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ABSTRACT

In this study, we use machine learning (ML) to improve hail prediction by postprocessing numerical

weather prediction (NWP) data from the new High-Resolution Ensemble Forecast system, version 2

(HREFv2). Multiple operational models and ensembles currently predict hail, however ML models are

more computationally efficient and do not require the physical assumptions associated with explicit

predictions. Calibrating the ML-based predictions toward familiar forecaster output allows for a com-

bination of higher skill associated with ML models and increased forecaster trust in the output. The ob-

servational dataset used to train and verify the random forest model is theMaximumEstimated Size of Hail

(MESH), a Multi-RadarMulti-Sensor (MRMS) product. To build trust in the predictions, the ML-based hail

predictions are calibrated using isotonic regression. The target datasets for isotonic regression include

the local storm reports and Storm Prediction Center (SPC) practically perfect data. Verification of the ML

predictions indicates that the probability magnitudes output from the calibrated models closely resemble the

day-1 SPC outlook and practically perfect data. The ML model calibrated toward the local storm reports

exhibited better or similar skill to the uncalibrated predictions, while decreasing model bias. Increases in

reliability and skill after calibration may increase forecaster trust in the automated hail predictions.

1. Introduction

Hail is a high-impact severe weather hazard, annually

causing in excess of $1 billion (U.S. dollars) of prop-

erty damage and $1 billion of crop damage (Jewell and

Brimelow 2009). Isolated hail events, especially those

impacting large urban areas, are particularly damaging.

For example, a single hailstorm during the afternoon

rush hour in the Denver, Colorado, metropolitan area

on 8 May 2017 resulted in $2.3 billion of insurance

claims (Svaldi 2018). The economic impacts of severe

hail underscore the need for accurate and timely pre-

dictions, which allow individuals and businesses to

take action toward mitigating risk to their property and

safety. Accurate predictions of hail remain a challenge

given the rapid evolution of hail-producing convective

storms, coupled with uncertainties and limitations of

atmospheric observation data needed to properly re-

solve the small-scale convective environment.

To produce skillful hail forecasts through explicit hail

prediction, numerical weather prediction (NWP) models

must accurately predict the development of convectiveCorresponding author: Amanda Burke, aburke1@ou.edu
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storms, as well as produce reasonably accurate repre-

sentations of hail within the model’s microphysical

scheme (Labriola et al. 2017). At these small scales,

model forecast errors can lead to large uncertainties

in the timing and location of convective storms (e.g.,

Kain et al. 2010b; Durran and Weyn 2016). For hail

prediction on longer time scales (up to 48 h), most

methods rely on approximating environmental data at

the convective scale (e.g., Johns and Doswell 1992).

However, the spatial and temporal coverage of atmo-

spheric soundings are generally insufficient to provide

accurate initial conditions for explicit prediction of

storms on the convective scale.

Where limitations in scale cause uncertainties in local

storm characteristics, convection-allowing models (CAMs)

have shown skill in predicting convective morphologies

(e.g., Weisman et al. 2008). In recent years, CAMs have

been employed in NOAA’s HazardousWeather Testbed

(HWT) Spring Forecasting Experiment (SFE). For ex-

ample, during the 2010HWTSFEoperational forecasters

subjectively indicated that the CAM guidance improved

convection forecasts, compared to traditional convective-

parameterizing schemes (Clark et al. 2012). Also, Gallo

et al. (2017) noted that CAMs played an important role

in reliable short-term forecasts, especially hourly fore-

casts, during the 2015 HWT SFE. For day-ahead fore-

casts (12–36-h lead time), CAMensemble forecasts have

shown improved skill compared to individual determin-

istic CAM forecasts (Loken et al. 2017).

Explicit hail prediction using storm-scale ensembles

has been previously studied (e.g., Adams-Selin and

Ziegler 2016; Snook et al. 2016; Labriola et al. 2017,

2019). However, limitations exist when explicitly pre-

dicting hail, including the sensitivity of microphysical

scheme choice, initial and boundary conditions varying

across ensembles, and physical assumptions needed to

predict hail with computational efficiency. Additionally,

the multitude of operational models and ensembles

predicting hail that are available to forecasters can lead

to cognitive overload. Wilson et al. (2017) found that

forecaster overload increased with an increase in the

number of datasets monitored, especially when multiple

warning decisions are needed.

Recently, studies have focused on using machine

learning (ML) to synthesize large amounts of atmo-

spheric data, reducing the amount of monitored data

while producing skillful forecasts products without

explicit prediction assumptions (e.g., Gagne 2016;

Gagne et al. 2017, hereafter G17; McGovern et al.

2017; Lagerquist et al. 2017; Herman and Schumacher

2018b,a). Instead of explicit prediction, ML models

map a set of inputs to a given output by optimizing the

model’s structure, such that the differences between

the ML predictions and the output observations, or

‘‘ground truth’’, are minimized. Using these learned

structures, ML models are able to make predictions

on new sets of model data with relatively minimal

computational expense. Low computational expense,

compared to other postprocessing methods applied

to gridded NWP output for hail prediction (e.g.,

Adams-Selin and Ziegler 2016), is a major advantage

of ML forecasts. ML-based hail prediction studies

over the contiguous United States (CONUS) have

demonstrated that ML predictions exhibit greater

forecasting skill over direct prediction of hail from

NWP model output or the use of proxy variables

(Gagne 2016; G17). However, subjective commentary

from the 2018 HWT SFE indicated that forecasters

do not trust ML guidance if the output is unfamiliar or

dissimilar to human-produced forecasts.1

Previous studies on applying automation in the

forecasting process emphasize human interaction

(e.g., Snellman 1977; Bosart 1989; Moller et al.

1994), and the importance of reliable guidance over

simple competence (Hoffman et al. 2013). Similar to

the 2018 HWT SFE, forecasters during the 2014

HWT SFE did not trust guidance without knowing

the reliability and skill of new products (Karstens

et al. 2015). However, Karstens et al. (2018) found

that when proper training and forecast verification

results are provided, the addition of automation can

increase forecaster productivity. One way to increase the

skill and reliability of probabilistic forecasts is through

calibration (e.g., Raftery et al. 2005; Hagedorn et al. 2008;

Hamill et al. 2008). In addition to increases in forecast

performance, calibrating ML output to resemble existing

operational forecasts, specifically those produced by the

Storm Prediction Center (SPC), could result in greater

trust in automated guidance for operations.

In this study, adapted from Burke (2019), we present

newly-developed hail forecast guidance products using

ML algorithms and output from the operational HREFv2

model. We demonstrate that these day-ahead forecast

products can be successfully calibrated to increase reli-

ability and skill, as well as resemble SPC hail products, all

to increase forecaster trust in automated hail guidance.

2. Data and methods

a. Data

The ML-based hail prediction models investigated

in this study use HREFv2 (Jirak et al. 2018) model

output as input data. Starting in April 2017, the SPC

1 Forecasters from 2018 HWT SFE on14–18 May.
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began running the High-Resolution Ensemble Forecast

system, version 2 (HREFv2). The HREFv2 is based off

the Storm Scale Ensemble of Opportunity (SSEO), a

‘‘poor man’s ensemble’’ (Ebert 2001) that combines

existing operational CAMs produced by NOAA (Jirak

et al. 2012) to produce a computationally efficient

ensemble. Between the 2012–15 HWT SFEs, the SSEO

scored positively in both objective and subjective met-

rics and provided a baseline for evaluation of CAM

model guidance during the 2016 HWT SFE (Clark et al.

