —— Updraft Helicity —— Updraft Helicity
—— LSR Calibrated 8 —— LSR Calibrated
© 030 - PP Calibrated - PP Calibrated
o 74
v
) oas
© 61
= g
= 0204 = i3
Q@
o ]
£ o154 :
=
w 31
010
24
© | (d)
0.0

0 7 U u T g T v T g g T T T T T u T 7 7
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Forecast Probability

0 T g v g g T T g 7 T T g T u T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Forecast Probability

FIG. 7. ETS and bias of the full period (forecast hours 12-36) predictions. Data plotted include the ML predictions, SPC outlook,
practically perfect output, and UH proxy, with local storm reports as observations. ETS and bias are calculated at the (a),(b) severe and
(c),(d) significant severe hail thresholds. The SPC outlook at the significant severe threshold is binary, and therefore not plotted.

calibrated predictions are examined over the different
forecast periods (1700-2100, 1900-2300, 2100-0100,
and 1200-1200 UTC the next day) because of the rel-
ative rarity of sig-severe hail over short time periods.
A similar analysis at the sig-severe threshold could be
enlightening, however a much larger dataset would be
needed. The calibrated predictions evaluated using
ETS against the LSRs (Fig. 9a) and PP output (Fig. 9¢)
show that the 2100-0100 UTC and 24-h forecast pe-
riods achieve the highest ETS values of all the periods.
Additionally, bias calculations when compared to the
LSRs (Fig. 9b) and PP dataset (Fig. 9d) show similar
values among the different time periods, although the

1900-2300 UTC prediction against the PP dataset
shows lower bias at higher probabilities. In general,
the later time periods outperform the earlier periods,
but large biases are apparent across all time periods
regardless of the observational dataset.

4. Discussion and summary

A random forest (RF) machine learning (ML) method
for day-ahead hail prediction, based on that of G17,
predicts severe hail probabilities with data from HREFv2
numerical model forecasts and observations from the
Maximum Expected Size of Hail (MESH) dataset.
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F1G. 8. As in Fig. 7, but where ETS and bias are calculated with practically perfect probabilities as observations. ETS and bias are
evaluated at the (a),(b) severe and (c),(d) significant severe hail thresholds.

An added isotonic regression (IR) model calibrates
the RF severe hail predictions toward the local storm
reports (LSRs) and SPC’s practically perfect (PP) out-
put. The resulting hail predictions, including an uncali-
brated ML model as well as the LSR and PP calibrated
models, were verified through two case studies, reli-
ability diagrams, Brier skill score (BSS), and plots of
equitable threat score (ETS) and bias.

The marginal and high-end severe hail studies used to
evaluate the HREFv2 ML hail predictions indicate that
the uncalibrated severe hail predictions are spatially
similar to the SPC hail outlook, but exhibit a high spatial
bias compared to the severe PP dataset. The severe
uncalibrated model also produces a high magnitude bias

compared to both verification datasets. The significant
severe (sig-severe) uncalibrated case study forecasts
do not exhibit as high spatial or magnitude biases,
however a high magnitude bias persists over the IR test
set at both hail size thresholds, evidenced by the reli-
ability diagrams and plots of ETS and bias.

The high magnitude bias (and spatial bias compared
to the severe PP dataset) may be due in part from the
different training and verification datasets used, where
MESH observations are more numerous than LSRs.
Verifying against MESH may decrease the uncalibrated
ML model bias, however the LSRs are a common op-
erational verification dataset. Beyond verification data-
sets, the member classification thresholds for “filtering
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FIG. 9. Plots of ETS and bias of the LSR calibrated output at varying forecast periods. Predictions are verified at the severe hail threshold
using the (a),(b) local storm reports and separately (c),(d) practically perfect probabilities as observations.

out” storms as hail producing may contribute to the high
size bias. A lower threshold classifies more storms as hail
producing, leading to more nonzero hail sizes output
from the RF regression model. Changing the skill met-
ric, such as BSS, that determines the filtering thresholds
may increase the thresholds. In addition, training both
the classification and regressions model on a larger
dataset could increase the filtering threshold, while also
decreasing the scale parameter errors previously men-
tioned. Finally, changing the object-tracking algorithm
thresholds, like increasing the MAXUVV and MESH
thresholds, or decreasing the areal intensity used for
creating storm tracks could decrease the number and
spatial extent of predicted storm tracks, however this

may also lead to greater misses. Even though the un-
calibrated ML model exhibits a high magnitude bias, the
severe hail proxy variable (updraft helicity) displays
higher bias values and a lower BSS than the uncalibrated
output at both size thresholds.

