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ABSTRACT

The ability of Atmospheric Emitted Radiance Interferometer (AERI) andDoppler lidar (DL) wind profile

observations to impact short-term forecasts of convection is explored by assimilating retrievals into a partially

cycled convection-allowing ensemble analysis and forecast system. AERI and DL retrievals were obtained

over 12 days using a mobile platform that was deployed in the preconvective and near-storm environments of

thunderstorms during the afternoon in the U.S. Great Plains. The observation locations were guided by real-

time ensemble sensitivity analysis (ESA) fields. AERI retrievals of temperature and dewpoint and DL re-

trievals of the horizontal wind components were assimilated into a control experiment that only assimilated

conventional observations. Using the fractions skill score within 25-km neighborhoods, it is found that the

assimilation of the AERI and DL retrievals results in far more times when the forecasts are improved than

degraded in the 6-h forecast period. However, statistical confidence in the improvements often is not high and

little to no relationships between the ESA fields and the actual changes in spread and skill is found. But, the

focus on convective initiation and early convective evolution—a challenging forecast problem—and the fact

that frequent improvements were seen despite observations from only one system over a limited period,

provides encouragement to continue exploring the benefits of ground-based profilers to supplement the

current upper-air observing system for severe weather forecasting applications.

1. Introduction

Our ability to measure the atmospheric state above

the ground needs to be improved in order to meet the

growing needs of society (National Research Council

2009; Stalker et al. 2013). One way to address these

needs is through ground-based remote sensing systems

that can fill in large spatial and temporal gaps in the

current upper-air network (Geerts et al. 2018). Ground-

based profilers present an intriguing option because of

the high time resolution of their retrievals and because

they can be left unattended for long periods of time. To

explore the use of these systems for severe weather ap-

plications, the National Severe Storms Laboratory ob-

tained an Atmospheric Emitted Radiance Interferometer

(AERI) to retrieve profiles of temperature and water

vapor and aDoppler lidar (DL) to retrieve wind profiles.

These profilers are mounted on a trailer—named the

Collaborative Lower Atmosphere Mobile Profiling Sys-

tem (CLAMPS)—to allow for targeted observations

(Wagner et al. 2019).

Characteristics of severe convective weather are sen-

sitive to the state of the convective boundary layer

(CBL). Unfortunately numerical weather prediction

(NWP) of the CBL state continues to be error prone
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with systematic biases (Coniglio et al. 2013; Cohen et al.

2015; Shin and Dudhia 2016; Cohen et al. 2017). Many

efforts to reduce these biases on convection-allowing

(;1–4km) grids through improved physical parame-

terizations are ongoing (e.g., Shin and Hong 2015;

Benjamin et al. 2016; Zhou et al. 2018). In themeantime,

although a biased background state can hinder the re-

duction of analysis error through the assimilation of

observations (Romine et al. 2013), the upper-air net-

work is exceedingly sparse relative to convective space

and time scales, and therefore it is likely that even

biased systems would still benefit from additional, ju-

diciously chosen observations. Indeed, despite the

presence of known temperature and humidity biases in

the CBL, some improvements to short-term (;1–6 h)

convection-allowing forecasts of thunderstorms has

been shown by assimilating special upper-air observa-

tions from radiosondes (Hitchcock et al. 2016; Coniglio

et al. 2016).

For NWP applications, it is important to gauge

the worth of new observing systems through multiple

diagnostic studies of forecast-system improvement

(National Research Council 2009). To contribute to this

effort, we have assimilated retrievals from the CLAMPS

AERI and DL into an ensemble analysis and forecast

system that has been used for real-time prediction of

convective weather. This study is inspired by the Me-

soscale Predictability Experiment (MPEX; Weisman

et al. 2015) in which ensemble sensitivity analysis (ESA;

Ancell and Hakim 2007; Torn and Hakim 2008) was

used to guide where and when to take observations to

increase the likelihood of making an impact on fore-

casts. InMPEX, aGulfstreamV aircraft released dozens

of dropsondes in the early morning over the Inter-

mountain West with a focus on gauging impacts on

12–24-h forecasts (Romine et al. 2016). In this study,

CLAMPS is used to obtain AERI and DL observations

from a single location and we focus on 1–6-h forecast

impacts. It is shown here that retrievals from the AERI

and DL, even from only one location, can have a pos-

itive impact on analyses of the prestorm environment

and the subsequent prediction of storms. Section 2

provides an overview of the CLAMPS AERI and DL

and the methods to obtain retrievals of temperature,

humidity, and winds. Section 3 describes the ESA

method used for observation targeting. Section 4 de-

scribes the ensemble analysis and forecasting system,

the methods of postprocessing of the retrievals for data

assimilation, and the forecast verification methods.

Pertinent results from the data assimilation experi-

ments are summarized in section 5, experiment sensi-

tivities are discussed in section 6, and conclusions are

provided in section 7.

2. Ground-based profilers

a. AERI

The AERI is a passive remote sensor that measures

downwelling spectral infrared radiation every 20 s in a

portion of the spectrum (3.3–19.2mm) that is sensitive to

the vertical thermodynamic structure of the atmosphere

(Knuteson et al. 2004). After applying a principal

component–based noise filter to reduce random error in

the radiance spectra (Turner et al. 2006), and averaging the

radiances to 2-min intervals, the radiances are processed

through an optimal-estimation-based retrieval algorithm

(AERIoe) described in Turner and Löhnert (2014).
AERIoe is an iterativeGuass–Newton retrieval technique

that uses the Clough and Iacono (1995) radiative transfer

model to obtain estimates of the vertical profile of tem-

perature t and water vapor mixing ratio q, as well as the

cloud liquid water path (LWP) and mean cloud effective

radius in the column. The retrieval is constrained in the

middle to upper troposphere by a first guess from the

Rapid Refresh model analyses (Benjamin et al. 2016), but

the final retrievals are insensitive to the particular first-

guess profile that is used (Turner andLöhnert 2014).More

information on AERIoe can be found in Turner and

Löhnert (2014) and Turner and Blumberg (2018).

The retrieved t and q profiles lose vertical resolution

rapidly with height [as shown later and in Turner and

Löhnert (2014)], which reflects sensitivities in the radi-

ative transfer model, truncation error in applying the

radiative transfer model to a discrete set of height

points, level-to-level covariance in the a priori data used

to constrain the retrieval, and noise in the observed ra-

diance spectra. Because of these uncertainties, the re-

trievals contain far fewer independent data points than

what can be obtained from in situ methods (e.g., radio-

sondes). However, assimilation of these above-ground

observations of t and q every 2min, despite their low

vertical resolution, may be an effective way to incor-

porate mesoscale environmental heterogeneity (if

present) into model initial conditions and/or reduce

initial condition errors. Further, the retrievals include

estimates of their associated error as a function of

height (Turner and Löhnert 2014), which is important

to quantify for data assimilation purposes.

b. Doppler lidar

Doppler lidar (light detection and ranging) is a visible

analog to Doppler radar that uses light backscattered

from aerosols to measure line-of-sight particle velocity.