2016). The success of the SSEO in probabilistic severe

weather prediction has brought attention to the HREFv2

dataset for use in skillful weather prediction. Compared

to the SSEO, the HREFv2 produces slightly smaller grid

spacing and includes an Advanced Research version of

the Weather Research and Forecasting (WRF) Model

(WRF-ARW; Skamarock and Klemp 2008) for a total

of eight members.

Developed by National Centers for Environmental

Prediction (NCEP)/Environmental Modeling Center

(EMC), the HREFv2 is run daily by NCEP Central

Operations (NCO).2 The HREFv2 is an eight-member

ensemble, with time-lagged members initialized at 0000,

0600, 1200, and 1800 UTC. Only the members initial-

ized at 0000 and 1200 UTC were available for use in this

study. The HREFv2 is a diverse ensemble consisting

of multiple microphysical schemes, including the WRF

single-moment six-class (Hong et al. 2010) and Ferrier–

Aligo (Aligo et al. 2014) scheme, aswell asmultiple initial

conditions. The planetary boundary layer (PBL) schemes

are the Yonsei University (YSU) (Hong et al. 2006) and

the local Mellor–Yamada (MYJ) (Janjić 1990, 1994). All

members use a horizontal model grid spacing of ap-

proximately 3 km. The number of vertical levels at

which data are produced differs between ensemble

members; the four high-resolution window (HiResW)

members, including the time-lagged members, produce

50 vertical levels, the two ‘‘National Severe Storm Lab

(NSSL) like’’ ARW models output 40 vertical levels,

and the two nested North American Mesoscale Model

(NAM-NEST) members include 60 vertical levels.

Forecast products are generated from 1200 UTC to

1200UTC the next day, the same period as a SPC day-1

convective outlook. A detailed description of the eight

members of the HREFv2 ensemble is provided in

Table 1.

The target data to train the ML models are the

Maximum Expected Size of Hail (MESH) (Witt et al.

1998) derived from NOAA/NSSL Multi-Radar Multi-

Sensor (MRMS) radar data (Zhang et al. 2011; Smith

et al. 2016). Because MESH outputs exhibit greater

skill for values exceeding 19mm (Wilson et al. 2009),

only values greater than 19mm are considered. Although

MESH has known biases, such as overprediction of

higher values (e.g., Wilson et al. 2009; Cintineo et al.

2012; Ortega 2018; Murillo and Homeyer 2019), MESH

was chosen over the local storm reports (LSRs) as the

observational dataset for training the ML models be-

cause of the known population and size biases with

LSRs (e.g., Schaefer et al. 2004; Cintineo et al. 2012).

Also, Melick et al. (2014) found that MESH hail

swaths were more skillful than LSRs in observing hail

objects and act as a useful independent dataset in low

population areas.

The ML models are trained on data between 1 April

and 31 July 2017, and tested on data from 1 May

through 31 August 2018. Different years are used for

training and testing to create independent datasets

and reduce the chance of overfitting. The duration of

the training period (April–July) is selected based on

greater hail potential and number of observations over

the CONUS in the spring and early summer. The testing

period includes the 2018 HWT SFE, from 30 April

TABLE 1. Configuration for the eight-member High-Resolution Ensemble Forecast system, version 2 (HREFv2), model output, in-

cluding planetary boundary layer (PBL) schemes and an additional conditional random forest (RF) threshold for classifying member

storm objects as producing hail. The ensemblemembers include the high-resolution window (HiResW)AdvancedResearch version of the

Weather Research and Forecasting (WRF)Model (ARW), HiResWNonhydrostatic Multiscale Model on the B-grid (NMMB), HiResW

National Severe StormLaboratory (NSSL)-like version of theWRF-ARW, and nestedNorthAmericanMesoscaleModel (NAM-NEST).

Members Initializations PBL Microphysics Vertical levels Grid spacing (km) Threshold

HiResW ARW 0000 UTC YSU WSM6 50 3.2 0.17

HiResW ARW 1200 UTC YSU WSM6 50 3.2 0.17

HiResW NMMB 0000 UTC MYJ Ferrier–Aligo 50 3.2 0.14

HiResW NMMB 1200 UTC MYJ Ferrier–Aligo 50 3.2 0.23

HiResW NSSL 0000 UTC MYJ WSM6 40 3.2 0.12

HiResW NSSL 1200 UTC MYJ WSM6 40 3.2 0.15

NAM Nest 0000 UTC MYJ Ferrier–Aligo 60 3 0.22

NAM Nest 1200 UTC MYJ Ferrier–Aligo 60 3 0.14

2 https://www.spc.noaa.gov/exper/href/.
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through 1 June 2018, during which forecasts were pro-

vided to HWT SFE participants for evaluation and

feedback. April 2018 is not included for testing because

of incomplete HREFv2 data.

b. Data preprocessing

Both the input and observational datasets are pre-

processed with object tracking to address the relative

rarity of hail (and severe weather in general) at any

given location within the CONUS. The object-tracking

method and ML models evaluated for hail prediction

are based upon those used in G17. This object-tracking

algorithm identifies potential stormobjectswhere a chosen

variable field exceeds a user-specified threshold. For the

HREFv2 dataset, storm objects are identified using the

maximum hourly upward vertical velocity (MAXUVV)

with a threshold of 8m s21, rather than column total

graupel greater than 3 kgm22 from G17. The selection

of updraft speed rather than updraft helicity or column

total graupel, and the use of a relatively low threshold

value, were designed to capture all possible hail storms

rather than only high-end supercells. Although super-

cells are typically responsible for the most severe hail

events, marginal hail is also important to the public, the

insurance industry, and agriculture. For observations,

potential MESH storm objects are generated for values

exceeding 19mm, differing from the 12-mm threshold

used in G17, for reasons outlined above.

After identification, potential storm objects arematched

in time and space to create storm tracks. For the HREFv2

storm tracks, additional hourly maximum variables are

extracted at each grid point throughout the tracks. While

instantaneous model fields may miss variations in storm

intensity at time scales less than 1h, hourlymaximumfields

can recordmaximum intensities without needing to output

model data at every time step. Kain et al. (2010a) found

that hourly maximum values provide skill for severe

weather forecasting, particularly in determining hail

threats in nonsupercellular storms. In addition, hourly

maxima have been found skillful as guidance when

forecasting severe weather, with minimal calibration

needed (Sobash et al. 2011). Although CAMs, which

output hourly maximum variables, cannot resolve in-

dividual hazards (such as severe wind, severe hail, or

tornadoes), they can resolve severe hazard proxies

such as updraft helicity or updraft speed.