Adding calibration reduces the high magnitude bias
associated with the uncalibrated ML severe hail pre-
dictions, across both calibrated datasets. For both case
studies, the LSR calibrated model most closely resem-
bles the operational day-1 SPC hail outlook and PP
output at the severe hail threshold. However, the sig-
severe uncalibrated ML model outputs similar prob-
abilities, both in magnitude and spatially, as the two
verification datasets. Calibrating the sig-severe ML
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model decreases the probability magnitudes below the
observed PP output. Although the qualitative case
studies display decreases in calibrated sig-severe prob-
abilities, the reliability diagrams calculated over the IR
test set show that calibration can reliably map the RF
hail predictions toward either the PP or LSR data, and
increase BSS, at both size thresholds. The LSR cali-
brated model achieves a higher BSS, and is more reliable
at certain forecast probabilities, than the 1200 UTC SPC
outlook, which has access to 12h more data than the
HREFv2 model runs.

Increases in reliability are important when forecasters
consider using automated guidance (Hoffman et al.
2013; Karstens et al. 2018). Indicating to forecasters that
the LSR calibrated dataset is reliable compared to the
LSRs, a common operational verification dataset, could
increase trust in the guidance. In addition to increased
reliability, the severe LSR calibrated predictions exhibit
lower bias than the SPC outlook, while producing higher
ETS values across most forecast probabilities, against
both the PP dataset and LSRs. Although both the un-
calibrated ML output and UH proxy variable produce
higher biases than PP dataset or SPC outlook, calibrat-
ing the UH field toward the LSRs would not produce
the same results as the LSR calibrated ML model.
Calibrating the UH field would only be appropriate in
environments where hail results from strongly rotating
storms. Conversely, all storms modes can be skillfully
predicted by the RFs because of the multiple different
storm and environment fields input to the models.

In addition to day-ahead forecast skill, ETS and bias
calculations verify timing information from the LSR
calibrated model against both the LSR and PP dataset.
The 1200-1200 and 2100-0100 UTC time periods dis-
played the highest skill across both verification datasets.
The poorer performance at early times likely results
from the higher prevalence of severe weather, including
severe hail, during the afternoon and evening hours. The
decrease in performance may indicate that the LSR
calibrated ML model exhibits an overforecasting bias
during early time periods.

Similar to the LSR calibrated model, the PP cali-
brated model decreased the uncalibrated model output
bias. However, the PP calibrated predictions were ex-
tremely conservative in predicting both hail size thresh-
olds. The low forecasting bias likely results from the PP
dataset underforecasting bias. The Gaussian smoother
applied to the LSR locations smooths the probabilistic
dataset, causing the PP dataset to underforecast the
LSRs by design. Calibration further decreases the
overall probability magnitudes of the RF ML hail
predictions, leading to an enhanced low bias with the
PP calibrated model. Comparatively, the LSR calibrated
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model calibrates directly to the LSRs, similar to the PP
output, and therefore does not include a pre-existing bias.
The lack of underforecasting bias associated with the
LSR calibrated target dataset most likely causes the LSR
calibrated output to better resemble the PP output, than
the PP calibrated. The low forecast skill and reliability of
the PP calibrated model, compared to the LSR calibrated
model, indicates that the LSR calibrated model may be
more trusted in an operational setting.

Beyond reliability, model interpretation can be im-
portant in increasing forecaster acceptance of automa-
tion (McGovern et al. 2019). Burke (2019), which uses
two separate RF regression models to predict the shape
and scale parameters, investigated permutation variable
importance (Lakshmanan et al. 2015) for interpreta-
tion of the ML-based hail prediction algorithm. The
regression method differences could influence the
produced variable importance ranks, therefore further
exploration applied to the single RF regression model
method is needed.

