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ABSTRACT

Diurnal variations of land surface temperature (LST) play a vital role in a wide range of applications such as

climate change assessment, land–atmosphere interactions, and heat-related health issues in urban regions.

This study uses 15 years (2003–17) of daily observations of LST Collection 6 from the Moderate Resolution

Imaging Spectroradiometer (MODIS) instruments on board the Aqua and the Terra satellites. A spline in-

terpolation method is used to estimate half-hourly global LST from the MODIS measurements. A pre-

liminary assessment of interpolated LST with hourly ground-based observations over selected stations of

NorthAmerica shows bias and an error of less than 1K. Results suggest that the present interpolationmethod

is capable of capturing the diurnal variations of LST reasonably well for different land-cover types. The

diurnal cycle of LST and time of occurrence of maximum temperature are computed from the spatially and

temporally consistent interpolated diurnal LST data at a global scale. Regions with higher variability in the

timing of maximum LST hours and diurnal amplitude are identified in this study. The global desert regions

show generally small variability of the monthly mean diurnal LST range, whereas larger areas of the global

land exhibit rather higher variability in the diurnal LST range during the study period. Moreover, the changes

in diurnal temperature range for the study period are examined for distinct land-cover types. Analysis of the

15-yr time series of the diurnal LST record shows an overall decrease of 0.5K in amplitude over the Northern

Hemisphere. However, the diurnal LST range shows variant changes in the Southern Hemisphere.

1. Introduction

Reliable estimates of land surface temperature (LST)

and its diurnal variations are vital for the adequate un-

derstanding of surface energy budget and land–atmosphere

interactions, for the detection of forest fires, urban heat

island monitoring, evaluation of land surface models, and

assessment of climate change (Braganza et al. 2004;

Tomlinson et al. 2011; Li et al. 2013; Zhan et al. 2013;

Thorne et al. 2016). LST has been considered as one of the

high-priority parameters of the International Geosphere–

Biosphere Programme. The solar insolation, atmospheric

state, and land surface characteristics (e.g., vegetation

cover, soil moisture, land-cover type) regulates the diurnalCorresponding author: HamidNorouzi, hnorouzi@citytech.cuny.edu
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cycle of LST (Ignatov and Gutman 1999; Duan et al.

2014a). The diurnal cycle of skin temperature over the

ocean is essentially different from that over the land.

Moreover, the diurnal cycle patterns of LST vary locally

with season and land-cover type, and are different in

magnitudes from those of near-surface air temperature

and upper-layer soil temperature (Norouzi et al. 2012;

Prakash et al. 2017, 2019; Shati et al. 2018).

Ground-based observations of LST are generally sparse

at global scale and hence appear to be inadequate to study

its variability at larger spatial scale. However, satellite

remote sensing provides an effective way to measure LST

uniformly at global scale (Tomlinson et al. 2011; Li et al.

2013). LST is measured from broadly two types of Earth-

observation satellite sensors: (i) thermal infrared sensors

and (ii) microwave sensors. The LST derived from the

thermal infrared measurements has higher spatial reso-

lution and retrieval accuracy. However, infrared-based

measurements are restricted to clear-sky conditions only

and obscured by presence of clouds and atmospheric

disturbances. Although passive microwavemeasurements

essentially provide LST estimates for all weather condi-

tions, they suffer from rather coarser spatial and temporal

resolutions. Moreover, uncertainty in the passive micro-

wave retrieved LST during precipitation has shown to be

rather larger than infrared-based estimates. The syner-

gistic use of infrared and microwave measurements has

been recommended for the optimal estimation of LST for

all weather conditions (Li et al. 2013; Duan et al. 2017).

The thermal infrared-based LST estimates from the

polar-orbiting satellites have received more attention in

last two decades for several global and local applications.

