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Abstract Data from several coincident satellite sensors are analyzed to determine the

dependence of cloud and precipitation characteristics of tropical regions on the variance in the

water vapor field. Increased vapor variance is associated with decreased high cloud fraction

and an enhancement of low-level radiative cooling in dry regions of the domain. The result is

found across a range of sea surface temperatures and rain rates. This suggests the possibility of

an enhanced low-level circulation feeding the moist convecting areas when vapor variance is

large. These findings are consistent with idealized models of self-aggregation, in which the

aggregation of convection is maintained by a combination of low-level radiative cooling in dry

regions and mid-to-upper-level radiative warming in cloudy regions.

Keywords Convective aggregation � Radiation � Water vapor � Satellite � Observations

1 Introduction

Radiative-convective equilibrium, in which heating of the atmosphere by moist convection

and precipitation balances radiative cooling, is an idealization of the Earth’s tropical

atmosphere that neglects advective energy transport. Over a uniform surface, and in

domains large enough to contain many convective elements, the null hypothesis would be
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that convection in radiative-convective equilibrium would be distributed roughly uni-

formly throughout the domain. It has been known for more than 20 years, however, that

convection in numerical model simulations of radiative-convective equilibrium frequently

gathers itself together, increasing in spatial scale until, under many circumstances, the

entire domain contains only a single region of convection (Held et al. 1993; Bretherton

et al. 2005; Stephens et al. 2008; Wing and Emanuel 2014; Tompkins and Craig 1998). The

phenomenon of convective ‘self-aggregation’ was originally noted in cloud-resolving

models in which deep convection is explicit (Held et al. 1993; Bretherton et al. 2005;

Stephens et al. 2008; Wing and Emanuel 2014) but it also appears in global models (Bony

et al. 2016; Shi and Bretherton 2014; Reed et al. 2015; Coppin and Bony 2015) in which

convection is parameterized.

Self-aggregation has primarily been found to occur in simulations with warm Sea

Surface Temperatures (SST) with a possible SST threshold below which aggregations does

not occur (e.g., Wing and Emanuel 2014). A precise threshold remains elusive: Self-

aggregation has been simulated at SSTs less than 300 K (Wing et al. 2016; Holloway and

Woolnough 2016) and there are even simulations with an upper SST bound above which

self-aggregation does not occur (Wing and Emanuel 2014). While studies have consistently

found a relationship between temperature and self-aggregation, there is not a consensus on

the specific nature of this relationship. The remainder of this paper will address aggregation

in warm SST environments with the caveat that the phenomena may have broader

applicability.

Models show that in a fully aggregated state, the atmosphere consists of a few very

moist regions containing strong convection and a much larger dry, subsiding region. The

contrast in humidity between dry and moist regions is strong so that the variance of the

moisture field increases with the degree of aggregation (Bretherton et al. 2005; Wing

et al. 2016). High clouds are less frequent in aggregated states, allowing increased

longwave (LW) radiative cooling to space. The precise details of convectively aggre-

gated states are still being explored (Muller and Bony 2015) but the frequent finding that

aggregation increases with sea surface temperature suggests a stabilizing feedback on

climate reminiscent of the ‘Iris hypothesis’ (Lindzen et al. 2001), albeit through dif-

ferent mechanisms than originally proposed (Mauritsen and Stevens 2015; Bony et al.

2016).

The degree to which the self-aggregation of convection is relevant to the Earth’s

atmosphere is not entirely clear. As reviewed carefully by Holloway et al. (2017; this

issue), the organization of convection has been thought of for many years as being inti-

mately linked to mesoscale systems organized by gravity and other convectively coupled

waves (e.g., Mapes 1993) or large-scale circulations. The Earth’s atmosphere does exhibit

some characteristics of convective self-aggregation, including the tendency of more

organized atmospheres to have lower humidity in clear areas, reduced domain-mean high

cloudiness, and increased low cloudiness in non-convective areas, with corresponding

impacts on surface and radiative fluxes (Tobin et al. 2012; Stein et al. 2017; Tobin et al.

2013).

