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ABSTRACT

Climate variability and its response to increasing greenhouse gases are important considerations for im-

pacts and adaptation. Modeling studies commonly assess projected changes in variability in terms of changes

in the variance of climate variables. Despite the distant and impactful covariations that climate variables can

exhibit, the covariance response has received much less attention. Here, a novel ensemble framework is

developed that facilitates a unified assessment of the response of the regional variances and covariances of a

climate variable to imposed external forcings and their time of emergence from an unforced climate state.

Illustrating the framework, the response of variability and covariability of land and ocean temperatures is

assessed in the Community Earth System Model Large Ensemble under historical and RCP8.5 forcing. The

results reveal that land temperature variance emerges from its preindustrial state in the 1950s and, by the end

of the twenty-first century, grows to 1.5 times its preindustrial level. Demonstrating the importance of co-

variances for variability projections, the covariance between land and ocean temperature is considerably

enhanced by 2100, reaching 1.4 times its preindustrial estimate. The framework is also applied to assess

changes in monthly temperature variability associated with the Arctic region and the Northern Hemisphere

midlatitudes. Consistent with previous studies and coinciding with sea ice loss, Arctic temperature variance

decreases in most months, emerging from its preindustrial state in the late twentieth century. Overall, these

results demonstrate the utility of the framework in enabling a comprehensive assessment of variability and its

response to external climate forcings.

1. Introduction

The Earth’s climate is changing rapidly in response to

anthropogenic radiative forcing (IPCC 2013). The re-

sponse manifests as changes in not only the mean state

of the climate but also in the variability about the mean

state. While the potential consequences of mean state

changes have long been recognized (IPCC 1990), vari-

ability changes are also important (e.g., Katz and Brown

1992; Addo-Bediako et al. 2000; Wheeler et al. 2000;

Schär et al. 2004; Porter and Semenov 2005). Changes

in interannual (and longer time-scale) variability are of

particular interest because of the protracted nature of

the associated climate anomalies (Rajagopalan and Lall

1998; Meehl and Tebaldi 2004). The occurrence of an

extreme anomaly that is of an extended duration (amonth,

a season, or longer) can translate into catastrophic
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outcomes. For example, the 2003 extreme European

summer, which was attributed to an increased tempera-

ture variability regime in combination with mean climate

warming (Schär et al. 2004), claimed more than 52000

lives (Larsen 2006). The low rainfall and unprecedented

heat further resulted in crop failures, reduced plant res-

piration and growth, and consequently a large positive

flux of CO2 into the atmosphere (Ciais et al. 2005).

Recognizing such severe societal and ecological ef-

fects of extended climate anomalies, a natural question

to ask is: how will interannual variability change in a

warmer climate? Using climate models, previous work

has addressed this question for various climate variables

at global (e.g., Räisänen 2001; Stouffer and Wetherald

2007; Boer 2009; Wetherald 2009) and regional (e.g.,

Schär et al. 2004; Scherrer et al. 2008; Fischer et al. 2012)
scales under different anthropogenic forcing scenarios.

While these studies have uncovered robust variability

changes that can be expected with a high degree of

confidence in a warmer climate (e.g., Huntingford et al.

2013; Holmes et al. 2016) and have improved our un-

derstanding of the climate system, they leave two key

areas unexplored that are of specific interest to

this paper.

First, existing model studies on interannual variability

have largely focused on the influence of external cli-

mate forcing on the variance. On interannual (and

longer) time scales, climate variables can exhibit co-

variations across distant locations through numerous

well-known circulation patterns (e.g., Bjerknes 1969;

Wallace and Gutzler 1981; Simmons et al. 1983;

Trenberth and Shea 1987; Thompson and Wallace

1998) as well as potentially undiscovered patterns in

the coupled climate system. These covariations often

are associated with enormous impacts on a global

scale (IPCC 2013). Therefore, interannual variability

is in general a problem of not only the variances but

also the covariances associated with interacting re-

gions. While the joint variability associated with a

system of interacting regions has alternatively been

investigated in terms of empirical orthogonal func-

tions or variants thereof (Jolliffe 2002), these tech-

niques are not designed for the goal of physical

interpretation (Hannachi et al. 2007). The variances

and covariances on the other hand are directly phys-

ically interpretable. Despite its obvious physical rel-

evance and importance, only a few studies have

considered the covariance response (e.g., Leeds et al.

2015; LaJoie and DelSole 2016; Poppick et al. 2016) to

anthropogenic forcing.

Recognizing the importance of covariance to in-

terannual variability naturally leads us to the second

area of our study: the time of emergence of forced

covariance signals from an unforced climate. Changes in

variability that are of considerable magnitude relative to

the variability that might naturally occur in an unforced

climate can translate into major impacts (e.g., Kunkel

et al. 1999; Fischer et al. 2007; Robine et al. 2008). As

such, assessing the time of emergence of forced vari-

ability is important for adaptation and mitigation plan-

ning. It is also an important step in the attribution of

variability changes to a specific cause, for example, an-

thropogenic forcing (Bindoff et al. 2013). While the

emergence of forced mean state and variance signals has

received a lot of attention (e.g., Giorgi and Bi 2009;

Deser et al. 2012; Hawkins and Sutton 2012; Mora et al.

2013; although also seeHawkins et al. (2014); Thompson

et al. 2015; Yettella and Kay 2017; LaJoie and DelSole

2016), fewer studies have looked at the time of emer-

gence of covariance signals (e.g., Poppick et al. 2016).