The HREFv2 maximum hourly variables, statistically

evaluated over each storm track after extraction, include

storm and environmental variables (Table 2). Storm vari-

ables are directly related to convection, such as hourly

maximum reflectivity, storm relative helicity (SRH), hourly

maximumupdraft helicity (UH), and so on. Environmental

variables consist of near-storm fields, such as temperature,

dewpoint temperature, geopotential height, and so on. The

environmental variables are extracted from the previous

forecast hour to mitigate contamination of storms on en-

vironmental conditions, with storm variables extracted at

the current forecast hour. Statistical evaluations of the

storm tracks for both variable types include the mean,

maximum, minimum, standard deviation, skewness, and

10th, 50th, and 90th percentiles. The HREFv2 hourly

maximum variable statistics serve as the input data to the

ML models. The number of HREFv2 storm tracks identi-

fied for training the ML models ranges from 10000 to

25000 per member, and from 23000 to 63000 per member

in the input test set. The 2018 test set is larger as it contains

more days withmodel runs, while the 2017 datawas limited

because it was the first year of running the HREFv2 op-

erationally. Increasing the number of storm tracks in the

2017 dataset would be ideal, however, any changes would

TABLE 2. The 29 HREFV2 storm and environment variables extracted during object tracking. Multiple levels indicate the variable was

investigated at each separate level. CAPE is convective available potential energy, CIN is convective inhibition, MAXUVV is the

maximum hourly upward vertical velocity, and MAXDVV is the maximum hourly downward vertical velocity.

Storm Environmental

Variable Level(s) Variable Level(s)

MAXUVV — Precipitable water —

Storm relative helicity 1 and 3 km

Hourly max reflectivity 1 km
Temp 500, 700, 850, and 1000 hPa

MAXDVV —
Dewpoint temp

Hourly max UH 2–5 km Geopotential height 500, 700, and 850 hPa

U wind

V wind

Hourly max U wind —

Hourly max V wind —

Surface lifted index —

CAPE —

CIN —
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also increase the track number in 2018, maintaining the

dataset imbalance issues.

The final preprocessing step matches the HREFv2

storm tracks to MESH tracks. Track pairings occur

where the calculated distance between member storm

tracks and observed hail tracks is less than 80 km. If

any of the fields used to calculate distance (differences

in the observed and modeled track starting times, lo-

cations, durations, and sizes) exceed the thresholds

defined in G17, the tracks are not matched. Match

classifications, a binary dataset, as well as the shape

and scale parameters of the paired MESH tracks

provide the observational datasets for training the

ML models.

c. Machine learning methods

The algorithm for operationally calibrating the ML

hail predictions includes three models (Fig. 1): a ran-

dom forest (RF) (Breiman 2001) classification model,

RF regression model, and an isotonic regression (IR)

model (Niculescu-Mizil and Caruana 2005). Both RF

model configurations include 500 trees, a square root

number of features chosen per tree, and a requirement

of 1 sample per leaf. The number of random features

chosen for each tree is relatively low (about 14) to

reduce the chance of overfitting to the limited training

dataset. The regression model optimizes the mean

square error, while the classification RF optimizes the

Gini index. These hyperparameters are similar to

those in G17 and are relatively standard. The choice of

RFs for producing operational severe hail forecasts is

partly due to the speed for both training and fore-

casting. Computational efficiency and cost are large

considerations for operations in addition to skillful

forecasts. For forecasting rare events, RFs have shown

greater skill over other models that assume linearity,

such as logistic regression or elastic nets (G17; Herman

and Schumacher 2018a). The randomness associated

with RFs decreases model bias and variance, creating

strong classifiers and regressors (Breiman 2001). Finally,

RFs are easily interpretable (Herman and Schumacher

2018a), which is also a large consideration when

employing a postprocessing method for operations.

Before calibration, described in section 2d, a RF clas-

sification model is trained to predict the probability of

HREFv2 member storm tracks being matched with hail

observations, where the binary truth dataset is described

in section 2b. For each ensemble member, fivefold

cross validation (Breiman and Spector 1992) pro-

duces five probability predictions, one per valida-

tion test fold, from the training dataset. Calculation

of contingency table metrics over all five probability

estimations, at 1% intervals, determines the threshold

with the highest equitable threat score (ETS). This

threshold ‘‘filters out’’ ensemble member storm ob-

jects because only storm tracks with probabilities ex-

ceeding the estimated threshold are classified as hail

producing. Table 1 includes the thresholds for each

HREFv2 member.

The member storm tracks classified as hail producing

(with probability values exceeding the threshold values

mentioned above, about 600–2000 storm tracks per

ensemble member in the training dataset and 4000–

7500 tracks in the testing set) are evaluated using a RF

regression model. The regression model predicts the

scale and shape parameters of a MESH gamma distri-

bution for each input storm track. As in G17, the scale

and shape parameters of the hail size gamma distribution

are log-normalized and predicted together, to maintain

the negative correlation between the shape and scale

parameters. Comparing the predicted shape and scale

parameters from each ensemble member to the values

found through object-tracking produces average root

mean squared error (RMSE) values of 0.64 for the shape

parameter, and 4.51 for the scale parameter. The average

ensemble mean absolute error (MAE) values are 0.51

and 3.28 for the shape and scale parameters, respectively.

A higher scale parameter error could indicate that theRF

regressionmodel predicts a larger range of hail size values

than observed.

Using the predicted shape and scale parameters, hail

sizes from the gamma distribution are extracted such

that the highest storm object values, MAXUVV in this

case, in a track are associated with the largest MESH

values. Unlike G17, the distribution of storm objects

created for each member are based off data from the

entire training period. To output hail sizes for a given

storm object, G17 matched percentiles from a daily

hail size distribution with a daily storm object distri-

bution. However, if the range of storm objects on a

given day is relatively low, higher percentile hail

values are matched to storm object values that would

not result in large hail on a different day. Preliminary

testing identified a subjective high MESH bias on mar-

ginal days when using the daily values.

After predicting hail sizes from each ensemble member,

the ensemble maximum size and neighborhood maximum

ensemble probability (NMEP) of hail within 42 km

of a point are calculated from 1200 UTC to 1200 UTC

the following day. The NMEP predictions, based off the

definition of ensemble probabilities in Schwartz and

Sobash (2017), are evaluated at the severe (.25mm)

and significant severe (.50mm) hail thresholds on

the 3-km HREFv2 grid. The grid is further smoothed

with a 2D Gaussian filter (s 5 42 km). In addition to

managing the uncertainty of severe weather, the
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smoothed grid allows for direct comparison of pre-

dictions to SPC products for verification. The un-

calibrated NMEP predictions were generated daily

at 0700 UTC during the test period, valid at 1200 UTC.

For a complete description of the data preproces-

sing and machine learning methods, we refer the

reader to G17.

d. Calibration methods

In the uncalibrated NMEP hail predictions, proba-

bilities range from 0% to 100% while SPC hail outlooks

never predict probabilities of hail exceeding 60%.

Ideally, to build forecaster trust in the ML-based

model, the hail forecasts should be reliable and com-

parable in probability magnitude with operational

products such as the SPC hail outlook. To address

these issues, an IRmodel, chosen for its computational

efficiency and lack of linearity assumptions, calibrates

the RF output for operations. Previous studies have

shown that RF probabilistic forecasts are more reli-

able after calibration using IR (Niculescu-Mizil and

Caruana 2005; Lagerquist et al. 2017). With IR, which

uses a nondecreasing function to map an input dataset

toward a target dataset, only nonzero values are altered.

The operational target datasets used to calibrate the

RF NMEP hail forecasts include the local storm reports

(LSRs) and SPC practically perfect (PP) (Davis and

Carr 2000; Hitchens et al. 2013) probability of severe

hail occurrence. The LSR target dataset is a binary field,

such that the observed hail grid points are within 40km

of at least one severe or significant severe hail report.