Opverall, the LSR calibrated ML-based hail guidance
using the HREFv2 dataset provides increased reliability
and skill over the uncalibrated ML output and SPC hail
outlook, indicating that the forecasts may provide op-
erationally useful predictions. All of the ML models
overforecast hail in terms of spatial extent, but this could
benefit forecasters preparing forecasts in terms of high-
lighting potential hail risk areas and addressing storm
placement uncertainty. The severe hail predictions were
particularly skillful after calibration, which is encour-
aging for this initial application of the technique to the
HREFV2 dataset. Preliminary results indicate that cali-
brating the ML NMEP forecasts before smoothing
produces predictions with decreased spatial bias and
false alarms. The next iteration of calibrated severe hail
forecasts will include this step to further increase the
skill of the LSR calibrated output. Even without this
update, the calibrated predictions produce output that,
compared to the uncalibrated predictions, are more
comparable to the PP probabilities while outperforming
the SPC hail outlook. However, any improvements of
the calibrated models over the SPC hail outlook may be
within the ranges of forecast uncertainty. Subjective
ratings from the 2019 HWT SFE indicate that the LSR
calibrated hail guidance performs similarly to a SPC hail
guidance product, with a slightly higher mean score.
In general, producing reliable forecasts with compara-
ble skill as SPC hail outlooks has the potential to in-
crease operational forecaster trust in the LSR calibrated
automated predictions.

Acknowledgments. This work was primarily supported
by the Joint Technology Transfer Initiative (JTTI) Grant



166 WEATHER AND

NA160AR4590239 provided by NOAA, and supple-
mented with funding provided by NOAA JTTI Grant
NA180OAR4590371. This material is based upon work
supported by the National Center for Atmospheric
Research, which is a major facility sponsored by
the National Science Foundation under Cooperative
Agreement 1852977. Computing was primarily exe-
cuted on the University of Texas Advanced Computing
Center (TACC) Stampede supercomputer. The authors
thank Timothy Supinie and Chris Cook for data support,
Ryan Lagerquist for implementation feedback, and
Jonathon Labriola for contribution of ideas. We also
thank Steven Weiss, Israel Jirak, and the participants of
the 2018 HWT SFE for useful assessments and remarks.
We thank David Harrison and Christopher Karstens
for providing the gridded SPC outlook data. Finally, we
thank the anonymous reviewers for their feedback,
which helped improve this manuscript.

REFERENCES

Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail
using a one-dimensional hail growth model within WRF. Mon.
Wea. Rev., 144, 4919-4939, https://doi.org/10.1175/MWR-D-
16-0027.1.

Aligo, E., B. Ferrier, J. Carley, E. Rogers, M. Pyle, S. Weiss, and
I. Jirak, 2014: Modified microphysics for use in hifgh-resolution
NAM forecasts. 27th Conf. on Severe Local Storms, Madison,
WI, Amer. Meteor. Soc., 16A.1, https://ams.confex.com/ams/
27SLS/webprogram/Paper255732.html.

Bosart, L. F., 1989: Automation: Has its time really come? Wea.
Forecasting, 4,271-271, https://doi.org/10.1175/1520-0434(1989)
004<0271:AHITRC>2.0.CO;2.

Breiman, L., 2001: Random forests. Mach. Learn., 45, 5-32, https://
doi.org/10.1023/A:1010933404324.

——, and P. Spector, 1992: Submodel selection and evaluation in
regression. The X-random case. Int. Stat. Rev., 60, 291-319,
https://doi.org/10.2307/1403680.

Brier, G. W., 1950: Verification of forecasts expressed in terms of
probability. Mon. Wea. Rev., 78, 1-3, https://doi.org/10.1175/
1520-0493(1950)078<<0001:VOFEIT>2.0.CO;2.

