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Machine learning can improve handling large volumes of observations, modeling, analysis, and 

forecasting of the environment by increasing the speed and accuracy of computations, but 

success requires great care in designing and training the machine learning models.

LEVERAGING MODERN 
ARTIFICIAL INTELLIGENCE FOR 
REMOTE SENSING AND NWP

Benefits and Challenges

Sid-Ahmed Boukabara, Vladimir Krasnopolsky, Jebb Q. Stewart, Eric S. Maddy, 
Narges Shahroudi, and Ross N. Hoffman

T	he purpose of this article is to provide evidence,  
	based on specific examples, mostly remote  
	sensing and NWP examples, that AI has tre-

mendous potential for being used successfully in 
meteorology and for transforming the exploitation 
of environmental data in the future. (See appendix 
for a list of acronyms.) The authors believe that AI 
will fundamentally change how we do business in 
a wide range of our activities, including research, 
operations, and communication with users. This 
article expands on the discussion initiated by 

Boukabara et al. (2019b) by providing an introduc-
tion to those readers not yet conversant with AI and 
also a partial review of AI activities in meteorology 
for those who want to investigate more deeply. A 
complete review of the topic would be lengthy, and 
this article focuses on remote sensing and NWP. 
For an overview of cutting-edge research in AI for 
remote sensing and NWP, the interested reader 
is referred to the proceedings of a recent NOAA 
workshop (www.star.nesdis.noaa.gov/star/meeting 
_2019AIWorkshop.php).
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AI has already proven to be a truly transforma-
tional and value-enhancing, disruptive technology 
in a variety of applications: autonomous vehicles, 
music generation, forecasting financial markets, 
speech recognition, smart assistance, quantum 
physics, medical diagnosis, and more (Sejnowski 
2018). Already, various forms of AI, including ML 
(see sidebar “Machine learning and artificial neural 
networks”), have been applied with varying levels 

of success to many satellite remote sensing and 
NWP problems (Haupt et al. 2008; Hsieh 2009; 
Krasnopolsky 2013), ranging from remote sens-
ing (Ball et al. 2017) to severe weather prediction 
(McGovern et al. 2017). In operational applica-
tions to date, AI has occupied only what might 
be termed “niche” applications, and these limited 
successes have been hard fought (e.g., Chevallier 
and Mahfouf 2001; Cintineo et al. 2014). Howev-
er, AI demonstration projects have shown much 
promise for a wide range of geophysical problems 
from identifying critical situations to aid human 
interpretation (e.g., Pavolonis et al. 2019), to dis-
covering new relationships in large datasets (e.g., 
Schlef et al. 2019), and to correcting model forecasts 
(e.g., Gagne et al. 2017; Campos et al. 2019). It is 
now clear (see references cited as examples in the 
body of this essay) that AI approaches, including 
recent advances in ML technology, such as Trans-
fer Learning and Long and Short Term Memory 
Networks (LSTMs; Hochreiter and Schmidhuber 
1997), Deep and Extreme Learning (Schmidhuber 
2015; Goodfellow et al. 2019), and Computer Vision, 
have the potential to meet increasing requirements 
for and by nowcast and forecast products, includ-
ing numerical and statistical weather forecasts and 
climate projections. Our discussion focuses on 
and our examples are generally drawn from global 
NWP, ranging from satellite data preprocessing 
to forecast postprocessing. This focus ref lects the 
authors’ background and expertise, but of greater 
importance is that there are significant challenges 
and opportunities in global NWP due to its relative 
technical maturity, severe latency (i.e., timeliness) 
requirements, and the abundance of unexploited 
environmental observations.

The following sections assess and illustrate the 
use of AI and specifically ML to augment or replace 
many components of the NWP processing chain—
the processing chain that adds value at each of the 
series of steps from collecting and preprocessing 
Earth observations to the postprocessing and issu-
ance of forecasts and warnings. As will be shown in 
the examples provided below, ML can 1) speed up 
and improve the processing of satellite data (quality 
control, gap filling, retrievals, etc.), 2) facilitate data 
assimilation and initialization of numerical weather 
and climate models, 3) speed up and improve model 
physics in numerical models, and 4) improve post 
processing of numerical model outputs. The “Satel-
lite remote sensing and NWP challenges and ML” 
section highlights some of the major challenges 
facing satellite remote sensing and NWP and, in 

The artificial intelligence (AI) technique of machine learn-
ing (ML) estimates an output (scalar or not) from a set 

of inputs. The “machine” may be an artificial neural net-
work (ANN), a decision tree, a support vector machine, a 
Bayesian network, a genetic algorithm, etc. ANNs are the 
most common form of ML used in the examples and cita-
tions of this article. In a trained ANN the strengths of the 
interactions between neurons are optimized (i.e., trained) 
to best fit data from a training set of inputs and outputs. 
ANNs are analogs of biological structures such as the eye 
and brain. Common ANN architectures (i.e., structures) 
are often composed of an input layer connected to the 
input data, an output layer that provides the desired 
estimate, and one or more “hidden” intermediate layers. 
The range of ML architectures is large, and different spe-
cialized architectures are appropriate for different tasks. 
Training an ANN and most ML architectures is a nonlin-
ear optimization problem. It is time consuming, and suc-
cess depends on having a large and representative training 
dataset, on the choice of optimization method, and on 
properly setting the “meta-parameters” that control the 
optimization process. Once trained, the ML model is fast. 
Specialized computer hardware (e.g., GPUs), some devel-
oped specifically for particular ML architectures, provide 
very significant acceleration of ML optimization and ML 
model computations.

For the foreseeable future, artificial general intelligence 
will not be available, and ML will require some degree of 
human expertise, intuition, and intervention to succeed. 
The steps in applying the general ML approach—identifying 
the problem, designing or selecting the ML architecture, 
selecting and normalizing inputs and outputs, preparing 
training sets, selecting a training algorithm and its param-
eters, making decisions about sufficient approximation 
accuracy, and validating the resulting ML model—currently 
all require active human participation and a disciplined 
approach based on modern software practices (version 
control, containerization, etc.) to ensure reproducibility, 
maintainability, and traceability. Therefore, close collabora-
tions between computer scientists, geophysicists, data sci-
entists, remote sensing experts, and modelers is essential 
when developing ML models for satellite remote sensing 
and NWP applications.