The SPC PP probability field serves, during the HWT

SFE, as an estimate of the optimal outlook a forecaster

would issue if all LSR locations were known before-

hand. After identifying the LSRs as a binary field,

application of a two-dimensional Gaussian smooth-

ing filter (s 5 2 for operations) creates PP smoothed

probabilistic forecasts to account for uncertainties in

LSR placement.

The calibration model trains and tests over the RF

predictions (121 days between 1 May and 31 August

2018), as the model for creating calibrated probabilities

can only be applied to existing probability predictions. A

total of 84 training (70% of data) and 37 testing (30% of

data) days were randomly selected to limit biases result-

ing from synoptic or seasonal patterns. We acknowledge

that including a validation dataset would be ideal, as well

as separate years of training and testing data to de-

crease the chances of overfitting. We plan to split the

data accordingly in future iterations when a larger

dataset is available. The calibrated probabilities range

in time from the day-ahead forecasts to three 4-h pe-

riods used by 2018 HWT SFE forecasters (1700–2100,

1900–2300, and 2100–0100 UTC). The target PP data

does not include data from the full 24-h period, instead

considering only a 20-h period from 16 to 36h of forecast

FIG. 1. Process for producing and calibrating machine learning hail predictions. The random forest classifica-

tion and regression models are trained using input from each HREFv2 member separately, while the aggregated

ensemble predictions are input to the isotonic regression model for training.
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time. However, the IR model maps the two datasets

together for calibration purposes.

3. Results

The calibrated day-ahead NMEP predictions are quali-

tatively verified against the SPC daily hail outlook and the

20-h PP output, valid the same forecast day. We analyze

two case studies to examine the robustness of the ML

model to accurately predict hail occurrence over var-

ied weather regimes. Both the severe and significant

severe (sig-severe) thresholds are mapped for consis-

tency with the G17 study. Additional quantitative

evaluations over the IR test period (37 random days

between 1 May and 31 August 2018) investigate the

ML-based hail predictions, both uncalibrated and cali-

brated, against the PP dataset, the 1200 UTC SPC hail

outlook, and a hail proxy variable (updraft helicity).

The 2–5-km HREFv2 UH data at thresholds related

to severe (.75m2 s21) and sig-severe (.150m2 s21)

hail (G17) provide another non-ML baseline.

a. Marginal hail case study

On 8May 2018, a trough and surface cold front moved

intoOregon, where a deepmixed layer provided enough

support for a few nonsevere hail-producing storms de-

spite relatively weak convective available potential

energy (CAPE) values. Storms over the mid to lower

Missouri Valley had ample CAPE, but a dry boundary

layer restricted growth ahead of a surface trough. The

SPC hail outlook valid 1200 UTC displays two regions

with 5% probability of severe hail (Fig. 2a), located over

Oregon and portions extending from South Dakota to

Missouri. The PP probability of severe hail on 8 May

2018 includes values between 5% and 15% highlighting

South Dakota, Minnesota, and northwestern Iowa

(Fig. 2b). There were no areas of sig-severe hail proba-

bility (Fig. 2c) and no severe hail reports received over

the western United States.

The uncalibratedMLNMEPprediction, valid 1200UTC

8 May 2018, displaces the severe hail probabilities up to

35% over portions of Iowa, South Dakota, Nebraska,

andMissouri to the southeast of the observed severe hail

reports (black dots) (Fig. 3a). Portions of Oklahoma,

Kansas, and Oregon also exhibit severe probabilities up

to 22%, however the PP output does not contain prob-

abilities in these regions (Fig. 2b). Although severe hail

was not reported in Oregon, the SPC hail outlook

(Fig. 2a) displays a similar area of probabilities as the

uncalibrated prediction. At the sig-severe threshold

(Fig. 3b), the uncalibrated model outputs probabilities

up to 4% in eastern Iowa and southern Minnesota,

while the PP output does not produce sig-severe

probabilities (Fig. 2c). Overall, the uncalibrated pre-

diction exhibits higher magnitude probabilities than

the SPC outlook and PP output, however the severe

hail prediction produces spatially similar areas of

nonzero hail threat as the SPC outlook.

Compared to the uncalibrated ML output, the prob-

ability magnitudes of the LSR calibrated severe hail

prediction (Fig. 3c) better resemble the SPC hail out-

look and the severe hail PP output. The LSR calibrated

output exhibits the same spatial coverage of nonzero

probabilities as the uncalibrated prediction, although

values less than 1%are not displayed.Differing from the

uncalibrated output, the LSR calibrated probabilities do

not exceed 14%, similar to the severe PP output and

SPC outlook magnitudes (Figs. 2a,b). At the sig-severe

threshold, the LSR calibrated prediction (Fig. 3d) out-

puts spatially similar probabilities as the uncalibrated

model, however again overforecasting compared to

the PP sig-severe probabilities (Fig. 2c). In general, the

LSR calibrated model corrects the high magnitude

bias present in the uncalibrated ML severe hail fore-

casts, although a high spatial bias persists at both

thresholds.

The PP calibrated predictions, where the target dataset

for calibration is the PP dataset, output lower probabili-

ties of severe (Fig. 3e) and sig-severe (Fig. 3f) hail com-

pared to the LSR calibrated forecast (Figs. 3c,d). The

severe hail PP dataset provides higher magnitude prob-

abilities (up to 14%) than the PP calibrated prediction

(up to 4%). At the sig-severe threshold, the PP calibrated

model correctly predicts no areas exceeding a 1% chance

of sig-severe hail (Fig. 3f). For a marginal case, the PP

calibrated model decreases the severe hail threat in areas

observing hail reports but more closely resembles

observations at the sig-severe threshold.

In general, the uncalibrated hail predictions over-

estimate the probability of severe hail, both spatially and

in magnitude. An added calibration step decreases the

high magnitude bias of the uncalibrated output, where

the LSR calibrated model outputs severe hail proba-

bility values more comparable to the SPC outlook and

PP data. Conversely, the predictions calibrated to the PP

output underestimate the severe hail threat over South

Dakota and Iowa. However, the PP calibrated model

predicts the low sig-severe hail threat, compared to the

slightly overestimated threat from the LSR calibrated

model. At both size thresholds, at least one calibration

model decreases the overprediction bias associated with

the uncalibrated output.

b. Hail outbreak case study

Examination of a high-end severe hail event, occur-

ring on 29 July 2018, investigates the robustness of the
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FIG. 2. SPC forecasts from 8 May 2018 including (a) the day-1 hail outlook valid

1200 UTC and practically perfect output at the (b) severe and (c) significant severe

threshold.
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ML-based hail predictions in differing environments.

On this day, multiple hail-producing storms resulted

in 106 severe and 30 sig-severe hail reports concen-

trated in Colorado and extending into Wyoming,

Kansas, South Dakota, and Nebraska. A strengthen-

ing upper-level trough and midlevel jet over the

Midwest, strong diurnal heating, and a moist bound-

ary layer set the stage for severe storms over the

central high plains. The day-1 SPC hail outlook valid

1200 UTC (Fig. 4a) predicts a 15% chance of severe

hail over eastern Colorado and 5% from Montana to

Arkansas. Sig-severe hail was not anticipated until

the outlook valid 1300 UTC. The PP output indicates

severe hail probabilities up to 38% over northeastern

Colorado (Fig. 4b), and up to 23% for sig-severe hail

over eastern Colorado (Fig. 4c).