Burke, A.,2019: Using machine learning applications and HREFv2
to enhance hail prediction for operations. M.S. thesis, School
of Meteorology, University of Oklahoma, 102 pp., https://
hdl.handle.net/11244/320425.

Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks,
and K. L. Ortega, 2012: An objective high-resolution
hail climatology of the contiguous United States. Wea.
Forecasting, 27, 1235-1248, https://doi.org/10.1175/WAF-D-
11-00151.1.

Clark, A.J., W. A. Gallus, and M. L. Weisman, 2010: Neighborhood-
based verification of precipitation forecasts from convection-
allowing NCAR WRF model simulations and the operational
NAM. Wea. Forecasting, 25, 1495-1509, https://doi.org/10.1175/
2010WAF2222404.1.

——, and Coauthors, 2012: An overview of the 2010 Hazardous
Weather Testbed Experimental Forecast Program Spring
Experiment. Bull. Amer. Meteor. Soc.,93, 55-74, https://doi.org/
10.1175/BAMS-D-11-00040.1.

FORECASTING VOLUME 35

——, and Coauthors, 2016: Preliminary findings and results—
Spring forecasting experiment 2016.NOAA, 50 pp., https://
hwt.nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_
findings_final.pdf.

Davis, C., and F. Carr, 2000: Summary of the 1998 workshop on
mesoscale model verification. Bull. Amer. Meteor. Soc., 81,
809-820, https://doi.org/10.1175/1520-0477(2000)081<0809:
SOTWOM>2.3.CO;2.

Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get
butterflies. Bull. Amer. Meteor. Soc., 97, 237-243, https:/
doi.org/10.1175/BAMS-D-15-00070.1.

Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict
the probability and distribution of precipitation. Mon.
Wea. Rev., 129, 2461-2480, https://doi.org/10.1175/1520-
0493(2001)129<2461: AOAPMS>2.0.CO;2.

Gagne, D. J., 2016: Coupling data science techniques and numer-
ical weather prediction models for high-impact weather pre-
diction. Ph.D. thesis, University of Oklahoma, 204 pp., https://
shareok.org/handle/11244/44917.

——, A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams,
and M. Xue, 2017: Storm-based probabilistic hail forecast-
ing with machine learning applied to convection-allowing
ensembles. Wea. Forecasting, 32, 1819-1840, https://doi.org/
10.1175/WAF-D-17-0010.1.

Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe
weather prediction: The 2015 NOAA/Hazardous Weather
Testbed Spring Forecasting Experiment. Wea. Forecasting,
32, 1541-1568, https://doi.org/10.1175/WAF-D-16-0178.1.

Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic
forecast calibration using ECMWF and GFS ensemble
reforecasts. Part I: Two-meter temperatures. Mon. Wea. Rev.,
136, 2608-2619, https://doi.org/10.1175/2007TMWR2410.1.

Hamill, T. M., 1999: Hypothesis tests for evaluating numeri-
cal precipitation forecasts. Wea. Forecasting, 14, 155-167,
https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>
2.0.CO;2.

——, R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast
calibration using ECMWF and GFS ensemble reforecasts.
Part II: Precipitation. Mon. Wea. Rev., 136, 2620-2632, https://
doi.org/10.1175/2007TMWR2411.1.

Herman, G. R., and R. S. Schumacher, 2018a: Money doesn’t grow
on trees, but forecasts do: Forecasting extreme precipitation
with random forests. Mon. Wea. Rev., 146, 1571-1600, https:/
doi.org/10.1175/MWR-D-17-0250.1.

——, and ——, 2018b: “Dendrology” in numerical weather pre-
diction: What random forests and logistic regression tell us
about forecasting extreme precipitation. Mon. Wea. Rev., 146,
1785-1812, https://doi.org/10.1175/MWR-D-17-0307.1.

Hitchens, N. M., H. E. Brooks, and M. P. Kay, 2013: Objective
limits on forecasting skill of rare events. Wea. Forecasting, 28,
525-534, https://doi.org/10.1175/WAF-D-12-00113.1.