NSSL uses a pulsed Doppler lidar manufactured by

Halo Photonics Ltd. and is similar to the lidar described

in Pearson et al. (2009) (see Table 1 for the primary lidar

parameters used in this work). For this study, the lidar
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was configured to complete a full conical scan at

608 elevation in 8 steps (every 458 in azimuth). A full

conical scan takes ;20 s to complete and these scans

were performed every three minutes (the lidar was

scanning vertically when not doing conical scans). In the

ideal case of a homogeneous wind field, the line-of-sight

winds are sine-like as a function of azimuth and the

wind components are retrieved through fitting a sine

function to the radial wind speed (commonly known as

the velocity–azimuth display, or VAD, technique). A

separate sine wave is fit to the winds at each ;30-m

range gate to obtain a high-resolution vertical profile of

the wind every three minutes. The vertical range of the

DL sample is limited by the amount of aerosol back-

scatter and clouds (the light can penetrate only very thin

clouds). For the plains region sampled, the aerosol

concentration can be large enough to allow for retrievals

up to 3 km AGL but a retrieval depth of 1–1.5 km is

typical.

3. Targeting using ensemble sensitivity analysis

The AERI and DL observations used in this study

were obtained from 12 CLAMPS deployments made in

2016–17 in the U.S. Great Plains (Fig. 1). When evalu-

ating impacts of observation systems, particularly when

observing at only one location as in this study, it is im-

portant to attempt to gauge the forecast sensitivity to

that observation since a lack of forecast impact could

be related to a lack of environmental sensitivity at

the sampled location and not the ability of the ob-

serving system to positively impact forecasts. Like

in MPEX, guidance for where to deploy CLAMPS

in the preconvective environment was provided by

ESA fields that were derived from a 1200 UTC ini-

tialized 30-member version of the National Center for

Atmospheric Research (NCAR) real-time ensemble

(Schwartz et al. 2015). In general, the sensitivity of

the expected value (e.g., the ensemble mean) of a

forecast metric J to a state variable x at an earlier time

is defined as

›J

›x
5

cov(J
i
, x

i
)

var(x
i
)

, (1)

where Ji and xi are the ensemble member estimates of

J and x, respectively; cov is the covariance; and var is the

variance (Torn and Hakim 2008). The sensitivity can be

thought of as a linear regression of the ensemble forecast

metric onto an earlier ensemble state variable (Torn and

Hakim 2008) where the slope of the regression is the

sensitivity.

Two types of sensitivity plots were used as guidance

for observation targeting. First, Eq. (1) was computed at

each grid point using 6- or 9-h forecasts to define the

state variables [x in Eq. (1)].1 In 2016, the forecast metric

[J in Eq. (1)] was the simulated composite (column

maximum) reflectivity averaged over a 2-h period within a

;250 km (east–west) by;300km (north–south) region.

The location of this region was chosen to encompass

forecasts of storms on that day and the 2-h period was

chosen to end at the time that the standard deviation in

vertical velocity within the region of forecasted storms

TABLE 1. Parameters of the lidar.

Wavelength 1.5mm

Pulse repetition frequency 15 kHz

Nyquist velocity (bandwidth) 19.4m s21

Sampling frequency 30MHz

Points per range gate 6

Pulse length 18m

Range gate length 30m

Averaging time per ray 1 s

Minimum range 90m

Maximum range 12 000m

FIG. 1. Locations of the 12 CLAMPS deployments for which

data are used for the data assimilation experiments. Durations of

the AERI and DL retrievals from the deployments and the convec-

tive mode of the event are provided in Table 3.

1 Since real observation targeting takes time to deploy in-

struments, and there is always a latency in producing NWP model

forecasts, model state variables (x) need to be evaluated from

forecasts rather than initial conditions. In MPEX, given practical

limitations of observation targeting with an aircraft, 24–30-h fore-

casts were used to define the state variables for 36-h forecast

metrics. In this study, 6–9-h forecasts are used to define the state

variables for 11–13-h forecast metrics.
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was maximized. This 2-h period was chosen to capture

convective initiation and early convective evolution in

the forecasts. In 2017, the forecast metric was changed to

be the maximum vertical kinetic energy (MVKE) and a

dynamic procedure was developed to find 2-h periods

and areas that contain large variance of MVKE. To il-

lustrate the procedure on a given day, on 25 May 2017

CLAMPS was deployed near an area of large sensitivity

of MVKE averaged in the area shown in Fig. 2a to 6-h

forecasts of potential temperature averaged in the low-

est 1 km (Fig. 3a).2 The sensitivity appeared to be related

to uncertainty in temperature south of a cold front and

east of a dryline (Fig. 3a). The positive sensitivity values

near CLAMPS shown in Fig. 3a indicate that ensemble

members with warmer CBLs at 1800 UTC resulted in

higher values of MVKE averaged in the area shown in

Fig. 2a between 2100 and 2300 UTC.

While real-time plots of Eq. (1) are helpful in identi-

fying potentially sensitive areas, and provide a means to

interpret physical reasons for differences in the forecasts

(Torn and Romine 2015; Hill et al. 2016), quantitative

estimates of how an observation will impact the later

ensemble mean forecasts requires knowledge of the

observation value itself, so that one could determine

errors in the model state estimates. An observation

will not change the ensemble mean forecasts if there

is no error in the ensemble mean model state, re-

gardless of the sensitivity. For real observation tar-

geting, it can be difficult to determine ahead of time

when and where the model state will have significant

errors, and thus Eq. (1) can be difficult to exploit in

real time.

To better quantify how an observation will impact

forecasts, Ancell and Hakim (2007) derived an expres-

sion that estimates the reduction in the ensemble vari-

ance of J that would occur by assimilating an observation

at a particular location, termed the observation impact

value [see Eq. (6) in Torn and Hakim (2008)]. This

technique estimates the reduction of forecast variance

by only knowing observation error characteristics and

ensemble forecast values, Ji; the observation value itself

is not required. A key assumption is that a reduction in

ensemble forecast variance should translate into an in-

crease in forecast skill (given a well-calibrated ensem-

ble). An example of observation impact values that were

FIG. 2. (a) The thick black contour encloses the forecast metric area that maximizes the variance in maximum

vertical kinetic energy (MVKE) among the 30 members of the NCAR real-time ensemble averaged over 9–11-h

forecasts (valid at 2100–2300 UTC 25May 2017). (b) MVKE (m2 s22) averaged over the area shown in (a) with the

10 members with the highest (lowest) averaged MVKE averaged in the 9–11-h period (gray shading) are shown in

red (blue). (c) Histogram of the MVKE averaged in the area shown in (a) and over 9–11 h.

2 This example illustrates a trade-off that was often made in

deployingCLAMPS.While themaximum in sensitivity was located

to the north and west of the CLAMPS deployment location, it was

desirable to obtain as long of a time series of observations as pos-

sible prior to convective initiation that was also within the 6–9-h

period in which state variables were used to compute the sensitivity

fields. In this case, CLAMPS had a long ferry time that morning

and a longer time series of observations prior to convective initi-

ation was preferred over locating CLAMPS in the area with the

highest sensitivity, which would have taken too much time.
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produced in real time is provided in Fig. 3b. The model

state variable in this technique is a linear combination of

t, td, and the horizontal wind components (u and y) over

the lowest ;3 km AGL in 6-h forecasts. The values of

each dot in Fig. 3b give the hypothetical reduction in

the variance of 9–11-h MVKE averaged over the area

shown in Fig. 2a if observed lower-tropospheric profiles

of t, td, u, and ywere assimilated at the location of the dot

at 1800 UTC.