MACHINE LEARNING AND  
ARTIFICIAL NEURAL NETWORKS
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particular, the challenge of Big Data, and makes it 
clear that new approaches, such as AI, are needed to 
not only accelerate the exploitation of environmen-
tal observations but also to enhance the quality of 
the outcomes. The “Advantages of ML to meet the 
challenges in satellite remote sensing and NWP” 
section discusses the applicability, appropriateness, 
and complementarity of ML for geophysics. This is 
a discussion at both abstract and practical levels of 
to what extent and in what situations ML is actually 
applicable to satellite remote sensing and NWP, and 
whether ML provides an entirely new alternative, 
or instead, is complementary to more traditional 
approaches. Here, we note that the way forward to 
advance the use of ML in satellite remote sensing 
and NWP is to leverage the enormous recent ad-
vances in ML in other fields. The “Caveats in using 
ML to meet the challenges in satellite remote sensing 
and NWP” section then addresses a number of issues 
and caveats in the use of ML. In the “Examples of 
modern ML applications to satellite remote sensing 
and NWP” section, a closer look at examples of 
some of the elements of the NWP processing chain 
demonstrates the usefulness and applicability of 
ML-based techniques. The final section concludes 
with a summary and outlook.

SATELLITE REMOTE SENSING AND NWP 
CHALLENGES AND ML. The many challenges 
to satellite remote sensing and NWP are grouped here 
by forcing mechanism—Big Data, advanced models 
and applications, and user demands. In the sections 
that follow we show that recent advances in ML in 
terms of efficiency, capability, and ease of implemen-
tation, can help to meet these challenges.

First, NWP is failing to exploit the growing 
diversity and volume of observations. As seen in 
Fig. 1, the volume of environmental data available, 
especially from satellites, has increased significantly 
in the recent past (Schmetz and Menzel 2015) and 
now presents a major challenge in terms of hard-
ware, power, and latency constraints for real-time 
applications. Additionally, as the diversity of ob-
servations grows, new procedures are needed to 
exploit novel types of observations. In part for these 
reasons, global NWP uses only about 1%–3% of 
currently available satellite data and the processing 
time for traditional approaches is already crippling. 
The trend of rapidly increasing data volume (and 
diversity) will continue due to several trends. On 
one hand, technological advances result in sensor 
designs with higher spatial, temporal, and spectral 
resolution. In addition, miniaturization permits 

deployment on less expensive SmallSat and CubeSat 
platforms [e.g., CIRAS described by Pagano et al. 
(2017) and MicroMAS-2 described by Blackwell 
et al. (2019)]. As a result, we are now seeing the 
emergence of commercial space-based data from 
flotillas of small satellites being marketed by multi-
ple industry players. Other nontraditional platforms 
in near-space altitudes (such as the constellations 
of balloons being deployed by the private sector) 
can host complementary observing systems in the 
stratosphere where there is a lack of accurate data. 
On the other hand, there is an emergence of new 
sources of data, such as the Internet of Things (IoT), 
which complement traditional environmental data 
sources. The IoT will include observations from 
personal electronic appliances, from automobiles, 
and from other mobile platforms [e.g., smartphone 
pressure observations described by Madaus and 
Mass (2017) and smartphone battery temperature 
as a proxy for air temperature described by Droste 
et al. (2017)]. The number and diversity of sensors, 
volume, and quality of data from the universe of 
the IoT is increasing, and will continue to increase, 
as technological advances lower cost, and mass 
and power requirements. This will improve anal-
yses close to the surface (in the lower atmospheric 
boundary layer) where existing observations are 
not optimal.

Second, weather forecasting has unmet and increas-
ing requirements for improved computation resources, 
initialization of models, description of subgrid physical 
processes, and postprocessing of model outputs (e.g., 
Sun et al. 2014; Yano et al. 2018; Li et al. 2019; Roebber 
et al. 2004; Mass and Kuo 1998). Currently, NWP is 
hobbled by the combination of inadequate computer 
power and stringent latency requirements. Some ex-
trapolations suggest that future improvements in NWP 
will soon be limited by power usage (www.noaa.gov 
/big-data-project). The latency requirement is particu-
larly extreme for short-term forecasting of hazardous 
weather. Yet, improvements in NWP are driven by 
computationally intensive advances in all aforemen-
tioned areas. Examples of specific improvements for 
global medium-range NWP will include:

•	 enhanced assimilation of satellite measure-
ments, including radiances affected by clouds, 
precipitation, and surface properties [requiring 
more complete radiative transfer (RT) models 
accounting for these effects], and using improved 
or more efficient thinning, quality control, RT, 
observation bias correction, and cloud clearing 
procedures (e.g., Geer et al. 2018);
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•	 more accurate initial conditions that take advantage 
of an increasing volume of available real-time ob-
servations from satellites and the IoT (e.g., Madaus 
and Mass 2017);

•	 enhanced modeling and data assimilation (DA) 
systems coupling multiple geophysical domains 
(atmosphere, ocean, etc.) that enable better use 
of observations affected by state variables in 

more than one domain (e.g., Penny and Hamill 
2017);

•	 improved parameterizations—the modeling of 
subscale geophysical phenomena, such as clouds 
and radiative heating rates (e.g., Khain et al. 2019; 
Price et al. 2018); and

•	 improved postprocessing of model outputs, 
including better forecast bias correction and 

Fig. 1. Growth in annual mean number of satellite observations (millions) per 0000 UTC cycle (a) available and 
(b) used by the NCEP DA system for different data types (colors). The data are grouped into the following types: 
atmospheric motion vector, ocean surface wind, solar backscatter ozone, radio occultation, and radiance. The 
radiance type is subdivided into MW, IR, and hyperspectral sounder types. Note the 100-fold differences in vertical 
axes between the two panels. Available radiances are so predominant that the other types are not visible in (a), 
even though only subsets of hyperspectral sounder channels are received. For a similar reason, the solar back-
scatter ozone type is not visible in (b). Graphic created by Krishna Kumar, Eric Zimmerman, and Ross Hoffman.
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nonlinear ensemble averaging (e.g., van Straaten 
et al. 2018).