As the mechanisms responsible for self-aggregation in radiative-convective equilibrium

become more robustly understood, observational tests focusing on those mechanisms

become possible (see Holloway et al., this issue; Bony et al., this issue). Here, we expand

on the relatively small literature (Tobin et al. 2012, 2013; Stein et al. 2017) examining how

the structure of the atmosphere, and the clouds embedded in it, depends on the degree of

organization. We exploit a range of colocated observations from the A-Train satellite

constellation (Stephens et al. 2002; L’Ecuyer and Jiang 2010) to identify aggregated states
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in the tropical atmosphere and examine the cloud, precipitation, and radiative structure of

these states. We use a new measure of organization based on the spatial variability of the

water vapor field. The richness of the observations allows us to identify the circumstances

under which aggregation is most frequent and to disentangle the effects of aggregation and

mean environmental conditions on the cloud and humidity structure of the atmosphere. We

emphasize the important distinction between the observed aggregation that is influenced by

external forcing and the idealized concept of self-aggregation, which occurs in the absence

of large-scale forcing. The results of this paper must be interpreted with the understanding

that these are distinct phenomena.

2 Characterizing Aggregation in Clouds and Their Environment

2.1 Observations from the A-Train

We use data products from the A-Train constellation (Stephens et al. 2002; L’Ecuyer and

Jiang 2010). These sensors include the Advanced Microwave Scanning Radiometer for

EOS (AMSR-E), the Moderate resolution Imaging Spectroradiometer (MODIS), CloudSat,

and CALIPSO. AMSR-E data is available from June 2002 to October 2011 when the

instrument spun down. MODIS cloud data is used during this same period. CloudSat/

CALIPSO data was used from the period June 2006 to February 2011. All the observations

are nearly instantaneous snapshots as opposed to daily average quantities. Results that

contain CloudSat/CALIPSO data use the 2006–2011 epoch, whereas results that do not use

CloudSat/CALIPSO data use the full A-Train period.

Here, we use Column Water Vapor (CWV) from the AMSR-E sensor (Kawanishi et al.

2003) derived from the version 7 Remote Sensing System algorithms (Wentz and Meissner

2000, 2007). The CWV has an expected precision of 1 kgm-2. The data product is

available over ocean surfaces on a 0.25� daily grid with the ascending orbital nodes

separated from the descending orbital nodes.

Surface Rain Rate (RR) data are also derived from the AMSR-E sensor using the

version 2 Goddard Profiling (GPROF) algorithm (Kummerow et al. 2011). Like the CWV

data, the RR is available on a 0.25� daily grid with the ascending orbital nodes separated

from the descending orbital nodes.

Cloud data are taken from the collection 5.1, Level 3 Aqua MODIS products. We use

the Cloud top pressure (CTP) histograms in the Level 3 products, which are separately

stored for ascending and descending nodes (Cloud_Top_Pressure_Day_Histogram_Counts

and Cloud_Top_Pressure_Night_Histogram_Counts). The CTP histograms bin the

observed cloud counts as a function of 11 bins in 100 hPa increments from the surface to

the top of the atmosphere. In addition to the histogram, we use the CTP counts

(Cloud_Top_Pressure_Day_Pixel_Counts and Cloud_Top_Pressure_Night_Pixel_Counts)

variable in order to calculate cloud fractions from the histograms.

Cloud occurrence profiles are derived from the release-04 2B-Geoprof-Lidar product

(Mace et al. 2009) which combines the CloudSat radar cloud mask (Marchand et al. 2008)

with the CALIPSO lidar cloud mask (Vaughan et al. 2009). These data are stored on

granules that correspond to single orbits; nadir-only sampling means that there is no

overlap between the ascending and descending observations.

Precipitation incidence is used from the release-04 CloudSat 2C-Precip-Column product

(Haynes et al. 2009; Smalley et al. 2013). Surface rain incidence is defined using the
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Precip_flag variable = 3, which corresponds to certain precipitation and a radar reflectivity

exceeding 0 dBZ at an altitude of approximately 720 m.

Radiative heating profiles are taken from the CloudSat/CALIPSO 2B-Flxhr-Lidar

product (Henderson et al. 2013), which combines meteorological analysis with the cloud

and aerosol profile information from CloudSat and CALIPSO and a dynamic land surface

as input to a radiative transfer model to compute the profile of radiative fluxes at 240 m

vertical resolution. Pixel-level RMS differences between this product and the derived top

of the atmosphere (TOA) fluxes from the Clouds and Earth Radiant Energy System

(CERES) are 5.7 and 16.5 W m-2 for the longwave and shortwave, respectively. However,

the biases in pixel-scale retrievals are less than 5 W m-2 (Henderson et al. 2013). We use a

modified version of the 2B-Flxhr-Lidar product designed to estimate the diurnal mean

fluxes. This modified product computes the shortwave fluxes using 12 different solar zenith

angles to account for the diurnal precession of the incoming flux. This product does not,

however, account for diurnal changes in the cloud or thermodynamic variables, since they

are not directly observed by the A-Train constellation. The Flxhr-lidar product includes an

estimate of the Cloud Radiative Effect (CRE). The CRE is calculated explicitly by per-

forming the radiative transfer calculation twice: once all sky and once clear sky. The CRE

is then calculated as the difference of the clear-sky calculation from the all-sky calculation.