Hoffman, R. R., M. Johnson, J. M. Bradshaw, and A. Underbrink,
2013: Trust in automation. [EEE Intell. Syst., 28, 84-88, https://
doi.org/10.1109/M1S.2013.24.

Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical dif-
fusion package with an explicit treatment of entrainment
processes. Mon. Wea. Rev., 134, 2318-2341, https://doi.org/
10.1175/MWR3199.1.

——,K.-S.S.Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham,
and J. Dudhia, 2010: Evaluation of the WRF double-
moment 6-class microphysics scheme for precipitating
convection. Adv. Meteor., 2010, 1-10, https://doi.org/
10.1155/2010/707253.


https://doi.org/10.1175/MWR-D-16-0027.1
https://doi.org/10.1175/MWR-D-16-0027.1
https://ams.confex.com/ams/27SLS/webprogram/Paper255732.html
https://ams.confex.com/ams/27SLS/webprogram/Paper255732.html
https://doi.org/10.1175/1520-0434(1989)004<0271:AHITRC>2.0.CO;2
https://doi.org/10.1175/1520-0434(1989)004<0271:AHITRC>2.0.CO;2
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2307/1403680
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://hdl.handle.net/11244/320425
https://hdl.handle.net/11244/320425
https://doi.org/10.1175/WAF-D-11-00151.1
https://doi.org/10.1175/WAF-D-11-00151.1
https://doi.org/10.1175/2010WAF2222404.1
https://doi.org/10.1175/2010WAF2222404.1
https://doi.org/10.1175/BAMS-D-11-00040.1
https://doi.org/10.1175/BAMS-D-11-00040.1
https://hwt.nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_findings_final.pdf
https://hwt.nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_findings_final.pdf
https://hwt.nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_findings_final.pdf
https://doi.org/10.1175/1520-0477(2000)081<0809:SOTWOM>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<0809:SOTWOM>2.3.CO;2
https://doi.org/10.1175/BAMS-D-15-00070.1
https://doi.org/10.1175/BAMS-D-15-00070.1
https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
https://shareok.org/handle/11244/44917
https://shareok.org/handle/11244/44917
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1175/WAF-D-16-0178.1
https://doi.org/10.1175/2007MWR2410.1
https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2
https://doi.org/10.1175/2007MWR2411.1
https://doi.org/10.1175/2007MWR2411.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://doi.org/10.1175/MWR-D-17-0307.1
https://doi.org/10.1175/WAF-D-12-00113.1
https://doi.org/10.1109/MIS.2013.24
https://doi.org/10.1109/MIS.2013.24
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1155/2010/707253
https://doi.org/10.1155/2010/707253

FEBRUARY 2020 BURKE

Janji¢, Z. 1., 1990: The step-mountain coordinate: Physical package.
Mon. Wea. Rev., 118, 14291443, https://doi.org/10.1175/1520-
0493(1990)118<1429: TSMCPP>2.0.CO;2.

——, 1994: The step-mountain Eta coordinate model: Further de-
velopments of the convection, viscous sublayer, and turbulence
closure schemes. Mon. Wea. Rev., 122, 927-945, https://doi.org/
10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

Jewell, R., and J. Brimelow, 2009: Evaluation of Alberta Hail
growth model using severe hail proximity soundings from
the United States. Wea. Forecasting, 24, 1592-1609, https://
doi.org/10.1175/2009W AF2222230.1.

Jirak, I. L., S. J. Weiss, and C. J. Melick, 2012: The SPC storm-
scale ensemble of opportunity: Overview and results from
the 2012 Hazardous Weather Testbed Spring Forecasting
Experiment. 26th Conf. on Severe Local Storms, Nashville,
TN, Amer. Meteor. Soc., P9.137, https://ams.confex.com/
ams/26SLS/webprogram/Manuscript/Paper211729/2012_
SLS_SSEO_exabs_Jirak_final.pdf.

——, A.J. Clark, B. Roberts, B. T. Gallo, and S. J. Weiss, 2018:
Exploring the optimal configuration of the high resolu-
tion ensemble forecast system. 25th Conf. on Numerical
Weather Prediction, Denver, CO, Amer. Meteor. Soc., 14B.6,
https://ams.confex.com/ams/29WAF25NWP/webprogram/
Paper345640.html.