It should be noted that areas identified as having the

highest ensemble sensitivity for one variable are not

necessarily the same for other variables, and are not

necessarily the same areas where the possible variance

reduction from assimilation of observations is maxi-

mized. This leads to some ambiguity in where to target

for observations to maximize their impact. The obser-

vation impact values are directly proportional to the

forecast-metric-observation covariance [see Eq. (6) in

Torn and Hakim (2008)], meaning regions with large

ensemble variance in reflectivity are more likely to have

large observation impact values than regions with small

forecast-metric-observation covariance. Because the

ensemble variance is not directly related to the in-

novation (observation value minus the ensemble

mean value), there is no reason to expect that the

pattern of sensitivity values will be the same as that for

the observation impact values. Therefore, decisions

on where to target with CLAMPS were made sub-

jectively after considering the whole of the observa-

tion impact values and the sensitivity values among

several variables.

4. Assimilation experiment methods

a. Data assimilation and analysis system

The configuration of the experiments are summarized

in Fig. 4 and are described next. Version 3.6.1 of WRF-

ARW is used for the data assimilation experiments with

the same configuration (Table 2) as the NCAR real-time

ensemble that was used to derive the ESA fields, except

an ensemble of 80members is used for the forecasts here

rather than the 30 members used in real time. For each

case, a 15-km grid with a one-way 3-km nest is initialized

from the real-time NCAR-generated 15-km analyses valid

at 0600UTC. Forecasts from the 0.58GFS 0000UTC cycle

with WRF-VAR perturbations (Torn et al. 2006; Barker

et al. 2012) provide lateral boundary conditions for the

15-km grid. The 15-km analysis and the downscaled anal-

ysis on the 3-km grid are integrated together such that the

15-km grid provides lateral boundary conditions for the

3-km grid. The 3-km grid is centered near the location of

CLAMPS for each case (Fig. 1).

After a 6-h forecast spinup period starting at

0600 UTC, the ensemble adjustment Kalman filter

(EAKF; Anderson 2003) encoded in the Data Assimi-

lation Research Testbed (DART) software (Anderson

et al. 2009) is used to assimilate observations into the

80 model states starting at 1200 UTC. Observations are

assimilated every hour from 1200 to 1700 UTC then

FIG. 3. (a) The sensitivity of maximum vertical kinetic energy

(m2 s22) averaged over 9–11-h forecasts in the area shown in Fig. 2a

(MVKE) to the potential temperature averaged in the lowest 1 km

(u) in 6-h forecasts valid 1800 UTC 25 May 2017. Units are K21

since the base sensitivity values of m2 s22 K21 are normalized by

the ensemble standard deviation of MVKE within the metric area.

Positive (negative) values indicate that higher values of u in 6-h

forecasts at that location relate to more (less) MVKE. Hatched

areas show 95% statistical significance, that is, the absolute value of

the regression coefficient is greater than its 95% confidence bounds

computed from the ensemble data. CLAMPS was deployed at the

location of the star starting at;1800 UTC. The fronts and symbols

are drawn manually from a surface analysis. (b) Observation im-

pact values, or the hypothetical reduction in the variance ofMVKE

given the assimilation of t, td, u, and y below ;3 km AGL, valid at

1800 UTC. Front and dryline symbols are drawn manually from

MADIS METAR and mesonet observations.
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every 15min for a case-dependent 2–5-h period starting

at 1800UTC.The analysis from the final assimilation cycle,

the time ofwhich varies from2000 to 2300UTCamong the

cases (Table 3), is used to initialize 6-h forecasts produced

on the 15-/3-km grids for all 80 members. Observations

assimilated in both the 1-h and 15-min assimilation periods

include t, td, u, y, and surface altimeter from radiosondes

and surface stations (METAR, marine, and Oklahoma

Mesonet), as well as t, u, and y from the Aircraft

Communications Addressing and Reporting System

(ACARS). Specified observation errors follow NCEP

statistics as in Romine et al. (2016). Following Wheatley

et al. (2015), WSR-88D radar reflectivity and radial ve-

locity observations inside the 3-km domain are analyzed

every 15min onto a 6-km grid using a one-pass Barnes’s

analysis and are only assimilated in the 15-min assimilation

period. Radial velocity observations are only assimilated if

the gridded reflectivity observation is $10dBZ. Finally,

clear-air reflectivity observations are assimilated to sup-

press spurious storms, but all reflectivity observations

,0dBZ are first set to 0 to mitigate large analysis in-

crements (Wheatley et al. 2015). Specified errors for re-

flectivity (radial velocity) are 5dBZ (2ms21).More details

of the assimilation configuration are provided in Table 4.

b. AERI and DL assimilation experiments

AERIoe retrievals of t and td (converted from q),

and DL retrievals of u and y are only assimilated in the

15-min assimilation period. Because AERIoe retrievals

of t and q lose accuracy in cloudy air (defined to have

LWP $ 5 gm22; Turner and Löhnert 2014), only the

AERIoe retrievals below cloud base are retained for

assimilation (cloud base height is determined from the

zenith-pointing scans of the DL). The t and td retrievals

are cut off at 2 km AGL because the vertical resolution

of the profiles above those heights is often low, particularly

for q (Fig. 5a). For the DL retrievals, only those that fit a

sine function to the Doppler velocity curve with a root-

mean-square difference#1ms21 are retained as a way to

eliminate the more questionable VAD estimates. Fur-

thermore, only retrievals that were obtainedwith sufficient

aerosol backscatter, measured by a signal-to-noise ratio

$ 220dB (Pearson et al. 2009), are retained. Finally, the

few remaining DL retrieval points above 2km AGL are

ignored to match the cutoff height of the AERI retrievals.

After theQC steps above, a temporalGaussian filter with

an e-folding time of 3min is applied to both the AERIoe

and DL retrievals to create lightly smoothed profiles every

15min to match the time interval of the second assimilation

period. After smoothing in time, the DLwind retrievals are

smoothed lightly in the vertical (with an e-foldingdistanceof

60m). Examples of smoothed retrievals are shown in Fig. 6.

As noted earlier, AERIoe results in smooth vertical profiles

that reflect the rapid loss of independent information con-

tent with height (Turner and Löhnert 2014). This is ac-

counted for in the assimilation by using AERIoe retrieval

points that are spaced according to the vertical resolution

of the profiles estimated in the retrieval (Fig. 5a). For the

DL retrievals, the lightly smoothed wind profiles are line-

arly interpolated to the 40 vertical levels in the model.

Measurement uncertainties are quantified directly by

AERIoe as described in section 2a. However, this retrieval

error does not include representativeness error resulting

from unresolved scales and processes. The standard de-

viation of representation error for theAERIoe retrievals is

specified to be 2K for both t and td and the total obser-

vation error (the value used to specify observation error

variance in the assimilation) is then the sum of the repre-

sentation error and the height-dependent measurement

error returned by AERIoe. Likewise, the representation

FIG. 4. Summary of the model configurations described in the

text. The 15-km and 3-km domain sizes are the same for both the

real-time and retrospective experiments. The 3-km domain shown

is for the 25 May 2016 retrospective case but was moved as needed

for each case.