All fluxes that follow are defined positive downward.

2.2 Characterizing Aggregation in the Water Vapor Field

Observational studies of convective self-aggregation to date (Tobin et al. 2012; Stein et al.

2017; Tobin et al. 2013) have quantified the degree of aggregation based on the degree to

which cold clouds observed with a domain are spatially coherent, and these studies have

also noted that clear areas tend to be less humid when convection is more aggregated. We

invert this logic using a measure of aggregation defined by the inhomogeneity of the

integrated water vapor field. Our motivations are partly practical: Definitions of aggre-

gation based on clouds require processing high volumes of pixel-scale cloud observations,

and cloud observations can be sensitive to the details of the observing system including

sensor resolution, inherent sensitivity, and algorithmic choices (Pincus et al. 2012) while

being subject to much larger high-frequency variability than is vapor. More importantly, it

is useful to understand the degree to which variability in water vapor can exist indepen-

dently of the systematic organization of convection.

We define the degree of aggregation a using the coefficient of variation for water vapor

calculated from the 0.25� data on a 5� twice-daily (day/night) grid,

a ¼ rCWV

CWV
ð1Þ

where the overbar represents the spatial mean and r is the standard deviation taken over the

grid. All other cloud, precipitation, and radiation data are aggregated to a common twice-

daily 5� grid. The choice of a 5� grid is arbitrary; however, the conclusions drawn herein do
not change when repeating the analysis at 10�. The separation of ascending and descending

nodes is important because it keeps each grid box a semi-instantaneous sample in time.

Pixels identified as land are filtered out of the analysis with no imposed threshold on the

number of ocean pixels that enter each 5� aggregation. The high cloud fraction is calcu-

lated from both the MODIS and CloudSat/CALIPSO data, whereas low cloud fraction is

only derived from the CloudSat/CALISPO data. From MODIS, the high cloud fraction is

calculated using the cloud fraction in the CTP histograms with CTP lower than 400 hPa.
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Similarly, from CloudSat the high cloud fraction is calculated as the fraction of cloud cover

above 7.5 km.

All 5� regions are filtered for SSTs between 300 and 304 K, which include most of the

warmest tropical SSTs. Higher SSTs are infrequent enough that sampling is problematic.

The lower SST bound is motivated by modeling studies that suggest that SSTs over 300 K

are the relevant regime for self-aggregation. We also note that results are robust down to

SSTs of 296 K.

Daily data can occasionally be missing in areas of intense precipitation where high

winds affect surface emissivity and large ice water contents cause scattering of the

emission signal. These missing data points are disregarded in the calculation of the

aggregation. The missing data are most likely the high tail of the CWV distribution and

therefore may introduce some systematic bias in the calculation of a; however, this

influence is somewhat mitigated by the normalization in Eq. 1 as both the standard

deviation and mean will be biased low when data are missing.

Figure 1 shows an example of 1 day’s calculation of the aggregation and related data

products for the ascending (daytime) orbits.

3 Relationships Among Clouds, Humidity, and Aggregation

Our relatively large data set allows us to examine the geographic distribution of aggre-

gation. Figure 2 shows a map of the degree of aggregation, water vapor, and SST over the

period 2002–2011. Aggregation is largest where the gradient of the mean water vapor field

is largest, on the edges of the West Pacific warm pool and the Inter-Tropical Convergence

Zone (ITCZ), suggesting that aggregation, by this measure, is most common in domains

which cover both the ascending and descending regions of either a large-scale or a synoptic

circulation. This geographical distribution is inconsistent with some modeling results

suggesting that aggregation increases with SST although this may be an artifact of the

particular definition of aggregation used here.