All these areas of improvement can benefit from 
faster and/or more accurate methods of calculation. 
These are also areas of active research for severe 
weather nowcasting and forecasting (e.g., the NOAA 
Warn-on-Forecast project, https://wof.nssl.noaa.gov; 
Stensrud et al. 2009, 2013). In what follows, the use 
of ML to provide such methods will be illustrated.

Third, different users of weather data—from 
airline pilots to emergency planners to farmers—
increasingly demand higher accuracy and greater 
resolutions for an ever-expanding array of applica-
tions (Thorpe and Rogers 2018). This higher user 
expectation is partly due to the increasing societal 
impact of weather. As a result, there is a demand for 
consistent, comprehensive, and consolidated warn-
ings, nowcasts, and forecasts. Weather products must 
combine space-based, air-based, and surface-based 
data sources at increasing spatial, vertical, and 
temporal resolutions and with improved timeliness, 
especially for nowcasting and short-range forecasting 
applications. Operational forecasting space and time 
horizons are expanding to range from very short-
term localized street level (or urban) forecasting to 
global subseasonal to seasonal (S2S) forecasting. Both 
ends of this spectrum can benefit from even more 
detailed computations. For urban dispersion model-
ing, discretization scales of meters and seconds are 
already used (e.g., Hernández-Ceballos et al. 2019). 
For S2S, physical processes must be parameterized 
more accurately and additional physical processes 
must be modeled. This includes the use of complex 
coupled Earth system models (ESMs) that incorporate 
components with longer predictability times than 
the atmosphere—the cryosphere, the land surface, 
the ocean, the biosphere, the hydrosphere, etc., and 
the couplings between these components. Note that 
the need to integrate multiple types of environmental 
parameters into consolidated, data fused/blended ob-
servation products exists at both ends of the forecast 
time scale—both for nowcasts and for future coupled 
climate DA systems.

In summary, new approaches will be needed to 
take full advantage of all the observations, allowing 
more sources of observations to be ingested by in-
creasingly more accurate (and ever more computa-
tionally demanding) DA and forecast systems, and to 
do so within an ever-shrinking time window allowed 
for processing and dissemination. In the next section, 
we discuss the different ways that ML can contribute 
to solve this problem/opportunity.

ADVANTAGES OF ML TO MEET THE 
CHALLENGES IN SATELLITE REMOTE 
SENSING AND NWP. Advantages of ML meth-
ods include but are not limited to the following:

•	 Computational efficiency. ML models are often a 
few orders of magnitude faster than the original 
physically based (deterministic) models (e.g., see 
the “Fast and accurate emulations of model phys-
ics” section).

•	 Accuracy. With representative and very accurate 
training datasets, ML models can be more accu-
rate than conventional efficient parameterizations 
(e.g., see the discussion later in this section on the 
use of satellite radiance observations).

•	 Transferability. Advances in ML methods from a 
variety of allied fields can be leveraged for geo-
physical problems (e.g., Tan et al. 2018; see the 
“Transfer learning” sidebar).

•	 Synergy. With different strengths and weaknesses, 
ML and traditional approaches can be synergistic 
(e.g., Krasnopolsky and Fox-Rabinovitz 2006), 
and best practices are being developed to optimize 
their combination (Reichstein et al. 2019). In this 
setting ML model efficiency can improve the qual-
ity and range of model results (e.g., to improve the 
model resolution, to extend the forecast horizon, 
and to increase ensemble size).

•	 Flexibility. ML techniques can accommodate 
(i) variables that have not been (and sometimes 
cannot be) included in physically based models, 
(ii) physical constrains (like conservation laws or 
balance equations), (iii) processes that are non-
linear, (iv) non-Gaussian observation errors, and 
(v) empirical data for processes for which the true 
physics is poorly understood (Krasnopolsky 2013).

•	 Ease of use. Modern ML techniques have been 
coupled with modern coding languages, including 
Python-based TensorFlow (www.tensorflow.org 
/learn) and Keras (https://keras.io), making cur-
rent tools much more powerful and easier to use 
than previous versions.

Based on these advantages, we will see in the exam-
ples presented in this and following sections that ML 
offers new paradigms that enable the use of a large 
fraction of available data, produce highly efficient and 
accurate parameterizations, provide a wide range of 
tailored products to users, and meet the challenges 
of NWP in other ways.

As a first example, for the use of satellite radi-
ance or brightness temperature (BT) observations, 
the advantages of ML for computation acceleration 
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(specialized processors) and improved algorithms (e.g., 
by using training datasets derived from highly accurate 
physically based models that are too expensive to use 
in applications for remote sensing and parameteriza-
tions) can improve overall accuracy and quality within 
tightening latency requirements. DA systems employ 
forward models to simulate observations in order to 
calculate the observation innovations (observed value 
minus that simulated from the prior estimate of the 
state) that are key to calculating the analysis incre-
ment in the DA analysis update step. For a satellite BT 
observation, the forward model simulates RT through 
the atmosphere, including the effect of the land or 
ocean boundary. Purely first principle calculations are 
theoretically possible but are inefficient and stymied 
by our lack of knowledge of the atmospheric scatterers 
(aerosols and hydrometeors) and land surface prop-
erties. Clear-sky atmospheric absorption can be very 
accurately calculated using line-by-line RT models, but 
are too slow for practical use. Further, there are numer-
ous mechanisms that are poorly understood and poorly 
modeled (i.e., parameterized). For example, the emis-
sivity of the land surface must be estimated or specified 
for RT calculations, but depends in a complicated way 
on the soil type, soil moisture, vegetation type, vegeta-
tion health, and vegetative phenology. Consequently, 
in DA and forecast systems, we make approximations 
and tune our estimates and parameterizations, often 
in ad hoc ways that involve some assumptions. For 
real-time DA and forecast applications, fast versions 
of RT are generally used, and these rely on parameter-
izations that are based on approximations and require 
tuning, which introduce errors. In this situation, ML 
can be a game changer: orders of magnitude execution 
acceleration allows a larger set of observations to be 
exploited, and provides an opportunity for improved 
accuracy/quality (e.g., Chevallier and Mahfouf 2001). 
This improved accuracy/quality is obtained by train-
ing the ML networks using data simulated by the 
most accurate RT calculations—once tuned the ML 
networks will be exceedingly fast irrespective of the 
accuracy of the training set. All of this comes with 
several caveats—for example, the ML models must be 
accurate for all situations, including very rare cases. 
The next section discusses the caveats, concerns, and 
mitigations for the ML approach. Furthermore, it must 
be stressed that continued research is needed to create 
highly accurate and detailed model physics, which can 
aid understanding of physical processes and which 
can serve as a source of simulated data to improve fast 
parameterizations, whether these are conventional 
model parameterizations or very fast and accurate 
ML emulations.