TABLE 2. Primary WRF-ARW options.

Parameter Outer domain Nested domain

Horizontal grid 415 3 325,

Dx 5 15 km

381 3 381,

Dx 5 3 km

Vertical grid 40 levels,

ptop5 50 hPa

Same

Time step (large) 60 s 12 s

Cumulus scheme Tiedtke None

PBL scheme MYJ Same

Microphysics Thompson Same

LW radiation RRTMG Same

SW radiation RRTMG Same

Land surface

scheme

Noah Same
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error for DL u and y is set to 1.5ms21, which is added to

the height-dependent measurement error returned by the

DLVAD retrieval. Statistics of the total observation error

distributions for t, td, and u/y are shown in Fig. 5b.

At least 90min of simultaneous AERI and DL data

were collected for each of the 12 cases, allowing for at

least 6 cycles in which the processed AERIoe and DL

retrievals are assimilated (Table 3). The control (CNTL)

experiments assimilate all observations except for the

AERIoe and DL retrievals. The experiments that add

the AERIoe and DL retrievals are referred to as the

PROF experiments. The time when the AERIoe and

DL retrievals are first assimilated is determined by the

start of the sampling period, and the time of the final

assimilation cycle for each case is chosen so that a 2-h

period of short-term forecasts (covering 1–3 or 2–4 h)

can be made to match the valid time of the forecast

variables evaluated in ESA. For example, MVKE in the

ESA fields for the 25 May 2017 case is evaluated over a

valid time of 2100–2300 UTC (9–11-h forecasts from the

real-timeNCAR ensemble; Fig. 2b). Therefore, the final

assimilation cycle for the 25 May 2017 experiments is

chosen to be 2000 UTC to produce 1–3-h forecasts valid

at 2100–2300 UTC. This design provides a way to eval-

uate the efficacy of the real-time ESA guidance, as well

as the ability of the AERI and DL to improve forecasts

of convective initiation and early convective evolution

on time scales applicable to short-term, convective

forecasting applications (e.g., the Warn-on-Forecast

initiative; Stensrud et al. 2009; Lawson et al. 2018).

c. Verification

As in many past evaluations of convection-allowing

models (e.g., Romine et al. 2013; Coniglio et al. 2016),

forecasts of convection are verified using the fractions

skill score (FSS) and fractions Brier score (FBS) (Roberts

and Lean 2008; Schwartz et al. 2010) given by

FSS5 12
FBS

FBS
worst

, (2)

where

FBS5
1

N
�
N

n51

[NP
f (i)

2NP
o(i)

]2 , (3)

TABLE 3. Periods of the AERIoe and DL retrievals used for the PROF experiments resulting in the number of assimilation cycles

shown, and a description of the convectivemode that later occurred (if any) in the environment that was sampled from the locations shown

in Fig. 1.

Date AERI/DL assimilation period (UTC) No. of cycles Convective mode

16 May 2016 1945–2300 14 High-precipitation discrete supercells

23 May 2016 1830–2300 19 Low-precipitation to classic discrete supercells

25 May 2016 1915–2100 8 Short-lived, low-precipitation supercells

26 May 2016 1845–2100 10 Mix of supercells/quasi-linear convective systems

27 May 2016 1845–2000 6 Discrete supercells

22 May 2017 1800–2000 9 Discrete supercells

25 May 2017 1815–2000 8 Discrete supercells

26 May 2017 2015–2200 8 None

27 May 2017 1945–2100 6 Mix of discrete supercells and bowing line segments

31 May 2017 1815–2000 8 Mix of multicells/discrete supercells

11 Jun 2017 2030–2300 11 None

12 Jun 2017 1830–2000 7 Cluster of supercells

TABLE 4. Primary DART options. Choices for the localizations follow Wheatley et al. (2015) (radar), Coniglio et al. (2016) (radio-

sonde), and Sobash and Stensrud (2013) (mesonet). Horizontal localization for the AERI, DL, and ACARS observations were made

smaller than that used for the radiosonde observations because they are assimilated more frequently.

Parameter Value

Filter type Ensemble adjustment Kalman filter

Adaptive inflation 1.0, 0.6 (initial mean, spread)

Localization type Gaspari–Cohn

Outlier threshold 3.0

Radiosonde horizontal (vertical) localization half-width 240 (4) km

ACARS horizontal (vertical) localization half-width 120 (4) km

AERI and DL horizontal (vertical) localization half-width 120 (4) km

METAR/maritime horizontal (vertical) localization half-width 60 (4) km

Surface mesonet horizontal (vertical) localization half-width 30 (4) km

Radar horizontal (vertical) localization half-width 9 (3) km
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The neighborhood probability (NP) is the fraction of grid

points within a surrounding neighborhood that contains

values exceeding a threshold of some field (to allow for

somemismatch between observations and forecasts to still

be counted as a ’’hit’’). The subscripts f (i) and o(i) rep-

resent the ith grid box in the forecast and observed fields,

respectively, and N is the number of grid points in the

verification domain. FSS values range from 0 (no skill) to

1 (perfect),3 whereas an FBS of 0 is considered perfect

and increasing FBS values indicate a decreasing correspon-

dence between the forecasts and observations. FBSworst is

achieved when there is no overlap of nonzero fractions and

represents a low-accuracy reference forecast that is needed

to assess skill (through the FSS).

The forecast field used in the verification is simulated

composite reflectivity and the observed field is the

NSSLMulti-RadarMulti-Sensor (MRMS) 0.018 by 0.018

analysis of composite reflectivity (Zhang et al. 2016)

interpolated to the 3-km WRF-ARW grid. Using a

threshold4 of 35 dBZ, the NPs for each member are

computed from these reflectivity fields and are then

averaged across all ensemble members, which is then

used to compute the FSS as in Schwartz et al. (2010). The

verification domain covers only the area of convection

that evolved within and near the ESA region to prevent

FSS sensitivities that can occur when the ‘‘wet area’’

ratio of the domain is small (Mittermaier and Roberts

2010) and to mitigate the influence of errors from con-

vection in the 3-km domain that does not evolve within

the environment that was sampled.

Although many reflectivity thresholds and neighbor-

hood sizes were tested, we focus on results using 35 dBZ

and a square neighborhood of 8 grid cells giving a

neighborhood size of;25kmby 25kmas this combination

is found to provide a good representation of skill that

matches visual inspection of the differences. The in-

terpretation of the relative differences in FSS is not

FIG. 5. Vertical profiles of (a) the vertical resolution (km) of the AERI t (red) and q (green) retrievals and (b) the

total observation error (standard deviation) of t, td, u, and y (purple) specified in the assimilation. Solid (dashed) lines

depict medians (10th and 90th percentiles) across all 12 cases. Only points with at least 30 samples that meet the QC

criteria described in the text are included. Filled circles on themedian curves in (a) depict the heights of a typical set of

AERIoe retrieval points that are assimilated as determined by the thinning procedure described in the text.

3 FSS values $;0.5 may represent forecasts with ’’useful’’ skill

(Roberts and Lean 2008), but the absolute values of FSS are less

important here than changes in FSS between experiments.