Missing CWV retrieval failures might introduce systematic bias in the results that

follow. However, Fig. 3 shows that these failures are rare and relatively evenly distributed

across the range of a. There is a modest maximum in the failure count for a near 3%. The

geographical distribution of failure rate clearly shows that the prevalence of failed CWV

retrievals follows the distribution of precipitation with relative maximum in the ITCZ and

the warm pool. The fraction of missing pixels only exceeds 2% in a handful of poorly

sampled grids. Comparing this distribution to Fig. 2, one cannot find a strong correlation

between the occurrences of high, moderate, or low mean aggregation state with the CWV

failure rate. For example, while both the ITCZ and the warm pool have relatively elevated

precipitation rates and retrieval failure rates, the ITCZ is characterized by large a and the

warm pool by low a.

3.1 Cloudiness Depends on Sea Surface Temperature and Aggregation State

One of the most robust features of self-aggregation in idealized simulations is the reduction

in high cloud cover with increased aggregation. This feature appears in our data set,

echoing results from previous observational studies. Figure 4 shows that the MODIS high

cloud cover tends to decrease with increasing aggregation, and results (not shown) using

the CloudSat/CALIPSO data confirm this result. The result is consistent with Stein et al.
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(2017). That study further finds that the strong dependence of high cloud fraction with

aggregation is largely a function of variations in optically thin cirrus cloud. Note that in

Fig. 3, panel C shows how the mean water vapor varies with a. It is not surprising to see

that CWV decreases with a, contributing to changes in a, since CWV appears in the

denominator of Eq. 1, but these changes in the CWV do not explain the majority of the

variation in a. Therefore, the degree of aggregation is primarily driven by spatial variation

in water vapor, not changes in CWV. We infer that changes in cloud morphology corre-

lated with a are related to changes in the spatial variability of water vapor as opposed to the
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Fig. 1 An example of the data for the ascending orbit of August 04, 2006. The top left panel shows the
0.25� native water vapor fields. All other panels show 5� averaged data for pixels with SST between 300 and
304 K
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mean water vapor. We can also observe from Fig. 4 panel C that dry states tend to display

a more aggregated state than do moister states which is consistent with the geographical

distributions shown in Fig. 2, which shows a minimum aggregation in the moistest regions.

Figure 5 shows how the vertical profile of cloudiness changes with increases in a (see

also Stein et al. 2017, Fig. 3). Profiles are derived from the CloudSat/CALIPSO data which

only provide a narrow nadir swath within each sample grid box; however, averaged over a

large number of samples, it should provide an unbiased estimate of the mean. This is

evident in the fact MODIS and CloudSat/CALIPSO show the same dependence of high

clouds on a. We see in Fig. 5 that the total cloud cover is a strong function of mean SST

but, for a given SST range, an increase in vapor variability is not only associated with a

decrease in high cloud fraction but also a decrease in mid-level clouds indicating a drying

out of the mid-troposphere, presumably due to a decrease in the convective area fraction.

Smaller changes in the low cloud fraction are observed that depend on the SST. At cooler

SST, the low cloud fraction increases slightly with a, whereas it decreases with a at higher

SST.
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Fig. 2 The left-hand panels show the frequency of occurrence of various aggregation states. Low-
aggregation is defined as\ 5%, moderate-aggregation is defined as 5–10%, and high-aggregation is defined
as[ 10%. The right-hand panel shows the mean SST, column water vapor, and sample count. Note the
predominance of low-aggregation in the maritime continent with areas of higher aggregation on the
boundaries of the ITCZ and the warm pool
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3.2 Cloudiness, Radiative Heating, and Convective Intensity

Figures 1, 2, 3, 4, and 5 mix many different convective states across the aggregation index

a. Might these results be the result of systematic variation in convective activity with the

vapor variance, rather than an indication of the aggregation of convection? To address this

concern, we further stratify our results by the observed rain rate averaged over each

5� 9 5� region following the approach of Stein et al. (2017). This admittedly rough metric

for convective intensity is the best available from the A-Train observations. A better

measure of convective area fraction might be gleaned from Global Precipitation Mea-

surement (GPM) mission or Tropical Rainfall Measurement Mission radar observations,

which can identify convective precipitation using the spatial variance of the radar
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reflectivity; however, these observations are rarely coincident with the A-Train data used in

this study. The GPM mission includes the GPM Microwave Radiometer (GMI), which has

similar characteristics to the AMSR-E radiometer, so it would be possible to examine GPM

radar observations in terms of the aggregation index defined in this paper.