A particularly powerful advantage of ML to make 
rapid advances in geophysics is to leverage existing 
knowledge from applications in other fields (hereafter 
the allied fields), through transfer learning. That is, 
geophysical applications, including characterization 
of environmental systems, NWP, climate projections, 
and situational awareness (SA; e.g., providing the right 
information at the right time to decision-makers), 
can benefit from mature, successful applications with 
similar traits in the allied fields. In particular, we note 
a few examples of how current AI systems combine in-
formation from multiple sources to predict outcomes. 
These examples are in medicine: the Watson Project 
(Chen et al. 2016), image processing (Razzak et al. 
2018), cancer detection (e.g., Manogaran et al. 2018), 
electrocardiogram (EKG) analysis (Mincholé and Ro-
driguez 2019); in finance: algorithmic trading (Huang 
et al. 2019), stock market analysis and prediction 
(Chong et al. 2017), and portfolio management (Ban 
et al. 2018); in natural language processing: speech 
separation (Wang and Chen 2018), signal extraction 
in noisy environments (Z. Zhang et al. 2018); in music: 
automatic composition in any desired style (Mao et al. 
2018); and in autonomous vehicles: the real-time fusion 
of multiple observations for SA (Golestan et al. 2016). 
These applications are dependent on recently improved 
and expanded range of ML architectures, improved 
ML training algorithms, and Big Data for training. 
There are strong connections between problems in 
both satellite remote sensing and NWP and the allied 
fields through shared fundamental problems—such as 
forward and inverse problems, morphing, mapping, 
and pattern recognition. For example, the approaches 
useful in facial recognition are also useful in iden-
tifying meteorological features such as hurricanes 
(Racah et al. 2017; Wimmers et al. 2019; Gagne et al. 
2019). So far, we have discussed the reuse of methods, 
which might be termed meta-transfer learning. In fact, 
it is possible reuse actual tools: the ML technique of 
transfer learning (see sidebar “Transfer learning”) is a 
powerful leveraging mechanism that takes an existing 
network trained for one task and refines it for another 
task by retraining only the final stages of that network 
for the new task (Tan et al. 2018).

The modern ML techniques most directly appli-
cable to satellite remote sensing and NWP problems 
include convolutional neural networks (CNNs; Gu 
et al. 2018; Yamashita et al. 2018), deep-learning neu-
ral networks, (DNNs; LeCun et al. 2015), computer 
vision (O’Mahony et al. 2019), with its subelements of 
motion estimation (e.g., Hopkins et al. 2018), object 
recognition (Han et al. 2018), and video tracking (e.g., 
Brunetti et al. 2018). CNNs are a specialized form of 
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DNNs that are often useful for image processing and 
computer vision applications. Identifying existing 
ML approaches and techniques that are successfully 
applied to these issues in the allied fields and then 
adapting these to related geophysical problems is an 
effective way to make significant progress quickly.

CAVEATS IN USING ML TO MEET THE 
CHALLENGES IN SATELLITE REMOTE 
SENSING AND NWP. The key concerns and 
caveats when applying ML are as follows:

•	 Will the ML model be reliable, or will it be prone 
to be less accurate or even fail for rare or unusual 
cases? ML models can only learn what is in their 
training datasets.

•	 Can ML models satisfy constraints based on phys-
ical principals (e.g., conservation of mass)?

•	 How can AI overcome the trust barrier, that is, the 
reluctance of some to accept ML model output if 
they cannot understand the action of the network 
hidden layers?

•	 Can ML models be extended to produce uncer-
tainty estimates (i.e., error bars)?

•	 Can ML development be disciplined enough to 
produce reproducible results?

•	 Can ML models be easily integrated into opera-
tional procedures?

With regard to reliability, that is, the ability to handle 
unusual situations, this concern can be mitigated by 
representative training. Since ML models are un-
reliable when extrapolating far beyond the domain 
covered by the training set, the training set should 
be representative, that is, large and diverse. Without 
a representative training set, one could accidentally 
introduce a bias where a specific feature (or signature) 
limited or absent in the training set would become 
associated by the trained model with other features in 
the training set having enough similarities to the spe-
cific feature. Thus, the choice of training dataset and 
specific input variables can be critical (e.g., Millard and 
Richardson 2015). When simulations are available, for 
example, from a realistic nature run, the quality of the 
simulations is critical because the ML model trained 
on simulated data will be applied in reality. Since 
network inputs often have high dimensionality, mea-
sured in hundreds or more, it is important to employ 
techniques that maximize the training set applicability. 
For instance, modern ML transfer learning techniques 
can benefit by taking an existing networks trained 
on millions of images and tailoring the last layer of 
that network to recognize, for example, hurricanes in 

satellite imagery. In addition, ensemble regularization 
is required for reliability in some situations. Nonlinear 
extrapolation is an ill-posed problem that requires a 
regularization to provide meaningful results. Problems 
can occur for rare inputs, when the environment is 
nonstationary, or for systems that changes with time, 
for example, under a future climate change scenario. 
One approach to avoid errors in these situations is 
for the ML model to include dynamical adjustments. 
Alternatively, an ensemble of ML models based on 
different architectures and training sets can regularize 
such extrapolation and deliver ML results that remain 
stable when the inputs approach or cross the boundary 
of the training domain.