4 To examine the influence of bias on the results, tests were

performed using the percentile method to define the reflectivity

thresholds (Mittermaier and Roberts 2010). The FSS and FBS

comparisons were found to be nearly identical when using this bias-

adjustment technique versus using a constant 35-dBZ threshold.
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sensitive to these choices. This neighborhood reduces the

influence of errors with spatial scales close to and smaller

than the smallest resolvable scale of the grid (# ;4–6D;
Skamarock 2004) while retaining scales immediately

larger than individual thunderstorms. Inclusion of these

relatively small scales in the verification is important for

the goal of assessing the impact of observations on en-

semble forecast systems that aim to provide skillful

storm-scale forecast guidance (e.g., Stensrud et al. 2009;

Wheatley et al. 2015; Lawson et al. 2018).

5. Findings

a. 25 May 2017 case

Assimilation of the AERI and DL retrievals results in

noticeable changes to the ensemble mean fields in the

CBL for all cases. The typical changes to the ensemble

mean in the CBL, regarding both the spatial extent of

the changes (governed by the choice of covariance lo-

calization; Table 4) and the magnitude of the changes,

are illustrated in Fig. 7 for the 25 May 2017 case. The

flow-dependent and nonisotropic nature of the EAKF

covariances results in a pattern of cooling and moist-

ening in the CBL that reflects the shape of a dryline to

the west and a cold front to the north (Figs. 7e,f). The

pattern reflects awestward shift of the dryline in the PROF

ensemble mean, which is also reflected in the easterly

vector wind difference. This westward shift results in a

dryline position closer to where it was observed. This

westward shift to the dryline, and the associated conver-

gence in the CBL, results in more divergence near the

CLAMPS location in the PROF experiment with a slight

cooling and drying also noted there. The result is an en-

vironment more supportive for convection farther west,

within far-western Kansas, and an environment less sup-

portive of convection near CLAMPS.

Differences in neighborhood ensemble probabilities

(NEPs)5 for the 25 May 2017 case are small through the

first 2-h of the forecasts (Figs. 8a–c). After 2 h, as the

convection interacts with the modified environment,

NEPs that are 5%–10% higher in the PROF experiment

emerge near the location of the supercell over north-

western Kansas and NEPs that are 5%–15% smaller in

the PROF experiment emerge to the east of this su-

percell where no storms were observed (Figs. 8e,f). This

westward shift of NEPs in the PROF experiment to a

location over the supercell is consistent with the west-

ward shift in the dryline closer to where it was observed.

This dipole in NEP differences continues through 4h,

with increases of NEPs up to 10% that overlap with the

eastern portion of what evolved into a small cluster of

supercells. Furthermore, decreases in NEP continue to

be seen up to 15% in the PROF experiment where no

storms were observed to the northeast of the supercell

cluster (Fig. 8i). By 5 h, the pattern of the differences

becomes much less coherent and the magnitudes of the

NEP differences become small again (Fig. 8l).

Consistent with the negligible NEP differences

through 2-h forecasts, the FSS is nearly identical for both

experiments through about 2 h (Fig. 9). Also consistent

with the NEP differences shown in Fig. 8 for 3- and 4-h

forecasts, the FSS is larger for the PROF experiment at

these times, with up to 95% confidence in the differences

at 3 h (Fig. 9). The FSS differences become small again

after 4 h (Fig. 9).

b. Impacts over all twelve cases

The NEP differences provide a helpful way to visualize

the impacts on the forecasts and are presented for all 12

cases (Fig. 10) at a time when the FSS differences (PROF

minus CNTL) were large for that case. While the NEP

FIG. 6. Time–height cross sections of postprocessed AERIoe

retrievals of (a) temperature (b) water vapor mixing ratio and DL

retrievals of (c) wind direction and (d) wind speed made from

1952 UTC 16 May to 0314 UTC 17 May 2016 from the location

indicated on Fig. 1. The profilers are effective at sampling sub-

hourly changes in the boundary layer state, like the increase in

moisture below 500mAGL beginning at 0110UTC seen in (b) and

the substantial backing and strengthening of the winds after

0030 UTC seen in (c) and (d).

5 NEPs are simply the ensemble mean of the neighborhood

probabilities as described in Schwartz et al. (2010).
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difference magnitudes are rather small—mostly ,20%—

the positive differences (higher probabilities in the PROF

experiments) tend to overlap or are close to observed

storms and the negative differences (lower probabilities

in the PROF experiments) tend to be in areas devoid

of storms.

Figure 11 presents the FSS for all twelve cases. Pre-

senting the FSS differences for each case more

FIG. 7. (a)–(f) Ensemblemean potential temperature (K), water vapormixing ratio (g kg21), winds (full barbs are

10 kt, half barbs are 5 kt in a-d), and their difference (PROF 2 CNTL) for the final assimilation cycle valid

2000UTC 25May 2017 onmodel level 6, or approximately 650mAGL. Symbols in (e) and (f) represent themanual

surface analysis of MADIS METAR and mesonet observations and are drawn independent of the ensemble

analyses.
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effectively conveys the overall impacts of assimilating

the AERI and DL retrievals compared to a single ag-

gregate across all cases because the forecast times when

the impacts are seen vary across the cases (Fig. 11)

resulting in muted impacts when aggregated. The red

(blue) shading in Fig. 11 displays when the PROFminus

CNTL (CNTL minus PROF) FSS is $0.01. The 95%

confidence intervals can be used to assess the confidence

FIG. 8. Neighborhood ensemble probabilities of simulated composite reflectivity $35 dBZ (color shading) using ;25 km by 25 km

neighborhoods for the (left) PROF experiment, (middle) CNTL, and (right) their difference for the 25May 2017 case for 2-, 3-, 4-, and 5-h

forecasts (valid 2200 UTC 25 May to 0200 UTC 26 May 2017). The black contours are the MRMS analysis of composite reflectivity

$35 dBZ. The black rectangle encloses the area used to compute the FSS.
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in those differences; the closer the edge of the interval is

to zero, the more confidence there is that the differences

are statistically meaningful. Although most of the differ-

ences have confidence intervals that overlap zero, Fig. 11

shows that there are many more times when the FSS is

larger for the PROF experiments than for the CNTL

experiments. This is evidence that the AERI and DL

assimilation is providing frequent positive impacts, al-

though the time period, duration, and magnitude of the

positive impacts do vary substantially across the cases. A

time when positive forecast impacts appears to be some-

what consistent is around 3h into the forecasts. The two

cases that do not show improvement around 3h are the

27 May 2016 and 26 May 2017 cases; the background

environment was changed very little by theAERI andDL

assimilation in the former (because of an already accurate

background analysis and only six assimilation cycles) and

no convection was observed in the area in the latter.

Some mention of the near-zero FSS for the 26 May

2017 case (Fig. 11h) is warranted. The zero FSS reflects

times when there were no storms observed in the evalua-

tion domain for this case. When there are no observed

storms, the FSSwill be 0 for both forecasts regardless of the

forecast NPs for either ensemble because NPo(i) is 0, re-

sulting in a FSS of 0 [as can be seen in Eqs. (2)–(4)].