The uncalibrated hail prediction (Fig. 5a), valid

1200 UTC, features similar areas of 5% probability as

the SPC hail outlook and PP output. However, nei-

ther the uncalibrated prediction nor the SPC outlook

indicate the reported severe hail threat in North Dakota

or Minnesota. In eastern Colorado, the uncalibrated

severe hail prediction exceeds 60%, substantially over-

estimating the hail threat compared to observed PP

severe hail output and SPC outlook (Figs. 4a,b). The

uncalibrated sig-severe hail prediction (Fig. 5b) dis-

plays comparable probabilities in eastern Colorado

compared to the sig-severe PP output (Fig. 4c) where

FIG. 3.MLneighborhoodmaximumensemble probabilities of hail for 8May 2018. Both calibrated and uncalibrated

predictions are produced at the (a),(c),(e) severe and (b),(d),(f) significant severe hail thresholds. Predictions are

calibrated to the LSRs and PP probabilities. The black dots are severe and significant severe hail reports.
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FIG. 4. As in Fig. 2, but for SPC forecasts including the (a) day-1 hail outlook valid at

1200 UTC 29 Jul 2018 and practically perfect output at the (b) severe and (c) significant

severe threshold.
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values exceed 15%. Despite the overestimated hail

probabilities, the uncalibrated predictions are closely

collocated with the bulk of observed hail and spatially

more comparable with the SPC hail outlook and PP

output than in the marginal hail case.

The LSR calibrated model also outputs similar hail

threat regions as the PP output and SPC hail outlook,

but produces calibrated probabilities closer in magni-

tude to the observed severe PP output compared to the

uncalibrated prediction (Fig. 5c). The calibrated prob-

abilities do not exceed 29% over eastern Colorado,

slightly lower than the maximum observed probabilities

in the PP output (37%), but comparable to the hail

threat in the SPC outlook. For sig-severe hail, the LSR

calibrated probabilities (Fig. 5d) do not exceed 4% over

portions of Colorado, again lower than the 22%maxima

observed in the sig-severe PP output. In general, the

LSR calibrated model predicts severe probability mag-

nitudes closer to the PP output and SPC hail outlook,

compared to the uncalibrated output, but underpredicts

the sig-severe hail probabilities.

The last ML-based severe hail prediction, calibrated

toward the PP output, underforecasts compared to both

the PP output and SPC hail outlook (Fig. 5e). As in the

marginal hail case study, the severe PP calibrated pre-

diction exhibits very low probabilities of severe hail, not

exceeding 14% in regions of eastern Colorado that ob-

serve PP probabilities of up to 22%. The sig-severe PP

FIG. 5. As in Fig. 3, but for neighborhood maximum ensemble probabilities of hail valid on 29 Jul 2018.

Predictions are produced at the (a),(c),(e) severe and (b),(d),(f) significant severe hail thresholds. Calibration is

accomplished using LSRs and PP probabilities. The black dots are severe and significant severe hail reports.
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calibrated predictions (Fig. 5f) also underforecast com-

pared to the PP output, where probabilities do not exceed

1% on this day, while the sig-severe PP probabili-

ties reach 22% in this region. Both the severe and sig-

severe PP calibrated predictions underestimate the

severe hail threat in eastern Colorado, however the cali-

brated severe hail forecast highlights the area of greatest

observed hail reports.

For the high-end severe hail case, the ML-based hail

predictions focus the highest hail threat in eastern

Colorado where the largest number of severe hail re-

ports are observed. As in the marginal hail case, cali-

bration decreases the high probability magnitude bias

associated with the severe uncalibrated ML output.

Also, the LSR calibrated severe hail predictions more

closely resemble the observed probability magnitudes

than the PP calibrated output. Last, both calibrated

models underpredict the probability of sig-severe hail.

As the uncalibrated model outputs relatively similar

probability magnitudes compared to the observed PP

output, calibration may not be necessary at the sig-

severe threshold for this case.

c. Quantitative verification

Four metrics quantitatively verify the ML models,

PP output, 1200 UTC SPC outlook, and UH proxy

variable. The metrics [reliability, Brier skill score

(BSS; Brier 1950), equitable threat score (ETS; Clark

et al. 2010), and bias] evaluate the 24-h predictions

(12–36 h) over the isotonic regression test set. ETS

and bias are favorable for evaluating gridded fore-

casts (Hamill 1999), where ETS measures the fraction

of correct forecasts to observed events and takes

into account events randomly forecasted correctly.

Higher ETS values are more skillful. Bias compares

the frequency of forecast events to the frequency of

observed events, where a bias of 1 is preferred. Both

metrics require dichotomous forecasts to calculate

contingency table metrics (Tables 3 and 4). The

probabilistic forecasts are made deterministic at 5% in-

terval thresholds, where forecasts equal to or greater

than the threshold are predicted events. The observa-

tions for calculating the contingency table metrics are

the LSRs (already binary) and PP dataset (applied

thresholds similar to the forecasts).

Evaluating the forecasts using reliability and BSS,

with the LSRs as observational truth, reveals that the

PP dataset consistently underpredicts while the un-

calibrated ML predictions overpredicts, at both size

hail thresholds (Fig. 6). The 1200 UTC SPC outlook is

only available at discrete intervals, however the fore-

casts exhibit near perfect reliability, slightly over-

forecasting at 45% (Fig. 6a). The severe uncalibrated

hail prediction and UH proxy exhibit comparable re-

liability, although the uncalibrated model BSS is higher

(20.18 versus 20.4). With calibration, we expect the

predictions to have similar reliability characteristics as

their target datasets. As expected, the severe LSR

calibrated predictions exhibit near perfect reliability

up to 45%, and the severe PP calibrated predictions are

comparable with the PP output. Both calibrated pre-

dictions feature higher BSSs than the uncalibrated

dataset, UH proxy, and SPC outlook, although the PP

output displays the highest score (0.17). At the sig-

severe threshold (Fig. 6b), a high bias persists with the

UH proxy and uncalibrated dataset, while the LSR

calibrated output displays near perfect reliability up to

about 15% before overforecasting. Additionally, the

LSR calibrated model output shows a higher BSS (0.0)

than the uncalibrated output (20.02) and UH proxy

(20.73). The sig-severe PP calibrated probabilities are

sufficiently low that they do not appear, but achieve aBSS

of 0.01. The 1200 UTC SPC sig-severe outlook is binary

and therefore does not appear on the probabilistic reli-

ability diagram. In addition to changes in forecasting bias,

calibration decreases output probability magnitudes, as

the LSR calibrated model does not exceed 45% and 20%

at the severe and sig-severe thresholds, respectively. The

PP calibrated model predictions do not exceed 20% and

1% at the severe and sig-severe thresholds. Overall, cal-

ibration reliably maps the uncalibrated predictions to-

ward two different target datasets and increases the BSS.

In Fig. 7, the LSR dataset serves as observations for

calculating ETS and bias. Of the severe hail predictions,

the LSR calibrated model outputs maxima and minima

in ETS at similar forecast probabilities as the optimal PP

output and 1200 UTC SPC outlook (Fig. 7a). However,

TABLE 3. The contingency table metrics used to compare forecasts

and observed events.

Observed

Yes No

Forecast Yes True positive (TP) False positive (FP)

No False negative (FN) True negative (TN)

TABLE 4. ETS and bias equations for forecast verification of the

ML-based hail predictions.