Estimating forced variability statistics using a single

model simulation is challenging. Variability statistics

under rapidly changing forcing can evolve in time pe-

riods shorter than those that are required for their ac-

curate estimation with a single model realization. That

is, the conventional idea of computing variability sta-

tistics from a long model simulation (Leith 1978) is of

limited use in a transient climate change setting, and one

necessarily has to resort to using ensembles of model

simulations. Initial condition climate model ensembles

are particularly useful here (Collins andAllen 2002; Kay

et al. 2015). The members of such an ensemble are

simulated under the same external forcing with small

perturbations introduced at the start of their in-

tegrations. After the memory of the initial conditions is

lost, each member evolves independently (Lorenz 1963;

Deser et al. 2012). As such, the members of such an

ensemble serve as independent samples for the com-

putation of forced statistics.

In this paper, we develop a framework for analyzing

an initial condition ensemble under transient forcing

that facilitates a unified assessment of the regional var-

iances and covariances and their contributions to global

variance. We accomplish three specific goals with the

framework. First, we decompose global variance into

subjectively chosen regional variance and covariance

components. Such a decomposition is useful in un-

derstanding the contributions of the regional variances

and covariances to global variance. Second, we offer a

simple method for calculating the evolving regional

variances and covariances along with their sampling

uncertainties in climates undergoing transient forcing

using initial condition climate model ensembles. Third,

we address the time of emergence of forced variability

statistics. Specifically, we derive the estimates of the

regional variances and covariances along with their
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sampling uncertainties in long unforced control simu-

lations. By comparing the forced variability statistics

with their unforced estimates in the presence of sam-

pling uncertainties, the time of emergence can be

quantified.

After developing the framework, we demonstrate its

application in a state-of-the-art initial condition en-

semble: the Community Earth System Model Large

Ensemble (CESM-LE; Kay et al. 2015). The CESM-LE

consists of multiple realizations of a single model

[CESM(CAM5); Hurrell et al. 2013] under historical

and representative concentration pathway 8.5 (RCP8.5;

Meinshausen et al. 2011) forcing scenarios, while a com-

panion multicentury preindustrial control run provides a

stationary climate for the derivation of baseline statistics.

Leveraging the CESM-LE and the preindustrial run, we

explore the forced evolution and emergence of the sur-

face temperature variability statistics associated with two

distinct regional decompositions. The first decomposition

consists of two regions: the land and the ocean. The sec-

ond decomposition consists of three regions: the Arctic

(708–908N), the Northern Hemisphere midlatitudes (308–
708N; midlatitudes herein), and the rest of the globe (all

regions on the globe except the Arctic and northern

midlatitudes).

We organize the paper as follows: In section 2, we

detail our methods and describe the model. In section 3,

we utilize the framework to explore the variability sta-

tistics in the two decompositions of simulated global

interannual variance. As we will show, our results high-

light the importance of regional covariances to global

interannual variance. Finally, in section 4, we offer a

summary and concluding remarks.

2. Methods and data

a. Decomposition of global variance into regional
variance and covariance components

A key goal of the framework is identifying the contri-

butions of regional variances and covariances to global

variance. We achieve this by a simple diagnostic re-

lationship between global variance and regional variances

and covariances, which we develop in this section. While

the decomposition is applicable to any climate variable of

interest and any time scale, we apply the framework to

interannual surface temperature variability.

Let S5 fr1, r2, r3, . . . , rng be a system of n non-

overlapping regions, with the ith region denoted by ri,

which together cover the entire surface of the globe.

Let Tr represent the surface temperature averaged

over a region r and over a period of interest, for exam-

ple, season, month, or year. The globally averaged

temperature Tg can be expressed as an area-weighted

sum of temperatures averaged over the n regions:

T
g
5 �

n

i51

f
i
T
ri
, (1)

where fi 5Ari/Ag, Ari denotes the area of region ri, and

Ag is the area of the globe. The variance of Tg can be

expressed in terms of the covariance matrix C:

s2
Tg
5 fTCf , (2)
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f
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where T denotes transpose and cov denotes covariance.

Grouping terms arising from the variances and co-

variances separately, Eq. (2) can be written as the fol-

lowing ‘‘decomposition’’:

s2
Tg
5 �

n

i51

f 2i s
2
Tri

1 �
n

i52
�
i21

j51

2f
i
f
j
cov(T

ri
,T

rj
). (5)

We note from Eq. (5) that the decomposition of s2
Tg

yields a total of n(n1 1)/2 independent area-weighted

components: n variance components of the form f 2i s
2
Tri
,

and n(n2 1)/2 covariance components of the form

2fifjcov(Tri, Trj). By expressing the regional variance and

covariance components as fractions of s2
Tg
, the contri-

bution of regional variances and covariances to global

variance can be assessed in a straightforward manner.

b. Forced evolution and time of emergence of
variability statistics

1) ESTIMATION OF FORCED VARIABILITY

COMPONENTS IN INITIAL CONDITION

ENSEMBLES

To estimate the forced components in an M-member

initial condition ensemble undergoing transient forcing,

we begin with the ensemble estimates of the variances

and covariances at each year t. Let Tt
r represent the

temperature averaged over region r and over a period of

interest during year t. Some examples of potential pe-

riods of interest are monthly means, seasonal means,
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and annual means. Unbiased ensemble estimates of the

mean Tt
r and ensemble variance ŝTt

r
of Tt

r are

Tt
r 5

1

M
�
M

a51

Tt,a
r and (6)