However, in the 26 May 2017 case the PROF experiment

produces more spurious storms than the CNTL experi-

ment, and thus should score worse than the CNTL exper-

iment. To better compare the forecasts in cases with few or

no storms in the evaluation domain, Fig. 12 presents the

FBS for four such cases since higher nonzero NPs will re-

sult in higher FBS values (a poorer score) regardless of the

occurrence of observed storms [see Eq. (3)]. The FBS is

indeed lower for the CNTL experiment for the 26 May

2017 case (Fig. 12c). For the other cases, little change in the

interpretation of the relative accuracy of the two experi-

ments is seenwhenusing theFBS, as thePROFexperiment

also scores higher from 1 to 6h for the 22 May 2017 and

11 June 2017 cases (two cases in which the PROF experi-

ment reduced the number of spurious storms in the area),

and the differences in the PROF and CNTL experiments

remain relatively small for the 25May 2016 case (although

the positive differences are seen at different times).

c. Relationship of impacts to ESA fields

Overall, no robust relationships between the real-time

ESA fields to actual forecast impacts are found; the

magnitude of the observation impact values did not re-

late linearly to the magnitude of the changes in either

forecast skill or forecast variance (the standard de-

viation of the forecasts can be seen in Fig. 11). Likewise,

no clear statistical relationships between sensitivity to q,

u, and y averaged in the lowest 1 km and the ensemble

mean reflectivity are found. This is not surprising be-

cause multiple observation types from the profiler re-

trievals were assimilated (t, td, u, and y) and the sign of

the sensitivity of ensemble mean reflectivity to each in-

dividual field may not be the same; that is, assimilation

of t observations may pull the ensemble mean one way

and assimilation of u observations might pull it the other

way. However, there is some evidence that the sensi-

tivity for potential temperature averaged in the lowest

1 km AGL (u1km) to the ensemble mean reflectivity

(Table 5) may have a larger influence than the other

variables. In general, Eq. (1) predicts the sign and

magnitude of the change in the forecast variable J to a

change in a state variable x, so for a positive sensitivity

(›J/›x. 0), a positive (negative) change in x should re-

sult in a positive (negative) change in J. Likewise, for a

negative sensitivity (›J/›x, 0), a negative (positive)

change in x should result in a positive (negative) change

in J. As seen in Table 5, the u1km sensitivity predicted the

sign of the actual difference in ensemble mean re-

flectivity correctly in 11 out of 12 cases (although it is

probably chance that the correct sign was predicted for

the 22May 2017 case given the very small change in u1km
of 20.02K). For example, the positive u1km sensitivities

near CLAMPS for the 25 May 2017 case (Fig. 3a),

combined with the actual decrease in u1km resulting from

FIG. 9. The fractions skill score (left axis) for the PROF exper-

iment (solid red), the CNTL experiment (solid blue), and their

difference (solid black) computed in the moving area indicated in

Fig. 8 for a neighborhood size of 8 by 8 grid points (;25 km by

25 km). The 95% confidence intervals shown in the shaded area

around the FSS difference is computed using a bootstrap method

with 1000 resamples outlined in Hamill (1999) where the ensemble

members are used as the independent samples in both sets. Dashed

lines indicate the ensemble standard deviation in simulated com-

posite reflectivity (right axis) for both experiments.

1160 MONTHLY WEATHER REV IEW VOLUME 147



FIG. 10. The difference in neighborhood ensemble probabilities (NEP) between the PROF experiment and the

CNTL experiment for ;25 km by 25 km neighborhoods for all 12 cases for a forecast time with the largest positive

difference in FSS (shown in the title of each panel). The black contours are theMRMS analysis of composite reflectivity

$35 dBZ. All difference magnitudes for the 27 May 2016 case shown in (e) are less than 2.5% but it is included for

completeness. Improvements in the forecasts can be visualized by positive differences (warm colors) that overlap or are

close to the observed storms and/or negative differences (cool colors) that are not close to observed storms. The rectangle

encloses the area used for the FSS computations and the purple star indicates the location of CLAMPS earlier in the day.
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FIG. 11. As in Fig. 9, but for all twelve cases. Red (blue) shading indicates the times when the FSS for the PROF (CNTL)

experiment is at least 0.01 larger than the FSS for the CNTL (PROF) experiment, thereby indicating higher skill for the PROF

(CNTL) experiment.
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the assimilation of the AERI and DL retrievals (Fig. 7e

and Table 5), predicts that the ensemblemean ofMVKE

will be lower in the area shown in Fig. 2a in 1–3-h

forecasts. Using the simulated reflectivity as a proxy for

MVKE, we see that indeed the ensemblemean reflectivity

was lowered in this approximate area (Table 5), which can

be seen by the larger magnitudes of the negative NEPs

than those for the positive NEPs in Figs. 8c and 8f. An

indication that these results may not be robust is that the

one case (12 June 2017) in which the u1km sensitivity did

not predict the change in ensemble mean reflectivity

correctly had by far the largest u1km sensitivity values.

Only the sensitivity for lowest-1-km-averaged u (out of

t, td, u, and y) predicted the sign of the ensemble mean

reflectivity correctly for this case.

The interesting results for potential temperature

sensitivity aside, there are many possible reasons for the

lack of identified relationships between the ESA fields

and the forecast impacts. Attempts were made to locate

CLAMPS in an area with at least moderate sensitivity

or observation impact as shown in Fig. 3, but this was

not always possible because of the numerous logistical

challenges of mobile ground-based observation target-

ing. Furthermore, the forecast fields used for the sensi-

tivity calculations were averaged in space and time prior

to the development of deep convection in an attempt

to produce more robust and effective sensitivity fields

(Torn and Romine 2015). However, the averaged sen-

sitivity fields still contained large mesoscale gradients

and noise, and likely still contained sampling error re-

lated to a relatively small ensemble (30 members) (e.g.,

Fig. 3). Therefore it was sometimes difficult to relate the

sensitivity fields to physical processes like that shown for

the 25 May 2017 case in section 3. Of course sampling

FIG. 12. As in Fig. 9, but for the FBS for the four cases with few or no observed storms in the evaluation domain.

For the FBS, values closer to zero indicate better scores, so red (blue) shading indicates the times when the FBS for

the PROF (CNTL) experiment is at least 0.01 smaller than the FBS for the CNTL (PROF) experiment, thereby

indicating higher accuracy for the PROF (CNTL) experiment.
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error from the limited sample size of cases is another

problem. Yet another potential problem is that the

experiments—and real-time ESA guidance—were de-

signed to capture the initiation and early evolution of

convection in 1–3-h forecasts. Predicting the first storms,

an inherently small-scale and often nonlinear process,

has long been recognized as the biggest challenge for

storm-scale NWP (Lilly 1990; Stensrud et al. 2009). It is

not surprising that the skill of convection-allowing

models of predicting the timing of convective initiation

within tens of minutes and tens of kilometers is still

highly limited (Bytheway and Kummerow 2015; Hill

et al. 2016; Burlingame et al. 2017). Applying ESA fields

to this prediction problem is precarious because they

rely on linear relationships. More robust relationships

could be hindered further because the ESA fields are

generated from 6–9-h forecasts, and small errors in 6–9-h

forecasts of the CBL could lead to large errors in forecast

metrics related to convection, even those metrics that are

averaged over space and time. The coherency in time of

the ESA fields was not examined here and should be ex-

amined in future studies to assess the general utility of

ESA techniques for convective-scale forecasts.