Metric Equation(s)

Bias TP1FP

TP1FN

ETS TP2 random hits

TP1FN1FP2 random hits

Randomhits (TP1FN)(TP1FP)

total
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the PP output achieves a higher skill score (0.32), com-

pared to the LSR calibrated (0.12). The PP calibrated

probabilities also achieve an ETS value of 0.12, but at a

lower forecast probability (around 5%). Both the un-

calibrated output and UH proxy achieve higher skill

than the PP output past 20% forecast probability,

however the datasets also provide the highest bias

(Fig. 6b) with the uncalibrated model outputting

lower bias below 70%. Although the calibrated models

produce high biases at low forecast probabilities, the

biases are lower than the SPC outlook across all forecast

probabilities. Of all the severe hail predictions, the LSR

calibrated model best resembles the PP output and SPC

hail outlook in terms of skill.

Calculations of ETS and bias, again compared to

the LSRs, at the sig-severe threshold show that the un-

calibrated model outputs the highest ETS skill (0.03) of

theMLpredictions, whilemaintaining overall lower bias

than the UH proxy (Figs. 7c,d). Both calibrated pre-

dictions have zero skill above 20%, however the LSR

calibrated model bias is most comparable to the PP

output. As with the reliability diagram, the binary sig-

severe SPC outlook does not appear on the probabilistic

diagram. The UH field displays the greatest ETS skill

above 20%, but maintains the highest bias. Similar to

case studies, the uncalibrated ML model performs bet-

ter at the sig-severe threshold. The differences in bias

between the uncalibrated output and UH proxy, at both

size thresholds, indicates that the ML algorithm better

focuses on hail threat regions before calibration. At the

sig-severe threshold, the uncalibrated model displays

the greatest skill of the different ML predictions, how-

ever the LSR calibrated model produces bias values

closer to the PP output.

In addition to the LSRs as observations, ETS and bias

are calculated using the PP dataset to verify the hail

predictions against a probabilistic field (Fig. 8). The se-

vere PP calibrated prediction achieves similar ETS skill

as the SPC hail outlook at 5%, however decreases in

ETS and bias values above the 5% probability threshold

(Fig. 8a). The severe LSR calibrated model produces

the highest ETS skill below 30%. Above 30% the SPC

outlook achieves a higher score. For bias, the LSR

calibratedmodel predicts lower values than the SPC hail

outlook across all probabilities (Fig. 8b). The severe hail

uncalibrated model and UH proxy display comparable

skill, but again the uncalibrated output achieves lower

bias. Verification of the sig-severe hail predictions show

that theUH proxy achieves the highest ETS value (0.04)

(Fig. 8c), but continues to produce the highest bias of all

the datasets, similar to previous examinations (Fig. 8d).

At the sig-severe threshold, the uncalibrated model

outputs the greatest ETS skill of the ML predictions,

but the LSR calibrated model produces lower bias

values. Overall, verifying against the PP dataset indi-

cates that the severe LSR calibrated model produces

similar skill as the SPC hail outlook, but calibration

decreases ETS skill at the sig-severe threshold. Despite

decreases in ETS skill, calibration lowers bias values at

both size thresholds, compared to the PP dataset.

Due to the subjective success of the LSR calibrated

model from the previous verification metrics, model

timing information is explored. Only the severe hail

FIG. 6. Reliability diagrams of the full period (forecast hours

12–36) predictions. Data plotted include the ML predictions, SPC

outlook, practically perfect output, andUH proxy over the isotonic

regression test dataset. Predictions are verified at the (a) severe and

(b) significant severe hail thresholds. The SPC outlook at the sig-

nificant severe threshold is binary and therefore not plotted.

Included in the legend is the Brier skill score for each prediction.
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calibrated predictions are examined over the different

forecast periods (1700–2100, 1900–2300, 2100–0100,

and 1200–1200 UTC the next day) because of the rel-

ative rarity of sig-severe hail over short time periods.

A similar analysis at the sig-severe threshold could be

enlightening, however a much larger dataset would be

needed. The calibrated predictions evaluated using

ETS against the LSRs (Fig. 9a) and PP output (Fig. 9c)

show that the 2100–0100 UTC and 24-h forecast pe-

riods achieve the highest ETS values of all the periods.

Additionally, bias calculations when compared to the

LSRs (Fig. 9b) and PP dataset (Fig. 9d) show similar

values among the different time periods, although the

1900–2300 UTC prediction against the PP dataset

shows lower bias at higher probabilities. In general,

the later time periods outperform the earlier periods,

but large biases are apparent across all time periods

regardless of the observational dataset.

4. Discussion and summary

Arandom forest (RF)machine learning (ML)method

for day-ahead hail prediction, based on that of G17,

predicts severe hail probabilities with data fromHREFv2

numerical model forecasts and observations from the

Maximum Expected Size of Hail (MESH) dataset.

FIG. 7. ETS and bias of the full period (forecast hours 12–36) predictions. Data plotted include the ML predictions, SPC outlook,

practically perfect output, and UH proxy, with local storm reports as observations. ETS and bias are calculated at the (a),(b) severe and

(c),(d) significant severe hail thresholds. The SPC outlook at the significant severe threshold is binary, and therefore not plotted.
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An added isotonic regression (IR) model calibrates

the RF severe hail predictions toward the local storm

reports (LSRs) and SPC’s practically perfect (PP) out-

put. The resulting hail predictions, including an uncali-

brated ML model as well as the LSR and PP calibrated

models, were verified through two case studies, reli-

ability diagrams, Brier skill score (BSS), and plots of

equitable threat score (ETS) and bias.

The marginal and high-end severe hail studies used to

evaluate the HREFv2ML hail predictions indicate that

the uncalibrated severe hail predictions are spatially

similar to the SPC hail outlook, but exhibit a high spatial

bias compared to the severe PP dataset. The severe

uncalibrated model also produces a high magnitude bias

compared to both verification datasets. The significant

severe (sig-severe) uncalibrated case study forecasts

do not exhibit as high spatial or magnitude biases,

however a high magnitude bias persists over the IR test

set at both hail size thresholds, evidenced by the reli-

ability diagrams and plots of ETS and bias.

The high magnitude bias (and spatial bias compared

to the severe PP dataset) may be due in part from the

different training and verification datasets used, where

MESH observations are more numerous than LSRs.

Verifying against MESHmay decrease the uncalibrated

ML model bias, however the LSRs are a common op-

erational verification dataset. Beyond verification data-

sets, the member classification thresholds for ‘‘filtering

FIG. 8. As in Fig. 7, but where ETS and bias are calculated with practically perfect probabilities as observations. ETS and bias are

evaluated at the (a),(b) severe and (c),(d) significant severe hail thresholds.
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out’’ storms as hail producingmay contribute to the high

size bias. A lower threshold classifies more storms as hail

producing, leading to more nonzero hail sizes output

from the RF regression model. Changing the skill met-

ric, such as BSS, that determines the filtering thresholds

may increase the thresholds. In addition, training both

the classification and regressions model on a larger

dataset could increase the filtering threshold, while also

decreasing the scale parameter errors previously men-

tioned. Finally, changing the object-tracking algorithm

thresholds, like increasing the MAXUVV and MESH

thresholds, or decreasing the areal intensity used for

creating storm tracks could decrease the number and

spatial extent of predicted storm tracks, however this

may also lead to greater misses. Even though the un-

calibratedMLmodel exhibits a highmagnitude bias, the

severe hail proxy variable (updraft helicity) displays

higher bias values and a lower BSS than the uncalibrated

output at both size thresholds.