Johns, R. H., and C. A. Doswell, 1992: Severe local storms fore-
casting. Wea. Forecasting, 7, 588-612, https://doi.org/10.1175/
1520-0434(1992)007<0588:SLSF>2.0.CO;2.

Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and
R. A. Sobash, 2010a: Extracting unique information from
high-resolution forecast models: Monitoring selected fields
and phenomena every time step. Wea. Forecasting, 25, 1536—
1542, https://doi.org/10.1175/2010W AF2222430.1.

——, and Coauthors, 2010b: Assessing advances in the assimilation
of radar data and other mesoscale observations within a col-
laborative forecasting—research environment. Wea. Forecasting,
25, 1510-1521, https://doi.org/10.1175/2010WAF2222405.1.

Karstens, C. D., and Coauthors, 2015: Evaluation of a proba-
bilistic forecasting methodology for severe convective
weather in the 2014 Hazardous Weather Testbed. Wea.
Forecasting, 30, 1551-1570, https://doi.org/10.1175/W AF-
D-14-00163.1.

——, and Coauthors, 2018: Development of a human-machine mix
for forecasting severe convective events. Wea. Forecasting, 33,
715-737, https://doi.org/10.1175/WAF-D-17-0188.1.

Labriola, J., N. Snook, Y. Jung, B. Putnam, and M. Xue, 2017:
Ensemble hail prediction for the storms of 10 May 2010 in
south-central Oklahoma using single- and double-moment
microphysical schemes. Mon. Wea. Rev., 145, 4911-4936,
https://doi.org/10.1175/MWR-D-17-0039.1.

——,——,——, and M. Xue, 2019: Explicit ensemble prediction of
hail in 19 May 2013 Oklahoma City thunderstorms and anal-
ysis of hail growth processes with several multimoment mi-
crophysics schemes. Mon. Wea. Rev., 147, 1193-1213, https:/
doi.org/10.1175/MWR-D-18-0266.1.

Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine
learning for real-time prediction of damaging straight-line
convective wind. Wea. Forecasting, 32, 2175-2193, https:/
doi.org/10.1175/WAF-D-17-0038.1.

Lakshmanan, V., C. Karstens, J. Krause, K. Elmore, A. Ryzhkov,
and S. Berkseth, 2015: Which polarimetric variables are
important for weather/no-weather discrimination? J. Atmos.
Oceanic Technol., 32, 1209-1223, https://doi.org/10.1175/
JTECH-D-13-00205.1.

ET AL. 167

Loken, E.D., A.J. Clark, M. Xue, and F. Kong, 2017: Comparison of
next-day probabilistic severe weather forecasts from coarse-
and fine-resolution CAMs and a convection-allowing ensemble.
Wea. Forecasting, 32, 14031421, https://doi.org/10.1175/W AF-
D-16-0200.1.

McGovern, A., K. L. Elmore, D. J. Gagne, S. E. Haupt, C. D.
Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017:
Using artificial intelligence to improve real-time decision-
making for high-impact weather. Bull. Amer. Meteor. Soc.,
98, 2073-2090, https://doi.org/10.1175/BAMS-D-16-0123.1.

——, R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore,
C. R. Homeyer, and T. Smith, 2019: Making the black box
more transparent: Understanding the physical implications of
machine learning. Bull. Amer. Meteor. Soc., 100, 2175-2199,
https://doi.org/10.1175/BAMS-D-18-0195.1.

Melick, C.J., I. L. Jirak, J. Correia, A. R. Dean, and S. J. Weiss, 2014:
Exploration of the NSSL Maximum Expected Size of Hail
(MESH) product for verifying experimental hail forecasts in the
2014 Spring Forecasting Experiment. 27th Conf. on Severe
Local Storms, Madison, WI, Amer. Meteor. Soc., 76, https:/
ams.confex.com/ams/27SLS/webprogram/Paper254292.html.