6. Experiment sensitivities

The sensitivity of the results shown in Figs. 10 and 11

was tested in numerous ways, including by varying the

reflectivity threshold, neighborhood sizes, and evalua-

tion domain sizes. Parameters in the EAKF procedure

also were varied, including the covariance localization

and representativeness errors in the AERI and DL re-

trievals. There are no noteworthy differences in the in-

terpretation of the results by changing these parameters

of the assimilation and verification within reasonable

bounds. Regarding the lack of sensitivity to neighbor-

hood size in the verification, this is different than what

was found in Coniglio et al. (2016) for forecast im-

pacts to the assimilation of radiosonde observations. In

Coniglio et al. (2016), larger differences in FSS were

seen among all eight of their cases as the neighborhood

size increased from ;25km by 25km to ;100 km by

100 km. Here, the FSS differences are similar for both

neighborhood sizes. This implies that the improvements

to the forecasts in this study tend to be made on smaller

spatial scales than those made in Coniglio et al. (2016),

which can be seen in Fig. 10 with positive FSS differ-

ences remaining rather close to the observed storms if

not directly overlapping them. The reasons for these

differences in results between the studies is not clear,

but could indicate the benefit of having subhourly

CBL observations versus observations taken at intervals

equal to or greater than hourly as done with the radio-

sondes in Coniglio et al. (2016).

However, the positive impacts within ;25 km by

25km neighborhoods seen in this study are often smaller

than those seen in Coniglio et al. (2016). More specifi-

cally, there were four cases in Coniglio et al. (2016) in

which the 95% confidence interval for the ;25km by

25km neighborhood FSS differences did not overlap

with zero for at least a 1-h period [see Fig. 17 in Coniglio

et al. (2016)], whereas there is only one case in this study

in which that occurs (Fig. 11k). There are many possible

reasons for this difference, one being the relative impact

of remotely sensed AERI and DL retrievals versus

in situ radiosonde observations, including data resolution,

quality, and availability of observations above 2 km.

Another possible reason is that in all cases in Coniglio

et al. (2016) there were multiple radiosonde observa-

tions obtained over amesoscale network, whereas in this

study observations from only one location were made.

The Southern Great Plains (SGP) site of the Department

of Energy Atmospheric Radiation Measurement (ARM)

program now contains a network of five AERIs and DLs

spread over north-central Oklahoma (Wulfmeyer et al.

2018). The impacts of retrievals from these systems (and

from the temporary network of research AERIs and

DLs used for PECAN;Geerts et al. 2017) on forecasts of

convection are currently being investigated at NSSL

and other institutions to help determine if the skill im-

provements, and the confidence in the skill improvements,

TABLE 5. (left) The near-CLAMPS 0–1-km AGL mean poten-

tial temperature (u1km) sensitivity to the 1–3-h forecast ensemble

mean simulated reflectivity averaged in the ESA metric region.

(middle) The actual near-CLAMPS ensemble mean difference in

u1km (PROF-CNTL) resulting from the assimilation of the AERI

and DL observations. (right) 1–3-h forecast ensemble mean sim-

ulated reflectivity difference (dBZ) averaged in the ESA metric

region. The sensitivity values have units of K21 since the base

sensitivity values of dBZ K21 (in 2016) and m2 s22 K21 (in 2017)

are normalized by the ensemble standard deviation of the forecast

metric within the metric area.

Date

6–9-h mean u1km
sensitivity

Actual u1km
difference (K)

Ensemble mean

reflectivity

difference (dBZ)

16 May 2016 10.20 10.56 10.38

23 May 2016 20.28 11.20 20.34

25 May 2016 10.04 10.35 10.02

26 May 2016 20.07 11.03 21.23

27 May 2016 20.19 10.21 20.07

22 May 2017 11.08 20.02 20.39

25 May 2017 13.39 20.61 20.14

26 May 2017 22.22 20.35 10.34

27 May 2017 12.20 0.32 10.19

31 May 2017 11.16 20.61 20.06

11 Jun 2017 14.87 21.04 21.61

12 Jun 2017 17.40 20.63 10.19
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would increase if retrievals from a network of profilers are

assimilated versus from one targeted system of profilers.

One notable sensitivity of the forecast impacts to the

assimilation procedure was found and relates to the

number of cycles in which AERI and DL data are

assimilated. While this study was designed to focus on

convective initiation and early convective evolution,

experiments were produced that extended the assimi-

lation period into the afternoon/early evening during the

mature stage of convection. For example, an experiment

FIG. 13. As in Fig. 8c, but for the 25 May 2017 experiment initialized at 2300 UTC for forecasts every hour from

1–6 h (valid at 0000–0500 UTC 26May 2017). Twomaxima in NEP differences described in the text are pointed out

in (c).
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was performed for the 25 May 2017 case in which data

were assimilated through 2300 UTC rather than

2000 UTC giving 20 cycles instead of 8 (Table 3), with

storms occurringwithin 15 of those cycles instead of 4 in the

2000 UTC-initialized case. This longer period of assimila-

tion does little to reduce initial condition errors of the

background environment, which reflects the well-calibrated

and stable nature of the NCAR ensemble (Fig. 14). How-

ever, extending the assimilation period allowsmore time for

storms to evolve and mature within the cycled analysis and

contributes to reduced errors for reflectivity and improve-

ments to the spread/error relationship6 for both reflectivity

and radial velocity (Fig. 15).

Despite the better analysis of ongoing storms, the

AERI and DL retrievals are still able to make positive

impacts to the forecasts in the 25May 2017 case, and the

impacts are even amplified. The additional cycles of

AERI and DL retrievals allows for the impacts to be-

come well established in the analysis in the presence of

the storms (several other cases not shown also display

this behavior). For example, the final analysis at

2300 UTC for the 25 May 2017 case shows more me-

soscale structure to the amplified difference fields

(Fig. 16). As for the 2000 UTC-initialized case, the dif-

ferences in NEP continue to show an improvement in

the placement of the cluster of supercells (Fig. 8), but the

maximum differences are amplified (now 20%–25%)

both within the area where NEP is larger for the PROF

experiment near the supercell cluster and where the

NEP is smaller for the PROF experiment for the spu-

rious storms to the northeast of the supercell cluster

(Fig. 13a). This is for the 1-h forecasts, but the later

forecasts show that these larger differences in NEP are

not just because of the shorter lead time; the differences

in FSS for the 3-h forecasts from the 2300UTC-initialized

case are larger than those for the 3-h forecasts from the

2000 UTC-initialized case (cf. Fig. 13c and Fig. 8c). The

PROF experiment for the 2300 UTC-initialized case

even shows a pattern of increases in NEPs, most well

defined at 3 h (Fig. 13c), that reflect the two separate

supercell clusters that were observed.

The larger NEP differences produce larger FSS dif-

ferences for the 2300 UTC-initialized case compared to

the 2000 UTC-initialized case (cf. Fig. 9 and Fig. 17).