To enforce conservation laws, ML training can 
include cost functions that measure the discrepancy 
from the conservation laws either as a strong constraint 
using the method of Lagrange multipliers during the 
minimization or as a weak constraint included in the 
overall cost function (e.g., Tompson et al. 2017).

With regard to trustworthiness, nonlinear statisti-
cal models of any type are difficult to understand and 
interpret. However, in response to the concern that 
ML models are black boxes that cannot be interpreted 
or understood, efforts are underway to develop ex-
plainable AI (McGovern et al. 2019; Samek et al. 2017; 
Toms et al. 2019) and physics guided neural networks 
(Ding 2018; Karpatne et al. 2018; Beucler et al. 2019). 
These developments have the potential to explain the 
connections in Big Data that ML has extracted, and 
to uncover new physical phenomena.

Transfer learning techniques are useful in classification 
problems where the high-level pretrained network 

filters and weights are “fixed” but the output layers are 
added/modified/adjusted for classification or regression in 
other applications. During inference, the network uses/
keeps those pretrained layers as part of its architecture.

Transfer learning techniques are also used in the 
optimization of weights in completely different network 
architectures in applications such as neural style transfer, 
GANs, image in-painting, ML-morphing/super slow-mo. In 
these cases, during training, images are projected through 
the high-level feature spaces of pretrained networks and 
compared to images reconstructed by the network and 
projected through the same high-level feature spaces; 
that is, the differences between the projection of true 
and reconstructed images through these high-level 
pretrained network layers are used as penalty terms in 
the optimization of the weights for completely different 
purposes and those pretrained layers are completely 
bypassed during model inference after training.

TRANSFER LEARNING
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With regard to uncertainty estimation, Ghahra-
mani (2015) states that ML must be able to represent 
and manipulate uncertainty about models and pre-
dictions. Gaussian process regression (GPR; Pasolli 
et al. 2010) is roughly speaking the ML version of 
variational assimilation. A natural output of the GPR 
algorithm is the uncertainty of its estimate, a quantity 
that is difficult to obtain from ordinary variational 
analysis approaches.

With regard to reproducibility, note that AI tech-
niques eliminate some forms of human error inherent 
in many traditional DA techniques, in the sense that 
these traditional techniques require manual coding 
of human estimates based on intuition and approx-
imation to implement a solution to what is funda-
mentally an ML problem—that is, to numerically (as 
opposed to analytically or symbolically) minimize an 
objective metric of errors. While ML is not prone to 
the errors that can occur in traditional techniques, 
the ML design and training processes require some 
experimentation and tuning.

With regard to ease of integration, this concerns 
place additional demands on the ML software system 
used for development. For example, for the devel-
opment of ML parameterization of physics a very 
specific normalization of outputs or rearrangement 
of the loss function (e.g., in the case of missed outputs 
or physical constraints) are sometimes required. Note 
that in some operational cases, the trained tool must 
be converted to another programming language to 
be consistent with the parent application.

EXAMPLES OF MODERN ML APPLICA-
TIONS TO SATELLITE REMOTE SENSING 
AND NWP. Figure 2 presents the value-adding 
processing chain from observations preparation to 
nowcasts and NWP forecast postprocessing. The 
examples in this section (as well as the example of the 
forward problem described in the “Advantages of ML 
to meet the challenges in satellite remote sensing and 
NWP” section) explore the use of ML to enhance sever-
al of the different steps in this chain (color coded in the 
figure). Boukabara et al. (2017, 2018, 2019a) described 
other examples showing how ML techniques can be 
applied to many components of the NWP processing 
chain shown in Fig. 2—including quality control, geo-
physical information extraction, RT modeling (even 
in precipitating conditions), and other components.

Secure data ingest: Satellite observation gap filling. Gap 
filling for satellite imagery is often required due to 
incomplete coverage, or due to sensor problems. 
For example, Chang et al. (2015) use the extreme 

learning machine (ELM) approach to fill in gaps due 
to cloudiness in Moderate Resolution Imaging Spec-
troradiometer (MODIS) reflectance data. [ELMs are 
fast to tune because the weights are random except for 

Fig. 2. Synopsis of the NWP processing chain, from 
secure ingest of satellite data to the generation of fore-
casts at different time scales. Color coding indicates 
which components are discussed in the text.
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the output layer weights, but ELMs are typically less 
accurate than other architectures (Cao et al. 2018).] 
For ocean biology, Krasnopolsky et al. (2016) used a 
shallow artificial neural network (ANN) to fill gaps 
in global ocean color imagery due to incomplete 24-h 
coverage from polar-orbiting sensors. For air quality, 
R. Zhang et al. (2018) used random forests to fill gaps 
in satellite-retrieved aerosol optical depth.

For temporal gaps, the obvious solution, linear 
in time interpolation can fail severely for features of 
interest that propagate (Hoffman and Leidner 2010). 
Computer vision algorithms can effectively interpo-
late nonlinearly to fill in temporal gaps, for example 
to generate smooth and realistic video visualizations 
from infrequent model archives.

Preprocessing and inversion: Remote sensing retrievals. 
Using AI in remote sensing has a long history (e.g., 
Krasnopolsky et al. 1995; Abuelgasim et al. 1998; 
Aires et al. 2002) and is considered mature. It can, 
however, benefit further from modern ML tools that 
were developed for other fields. An example of the use 
the modern ML techniques, in this case DNNs, is the 
AI-based pilot project that parallels the Multi-Instru-
ment Inversion and Data Assimilation Preprocessing 
System (MIIDAPS) enterprise algorithm (Jones et al. 
2019). Tests of applications, such as MIIDAPS-AI, 
in simulation as well as with real data compare well 
with conventional approaches in terms of data fit, 
spatial coherence, and interparameter correlations, 
but with execution speeds that are often two orders 
of magnitude faster.