Moller, A. R., C. A. Doswell, M. P. Foster, and G. R. Woodall, 1994:
The operational recognition of supercell thunderstorm environ-
ments and storm structures. Wea. Forecasting, 9, 327-347, https:/
doi.org/10.1175/1520-0434(1994)009<0327-TOROST>2.0.CO;2.

Murillo, E., and C. Homeyer, 2019: Severe hail fall and hail storm
detection using remote sensing observations. J. Appl.
Meteor. Climatol., 58, 947-970, https://doi.org/10.1175/JAMC-
D-18-0247.1.

Niculescu-Mizil, A., and R. Caruana, 2005: Predicting good prob-
abilities with supervised learning. Proc. 22nd Int. Conf. on
Machine Learning, Bonn, Germany, ACM, 625-632, https://
doi.org/10.1145/1102351.1102430.

Ortega, K., 2018: Evaluating multi-radar, multi-sensor products for
surface hailfall diagnosis. Electron. J. Severe Storms Meteor.,
13 (1), http://ejssm.org/ojs/index.php/ejssm/article/view/163.

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski,
2005: Using Bayesian model averaging to calibrate forecast
ensembles. Mon. Wea. Rev., 133, 1155-1174, https://doi.org/
10.1175/MWR2906.1.

Schaefer, J. T., J. J. Levit, S. J. Weiss, and D. W. McCarthy,
2004: The frequency of large hail over the contiguous
United States. 14th Conf. on Applied Climatology, Seattle,
WA, Amer. Meteor. Soc., 3.3, https://ams.confex.com/ams/
pdfpapers/69834.pdf.

Schwartz, C., and R. Sobash, 2017: Generating probabilistic
forecasts from convection-allowing ensembles using neigh-
borhood approaches: A review and recommendations. Mon.
Wea. Rev., 145, 3397-3418, https://doi.org/10.1175/MWR-D-
16-0400.1.

Skamarock, W. C.,, and J. B. Klemp, 2008: A time-split non-
hydrostatic atmospheric model for weather research and
forecasting applications. J. Comput. Phys., 227, 3465-3485,
https://doi.org/10.1016/j.jcp.2007.01.037.

Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor
(MRMS) severe weather and aviation products: Initial oper-
ating capabilities. Bull. Amer. Meteor. Soc., 97, 1617-1630,
https://doi.org/10.1175/BAMS-D-14-00173.1.

Snellman, L. W., 1977: Operational forecasting using automated
guidance. Bull. Amer. Meteor. Soc., 58, 1036-1044, https:/
doi.org/10.1175/1520-0477(1977)058<1036:OFUAG>2.0.CO;2.

Snook, N., Y. Jung, J. Brotzge, B. Putnam, and M. Xue, 2016:
Prediction and ensemble forecast verification of hail in the


https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
https://doi.org/10.1175/2009WAF2222230.1
https://doi.org/10.1175/2009WAF2222230.1
https://ams.confex.com/ams/26SLS/webprogram/Manuscript/Paper211729/2012_SLS_SSEO_exabs_Jirak_final.pdf
https://ams.confex.com/ams/26SLS/webprogram/Manuscript/Paper211729/2012_SLS_SSEO_exabs_Jirak_final.pdf
https://ams.confex.com/ams/26SLS/webprogram/Manuscript/Paper211729/2012_SLS_SSEO_exabs_Jirak_final.pdf
https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper345640.html
https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper345640.html
https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
https://doi.org/10.1175/2010WAF2222430.1
https://doi.org/10.1175/2010WAF2222405.1
https://doi.org/10.1175/WAF-D-14-00163.1
https://doi.org/10.1175/WAF-D-14-00163.1
https://doi.org/10.1175/WAF-D-17-0188.1
https://doi.org/10.1175/MWR-D-17-0039.1
https://doi.org/10.1175/MWR-D-18-0266.1
https://doi.org/10.1175/MWR-D-18-0266.1
https://doi.org/10.1175/WAF-D-17-0038.1
https://doi.org/10.1175/WAF-D-17-0038.1
https://doi.org/10.1175/JTECH-D-13-00205.1
https://doi.org/10.1175/JTECH-D-13-00205.1
https://doi.org/10.1175/WAF-D-16-0200.1
https://doi.org/10.1175/WAF-D-16-0200.1
https://doi.org/10.1175/BAMS-D-16-0123.1
https://doi.org/10.1175/BAMS-D-18-0195.1
https://ams.confex.com/ams/27SLS/webprogram/Paper254292.html
https://ams.confex.com/ams/27SLS/webprogram/Paper254292.html
https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2
https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2
https://doi.org/10.1175/JAMC-D-18-0247.1
https://doi.org/10.1175/JAMC-D-18-0247.1
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
http://ejssm.org/ojs/index.php/ejssm/article/view/163
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR2906.1
https://ams.confex.com/ams/pdfpapers/69834.pdf
https://ams.confex.com/ams/pdfpapers/69834.pdf
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1016/j.jcp.2007.01.037
https://doi.org/10.1175/BAMS-D-14-00173.1
https://doi.org/10.1175/1520-0477(1977)058<1036:OFUAG>2.0.CO;2
https://doi.org/10.1175/1520-0477(1977)058<1036:OFUAG>2.0.CO;2