ŝ2
Tt
r
5

1

M2 1
�
M

a51

(Tt,a
r 2Tt

r)
2, (7)

where Tt,a
r denotes the ath ensemble realization, and

Tt,a
r 2Tt

r is the residual obtained by subtracting the en-

semble mean from the ath ensemble realization. Note

that the residuals represent a slightly damped realization

of internal variability (LaJoie and DelSole 2016). Both

the overbar (e.g., Tr) and the hat symbols (e.g., ŝ2
Tr
)

denote unbiased estimates. The unbiased ensemble co-

variance associated with regions r and s is

dcov(Tt
r,T

t
s)5

1

M21
�
M

i51

(Tt,a
r 2Tt

r)(T
t,a
s 2Tt

s). (8)

Theoretically, in the limit of an infinite number of en-

semblemembers, the unbiased estimates presented above

converge to the population variances and covariances. In

practice, however, the number of ensemblemembers that

can be generated is limited by computational expense and

therefore is finite.Our results from theCESM-LE suggest

that, even with large climate model ensembles consisting

of as many as 40 ensemble members, the ensemble esti-

mates of the second moments [Eqs. (7) and (8)] and as a

consequence, of the components, are in general very

noisy. That is, the estimates in practice are associatedwith

large sampling uncertainty.

The sampling uncertainty in the noisy ensemble esti-

mates can be reduced and more precise estimates of the

components can be obtained by fitting a statistical model

in time. In the case of a linear time dependence, a simple

linear fit across the time period under investigation can

serve as a reasonable statistical model. However, as will

be clear from the results, the time dependence of climate

variability under transient climate forcing can be very

nonlinear. Therefore, to obtain more precise estimates

in the general setting of nonlinear time dependence, we

use a smoothing approach. For each year, we apply a

31-yr window centered on that year. Our choice of the

window length is motivated by the World Meteorolog-

ical Organization (WMO) approach of calculating cli-

matic normals over a 30-yr period. In the case of a linear

time dependence of climate variability, the smoothing

approach yields results that are very close to the esti-

mates from ordinary linear regression.

Sensitivity tests (not shown) revealed that the results

were virtually identical for window lengths ranging from 25

to 45 yrs. We estimate the value of the forced components

at year t by averaging across the window. This results in

smoothed estimates of the forced components:

,f 2i ŝ
2
Tt
ri
.5

1

31
�

k5t115

k5t215

f 2ri
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), (10)

and a smoothed version of the decomposition:
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Tt
g
. 5 �
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ri
.
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n

i52
�
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j51

2f
i
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j
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ri
,Tt

si
)., (11)

where the angle brackets , . denote smoothing over

time. The forced evolution of the variances and co-

variances is assessed in terms of the smoothed estimates

of the components presented above. Likewise, the

contribution of the variances and covariances to global

variability is assessed as ratios of the smoothed com-

ponents relative to global variability ,ŝ2
Tt
g
. .

2) ESTIMATION OF VARIABILITY COMPONENTS IN

UNFORCED SIMULATIONS

Assessing time of emergence entails detecting signifi-

cant differences between forced and unforced variability.

Having developed a simple method for estimating forced

variability statistics in transient climate simulations, we

here present the estimation of variability statistics in un-

forced control simulations.

Following Schneider and Griffies (1999), the unforced

components can be estimated from a single N year

control simulation:

f 2i ŝ
2
Tclam
ri

5
1

N2 1
�
N

l51

(Tl
ri
2Tclim

ri
)2 , (12)

2f
i
f
j
dcovclim(T

ri
,T

rj
)5

2f
i
f
j

N21
�
N

l51

(Tl
ri
2Tclim

i )(Tl
rj
2Tclim

j ) ,

(13)

and

Tclim
r 5

1

N
�
N

l51

Tl
r , (14)

where the superscript clim refers to climatological sta-

tistics of an unforced climate.

3) TIME OF EMERGENCE OF FORCED VARIABILITY

COMPONENTS

Because of the finite number of ensemble members

and the finite length of control simulations, estimates of
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the forced variability necessarily contain sampling un-

certainties. Quantifying time of emergence is a problem

of the detection of significant differences between the

forced and unforced variability statistics in the presence

of sampling uncertainty.

Two difficulties arise when attempting to estimate the

sampling uncertainties in unforced variability statistics.

First, the underlying probability distributions of climatic

variables are not always known, which precludes ana-

lytical estimation of the uncertainties. Second, climatic

time series, in general, exhibit autocorrelation. Auto-

correlation complicates the estimation of sampling un-

certainties in the second moments even when the

underlying distributions are known.

A statistical resampling technique that facilitates

the estimation of sampling uncertainties in the presence

of serial dependence, without requiring the knowledge

of the underlying distributions, is the moving-block

bootstrap (Wilks 2011). In this technique, multiple re-

alizations of the control time series are generated by

randomly selecting those series with replacement and

splicing contiguous blocks of data in time such that

the resulting realizations are of the same length as the

original time series. Sample bootstrap estimates of the

unforced variability statistics are calculated for each

realization, and the sampling uncertainty is quantified

as the spread across the distribution of the bootstrap

estimates.