For instance, LST estimates from the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) sensors have

been used for urban heat island detection, assessment of

land surface changes, evaluation of land surface model

outputs, land and atmospheric parameters retrieval, and

several other applications (Wan 2014; Norouzi et al. 2015;

Prakash et al. 2016, 2018; Didari et al. 2017; Mildrexler

et al. 2018). However, MODIS sensors are unable to

provide complete global coverage of diurnal LST esti-

mates, and a spatiotemporal interpolation is required to

study the global LST variability. Several interpolation

methods have been reported in literature for satellite

remote sensing data including infrared-based LST (Aires

et al. 2004; Duan et al. 2014a; Norouzi et al. 2012; Zhou

et al. 2013; Weng and Fu 2014; Ruzmaikin et al. 2017).

Aires et al. (2004) analyzed and constructed the diurnal

cycle of infrared-based LST using a principal component

analysis at a quasi-global scale using the International

Satellite Cloud Climatology Project (ISCCP) skin tem-

perature product (Rossow and Schiffer 1999). Duan et al.

(2014a) used a semiempirical diurnal temperature cycle

model to construct the diurnal cycle of MODIS-derived

LST over the Mediterranean region. Zhou et al. (2013)

utilized a diurnal temperature cycle genetic algorithm

with multisource satellite data to generate hourly LST at

1-km spatial resolution for the study of diurnal variations

of urban heat islands in China. Weng and Fu (2014)

developed a support vector machine method for down-

scaling coarse-resolution infrared LST into finer spatio-

temporal resolution for monitoring of surface urban heat

islands in the Los Angeles region.

Ruzmaikin et al. (2017) examined the changes in spa-

tial patterns of diurnal temperature range (DTR) from

the skin temperature measurements of the Atmospheric

Infrared Sounder (AIRS) sensor on board the Aqua

satellite using empirical mode decomposition. They no-

ticed an increase of about 0.2K in the global DTR be-

tween 2002 and 2015 that is possibly due to decrease in

nighttime low cloud fraction. However, DTR was found

to be nonmonotonic over the oceanic regions and in the

extremely hot areas ofEarth. The spatial resolution of the

AIRS is rather coarser (;100km) than the MODIS

sensor. Additionally, MODIS sensors are mounted on

bothAqua andTerra satellites and provide generally four

observations daily at a given location, which may help to

accurately estimate LST diurnal variations. Recently,

Prakash et al. (2019) comprehensively assessed the dif-

ferences between MODIS- and AIRS-derived clear-sky

LST estimates over the global land areas. They also

showed that LST exhibits stronger diurnal variability

than the surface air temperature.

The objective of this study is twofold: 1) to generate

spatially consistent global maps of subdaily LST from the

MODIS measurements under clear-sky condition and

2) to assess the variability of DTR for different vegetation

types at global scale for the 15-yr period of 2003–17.

Section 2 describes the datasets used in this study, and the

method for the computation of diurnal cycle of LST is

presented in section 3.Results are presented and discussed

in section 4, and conclusions are outlined in section 5.

2. Data used

a. Land surface temperature data

The MODIS sensors on board the Aqua and Terra

satellites measure high-spatial-resolution atmospheric,

oceanic, and land surface parameters at 36 visible and

infrared channels with a wide spectral range of 0.4–

14.4mm (Justice et al. 1998). These two sun-synchronous

satellites are polar orbiting and provide global coverage

in nearly two days. The Terra satellite crosses the

equator from north to south at about 1030 local time,

whereas the Aqua satellite crosses the equator from
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south to north at about 1330 local time. These satellites

take measurements twice a day (e.g., ascending and de-

scending orbits) at a specific location. The MODIS

products from the Terra and the Aqua satellites are

available since March 2000 and July 2002, respec-

tively. The cloud-free daily global LST products (e.g.,

MOD11C1 from the Terra and MYD11C1 from the

Aqua satellites) Collection 6 (Wan 2014) available at a

0.058 (about 5 km at the equator) climate modeling grid

were obtained from the Land Processes Distributed

Active Archive Center (LP DAAC). Collection 6 LST

products incorporate improvements in retrieval algo-

rithms and proven to be more accurate than its pre-

decessor Collection 5 LST products (Wan 2014; Duan

et al. 2018). The differences between Collection 6 and

Collection 5 products were remarkable over the arid re-

gions (Prakash et al. 2018). Moreover, the accuracy of

Collection 6 LST products was found to be approximately

2 times better than those ofCollection 5 products over bare

soil areas, when validated using the radiance-basedmethod

(Duan et al. 2018). The combination of ascending and

descending overpasses of both MODIS sensors provides

generally four measurements of LST at a specific grid each

day at about 0130, 1030, 1330, and 2230 local times.