Quality control. Current quality control (QC) proce-
dures have been built up over the course of time and 
adjusted to account for multiple sensors and instances 
of sensors. These procedures encapsulate accumulat-
ed, sometimes ad hoc, knowledge in what are often 
opaque undocumented (or incorrectly documented) 
computer programs. Machine learning can be effec-
tive to detect and correct observation problems, and 
offer an opportunity to rethink both QC and prepro-
cessing by mining the substantial archives of observa-
tion innovations (i.e., observation minus background 
differences) from operational DA systems.

Data assimilation. Analysis of observations, wheth-
er in the context of DA or data fusion, can benefit 
from modern ML techniques. Current DA systems 
typically use only a small fraction of the available 
observations to limit processing time and to avoid es-
timating and making use of observation correlations. 
ML can enhance this process. For example, fast ML 

emulations of forward models (both RT and empirical 
forward models) can be used for direct assimilation of 
satellite measurements (e.g., Chevallier and Mahfouf 
2001). Also ML observation operators can be used 
to instantaneously propagate surface observations 
vertically (Krasnopolsky 2013).

Data fusion. Data fusion combines and or converts 
observations and/or imagery into new information 
as in the following diverse examples. Li et al. (2018) 
identify hurricane damage to buildings in imagery 
using the results of unsupervised pretraining based 
on convolutional auto encoders (CAEs) to fine-tune 
CNNs. Hengl et al. (2017) trained an ensemble of 
ML networks to produce high resolution (250 m) 
operational global maps of six soil properties at seven 
vertical levels. Inputs were 150,000 soil profiles and 
158 remotely sensed soil covariates. Landschützer 
et al. (2013) created 1° resolution maps of partial pres-
sure of carbon dioxide (pCO2) in a two-step process 
based on observations and estimates of sea surface 
temperature, sea surface salinity, mixed layer depth, 
chlorophyll a, and atmospheric CO2 concentration. 
First, 16 biogeochemical provinces were identified us-
ing the self-organizing map (SOM) method (Kohonen 
2001). Then a feed forward network for each province 
estimated the pCO2, essentially parameterizing pCO2 
in terms of the input variables.

Fast and accurate emulations of model physics. Model 
physics calculations are a computational bottleneck 
in numerical models. For example, accurate radiative 
transfer calculations are time consuming for retriev-
als, DA, and for model parameterizations. For some 
parts of the spectrum (e.g., the shortwave infrared) 
and for some atmospheric conditions (e.g., in the pres-
ence of cloud) radiative transfer calculations become 
more complex, time consuming and error prone. 
We already discussed the forward problem used in 
retrievals and DA in the “Advantages of ML to meet 
the challenges in satellite remote sensing and NWP” 
section. Here we discuss the parameterization of ra-
diative heating (and cooling) in NWP models. Other 
physics parameterization for NWP are discussed 
below (in the “Short- and medium-range forecasting: 
Subgrid-scale model physics” section).

Often in a NWP model we can only afford to cal-
culate radiative heating every hour. Then the ghost of 
the initial cloud field will haunt the radiative heating 
as the model evolves during each hour. ML models 
can speed up these calculations significantly and 
can be made more accurate at the cost only of de-
veloping larger and more accurate training samples. 
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Examples of accurate and fast ANN 
emulations of longwave and shortwave 
radiation parameterizations have been 
developed for the ECMWF and NCAR 
and NCEP global models (Chevallier 
et al. 2000; Krasnopolsky et al. 2008, 
2010). Table 1 and Fig. 3 show the high 
accuracy and speed of ML emulations 
in the experiments of Krasnopolsky 
et al. (2008, 2010). Table 1 shows error 
statistics and speedup achieved by these 
ANN emulations. Figure 3 compares 
the 17-yr time-averaged precipitation of 
two parallel runs of the NCEP CFS [the 
first with the original Rapid Radiative 
Transfer Model for general circulation 
models (GCMs) (RRTMG) radiation 
parameterization and the second with 
ANN emulations that use a single 
hidden layer]. The two difference plots 
(lower panels) compare the impact of the ANN to 
the impact of routine changes in the computational 
environment and confirm that the control minus 
ANN run differences are indeed small and of the 
order of magnitude that occurs when a new version 
of the FORTRAN compiler is introduced.

Nowcasting. Nowcasting is the process of extrapolat-
ing current conditions, often imagery into the near 
future (minutes to hours). Iskenderian et al. (2019) 
combine data from lightning sensors, satellite imag-
ery and NWP model output in a CNN framework to 
create seamless weather radar mosaics (data fusion) 
and forecasts out to 12 h (nowcasting). Shahroudi 
et al. (2019) combined imagery and NWP outputs 
in a CNN to forecast 18-h tropical cyclone track and 
intensity. Shi et al. (2015) developed a combination 
of CNN and LSTM networks for ML of precipitation 
nowcasts (short-term extrapolations). Shi et al. (2017) 
extended this approach to a model that can actively 
learn the location-variant structure for recurrent 
connections.