Application of the moving-block bootstrap relies on a

few critical assumptions: 1) the climate statistics are

stationary in time, 2) the temporal dependence of cli-

matic variables is preserved within blocks, 3) there is

relatively weak dependence between blocks, and 4) the

spread across the bootstrap estimates sufficiently cap-

tures the variability associated with the stochastic pro-

cess that generated the data. The assumption of

stationarity is generally well satisfied in control simula-

tions that have equilibrated under constant forcing. The

other assumptions are satisfied by choosing an appro-

priate block length. As noted by Wilks (2011) and

originally conceived by Politis et al. (1999), a straight-

forward, data-driven choice of the block length is a value

from a range of lengths to which the spread across the

bootstrap estimates is insensitive (the so-called mini-

mum volatility method). We note that there is no uni-

versal optimal block length and the optimal block length

based on theminimum volatility method will, in general,

vary for different time series. See Efron (1981) for a

formal treatment of the bootstrap technique.

For the present analysis, we derive the sampling dis-

tributions of the unforced variability statistics from

10 000 random time series realizations generated by the

moving-block bootstrap. Sensitivity tests (not shown)

for the spread across the sampling uncertainties in the

unforced estimates with blocks lengths varying from 6 to

12 yrs yielded essentially the same results. Following the

minimum volatility method, we thus arbitrarily choose a

block length of 10 yrs for bootstrapping.

Estimating the sampling uncertainties associated with

the forced variability statistics in initial condition en-

sembles is relatively straightforward via bootstrapping.

We outline the steps below:

1) Create multiple (for the present analysis, 10 000)

bootstrapped ensembles consisting of M members,

each by uniformly sampling with replacement the

entire time series of the members in the original

M-member ensemble. Sampling the entire time series

of the ensemble members completely preserves the

temporal structure in the time series.

2) For each bootstrapped ensemble, compute smoothed

estimates of the forced components [Eqs. (9) and (10)].

This results in a distribution of bootstrap estimates at

each time point. The spread across the distribution is

then used to compute sampling uncertainty.

Time of emergence is assessed in terms of the spread

across the distributions of the forced and unforced

bootstrap estimates. For the investigations in this paper,

we use 95% confidence intervals as the metric for the

spread. When there is no overlap between the boot-

strapped 95% confidence intervals of the forced and

unforced estimates, the forced estimates are considered

to be significantly different from an unforced climate at

that time point and are considered to have emerged.

c. Data ellipses

Central to the variability assessment framework is the

covariancematrix of regional variances and covariances.

The data ellipse (Friendly et al. 2013) serves as a useful

tool to visualize the covariance matrix and forced

changes in the covariance matrix.

We present its construction and interpretation for a

system of two regions. For systems with a larger number

of regions, pairwise ellipses can be utilized. For a system

S 5 frx, ryg and its covariance matrix C as defined in

section 2b(1), the standard data ellipse centered at zero

is constructed from (Friendly et al. 2013):

zTC21z5 k2 , (15)

where z 5
h
T

0
x

T
0
y

i
is a point in the coordinate system de-

fined by T
0
x on the x axis and T

0
y on the y axis, k is a

constant, and T
0
x 5Tx 2Tx denotes ensemble-mean re-

moved temperature anomaly. The geometrical proper-

ties of the ellipse serve as a sufficient visual summary of

the second moments:
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1) The projections of the ellipse onto the coordinate axes

are directly related to the standard deviations of the

respective variables (Fig. 1). That is to say, the relative

magnitudes of the variances of Trx and Try, s
2
Trx

and

s2
Try

can be quickly approximated from the ellipse.

2) The correlation betweenTrx andTry, r can be visually

approximated as the ratio of the length of the vertical

tangent line to the height of the horizontal tangent

line above the x axis (Fig. 1). As such, changes in

correlations can be visually approximated by the

changes in this ratio.

3) The variances and covariances can be retrieved from

the ellipse geometry in a straightforward manner:

u5
1

2
a tan

2
42cov(Trx

,T
ry
)

s2
Trx

2s2
Try

3
5, (16)
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(s2

Trx

2s2
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)2 1 4[cov(T
rx
,T

ry
)]2

r �
, and

(17)

l2minor 5 2k2 s2
Trx

1s2
Try

�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2

Trx

2s2
Try

)2 1 4[cov(T
rx
,T

ry
)]2

r �
, (18)

where u is the anglemade by themajor axis with the x

axis and lmajor and lminor are the lengths of the major

and minor axes.

The geometrical relationships presented above hold

regardless of the joint probability distribution of Trx and

Try. But if the distribution is Gaussian, the data ellipse

has an important probabilistic interpretation. In this

case, zTC21z is chi-square distributed with two degrees

of freedom (Wilks 2011). Thus, on setting k2 5x2
2(a), the

ellipse constructed from Eq. (8) represents an approxi-

mate 12a probability surface. That is, the ellipse

bounds 100(12a)% of the joint realizations of Trx and

Try. As such, changes in the shape of the ellipse under

forcing for a given a allows one to readily gauge changes

in the joint probabilities.

The variability of space- and/or time-averaged climate

variables often follows a Gaussian distribution (Toth

1991). Indeed, on application of a multivariate test for

normality (Henze and Zirkler 1990), all pairs of the

modelTri
0s associated with the systems in our study were

indistinguishable from a Gaussian at a significance level

of 0.01 at all times under consideration. For these rea-

sons, the ellipses in our study are constructed by setting

k2 5 x2
2(0:05), and may be interpreted as contours of

95% probability.