168

supercell storms of 20 May 2013. Wea. Forecasting, 31, 811-
825, https://doi.org/10.1175/WAF-D-15-0152.1.

Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio,
and S. J. Weiss, 2011: Probabilistic forecast guidance for severe
thunderstorms based on the identification of extreme phenom-
ena in convection-allowing model forecasts. Wea. Forecasting,
26, 714-728, https://doi.org/10.1175/WAF-D-10-05046.1.

Svaldi, A., 2018: Damage from last year’s massive front range hail
storm cost $2.3 billion—$900 million more than first estimated.
The Denver Post, 7 May 2018, https://www.denverpost.com/
2018/05/07/2017-front-range-hail-storm-damage-cost/.

Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B.
Klemp, 2008: Experiences with 0-36-h explicit convective
forecasts with the WRF-ARW Model. Wea. Forecasting, 23,
407-437, https://doi.org/10.1175/2007W AF2007005.1.

Wilson, C. J., K. Ortega, and V. Lakshmanan, 2009: Evaluating
multi-radar, multi-sensor hail diagnosis with high resolution

WEATHER AND FORECASTING

VOLUME 35

hail reports. 25th Conf. on International Interactive Information
and Processing Systems (IIPS) for Meteorology, Oceanography,
and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., P2.9, https:/
ams.confex.com/ams/89annual/techprogram/paper_146206.htm.

Wilson, K. A., P. L. Heinselman, C. M. Kuster, D. M. Kingfield, and
Z. Kang, 2017: Forecaster performance and workload: Does
radar update time matter? Wea. Forecasting, 32, 253-274,
https://doi.org/10.1175/WAF-D-16-0157.1.

Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W.
Mitchell, and K. W. Thomas, 1998: An enhanced hail de-
tection algorithm for the WSR-88d. Wea. Forecasting, 13,
286-303, https://doi.org/10.1175/1520-0434(1998)013<0286:
AEHDAF>2.0.CO;2.

Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor
QPE (NMQ) System: Description, results, and future plans.
Bull. Amer. Meteor. Soc., 92, 1321-1338, https://doi.org/
10.1175/2011BAMS-D-11-00047.1.


https://doi.org/10.1175/WAF-D-15-0152.1
https://doi.org/10.1175/WAF-D-10-05046.1
https://www.denverpost.com/2018/05/07/2017-front-range-hail-storm-damage-cost/
https://www.denverpost.com/2018/05/07/2017-front-range-hail-storm-damage-cost/
https://doi.org/10.1175/2007WAF2007005.1
https://ams.confex.com/ams/89annual/techprogram/paper_146206.htm
https://ams.confex.com/ams/89annual/techprogram/paper_146206.htm
https://doi.org/10.1175/WAF-D-16-0157.1
https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2
https://doi.org/10.1175/2011BAMS-D-11-00047.1
https://doi.org/10.1175/2011BAMS-D-11-00047.1