Short- and medium-range forecasting: Subgrid-scale 
model physics. ML techniques have been used to fully 
replace some model parameterizations (Schneider 
et al. 2017; Rasp et al. 2018). ML emulation, ML 
enhancement, and observational ML are based on 
different types of training. In parameterization 
emulation, the training set comes from the inputs 
and outputs of a traditional parameterization saved 
from a model forecast. ML emulation techniques 
have been used to replace traditional subgrid-scale 

NWP model physics parameterizations, such as the 
radiative transfer (discussed in the “Fast and accurate 
emulations of model physics” section), convection 
(e.g., Krasnopolsky et al. 2013; Gentine et al. 2018; 
O’Gorman and Dwyer 2018), microphysics, and 
superparameterization (Rasp et al. 2018). To exceed 
the accuracy of emulation, enhanced training data-
sets can be created using data simulated by higher 
resolution models like large-eddy simulations (LESs) 
and cloud-resolving models (CRMs; Krasnopolsky 
et al. 2013; Gentine et al. 2018; Rasp et al. 2018). 
Training datasets are also based on observations. 
For example, an ANN-based empirical biological 
model, which provides biological feedback to the 
ocean model, was developed (Krasnopolsky et al. 
2018) using satellite-derived ocean color data and a 
combination of satellite and in situ measurements 
of upper-ocean physical parameters. In yet another 
approach, Brenowitz and Bretherton (2018) replaced 
the entire model physics with an ANN trained to esti-
mate the apparent source terms of heat and moisture 
by minimizing the prediction errors of the model.

When appropriate, the hybridization of phys-
ics-based and ML-based techniques offers a direct 
and powerful path to advance the fields of satellite 
remote sensing and NWP (e.g., Krasnopolsky and 
Fox-Rabinovitz 2006). However, in cases such as 
forecasting the weather a week in advance, that is, 
in complex and chaotic problems, with huge state 
space vectors, proper training of ML networks will 
likely face significant challenges due to the size of 
the state space and the need for huge training sets 
[although this has been done for simple atmospheric 

Table 1. Statistics for estimating the accuracy of the heating 
rate calculations (in K day−1) and the computational perfor-
mance (speedup) of the ANN emulation vs the original param-
eterization for the NCAR CAM (T42L26) (Collins et al. 2002) 
and for the NCEP CFS (T126L64) longwave radiation (LWR) 
and shortwave radiation (SWR) parameterizations. RRTMG 
is the Rapid Radiative Transfer Model for GCMs (Clough et al. 
2005). Here, the speedup shows an averaged (over an indepen-
dent global dataset) ratio of the timing of the original pa-
rameterization to that of the ANN emulation in a sequential 
single processor code by code comparison. The results of the 
calculation speedup for deep convection cases are presented 
in parentheses. Results are from the experiments described by 
Krasnopolsky et al. (2008, 2010).

NCAR CAM (L = 26) NCEP CFS (L = 64)

LWR SWR RRTMG LWR RRTMG SWR

Bias 3 × 10−4 6 × 10−4 2 × 10−3 5 × 10−3

RMSE 0.34 0.19 0.49 0.2

Speedup 150 20 16 (20) 60 (88)
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models, e.g., Scher (2018)]. However, ML techniques 
are well suited to correcting traditional models (see 
the “Post-forecast processing and correction” section) 
or in conjunction with traditional physically based 
systems (Reichstein et al. 2019). In a novel example 
of the hybrid approach, Tompson et al. (2017) accel-
erate the solution of incompressible Navier–Stokes 
equations with a CNN to solve the Poisson equation 
for the pressure at the forward time step. This is also 
an example of enforcing a physical constraint, since 
in this case the ML model was trained to minimize 
the forward time step divergence.

Post-forecast processing and correction. Post-forecast 
processing and corrections are an important meth-
od of improving forecasts, either on the original 
forecast grid or by adapting to local conditions [as 
in the model output statistics (MOS) method]. ML is 
well equipped in detect, evaluate and therefore cor-
rect errors made by physics-based models, to adapt 
forecasts from large-scale models to local conditions, 

and to nonlinearly average ensembles of forecasts. For 
ensemble forecast systems, ML methods to correct 
both bias and spread are being recognized as powerful 
tools (Krasnopolsky and Lin 2012; Campos et al. 2019; 
Rasp and Lerch 2018; Fan et al. 2019). Rasp and Lerch 
(2018) applied this technique to 2-m temperature 
ensemble forecasts over Germany obtaining similar 
improvements as compared with the standard (lin-
ear regression) technique. This is important since, 
compared to MOS, the ML approaches are easier 
to maintain and adapt to changing conditions. For 
example, ML approaches are easy to implement in 
sequential mode that automatically adapts to model 
and climate changes.

Figure 4 shows the results of nonlinear ANN 
averaging of the 24-h forecasts of precipitation over 
the continental United States from an eight-member 
multimodel ensemble (Krasnopolsky and Lin 2012). 
Nonlinear ANN averaging of the multimodel en-
semble (Fig. 4c) removes a significant part of false 
low intensity precipitation produced by the simple 

Fig. 3. NCEP CFS precipitation rates in mm day−1, 17-yr average for (a) the control run and (b) the run using 
ANN emulations of radiative heating rates, and differences of precipitation rates in mm day−1 for (c) the differ-
ence ANN run minus control run [(b) minus (a)] and (d) the difference between two control runs: one before 
and another after changing the version of the FORTRAN compiler. Results are from the experiments described 
by Krasnopolsky et al. (2010).
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arithmetic averaging (Fig. 4b), sharpens the precip-
itation features, enhancing fronts and maximums. 
ANN averaging produces a forecast that is very close 
to the forecast produced by a human analyst (Fig. 4d).

The paradigm of correcting errors can be applied 
in many situations, including corrections of observa-
tion, retrieval, and analysis bias. Correction of errors 
has been relatively successful using simple ANNs. 
In the future there will be opportunities to leverage 
new approaches, including U-Nets, CNNs, generative 
adversarial networks (GANs; Creswell et al. 2018), etc. 
In particular, for forecast correction, ML techniques 
that recognize patterns are applicable in cases where 
forecast errors include a displacement component.

CONCLUDING REMARKS. ML approaches have 
been shown to be useful in many aspects of environ-
mental prediction, including statistical weather fore-
casting, numerical weather prediction, and climate 

projection. Further, the use of ML by the satellite 
remote sensing and NWP community is ripe for more 
rapid advances due to recent progress and successes in 
applications in the allied fields (video gaming, medi-
cine, finance, autonomous vehicles, natural language, 
etc.). The process of ML adoption will be accelerated 
by using lessons learned from previous studies of how 
humans adopt and adapt to new computer processes. 
For example, in a study of extreme convective event 
nowcasting, Karstens et al. (2018) conclude that hu-
man–ML systems should provide clear presentations, 
allow the human flexibility to choose and combine 
different tools, allow the human the ability to correct 
the ML results, and provide an explanation of how the 
ML results were obtained.