For convenience, we drop the hat, overbar, and angle

bracket notations in the rest of the paper and the vari-

ability statistics where they appear hereafter are to be

understood as estimates of the population statistics.

d. Applications to climate model simulations: The
CESM large ensemble

We make use of the CESM-LE: an initial condition

ensemble consisting of 40 CESM1(CAM5) simulations

at 18 3 18 resolution. A detailed description of the

CESM-LE experimental design can be found in Kay

et al. (2015). The CESM-LE includes a 2200-yr pre-

industrial control run under constant 1850 forcing. The

ocean component of this control run was initialized with

modern-day ocean observations while the atmosphere,

land, and sea ice components were initialized with re-

sults from previous CESM1(CAM5) simulations. The

initial states of the atmosphere, land, and sea ice com-

ponents lose their influence on the climate system

within a few years of integration while the upper ocean

adjusted to a preindustrial state after several decades.

With the exception of a small climate drift present in the

deep ocean, the control run was in quasi-equilibrium

with preindustrial forcing by year 400. The first ensem-

ble member was initialized using 1 January conditions

of a randomly selected year (year 402) of the pre-

industrial control run and then integrated forward from

FIG. 1. Schematic of an std data ellipse constructed fromEq. (13)

for variables Trx and Try. The projections of the ellipse on the co-

ordinate axes (blue solid lines) give the std devs of the variables.

The ratio of the vertical tangent length (l) to the height of the

horizontal tangent line above the horizontal axis (L) gives the

correlation r. The variable k is a const that defines the ellipse

surface [see Eq. (13)]. If Trx and Try are jointly Gaussian, the data

ellipse represents contours of const probability and the area

bounded by the ellipse represents the probability of the joint oc-

currence of the variables.
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1850 to 2100 under historical (lamarque et al. 2010) and

RCP8.5 (Meinshausen et al. 2011) forcing. The rest of

the ensemble members were integrated from states that

only differed by small perturbations to the air temper-

ature field of the first ensemble member on 1 January,

1920 and integrated forward to 2100. Chaos leads to a

growth in these perturbations, eventually creating

spread among the ensemble members.

Using the spread across the independent CESM-LE

members, we assess the effect of forcing on the in-

terannual variability statistics of annual surface tem-

perature associated with the land/ocean system and

monthly surface temperatures associated with the Arctic/

midlatitude/rest-of-the-globe system. We further assess

time of emergence by comparing transiently forced sta-

tistics against those estimated from the unforced sta-

tionary climate provided by 1800 years (years 400–2200)

of the preindustrial control simulation.

3. Results

a. Forced interannual temperature variability in a
land/ocean decomposition

Because it offers a simple and interesting application

of our framework, we begin by presenting results for the

coupled land/ocean system (Figs. 2–4). We start with

Fig. 2, which shows the decomposition of the variance in

global annual temperature (Fig. 2a) into land (Fig. 2b)

and ocean (Fig. 2c) variance components, and a land/

ocean covariance component (Fig. 2d) under historical

and future business-as-usual (RCP8.5) forcing in the

CESM-LE. Figure 2b shows that greenhouse gas forcing

strongly enhances land variance. Under historical forc-

ing, the land variance emerges from its preindustrial

state rapidly in just three decades after the start of the

ensemble integration in 1920, and under RCP8.5 forc-

ing, rapidly increases to 1.5 times its preindustrial esti-

mate by the end of the twenty-first century. Greenhouse

gas forcing, however, has little effect on ocean variance.

The ocean variance remains constant at its preindustrial

value for most of the integration period, with a small

decrease toward the end of the twenty-first century. A

critically increasing land variability with constant ocean

variability suggests that, under increased greenhouse

gases, ocean temperatures exert a stronger influence on

land temperature variability. Accordingly, we find that the

land/ocean temperature covariance is enhanced sub-

stantially. By the end of the integration, the covariance

grows to 1.4 times its preindustrial estimate, emerging

from its preindustrial state in the first quarter of the

twenty-first century. Driven by the increases in the land

FIG. 2. Decomposition of (a) global (s2
Tg
) annual temp variance into (b) land ( fls

2
Tl
) and (c) ocean (fos

2
To
) variance components, and

(d) the land/ocean [2flfo cov(Tl , To)] covariance component in the CESM-LE. Preindustrial estimates are shown by the horizontal red

dashed lines in each panel. The noisy time series are the ensemble estimates of the variance and covariance components [see Eqs. (7) and (8)].

Forced estimates derived from smoothing the noisy ensemble time series are shown by the black dashed lines. Ninety-five percent boot-

strap confidence intervals for the preindustrial and forced estimates are shown by horizontal red and black solid lines, respectively. The terms

fl and fo represent the fractions of global area occupied by land and ocean. Note the different scales on the y axes.
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variance and land/ocean covariance, global annual vari-

ance grows steadily, emerging in approximately 2040.

We next assess the contributions of the regional var-

iances and covariance to global annual variance. We

calculate the contributions as ratios of the variance and

covariance components to global annual variance in the

CESM-LE and present the ratios in Fig. 3. We find that

the land/ocean covariance has the greatest contribution

(;40% of global annual variance), that is, almost twice

that of the land variance, throughout the integration,

demonstrating the importance of the covariance be-

tween land and ocean annual temperature to global

annual temperature variance. The contribution of the

ocean variance is similar to that of the land–ocean co-

variance in the twentieth century. The land variance has

the smallest contribution to the global variance (;20%

of global annual variance) throughout the integration,

despite the larger variance of temperature over land (see

data ellipse in Fig. 4), reflecting the smaller fractional

area of land (29% of global area). Coinciding with the

FIG. 3. Contributions of land (green) and ocean (blue) variance components, and land/ocean (cyan) covariance

component to global annual temp variance. The contributions are computed as ratios of the components in relation

to global annual temp variance and can range from 0 to 1.