The global LST products for a 15-yr period (e.g., January

2003–December 2017) were considered in this study.

For the preliminary evaluation of diurnal cycle of LST

derived from the MODIS products, ground-based ob-

servations of LST from the U.S. Climate Reference

Network (USCRN) were used. The USCRN is an au-

tomated network of more than 140 stations designed to

provide high-quality continuous observations of climate

variables (Bell et al. 2013; Diamond et al. 2013). Hourly

LST observations from 18 selected stations for the year

2017 were used in this study.

b. Land-cover type data

A global static classification of 10 vegetation types

(Prigent et al. 1998; Norouzi et al. 2015) derived from 32

different land-cover types (Matthews 1983) has been used

in this study. The name of each vegetation class and their

percentage coverage over the global land area are tabu-

lated in Table 1. The wooded and nonwooded grassland

covers about 23% of global land, whereas nonvegetated

desert covers about 11%of the global land area. It is to be

noted that the diurnal cycle patterns of LST significantly

influenced by the land-cover types (Scheitlin and Dixon

2010; Norouzi et al. 2012; Prakash et al. 2019).

3. Computation of diurnal cycle of LST

To characterize the diurnal cycle of global LST under

clear-sky conditions, the MODIS-derived LST data were

reprojected to an equal-area grid (equivalent to 0.258 at
equator) and land-only pixels were extracted for compu-

tational efficiency. LST products from the MODIS are

often influenced by clouds and other atmospheric distur-

bances, which resulted in remarkable data loss. Several

techniques have been developed so far to compute

equivalent LST values at the missing grids of the MODIS

swath. But,most of these techniques are suitable for rather

smaller regions and fail at the global scale (Kilibarda et al.

2014; Yu et al. 2015). In addition, geostatistical interpola-

tion methods basically depend on the values of neighbor-

ing grids; hence, they are not effective for a larger area

having missing values. As a longer time series (e.g.,

15 years) of LST is being considered in this study, a statis-

tical method based on temporal variations was utilized for

filling the data gap at different time of the day. The goal of

present study is to analyze the global diurnal cycle of LST

when observations from clear-sky conditions are utilized.

Based on previous studies (Norouzi et al. 2015), it is

reasonable to assume that general characteristics of LST

diurnal variations such as amplitude and timing of

maximum temperature do not change significantly in a

month. Figure 1 depicts the schematic estimation pro-

cess of missing observation data. If at a given grid, there

are one, two or three unavailable LST values, they are

computed by differences between the available values of

that date and the monthly average of the same time of

the day. For instance, only two daily Aqua data points

(taken at 0130 and 1330 local time) are available in

Fig. 1. The differences of those two points and the cor-

responding monthly average of the same time of the day

are first calculated followed by taking the average of

their values. In the next step, the average value calcu-

lated in the latter phase is added to the monthly average

TABLE 1. Land-cover types used in this study and their percentage

coverage over the global land.

Code Vegetation type

Percentage

coverage

LC01 Tropical/subtropical evergreen

broadleaf forest

8.00

LC02 Deciduous forest 11.12

LC03 Evergreen broadleaf and

needleleaf forest

9.48

LC04 Deciduous woodland 5.10

LC05 Sclerophyllous woodland and

forest

3.18

LC06 Wooded and nonwooded

grassland

23.31

LC07 Tundra and mossy bog 3.50

LC08 Boreal and xeromorphic

shrubland

10.30

LC09 Nonvegetated desert 11.06

LC10 Ice 9.83
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of the unavailable daily data. On the other hand, if there

are missing values at all four times each day, the corre-

sponding pixel and day is not included in our analysis.