Adding calibration reduces the high magnitude bias

associated with the uncalibrated ML severe hail pre-

dictions, across both calibrated datasets. For both case

studies, the LSR calibrated model most closely resem-

bles the operational day-1 SPC hail outlook and PP

output at the severe hail threshold. However, the sig-

severe uncalibrated ML model outputs similar prob-

abilities, both in magnitude and spatially, as the two

verification datasets. Calibrating the sig-severe ML

FIG. 9. Plots of ETS and bias of the LSR calibrated output at varying forecast periods. Predictions are verified at the severe hail threshold

using the (a),(b) local storm reports and separately (c),(d) practically perfect probabilities as observations.
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model decreases the probability magnitudes below the

observed PP output. Although the qualitative case

studies display decreases in calibrated sig-severe prob-

abilities, the reliability diagrams calculated over the IR

test set show that calibration can reliably map the RF

hail predictions toward either the PP or LSR data, and

increase BSS, at both size thresholds. The LSR cali-

bratedmodel achieves a higher BSS, and is more reliable

at certain forecast probabilities, than the 1200 UTC SPC

outlook, which has access to 12h more data than the

HREFv2 model runs.

Increases in reliability are important when forecasters

consider using automated guidance (Hoffman et al.

2013; Karstens et al. 2018). Indicating to forecasters that

the LSR calibrated dataset is reliable compared to the

LSRs, a common operational verification dataset, could

increase trust in the guidance. In addition to increased

reliability, the severe LSR calibrated predictions exhibit

lower bias than the SPC outlook, while producing higher

ETS values across most forecast probabilities, against

both the PP dataset and LSRs. Although both the un-

calibrated ML output and UH proxy variable produce

higher biases than PP dataset or SPC outlook, calibrat-

ing the UH field toward the LSRs would not produce

the same results as the LSR calibrated ML model.

Calibrating the UH field would only be appropriate in

environments where hail results from strongly rotating

storms. Conversely, all storms modes can be skillfully

predicted by the RFs because of the multiple different

storm and environment fields input to the models.

In addition to day-ahead forecast skill, ETS and bias

calculations verify timing information from the LSR

calibrated model against both the LSR and PP dataset.

The 1200–1200 and 2100–0100 UTC time periods dis-

played the highest skill across both verification datasets.

The poorer performance at early times likely results

from the higher prevalence of severe weather, including

severe hail, during the afternoon and evening hours. The

decrease in performance may indicate that the LSR

calibrated ML model exhibits an overforecasting bias

during early time periods.

Similar to the LSR calibrated model, the PP cali-

brated model decreased the uncalibrated model output

bias. However, the PP calibrated predictions were ex-

tremely conservative in predicting both hail size thresh-

olds. The low forecasting bias likely results from the PP

dataset underforecasting bias. The Gaussian smoother

applied to the LSR locations smooths the probabilistic

dataset, causing the PP dataset to underforecast the

LSRs by design. Calibration further decreases the

overall probability magnitudes of the RF ML hail

predictions, leading to an enhanced low bias with the

PP calibrated model. Comparatively, the LSR calibrated

model calibrates directly to the LSRs, similar to the PP

output, and therefore does not include a pre-existing bias.

The lack of underforecasting bias associated with the

LSR calibrated target dataset most likely causes the LSR

calibrated output to better resemble the PP output, than

the PP calibrated. The low forecast skill and reliability of

the PP calibratedmodel, compared to the LSR calibrated

model, indicates that the LSR calibrated model may be

more trusted in an operational setting.

Beyond reliability, model interpretation can be im-

portant in increasing forecaster acceptance of automa-

tion (McGovern et al. 2019). Burke (2019), which uses

two separate RF regression models to predict the shape

and scale parameters, investigated permutation variable

importance (Lakshmanan et al. 2015) for interpreta-

tion of the ML-based hail prediction algorithm. The

regression method differences could influence the

produced variable importance ranks, therefore further

exploration applied to the single RF regression model

method is needed.

Overall, the LSR calibrated ML-based hail guidance

using the HREFv2 dataset provides increased reliability

and skill over the uncalibrated ML output and SPC hail

outlook, indicating that the forecasts may provide op-

erationally useful predictions. All of the ML models

overforecast hail in terms of spatial extent, but this could

benefit forecasters preparing forecasts in terms of high-

lighting potential hail risk areas and addressing storm

placement uncertainty. The severe hail predictions were

particularly skillful after calibration, which is encour-

aging for this initial application of the technique to the

HREFv2 dataset. Preliminary results indicate that cali-

brating the ML NMEP forecasts before smoothing

produces predictions with decreased spatial bias and

false alarms. The next iteration of calibrated severe hail

forecasts will include this step to further increase the

skill of the LSR calibrated output. Even without this

update, the calibrated predictions produce output that,

compared to the uncalibrated predictions, are more

comparable to the PP probabilities while outperforming

the SPC hail outlook. However, any improvements of

the calibrated models over the SPC hail outlook may be

within the ranges of forecast uncertainty. Subjective

ratings from the 2019 HWT SFE indicate that the LSR

calibrated hail guidance performs similarly to a SPC hail

guidance product, with a slightly higher mean score.

In general, producing reliable forecasts with compara-

ble skill as SPC hail outlooks has the potential to in-

crease operational forecaster trust in the LSR calibrated

automated predictions.

Acknowledgments. This work was primarily supported

by the Joint Technology Transfer Initiative (JTTI) Grant

FEBRUARY 2020 BURKE ET AL . 165



NA16OAR4590239 provided by NOAA, and supple-

mented with funding provided by NOAA JTTI Grant

NA18OAR4590371. This material is based upon work

supported by the National Center for Atmospheric

Research, which is a major facility sponsored by

the National Science Foundation under Cooperative

Agreement 1852977. Computing was primarily exe-

cuted on the University of Texas Advanced Computing

Center (TACC) Stampede supercomputer. The authors

thank Timothy Supinie andChris Cook for data support,

Ryan Lagerquist for implementation feedback, and

Jonathon Labriola for contribution of ideas. We also

thank Steven Weiss, Israel Jirak, and the participants of

the 2018 HWT SFE for useful assessments and remarks.

We thank David Harrison and Christopher Karstens

for providing the gridded SPC outlook data. Finally, we

thank the anonymous reviewers for their feedback,

which helped improve this manuscript.

REFERENCES

Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail

using a one-dimensional hail growthmodel withinWRF.Mon.

Wea. Rev., 144, 4919–4939, https://doi.org/10.1175/MWR-D-

16-0027.1.

Aligo, E., B. Ferrier, J. Carley, E. Rogers, M. Pyle, S. Weiss, and

I. Jirak, 2014: Modified microphysics for use in hifgh-resolution

NAM forecasts. 27th Conf. on Severe Local Storms, Madison,

WI, Amer. Meteor. Soc., 16A.1, https://ams.confex.com/ams/

27SLS/webprogram/Paper255732.html.

Bosart, L. F., 1989: Automation: Has its time really come? Wea.