FIG. 4. Ninety-five percent data ellipses for land and ocean temp anomalies at 1935 (blue) and

2085 (red). The ellipses were constructed from forced estimates of the variances and co-

variances associated with the land/ocean system in the CESM-LE using methods in section 2b(1).

Anomalies are calc as devs from the ensemble mean.
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transition from historical to RCP8.5 forcing in the early

twenty-first century, the contribution of the covariance

increases at a nearly constant rate until the end of the

integration by 5%, while the contribution of the ocean

variance decreases by ;10%, with the decrease being

more rapid after 2020. Compensating for this more rapid

decrease, the contribution of the land variance rises

after 2020.

InFig. 4, we show the 95%data ellipse of land andocean

temperatures constructed from the 30-yr smoothed esti-

mates of the forced variances and covariance at 1935

(Fig. 4, blue) and at 2085 (Fig. 4, red). The changes in the

ellipse reveal two important characteristics of the forced

variability response that are both interesting and not ob-

vious from the decomposition in Fig. 2. First, the ellipse in

the twenty-first century is stretched along the major axis

and is more tilted toward the land axis (x axis in Fig. 4)

than in the early twentieth century [see Eqs. (16)–(18)].

These changes in the shape and orientation of the ellipse

indicate that land and ocean temperatures become more

correlated (see Fig. 1 and section 2c), that is, they vary

more coherently in a warmer climate. Second, the ellipse

encloses a wider range of land temperatures in a warmer

climate. That is, there is a greater probability of extreme

fluctuations in land temperature relative to the late twenty-

first-century mean state.

In summary, the framework reveals 1) a large contri-

bution (.20%) of the land and ocean temperature co-

variance to global annual temperature variance, 2)

greater twenty-first-century global and land tempera-

ture variance that are significantly different from their

preindustrial estimates, 3) ocean temperature variance

that is not significantly different from its preindustrial

estimate throughout the twentieth and twenty-first

centuries, and 4) greater twenty-first-century covari-

ance and correlation between land and ocean tempera-

ture with an increased risk of extreme fluctuations in

land temperature.

b. Forced interannual variability of monthly mean
temperature: Arctic/midlatitude/rest-of-the-globe
decomposition

The loss of Arctic sea ice under increased greenhouse

gas forcing is one of the largest and most visible mani-

festations of climate change (IPCC 2013). Arctic sea ice

extent loss has a pronounced impact not only on mean

surface warming but also on temperature variability

(Screen and Simmonds 2010; Serreze and Barry 2011).

In the CESM-LE, as in other climate models, Arctic sea

ice extent loss is particularly large at the end of the

summermelt season in September (Jahn et al. 2016). For

these reasons, we begin our assessment of the forced

FIG. 5. Decomposition of (a) global (s2
Tg
) September temp variance into (b) Arctic (fas

2
Ta
), (c) midlatitude (fms

2
Tm
), and (d) rest-of-the-

globe (frs
2
Tr
) variance components in the CESM-LE. Preindustrial estimates are shown by the horizontal red dashed lines in each panel.

The noisy time series are the ensemble estimates of the variance and covariance components [see Eqs. (7) and (8)]. Forced estimates

derived from smoothing the noisy ensemble time series are shown by the black dashed lines. Ninety-five percent bootstrap confidence

intervals for the preindustrial and forced estimates are shown by horizontal red and black solid lines, respectively. The terms fa, fm, and fr
represent the fractions of global area occupied by the Arctic, midlatitudes, and the rest of the globe. Note the different scales on the y axes.
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interannual monthly temperature variability with a fo-

cus on the month of September. Specifically, we de-

compose the interannual variance in global September

temperature into variance and covariance components

associated with the Arctic (708–908N), the northern

midlatitudes (308–708N), and the rest-of-the-globe re-

gions in the CESM-LE.

Figure 5 shows the forced evolution of the variance

components arising from the September decomposition.

The Arctic variance (Fig. 5b) stays relatively constant

from the start of the integration until 2020, after which it

decreases in a striking nonlinear fashion, coinciding with

the loss of September sea ice in the CESM-LE (not

shown). Asmost of the September sea ice is lost by 2060,

theArctic variance reduces asymptotically to a level that

is smaller than its early twentieth-century level by a re-

markable 75%. In contrast with the strongly decreasing

Arctic variance, the midlatitude variance (Fig. 5c) re-

mains largely constant throughout the integration with a

small increase toward the end of the integration. The

rest-of-the-globe variance (Fig. 5d), on the other hand,

grows steadily until the end of the integration, emerging

from its preindustrial state in the mid-twentieth century.

Interestingly, the changes in the smoothed covariance

estimates associated with this three-region system were

found to be negligible and therefore are not shown.

We next assess the contributions of the regional var-

iances and covariances to global September variance in

Fig. 6 as ratios compared to global September variance.

We find that the rest-of-the-globe variance has the

greatest contribution to global September variance

throughout the integration (.90%). The Arctic and

midlatitude variances have much smaller contributions,

which is not surprising considering the smaller fractions

of global area occupied by the Arctic (3%) and the

midlatitudes (22%) compared to the rest of the globe

(75%). Unlike the land/ocean system where the co-

variance has a large and positive contribution (section 3a),

the covariances here have a small and negative total

contribution.