Finally, an interpolation method needs to be applied

with the synthesized data to construct the LST diurnal

cycle. A spline interpolation method had been success-

fully utilized to study the diurnal variations of infrared

LST and passive microwave brightness temperatures

(Aires et al. 2004; Norouzi et al. 2012). The spline in-

terpolation method showed smooth diurnal variation of

LST and there was no need for best-fit to capture mini-

mum and maximum values between two consecutive

observations. Therefore, spline piecewise polynomial in-

terpolation has been used in this study to render half-

hourly LST from the MODIS products. Since four

observations of LST might not be enough as control

points for obtaining a reliable daily interpolation, the

corresponding data for a series of three consecutive days

(one day before and one day after) with 12 control points

were considered for the construction of half-hourly di-

urnal cycle. Figure 2 presents the diurnal variations of

LST at four locations having distinct vegetation types

using original MODIS products and from interpolated

half-hourly LST values for February 2017. In each plot of

the figure, available daily observations from the original

MODIS products (red star), the monthly mean LST

(green triangle), synthesized LST (blue circle), and in-

terpolated LST (pink dot) based on synthesized data are

shown. Missing data from the MODIS observations can

be encountered in four different ways that are also illus-

trated in Fig. 2. The general diurnal patterns of LST and

their variations with distinct land-cover types (Prakash

et al. 2019) are well-depicted by the interpolated LST.

From 2003 to 2017, approximately 31% of global land

area has missing data in the MODIS-derived LST prod-

ucts. Even after generation of synthesized data, there are

still fewmissing points (about 1.1%) having all-time cloud

contamination for a month that cannot be replaced by

monthly average. The results from the cases that all ob-

servations in a day are missing (such as Fig. 2d) are not

included in studying LST diurnal variations in following

steps. The 15-yr missing data ratio of two contrasting

months (January–July) is 1.1, which states that the number

of missing grids is generally larger during the northern

winter season than the northern summer season.

4. Results and discussion

a. Evaluation of interpolated diurnal cycle of LST

To assess the accuracy of the proposed method, a pre-

liminary evaluation between MODIS-derived LST diurnal

cycle and ground-based observations has been performed

for the year 2017. Hourly LST observations from 18 se-

lected USCRN stations across the North America have

been considered. Table 2 presents the location, elevation,

and land-cover type of the selectedUSCRNstations. These

stations are selected in such a way that they cover a wide

range of elevations and three distinct vegetation types.

Figures 3a and 3b illustrate the comparison of hourly LST

from the present method and USCRN observations for

the entire year of 2017 for two stations: Charlottesville,

Virginia, andDesMoines, Iowa.HourlyLST fromMODIS

is computed from the interpolated half-hourly LST esti-

mates. Higher correlations of 0.84 and 0.86 and lower root-

mean-square errors (RMSE) of 0.25 and 0.15K between

both LSTs for Charlottesville and Des Moines stations,

respectively, suggest reasonably good performance of the

interpolated LST. The reason for having smaller RMSE

than bias is that to account for systematic biases between

ground-based and satellite measurements, we used ‘‘bias’’

as an indicator. However, to account for only random dif-

ferences, we calculated theRMSE values after the removal

of bias estimates. The primary objective of this study is to

interpolate diurnal variations of LST from the satellite es-

timates. So, we removed the bias in order to compute

RMSE to just see the random variations in LST diurnally.

The mean diurnal cycles of LST for the two contrasting

months of January and July from the present method and

USCRN observations for these two stations are shown in

Figs. 3c and 3d. The patterns of diurnal cycle of LST are

similar for bothmonths fromboth datasets.However, there

is an underestimation of diurnal cycle magnitude by the

present method as compared to the USCRN observations.

Figure 4a shows the scatterplot between hourly

LST estimates from the present method and USCRN

FIG. 1. Schematic for unavailable data estimation process based on

thedifferenceofmonthlymeanLSTTm andobservedLSTTo at each of

daily observation time;D15Tm –To (0130 local time) andD25Tm –To

(1330 local time) for a day with only two observations available.
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observations for all selected stations. There is a good