Without AI or some other transformation ap-
proach, difficulties due to the increasing amount of 
data are on track to be exacerbated in the future with 
the rapidly enlarging IoT, with the commoditization 

Fig. 4. Comparison of (a) the CPC analysis of precipitation for the 24 h period ending at 1200 UTC 24 Oct 2010 
to three forecasts, including (b) the arithmetic mean of the precipitation forecasts provided by eight models, (c) 
the nonlinear ANN average of the same models, and (d) the prediction by a human analyst who used satellite 
images and ground observations in addition to model forecast. The color bar shows the precipitation rate from 
0 to 175 mm day−1. Different shades of green correspond to precipitation rates from 1 to 10 mm day−1 and differ-
ent shades of red to precipitation rates from 25 to 75 mm day−1. After Krasnopolsky and Lin (2012, their Fig. 6).
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of space technology and the accompanying increase 
in the number of satellites observing the Earth, and 
with the increase in the capabilities of sensors in 
terms of higher spatial and spectral density and res-
olution. The efficiency of ML on the other hand will 
allow assimilating high spatial, temporal, and spec-
tral resolution data that are now either aggressively 
thinned or not considered at all, thereby substantially 
increasing the spatiotemporal resolution and accura-
cy of ML-based data processing algorithms.

While AI sometimes provides novel capabilities, 
in many cases AI methods replace or enhance exist-
ing methods. This will blur the distinction between 
AI and physical science and increase collaborative 
hybrid approaches combining physical and data 
science perspectives. For example, in the future, we 
expect to see a cohesive and synergistic coexistence of 
physical models with ML enhancements. Perhaps the 
most direct example of this is to train ML techniques 
on previous forecast errors. Then the ML technique 
can provide a post-forecast correction to correct for 
the human-induced uncertainties—when modeling, 
when implementing systems, and even when issuing 
advisories. That is the AI system, having learned from 
all past mistakes can provide consultation and sup-
port to human practitioners by highlighting current 
anomalies and providing evidence for reconsideration 
of the current forecast (in the weather domain or 
current diagnosis in the medical realm).

A concern is that ML techniques may not be as 
reliably accurate as methods already in use. That is, 
how can ML improve on NWP models that are based 
on the laws of physics (conservation of mass, momen-
tum, etc.) and DA systems that are based on optimal 
Bayesian estimation. In fact, they can and both 
physics-based models (parameterizations, etc.) and 
optimal estimation techniques (variational methods, 
minimization, and morphing, etc.) as implemented in 
operational systems have a lot in common with ML 
techniques. Already, many DA techniques overlap 
with ML techniques. Since DA techniques are prone 
to errors of implementation, misunderstandings of 
physical processes, errors of approximation, etc., 
they might be considered to be “hand-crafted” 
or “artisanal” ML models. For example, 3D- and 
4D-variational data assimilation are based on clear 
Bayesian principles, but their implementation is rife 
with approximations and assumptions (e.g., that er-
rors are Gaussian, that linearization errors are small, 
that solutions are unique). Modern ML provides the 
opportunity to build on existing techniques, uncover 
their limitations and possibly correct their imple-
mentation flaws.

Finally, in order for AI to be adopted by geophys-
icists, weather forecasters, and emergency respond-
ers, the ML tools must be trustworthy, reliable, and 
accurate: the uncertainty of their output need to be 
quantified, their results need to be reproducible and 
explainable, and their architecture configuration 
mathematically understandable. All these issues are 
critical for AI in general and are active fields of study 
in the AI community at large. Successes from such 
studies will lead to more widespread acceptance and 
adoption of AI in the fields of remote sensing and 
NWP and in environmental science in general.
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APPENDIX: LIST OF ACRONYMS. Acronyms 
used in the text are listed here. Common acronyms 
(e.g., UTC and RMSE) and proper names (e.g., names 
of specific institutions and systems such as NASA 
and MicroMAS) are not expanded in the text when 
first used.

AE	 Autoencoder
AI	 Artificial intelligence
ANN	 Artificial neural network
BT	 Brightness temperature
CAE	 Convolutional autoencoders
CAM	 Community Atmosphere Model
CFS	 Climate Forecast System
CIRAS	 CubeSat Infrared Atmospheric Sounder
CNN	 Convolutional neural network
CPC	 Climate Prediction Center
CRM	 Cloud-resolving model
DA	 Data assimilation
DNN	 Deep-learning neural networks
ECMWF	 European Centre for Medium-Range 

Weather Forecasts
EKG	 Electrocardiogram
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ELM	 Extreme learning machine
ESM	 Earth system model
FF	 Feed forward
FORTRAN	 Formula Translating System
GAN	 Generative adversarial network
GCM	 General circulation model
GPR	 Gaussian processes regression
GPU	 Graphical processing unit
LES	 Large-eddy simulation
LSTM	 Long and Short Term Memory Network
LWR	 Longwave radiation
MicroMAS	 Micro-sized Microwave Atmospheric 

Satellite
MIIDAPS	 Multi-Instrument Inversion and Data 

Assimilation Preprocessing System
ML	 Machine learning
MODIS	 Moderate Resolution Imaging Spectro-

radiometer
MOS	 Model output statistics
NCAR	 National Center for Atmospheric Re-

search
NCEP	 National Centers for Environmental 

Prediction
NWP	 Numerical weather prediction
pCO2	 Partial pressure of carbon dioxide (CO2)
QC	 Quality control
RRTMG	 Rapid Radiative Transfer Model for 

GCMs
RT	 Radiative transfer
S2S	 Subseasonal to seasonal
SA	 Situational awareness
SOM	 Self-organizing map
SWR	 Shortwave radiation
UTC	 Universal time coordinated
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