How does the large September Arctic sea ice extent

loss affect the temperature probabilities in the Arctic/

midlatitude/rest-of-the-globe system? We address this

question using data ellipses. Assuming the pairwise

distributions of the Arctic, midlatitude, and rest-of-the-

globe temperatures to be Gaussian, we visualize the

changes in probabilities using 95% data ellipses (Fig. 7).

We find that the large decrease in the Arctic variance

results in a large shrinkage of the Arctic/midlatitude

[Fig. 7a; see Eqs. (16)–(18)] and the Arctic/rest-of-the-

globe (Fig. 7b) September temperature ellipses along

their major axes. Simply put, the ellipses show the

probability of extreme fluctuations of September Arctic

temperature about the twenty-first-centurymean state is

greatly reduced.

Fascinated by the large reduction in the September

Arctic variance, we next ask: How do the variances and

covariances associated with the other months respond to

historical and RCP8.5 forcing? Is there a seasonal

character to the response? Are the covariance changes

FIG. 6. Contributions of Arctic (blue), midlatitude (brown), and rest-of-the-globe (green) variance components,

and Arctic/midlatitude (purple), Arctic/rest-of-the-globe (cyan), and midlatitude/rest-of-the-globe (yellow) co-

variance components to global September temp variance. The contributions are computed as ratios of the com-

ponents and teleconnections relative to global September temp variance. The sum of the covariance contributions

is shown by the black dashed line.
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negligible in all months, or just in September? To

address these questions, we perform a month-by-

month decomposition of interannual variance in global

monthly temperature into variance and covariance

components arising from the Arctic/midlatitude/rest-

of-the-globe system. The forced variances varied by

more than an order of magnitude from month to

month. Therefore, for ease of comparing across differ-

ent months, we normalize by taking the ratios of the

forced variances to their unforced estimates.We present

the ratios in Fig. 8. We find that the forced response

of the Arctic variance (Fig. 8b) has a strong seasonal

character: it displays large decreases in the fall, minor

decreases in the spring, and negligible decreases in the

summer and winter. The forced response of the mid-

latitude variance (Fig. 8c) is weak, except in October

and November, during which it displays significant de-

creases, and in July, during which it displays a striking

increase (;120%). The forced response of the rest-of-

the-globe variance (Fig. 8d) is more uniform: it increases

in most months. As in September, the changes in the

covariances in all months were found to be negligible

and therefore are not presented.

Intrigued by the large increase in the July midlatitude

variance, we more fully explore in Fig. 9 the variance

components arising from the decomposition of global

July variance. We find that the Arctic variance (Fig. 9b)

remains constant until 1980, after which, coinciding with

the commencement of July sea ice loss in the CESM-LE

(not shown), it decreases until 2040. After 2040, despite

continued sea ice loss in the CESM-LE and coinciding

with the increase in the midlatitude variance (Fig. 9c),

the Arctic variance remarkably grows back to its

preindustrial value.

The contributions of the regional variances and co-

variances to global July variance are assessed in Fig. 10

as ratios. We find that the rest-of-the-globe variance has

the greatest contribution (.80%) to global July vari-

ance (Fig. 10) as in Fig. 6. Further as in Fig. 6, we find

that the contributions of the Arctic and midlatitude

variances, and the covariances, are much smaller than

the contributions of the rest-of-the-globe variance to

global July temperature variance.

Finally, we assess changes in the temperature proba-

bility distributions induced by the substantial increases

in the July midlatitude variance. Again, assuming the

pairwise distributions of the Arctic, midlatitude, and

rest-of-the-globe temperatures to be Gaussian, we vi-

sualize the changes in probabilities using 95% data el-

lipses (Fig. 11). We find that the increase in the

midlatitude variance results in only a marginal stretch of

the midlatitude/rest-of-the-globe [Fig. 11c; see Eqs.

(16)–(18)] July temperature ellipse along its major axes.

FIG. 7. Ninety-five percent data ellipses for September

(a) Arctic and midlatitude, (b) Arctic and rest-of-the-globe, and

(c) midlatitude and rest-of-the-globe temp anomalies at 1935

(blue) and 2085 (red). The ellipses were constructed from forced

estimates of the variances and covariances associated with the

Arctic/midlatitude/rest-of-the-globe system in the CESM-LE.

Anomalies are calc as devs from the ensemble mean.
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We further find that the changes in the geometrical

properties of the Arctic/midlatitude (Fig. 11a) and the

Arctic/rest-of-the-globe ellipse (Fig. 11b) are negli-

gible. That is, the probabilities of the fluctuations

about the Arctic, midlatitude, and rest-of-the-globe July

temperatures remain more or less unchanged in a

warmer climate.

In summary, our investigations of the forced in-

terannual monthly temperature variability associated

with the Arctic/midlatitude/rest-of-the-globe system

FIG. 8. Ratios of (a) interannual global monthly temp variance, (b) Arctic variance component, (c) midlatitude variance component,

and (d) rest-of-the-globe variance components estimated in the CESM-LE to their preindustrial estimates. Ratios where the forced

estimates do not differ significantly from their preindustrial estimates are shown in white. Note the different color scales.

FIG. 9. As in Fig. 5, but for July.
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revealed 1) large twenty-first-century Arctic tempera-

ture variance decreases in the fall months, 2) large

twenty-first-century midlatitude temperature variance

increases in the summermonths, 3) negligible changes in

temperature covariances in most months, and 4) large

twenty-first-century increases in the rest-of-the-globe

temperature variance in most months.