agreement (linear correlation of 0.86) between both LST

estimates can be seen for the year 2017. The bias and

RMSE (after bias removal) are appreciably less than 1K,

revealing that the present model is capable in capturing

the diurnal variations of LST reasonablywell for different

land-cover types. The agreement between both LST es-

timates is rather weaker around 273K, corresponding to

freeze–thaw transitions. LST from the present model

underestimates during these periods as compared to the

USCRN observations. A cold bias in MODIS LST is

expected during the freezing time periods probably be-

cause of the overrepresentation of clear-sky conditions

(Muster et al. 2015). Figure 4b presents the diurnal cycle

of correlation and RMSE combined for all selected sta-

tions. The quality of the interpolated LST is not consis-

tent throughout the day, and error characteristics vary

with time. The differences of LST between MODIS and

USCRN could be primarily attributed to the facts that

these two estimates capture the temperature at different

spatial resolutions. The satellite measures area-averaged

LST, while the USCRN stations provide point observa-

tions representing localized LST. Furthermore, the

MODIS sensor records LST above the tree canopies over

forest areas (Li et al. 2013; Zhan et al. 2013), while the

USCRN stations record data at the surface. The USCRN

provides LST observations for all weather conditions,

whereas the interpolated LST has been derived from

clear-sky condition LST alone. These factors might be

intermittently contributing the discrepancies between

both LST estimates.

b. Spatial distributions of global land DTR and
timing of daily maximum LST

DTR is defined as the difference between daily max-

imum and minimum surface air temperature and is

proven to be a better indicator of climate change and

variability (Braganza et al. 2004; Thorne et al. 2016).

The diurnal cycle of LST enables the computation of

magnitudes and time of occurrence of daily maximum

FIG. 2. Diurnal variations of interpolated LST for four sample locations with different data availability and for

distinct land cover. The original MODIS-derived LST, synthesized LST, and monthly mean LST are also shown.
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and minimum LSTs. The difference in daily maximum

and minimum LST estimates is termed DTR hereafter

in this study. Figures 5a and 5b illustrate the global

monthly mean DTR derived from the interpolated half-

hourly LST for the two contrasting months of January

and July 2017. Larger DTR during the summer than

winter is evident in both hemispheres. The largest

magnitudes of DTR (25–40K) are evident in primarily

two land-cover types—nonvegetated deserts, and Bo-

real and xeromorphic shrublands with low vegetation

density. For instance, DTR is consistently large over

the Northern Hemispheric regions of Great Basin of

Nevada, Colorado Plateau, the Sahara in North Africa,

Saudi Arabia, and the Gobi Desert in China and

Mongolia. In the Southern Hemisphere, the Kalahari

Desert in the southern Africa, shrublands of the Andes

Mountains in SouthAmerica, andAustralian deserts are

three regions with higher DTR. As land surface warms

and cools rapidly, the absence or lack of vegetation and

moisture across the desert regions make DTR larger

than other regions of Earth. The lowestDTRof less than

5K can be found in two main areas: tropical rain forests

and high-latitude regions of Russia (Siberia) and

Greenland. In the northern high latitudes, ice and snow

cover cool the surface air and act as insulators to the

solar radiation, which maintain rather smaller DTR. It

can also be seen that DTR is essentially larger over the

high-latitude regions during the northern summer than

the winter. In general, the maps of DTR pose a sys-

tematic relation with land-cover type. Land-cover type

is one of the most important parameters to influence the

global LST change (Duveiller et al. 2018; Song et al.

2018). A close association of vegetation type with near-

surface air temperature diurnal cycle was also reported

in earlier studies (Lim et al. 2008; Jackson and Forster

2010; Scheitlin and Dixon 2010).

Figures 5c and 5d present the spatial distributions of

standard deviation in DTR for January and July 2017.

The tropical vegetated areas such as tropical rain forests

show generally small standard deviation of DTR

(,3K). A larger standard deviation in DTR of more

than 5K can be seen over the high-latitude regions that

is more pronounced during the northern winter. High-

latitude regions eventually receive snowfall during the

northern winter season, which substantially affects the

DTR variability. A similar seasonal and location-

specific variation in DTR of surface air over land due

to combined effect of solar radiation, elevation, cloud

cover, precipitation, and soil moisture was also reported

by Jackson and Forster (2010).