Figure 6 shows how the mean a depends on both the grid-mean rain rate and SST. There

is a tendency toward larger a with decreases in either SST or rain rate. Thus, stratifying

results by both SST and rain rate is important to determine whether the dependences of

clouds on a are related to variations in a itself or are instead potentially due to correlation

of a with precipitation.

High cloud fraction does indeed decrease with increasing a for each rain rate bin and

each SST (Fig. 7), with the dependence of high cloud fraction on aggregation similar

within each bin. This suggests that the high cloud fraction decreases with a due to
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the water vapor aggregation
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aggregation of convection, not via a systematic dependence of convective intensity on the

water vapor variance.

Stein et al. (2017) found that low-level cloud fraction increases along with their

aggregation metric. Modeling results also suggest that low-level clouds are crucial for the

onset of convective aggregation and are one of the several processes that help maintain an

established aggregated state (Muller and Bony 2015). Figure 8 shows that the low cloud
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show the standard deviation. While virtually any value of a can be observed for any rain rate or SST value,
there are clear tendencies for alpha to increase with decreasing rain rate and decreasing SST
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fraction as deduced from the CloudSat/CALIPSO data shows increases with alpha, in

agreement with the Stein et al.’s (2017) result. Low cloud fraction decreases with

increasing SST, decreases with increasing rain rate, and low cloud fraction tends to

increase with a regardless of the rain rate or SST bin.

The systematic dependence of the cloud cover on a has a substantial influence on the

cloud radiative effects. Figure 9 shows the result of the aggregation state on the mean

cloud radiative effect at the TOA. As a increases (and high cloud cover decreases), there is

increased domain average longwave emission to space compensated by decreased solar

reflectance. In general, the shortwave effect is larger than the longwave effect. Results are

shown only for the 301–302 K SST bin; qualitatively, similar dependence of the TOA

fluxes is found at the other SSTs. For a given rain rate and SST, therefore, net absorption

by the earth and atmosphere increases with the degree of aggregation a.
The compensation between longwave and shortwave at the TOA implies a redistribution

of heating in the atmospheric column with increased solar heating of the surface and

increased longwave cooling of the atmosphere. Longwave radiative cooling is concentrated

at the effective emission level, which is governed by cloud top and the water vapor scale

height. Indeed, heating rate profiles stratified according to rain rate (Fig. 10) show

increasing low-level cooling of the atmosphere with increased aggregation. As a increases,
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the height of the maximum cooling decreases and the magnitude of the lower tropospheric

cooling increases, each of which supports the LW radiative-convective feedback conjec-

ture whereby enhanced low-level atmospheric cooling with aggregation helps sustain the

aggregated state through positive feedback on the regional circulation.
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3.3 Does Vapor Aggregation Imply Convective Aggregation?

The results already shown, using a measure of aggregation defined by the water vapor field,

show variations of cloudiness consistent with observations stratified by the connectedness

of clouds themselves, suggesting that large-scale variance of water vapor and the

mesoscale distribution of clouds are tightly linked. In this section, we explore these

relationships more carefully.

We examine differences in the structure of the cloud and radiation fields in the dry and

moist areas by compositing our observations as a function of mean column-integrated

water vapor. Each twice-daily grid box is divided into water vapor octiles, and then cloud

and radiation data are composited as a function of each octile (Fig. 11). This analysis

averages data across the various aggregation states while retaining information of the

covariability of moisture and cloudiness within each domain. Because SST variation across

each 5� box is relatively small, this is analogous to energy-budget analyses used to

diagnose the mechanisms leading to self-aggregation (Bretherton et al. 2005; Wing and
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Fig. 10 The vertical profile of the CloudSat/CALIPSO diurnal averaged LW heating rate as a function of
the vapor variability
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Emanuel 2014; Muller and Bony 2015) although open boundary conditions suggest that

inferring circulations from this stratification is unwise.

Within each rain rate/SST regime, the moistest areas have the highest cloud fraction at

all levels, while the driest show very little cloud in the middle atmosphere and enhanced

low-level cooling. This picture is consistent with modeling results showing preferential

convection in the moist regions that can be maintained (or caused) by an enhanced LW

radiative cooling in the dry region (c.f. Figure 2 in Muller and Bony (2015)).

Aggregated convection might also be expected to lead to more aggregated precipitation.