These improvements aremade despite an increase in the

CNTL FSS for the 2300 UTC-initialized case compared

to the CNTL FSS for the 2000 UTC-initialized case

(;0.65–0.70 for the former and ;0.55–0.65 for the lat-

ter). These results give confidence that the AERI and

DL retrievals can continue to provide improved meso-

scale initial conditions that result in improved near-

storm-scale forecasts of convection even when storms

are well established in the initial condition and when the

baseline skill is already quite high within ;25km by

25km neighborhoods. This result could be applicable to

efforts to improve the mesoscale background environ-

ment for the developmental Warn-on-Forecast system

(Jones et al. 2018; Lawson et al. 2018) and for current

operational convection-allowing models (Benjamin et al.

2016). These results justify efforts to explore operational

FIG. 14. Ensemble mean innovations (observation minus fore-

cast), root-mean-squared innovation (RMSI), and total ensemble

spread (observation standard deviation plus the ensemble standard

deviation) evaluated for the METAR 2-m temperature and dew-

point observations for the 25 May 2017 experiment in which the

assimilation period was extended to 2300 UTC. The number of

observations assimilated at each time is shown in (c). The evalua-

tion area was restricted to a 108 latitude by 128 longitude area

centered on CLAMPS.

6 Root-mean-square innovations that are comparable to the total

ensemble spread (the sum of the assumed standard deviation of the

observation error and the ensemble standard deviation) indicate a

well-calibrated ensemble.
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implementation of observing systems that can improve the

mesoscale background analysis for convection-permitting

ensemble forecast systems.

7. Summary and conclusions

In 2016 and 2017, the mobile ground-based profiling

system operated by NSSL (CLAMPS) was deployed

in the preconvective and near-storm environments in

the U.S. Great Plains. Retrievals of temperature and

water vapor mixing ratio from an Atmospheric Emitted

Radiance Interferometer (AERI) and profiles of hori-

zontal wind components retrieved from a Doppler lidar

(DL) were obtained at locations guided by ensemble

sensitivity analysis. The goal is to examine the impact of

assimilating these profiles on short-term (1–6h) fore-

casts of the initiation and early evolution of convection

produced by a cycled ensemble analysis and forecasting

system. Observing systems like these that can profile the

above-ground state in the lowest few kilometers every

2–3min could be especially important for convective

weather applications since the current upper-air radio-

sonde network is too coarse in space and time to capture

mesoscale details than can be important for convective

evolution. Furthermore, retrievals of the boundary layer

state from satellites is currently, and will remain in the

near future, insufficient to capture details of the CBL

(e.g., profiles of the vertical wind shear and moisture

depth) that also can be important for convective weather

forecasting.

FIG. 16. As in Figs. 7e and 7f, but for the 25May 2017 experiment

in which the assimilation period was extended to 2300 UTC (the

valid time of the figures).

FIG. 15. As in Fig. 14, but for reflectivity and radial velocity

observations. The evaluation area was restricted to a 2.58 latitude
by 38 longitude area centered on CLAMPS.
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The analysis and forecast system used here was based

on and initialized from the real-time NCAR ensemble.

For this study, the analysis was then partially cycled

with hourly to 15-min updates on both a meso- and

convective-scale domain. Assimilation was performed us-

ing the EAKF within WRF-DART and included multiple

sources of observations that are routinely assimilated in

current operational systems, as well as WSR-88D reflec-

tivity and radial velocity observations, in order to provide a

baseline analysis with errors akin to what can be produced

operationally. Experiments were performed with assimi-

lating the AERI and DL retrievals together to emulate an

observing system that can capture both thermodynamic

and kinematic properties of the boundary layer simulta-

neously (which, in the opinion of the authors, is how such a

ground-based profiling system should be proposed as an

operational system). The duration of the AERI and DL

assimilation varied from 1.5 to 5h and both analyses and

forecasts were produced on a 3-km grid.

The forecast impacts are compared through neigh-

borhood ensemble probabilities (NEPs) of simulated

reflectivity$35dBZ in;25km by 25 km neighborhoods

to analyses of observed reflectivity. Comparisons of the

fractions skill score (FSS), an objective metric that uses

the NEPs, indicate relatively few instances of high sta-

tistical confidence in the changes made to the FSS by

assimilating the AERI and DL retrievals. However,

there are far more times when the FSS increases than

when the FSS decreases in the 1–6-h forecast period by

assimilating the AERI and DL retrievals. The time of

maximum forecast impact and the durations of the

positive impacts are variable across the forecast period.

However, the potential to impact forecasts is best seen

around 3h, at which time 10 out of the 12 forecasts show

an increase in FSS. These results are not sensitive to the

reflectivity threshold or the neighborhood size.

Targeting locations for CLAMPSwere guided by real-

time ensemble sensitivity analysis, similar to how it was

applied in MPEX (Weisman et al. 2015) but on much

shorter time scales. The hope was that this guidance

would increase the likelihood that CLAMPS would

sample in an area in which the later forecasts were

sensitive to the state of the CBL, which is especially

important when evaluating impacts from observations

taken at only one location. However, this approach also

served as a means to evaluate the ability of ESA fields to

explain actual impacts made to forecasts for convective

weather applications. To that end, it is difficult to find

any consistent relationships between the actual differ-

ences in ensemble spread and skill that result from as-

similating the observations to both the observation

impact values and the forecast sensitivity to individual

state variables in the CBL. Many possible reasons for

this lack of consistent relationships are discussed above.

One possible exception is the forecast sensitivity to the

potential temperature averaged in the lowest 1 km

AGL. The change in ensemble mean reflectivity that

resulted from the assimilation of the AERI and DL re-

trievals was predicted correctly by the potential tem-

perature sensitivity fields in 11 out of 12 cases.

This study provides evidence that forecasts can be

impacted positively by AERI and DL retrievals, even

when the retrievals are assimilated through limited

cycles (as few as six 15-min cycles) and from only

one system at one location. This result is encourag-

ing because the experiments tackled the particularly

challenging problem of convective initiation and early

convective evolution. An operational system of ground-

based profilers would likely not be mobile like the one

used here, and would not be limited to one system, but

rather would likely be composed of a network of fixed

systems, similar to that deployed at the ARM-SGP site.

The impacts of retrievals from this site (and from the

temporary network of researchAERIs andDLs used for

PECAN; Geerts et al. 2017) on forecasts of convection

are currently being investigated at NSSL and other in-

stitutions to help determine if the skill improvements,

and the confidence in the skill improvements, would

increase if retrievals from this network of profilers are

assimilated versus from one targeted AERI/DL system.

Furthermore, an operational analysis and forecast system

would likely be introducing the AERI and DL retrievals

through continuous or partial cycles, in which data is

assimilated throughout the morning rather than being

introduced at 1800–2000 UTC as in the experiments

performed here (tests did show that a longer assimilation

FIG. 17. As in Fig. 9, but for the forecasts for the 25 May 2017

experiment initialized at 2300 UTC.
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period did translate into improvements in skill). Despite

these rather large impediments, the results still provided

evidence that theAERI andDL retrievals can positively

impact forecasts and warrants continued exploration of

the AERI and DL as a means to more frequently ob-

serve the above-ground conditions in the lowest few

kilometers of the atmosphere.
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