Figure 6 illustrates the spatial distributions of nor-

malized standard deviation of monthly mean DTR for a

15-yr period. It is computed by normalizing the standard

deviation of monthly mean DTR with respect to the

15-yr mean DTR. The global desert regions show ex-

ceptionally small variability of DTR (,15%) for the

study period. However, larger areas of the global land

exhibit larger variability in DTR ranging from 20% to

40% for the study period. This larger variability in DTR

might be associated with changes in the state of the at-

mosphere, albedo, moisture, land emissivity, and land

surface properties (Duanet al. 2014a). The gradual changes

in vegetation cover are vital for DTR variability. For in-

stance, the expansion of agricultural land in the tropical

TABLE 2. Location, elevation, and land-cover types of U.S. Climate Reference Network (USCRN) stations used for evaluation of

MODIS-derived hourly land surface temperatures.

Station No. Station name Lat (8) Lon (8) Elevation (m) LC type

1 Lafayette, Louisiana 30.09 291.87 11 LC02

2 Selma, Alabama 32.46 287.24 63

3 Blackville, South Carolina 33.36 281.33 99

4 Millbrook, New York 41.79 273.74 142

5 Charlottesville, Virginia 38.00 278.47 206

6 Watkinsville, Georgia 33.78 283.39 218

7 Limestone, Maine 46.96 267.88 239

8 Des Moines, Iowa 41.56 293.29 261

9 Crossville, Tennessee 36.01 285.13 578

10 Merced, California 37.24 2120.88 24 LC03

11 Darrington, Washington 48.54 2121.45 110

12 Sebring, Florida 27.15 281.37 46 LC06

13 Chillicothe, Missouri 39.87 293.15 255

14 Manhattan, Kansas 39.10 296.61 357

15 Aberdeen, South Dakota 45.71 299.13 597

16 Wolf Point, Montana 48.31 2105.10 632

17 Monahans, Texas 31.62 2102.81 828

18 Williams, Arizona 35.76 2112.34 1821
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regions enhanced the surface albedo and hence, con-

siderably alters the local LST through radiative prop-

erties of Earth’s energy balance (Duveiller et al. 2018).

The influence of changes in vegetation cover along with

air pollutant on the global LST has also been studied

recently by Song et al. (2018). The impact of solar ra-

diation, soil moisture, vegetation cover, and other pa-

rameters on DTR was also assessed through the surface

energy budget by Jackson and Forster (2010), and it was

noticed that surface net longwave radiation explains

about 95% of the seasonal variation of DTR in the

tropical regions.

The occurrence time of the dailymaximumLST is also

investigated in this study. The occurrence time of daily

maximum LST for each pixel was computed from

48 half-hourly interpolated LST values. The spatial

distributions of the monthly mean daily maximum LST

hour are presented in Fig. 7 for two contrasting months,

January and July 2017. Comparison of these two maps

reveals a tangible seasonal variation. For the Northern

Hemisphere, with changing seasons from winter to

summer, timing of maximum hour moves, generally,

from around 1330 to around 1230 local time. Similar

characteristics with different time variation range can be

seen in the Southern Hemisphere. Furthermore, it can

be inferred that the time of maximum daily LST de-

pends mainly on the latitude. However, higher latitudes,

especially the Arctic regions, are subjected to some

FIG. 3. Comparison between MODIS and USCRN hourly LST for 2017. (top) Scatterplots for hourly LST at (a) Charlottesville,

VA, and (b) Des Moines, IA. Correlation coefficient r, bias, and root-mean-square errors (after bias removal) are also provided.

(bottom) Mean diurnal variation for LST at (c) Charlottesville and (d) Des Moines for the two contrasting months of January

and July.
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inconsistencies. The observed inconsistencies can be

attributed to the snow cover emissivity, which acceler-

ates the reflection of heat energy rather than keeping it

on the surface skin. This point can be seen more clearly

in Fig. 8, which illustrates the 15-yr average of maximum

LST hour standard deviation. The higher standard de-

viation over that region might be because of inaccuracy

in diurnal estimation. Since the diurnal temperature

changes in those areas are low, spline interpolation

method may not be able to estimate the timing of

maximum daily temperature accurately.

c. Assessment of changes in global land DTR and
timing of daily maximum LST

Review and analysis of the average LST for the years

2003–17 may reveal the causes of seasonal differences

between land cover. Thus, 15-yr monthly mean of DTR

and timing of maximum LST for each hemisphere are

FIG. 5. Spatial distributions of (a),(b) monthly mean DTR and (c),(d) its standard deviation for (a),(c) January and (b),(d) July 2017.