Forecasting, 4, 271–271, https://doi.org/10.1175/1520-0434(1989)

004,0271:AHITRC.2.0.CO;2.

Breiman, L., 2001: Random forests.Mach. Learn., 45, 5–32, https://

doi.org/10.1023/A:1010933404324.

——, and P. Spector, 1992: Submodel selection and evaluation in

regression. The X-random case. Int. Stat. Rev., 60, 291–319,

https://doi.org/10.2307/1403680.

Brier, G. W., 1950: Verification of forecasts expressed in terms of

probability. Mon. Wea. Rev., 78, 1–3, https://doi.org/10.1175/

1520-0493(1950)078,0001:VOFEIT.2.0.CO;2.

Burke,A., 2019: Usingmachine learning applications andHREFv2

to enhance hail prediction for operations. M.S. thesis, School

of Meteorology, University of Oklahoma, 102 pp., https://

hdl.handle.net/11244/320425.

Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks,

and K. L. Ortega, 2012: An objective high-resolution

hail climatology of the contiguous United States. Wea.

Forecasting, 27, 1235–1248, https://doi.org/10.1175/WAF-D-

11-00151.1.

Clark, A. J.,W.A.Gallus, andM. L.Weisman, 2010: Neighborhood-

based verification of precipitation forecasts from convection-

allowing NCAR WRF model simulations and the operational

NAM.Wea. Forecasting, 25, 1495–1509, https://doi.org/10.1175/

2010WAF2222404.1.

——, and Coauthors, 2012: An overview of the 2010 Hazardous

Weather Testbed Experimental Forecast Program Spring

Experiment.Bull. Amer.Meteor. Soc., 93, 55–74, https://doi.org/

10.1175/BAMS-D-11-00040.1.

——, and Coauthors, 2016: Preliminary findings and results—

Spring forecasting experiment 2016.NOAA, 50 pp., https://

hwt.nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_

findings_final.pdf.

Davis, C., and F. Carr, 2000: Summary of the 1998 workshop on

mesoscale model verification. Bull. Amer. Meteor. Soc., 81,

809–820, https://doi.org/10.1175/1520-0477(2000)081,0809:

SOTWOM.2.3.CO;2.

Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get

butterflies. Bull. Amer. Meteor. Soc., 97, 237–243, https://

doi.org/10.1175/BAMS-D-15-00070.1.

Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict

the probability and distribution of precipitation. Mon.

Wea. Rev., 129, 2461–2480, https://doi.org/10.1175/1520-

0493(2001)129,2461:AOAPMS.2.0.CO;2.

Gagne, D. J., 2016: Coupling data science techniques and numer-

ical weather prediction models for high-impact weather pre-

diction. Ph.D. thesis, University of Oklahoma, 204 pp., https://

shareok.org/handle/11244/44917.

——, A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams,

and M. Xue, 2017: Storm-based probabilistic hail forecast-

ing with machine learning applied to convection-allowing

ensembles.Wea. Forecasting, 32, 1819–1840, https://doi.org/

10.1175/WAF-D-17-0010.1.

Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe

weather prediction: The 2015 NOAA/Hazardous Weather

Testbed Spring Forecasting Experiment. Wea. Forecasting,

32, 1541–1568, https://doi.org/10.1175/WAF-D-16-0178.1.

Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic

forecast calibration using ECMWF and GFS ensemble

reforecasts. Part I: Two-meter temperatures. Mon. Wea. Rev.,

136, 2608–2619, https://doi.org/10.1175/2007MWR2410.1.

Hamill, T. M., 1999: Hypothesis tests for evaluating numeri-

cal precipitation forecasts. Wea. Forecasting, 14, 155–167,

https://doi.org/10.1175/1520-0434(1999)014,0155:HTFENP.
2.0.CO;2.

——, R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast

calibration using ECMWF and GFS ensemble reforecasts.

Part II: Precipitation.Mon. Wea. Rev., 136, 2620–2632, https://

doi.org/10.1175/2007MWR2411.1.

Herman, G. R., and R. S. Schumacher, 2018a: Money doesn’t grow

on trees, but forecasts do: Forecasting extreme precipitation

with random forests. Mon. Wea. Rev., 146, 1571–1600, https://

doi.org/10.1175/MWR-D-17-0250.1.

——, and ——, 2018b: ‘‘Dendrology’’ in numerical weather pre-

diction: What random forests and logistic regression tell us

about forecasting extreme precipitation.Mon. Wea. Rev., 146,

1785–1812, https://doi.org/10.1175/MWR-D-17-0307.1.

Hitchens, N. M., H. E. Brooks, and M. P. Kay, 2013: Objective

limits on forecasting skill of rare events.Wea. Forecasting, 28,

525–534, https://doi.org/10.1175/WAF-D-12-00113.1.

Hoffman, R. R., M. Johnson, J. M. Bradshaw, and A. Underbrink,

2013: Trust in automation. IEEE Intell. Syst., 28, 84–88, https://

doi.org/10.1109/MIS.2013.24.

Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical dif-

fusion package with an explicit treatment of entrainment

processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/

10.1175/MWR3199.1.

——, K.-S. S. Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham,

and J. Dudhia, 2010: Evaluation of the WRF double-

moment 6-class microphysics scheme for precipitating

convection. Adv. Meteor., 2010, 1–10, https://doi.org/

10.1155/2010/707253.

166 WEATHER AND FORECAST ING VOLUME 35

https://doi.org/10.1175/MWR-D-16-0027.1
https://doi.org/10.1175/MWR-D-16-0027.1
https://ams.confex.com/ams/27SLS/webprogram/Paper255732.html
https://ams.confex.com/ams/27SLS/webprogram/Paper255732.html
https://doi.org/10.1175/1520-0434(1989)004<0271:AHITRC>2.0.CO;2
https://doi.org/10.1175/1520-0434(1989)004<0271:AHITRC>2.0.CO;2
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2307/1403680
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://hdl.handle.net/11244/320425
https://hdl.handle.net/11244/320425
https://doi.org/10.1175/WAF-D-11-00151.1
https://doi.org/10.1175/WAF-D-11-00151.1
https://doi.org/10.1175/2010WAF2222404.1
https://doi.org/10.1175/2010WAF2222404.1
https://doi.org/10.1175/BAMS-D-11-00040.1
https://doi.org/10.1175/BAMS-D-11-00040.1
https://hwt.nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_findings_final.pdf
https://hwt.nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_findings_final.pdf
https://hwt.nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_findings_final.pdf
https://doi.org/10.1175/1520-0477(2000)081<0809:SOTWOM>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<0809:SOTWOM>2.3.CO;2
https://doi.org/10.1175/BAMS-D-15-00070.1
https://doi.org/10.1175/BAMS-D-15-00070.1
https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
https://shareok.org/handle/11244/44917
https://shareok.org/handle/11244/44917
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1175/WAF-D-16-0178.1
https://doi.org/10.1175/2007MWR2410.1
https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2
https://doi.org/10.1175/2007MWR2411.1
https://doi.org/10.1175/2007MWR2411.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://doi.org/10.1175/MWR-D-17-0307.1
https://doi.org/10.1175/WAF-D-12-00113.1
https://doi.org/10.1109/MIS.2013.24
https://doi.org/10.1109/MIS.2013.24
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1155/2010/707253
https://doi.org/10.1155/2010/707253
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