4. Summary and discussion

Broadening the scope of variability studies, we have

here developed a simple framework that facilitates a

unified assessment of the interannual variances and co-

variances associated with a system of interacting regions

in climate model ensembles. The three central constit-

uents of the framework are 1) a decomposition of global

variability into regional variance and covariance com-

ponents, 2) the computation of the evolving components

in an ensemble of climate model simulations under

transient forcing, and 3) the application of a statistical

resampling method to quantify the time of emergence of

forced variability signals. As our investigations have

demonstrated, the three constituents combine to

provide a simple yet comprehensive assessment of the

forced response of regional interannual variability.

Our investigations have revealed interannual vari-

ability changes in the CESM-LE that are consistent with

results from literature. For example, we found large

decreases in fall Arctic temperature variance (Fig. 8b).

These decreases occurring because of the loss of sea ice

cover and the moderating influence of the exposed wa-

ters are a consistent feature across a host of variability

studies (e.g., Räisänen 2001; Stouffer and Wetherald

2007; Boer 2009; LaJoie and DelSole 2016). The in-

creases in the summermidlatitude temperature variance

(Fig. 8c) are also a robust result of variability studies and

have been linked to a drying of continental land because

of depletion of soil moisture (e.g., Räisänen 2001;

Stouffer and Wetherald 2007; Scherrer et al. 2008;

Fischer et al. 2012).

While our investigations have uncovered variability

changes that are robust across existing twenty-first-

century model simulations, have a known physical ba-

sis, and perhaps, therefore, are not surprising, there are

three important findings that are shown here for the first

time. First, the land temperature variance (Fig. 2b) in-

creases to almost 1.5 times its preindustrial level. This

increase will manifest as an enhanced likelihood of ex-

treme land temperatures (see Fig. 4). These extreme

heat events will be superimposed upon a mean state

that is almost 58C warmer than the present day in the

CESM-LE (analysis not shown) and will have important

implications for the society and ecology (e.g., Ciais et al.

2005; Larsen 2006; Liu et al. 2010). We also find that the

land and ocean temperature covariance increases in a

warmer climate, suggesting that land and ocean tem-

peratures will vary more coherently in a warmer climate

and as a result the knowledge of sea surface tempera-

tures (SSTs) may contribute to increased predictability

of land temperatures (e.g.,Årthun et al. 2017). Third, we

find that July temperature variance in the Arctic grows

toward the end of the twenty-first century. While the

physical mechanisms underlying this growth are un-

known to us at present, the fact that the growth occurs

FIG. 10. As in Fig. 6, but for July.
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despite continued sea ice loss in the CESM-LE suggests

the influence of processes nonlocal to the Arctic and

warrants further investigation. Finally, the land tem-

perature variance (Fig. 2b) and the September Arctic

(Fig. 5b) and midlatitude (Fig. 5c) temperature vari-

ances emerge from their preindustrial states in the first

few decades of the twentieth century. If the CESM-LE

accurately captures the variability of these regions, an

assumption we have not tested, the signals of forced

historical variability would be expected to be embedded

in the observed record. These results therefore motivate

future studies to perform a formal detection and attri-

bution analysis leveraging observations and climate

model simulations to identify these signals in observa-

tions and attribute them to external forcings (e.g.,

Hegerl and Zwiers 2011).

An important and perhaps fundamental insight that

has emerged from our investigations is the importance

of regional covariances to global variance on in-

terannual time scales as demonstrated by the major

contribution of the land and ocean temperature co-

variance to global variance (Fig. 3). Our finding that

regional covariances can have an enormous influence on

global interannual variance suggests that studies seeking

to understand the relationship between global variance

and regional variability (e.g., Sutton et al. 2015) may

benefit by taking into account regional covariances.

The investigations in this paper are limited to the

variability associated with systems consisting of two and

three regions in a single climate model ensemble. The

applications of the framework, however, are more gen-

eral. The framework, through the decomposition that

can admit an arbitrary number of regions, can be

adapted to the assessment of the variance and co-

variance components arising from as many number of

regions as desired on the globe. This flexibility can en-

able an integrated study of the modes of climate vari-

ability that often couple numerous regions on the planet.

For example, the ENSO phenomenon, a prominent

mode of interannual variability, is concentrated in the

tropical Pacific but has teleconnections to remote re-

gions of the globe and therefore is of great interest for

climate projections (Collins et al. 2010). How will the

year-to-year ENSO variability change in a warmer cli-

mate? How will the numerous ENSO teleconnections

change under mean warming? When will these changes

emerge? These are the kinds of questions that can be

addressed with the framework in a comprehensive

manner.

Finally, we list two opportunities for future research.

Given the potentially broad implications of our find-

ings, future work could assess their robustness across

existing model ensembles, for example, those from

phase 5 of the CoupledModel Intercomparison Project

(CMIP5). The ensemble framework presented in this

paper provides a natural means for this purpose. In this

context, the production of large ensemble simulations

by individual modeling groups participating in the on-

going CMIP6 experiments (Eyring et al. 2016) will be

FIG. 11. As in Fig. 7, but for July.
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particularly useful. Another obvious next step would

be to extend the framework to the assessment of co-

variances between variables. The methods in this paper

are limited to the covariance of one variable between

different regions. It would be straightforward and

useful to extend these methods to quantify the forced

evolution and time of emergence of covariance be-

tween variables, for example, the covariance between

tropical Pacific SSTs and rainfall patterns in various

ENSO-affected regions around the world (e.g., Perry

et al. 2017).
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