FIG. 4. Comparison between MODIS and USCRN data in 2017 for all 18 selected stations. (a) Scatterplot for hourly LST. Correlation

coefficient r, bias, and root-mean-square errors are also provided. (b) Diurnal analysis of coefficient of determination R2 and root-mean-

square error using combined data for 18 stations. RMSE values were computed after bias removal.
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shown in Fig. 9 as a function of land-cover types. DTR

mean of the Northern Hemisphere also shows a con-

sistent seasonal pattern, larger amplitude in summer

than winter for all land-cover types except for tropical/

subtropical evergreen broadleaved forest. Interestingly,

DTR of the Southern Hemisphere does not line up with

the DTR of the Northern Hemisphere for four land-

cover types including tropical/subtropical evergreen

broadleaved forest, deciduous forest, deciduous wood-

land, and wooded and nonwooded grasslands. It should

be noted that given the high level of humidity in rain

forests of tropical regions, it is difficult to detect sub-

stantial differences between winter and summer. Duan

et al. (2018) noticed rather larger LST discrepancy in

MODIS products over grassland vegetation cover sites

due to misclassification of the MODIS land-cover type

products, resulting to incorrect and unreliable estima-

tion of the surface emissivity. This study uses a static

land-cover type and the deciduous forest and deciduous

woodland regions were subject to deforestation and

FIG. 7. Spatial distributions of time (local time) of maximum LST for (a) January and

(b) July 2017.

FIG. 6. Spatial distributions of normalized standard deviation (standard deviation divided by

mean) of monthly DTR for 2003–17.
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shift into croplands and grasslands in the recent de-

cades. As mentioned earlier, land-cover alteration

changes the reflected solar radiation and latent heat flux

leading to extreme DTR (Duveiller et al. 2018; Song

et al. 2018). One of the main factors for the notable

distinction of DTR over the Northern and Southern

Hemispheres is the distribution of land versus ocean.

About 39% of the Northern Hemisphere is land

whereas only 19% of the Southern Hemisphere is cov-

ered by land. Rates of heating and cooling are different

for land and ocean. Land heats up and cools downmuch

faster relative to the ocean. Given the fact that North-

ern Hemisphere contains the majority of Earth’s

landmass, a much larger population (roughly 88%), and

much more industrialization, pollution variations are

more considerable compared to the Southern Hemi-

sphere. The land-cover average of maximum LST hour

shows a consistent seasonal pattern for both hemi-

spheres. The maximum LST hour occurs earlier in

summer, for example, July in the Northern Hemisphere

FIG. 8. Spatial distributions of standard deviation in time (local time) of maximum LST for the

period of 2003–17.

FIG. 9. Mean (a),(b) DTR and (c),(d) time of maximum LST for the (a),(c) Northern and (b),(d) Southern Hemispheres averaged over

different land-cover types for January and July. The full names of each land-cover type are given in Table 1.
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and January in the Southern Hemisphere for almost all

the vegetation classes.

To examine the changes inmeanmonthlyDTRbetween

2003 and 2017, linear trend in DTR over the global land is

presented in Fig. 10. Larger areas show a decline in DTR,

which reveals that daily minimum temperature increases

at a faster rate than the daily maximum temperature. The

NorthernHemisphere showed an overall decrease inDTR

of 0.54K between 2003 and 2017. However, southern

Europe and the Middle East exhibit an increase in DTR

during the study period. Deciduous woodland, wooded

and nonwooded grassland, and nonvegetated desert land

classes show the largest decline.Among them,wooded and

nonwooded grassland vegetation type has the largest var-

iations of negative and positive slope values, with the

negative parts overcoming the positive parts. The trend

fluctuation in grassland cover can be associated with the

fact that a majority of existing grasslands used to be forests

and woodlands. As previously explained, higher radiative

flux leaving the surface is as a consequence of deforesta-

tion. However, the balance between shortwave reflected

radiation and longwave released radiation can change

based on the forest canopy (Duveiller et al. 2018).

Interestingly, the Southern Hemisphere shows variant

changes in DTR with land-cover classes. A strong increase

ofDTR in deciduouswoodland of southernAfrica, wooded

and nonwooded grassland and shrubland of northeastern

part of South America, and a strong decrease in DTR

for sclerophyllous woodland and forest were observed.

Wooded and nonwooded grassland and boreal and

xeromorphic shrubland are two land-cover classes having

the most variations from highest positive slope value in

southern Africa to highest negative in southern Australia.

Sclerophyllous woodland and forest of Tasmania and east-

ernAustralia, and nonvegetated deserts of centralAustralia

and Sahara in northern Africa are the two land-cover types

showing a consistent negative slope. It should be considered

that the assessment was done for a 15-yr period of the

MODIS era, which is not adequate for a robust climatic

trend analysis. It is also worth noting that the obtained

conclusions could be associated with the normalized dif-

ference vegetation index, which needs further investigation.

5. Conclusions

In this paper, a 15-yr data record of LST Collection

6 from the MODIS sensors was studied. A spline in-

terpolation method was utilized in order to generate

half-hourly LST values over the globe land. An initial

evaluation of interpolated LST with hourly ground-based

observations from the selected 18 USCRN stations over

the North America showed a linear correlation of 0.86

and a bias and an RMSE of less than 1K. In general, the

present interpolationmethod showed promising results in

capturing the diurnal variations of LST for different land-

cover types. The general patterns of LST diurnal varia-

tions were well depicted by the interpolated LST for

different land-cover types. The interpolated half-hourly

LST data were used to calculate two important parame-

ters including DTR as well as timing of the maximum

LST hour. The largest DTR of 25–40K was found over

the desert regions, whereas the smallest DTR of less than

5K was evident over the high-latitude regions of the

Northern Hemisphere. The global desert regions showed

smaller variability of monthly mean DTR, and larger

areas of the global land exhibited larger variability in

DTR between 20% and 40% for the 15-yr period. The

time of maximum LST hour moves to about 1h earlier

during summer as compared to during winter in both

hemispheres. However, mean DTR showed distinct

seasonal variations as a function of land-cover types.

The Northern Hemispheric land showed a decrease in

monthly mean DTR by about 0.54K between 2003 and

2017. But, the Southern Hemisphere showed variant

FIG. 10. Spatial distributions of linear trend (K decade21) inmonthlyDTR for the period 2003–17.
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changes in DTR with land-cover classes. However, the

assessment was done for a 15-yr period and is not ade-

quate for a robust climatic trend analysis.

Furthermore, there are few limitations of this study.

The interpolated LST has larger uncertainty over the

high-latitude regions because of low DTR, which needs

further investigation. The use of a static land-cover type

might also contribute to uncertainty in the results because

of considerable changes in the global land-cover types

during the study period. The diurnal cycle was con-

structed using cloud-free LST observations in this study,

whichmight lead to uncertainty in the presence of clouds.

There are differences in local solar time for the same pixel

on different revisit days of the MODIS instruments be-

cause of its intrinsic scanning characteristics. Typically, 3–

5K of LST difference could be introduced because of

changes in daytime observations between 1000 and 1200

local solar time from the Terra satellite (Duan et al.

2014b). A temporal normalization scheme needs addi-

tional input parameters such as elevation, vegetation

type, and normalized difference vegetation index corre-

sponding to LST observations, and the uncertainty of the

normalized LST generally becomes larger than the orig-

inal LST values because of uncertainties of the input

parameters. Hence, there is a need to develop a suitable

temporal normalization scheme applicable for MODIS

global LST products that would essentially improve the

accuracy of the interpolated diurnal cycle. Nonetheless,

augmentation of a global network of ground-based ob-

servations is vital for the comprehensive evaluation of

satellite-derived LST estimates.
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