The hypothesis is tested using a precipitation length scale lp, defined as the chord length of

contiguous areas of precipitation, based on precise precipitation incidence flags from

CloudSat (Smalley and L’Ecuyer 2015). On the scale of an individual sample, this chord

length may have a great deal of uncertainty due to the nadir sampling of CloudSat and the

non-isotropic structure of precipitation. We make the assumption that averaged over a

large number of samples, systematic differences in precipitation spatial scale can be
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Fig. 11 Composite view of the LW cooling rate (colors) and cloud fraction (contours) as a function of
vapor octiles averaged over all aggregation states. By definition, the moistest octiles are on the left and the
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inferred from the chord-length measurement. Figure 12 contrasts lp in regions with very

aggregated regions (a[ 10) with homogenous regions (a\ 5). Precipitation length scale

is generally longer in the moistest octile for the a[ 10 state than for a\ 5, whereas it

tends to be shorter in the other 7 octiles, regardless of SST or rain rate. This would occur if,

for example, rain from convective systems increasingly aggregates in moist regions as

water vapor variance increases. Commensurate with these changes in the character of

precipitation in the moist region is a decrease in the organization in the dry areas, which

may have more isolated shallow convection.
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Fig. 12 The difference in the precipitation length scale (lp) between vapor variance greater than 10% cases
and vapor variance less than 5% cases. In the moistest octile, the aggregated cases tend to have a longer
precipitation length scale, whereas the precipitation length scale is shorter in drier octiles
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4 Summary and Discussion

We have explored the relationships among clouds, precipitation, radiation, and a measure

of the convective aggregation given by the variance in the column water vapor field in

large domains over the tropical oceans. This study was motivated by a number of modeling

studies hypothesizing an increase in convective aggregation with warming SSTs. Cloud

modeling studies of this convective self-aggregation robustly find that the water vapor

variance increases with aggregation of the convection. Over ocean surfaces, column water

vapor is well-measured and relatively continuous. We expect it provides a measure

complementary to the infrared cloud observations that have been employed by previous

observational studies of convective aggregation (Tobin et al. 2012; Holloway, this issue).

In the observations presented here, we see a reduction in the area of high cloud cover

and an associated increase in the longwave cooling of the atmospheric column to space, as

the degree of aggregation increases. We further observe an increase in the low cloud cover

with increased aggregation. The enhanced cooling occurs in the dry regions of the domain,

reinforcing the moist-static energy gradient between moist and dry regions. Modeling

studies suggest that this radiative effect acts as a positive feedback contributing with other

processes to maintain the organization of convection in moist areas (Muller and Bony

2015). It is important here to draw a distinction between the initiation and maintenance of

the aggregated state. The Muller and Bony study finds that cooling rates localized at cloud

top on the order of * 13 K/day are required for the initiation, whereas broad lower

tropospheric cooling on the order of * 2 K/day is helpful but not necessary for main-

taining aggregation. The observations shown here are on the order of the * 2 K/day

helpful for the maintenance of the aggregated state.

This picture of convective organization is consistent across a range of SSTs and rain

rates, which we take as a loose proxy for convective intensity. Sorting the results by rain

rate provides some relevance to the cloud-climate-feedback problem in the context of

radiative-convective equilibrium. In particular, the results show that regions with very

different cloud morphology and associated radiative effects can produce the same mean

rain rate. It follows that if the aggregated state becomes more prevalent as SST warms, the

Earth system may be able to produce the required rainfall to balance the radiative cooling

of the atmosphere while having a significantly reduced amount of high cloud.

An important point not addressed by this study is the issue of the spatial scale over

which convection might be expected to aggregate as the climate warms. Will the aggre-

gation tend to occur on the mesoscale, the global scale, or at some scale in between? The

cyclical boundary conditions and constraint of mass continuity may mean that modeling

studies of self-aggregation are more relevant to global-scale circulations than to the

mesoscale. This study supports the view that aggregated convection on the synoptic scale

produces an environment with a bimodal moisture distribution including dry regions that

produce a positive radiative cooling feedback on the convective circulations. These rein-

forcing radiative feedbacks on convection have also been noted in interannual variability as

manifested in the El Nino Southern Oscillation (Rädel et al. 2016) and are implicit in the

global-scale narrowing of the inter-tropical convergence zone (Wodzicki and Rapp 2016).

We emphasize that this study cannot confirm observationally that convection does

indeed self-aggregate; testing this hypothesis mechanistically will require targeted obser-

vations and analysis (Holloway et al., this issue; Bony et al., this issue). Our survey does

demonstrate that certain features of the cloud morphology present in model simulations of

self-aggregation are also present in observations of the routine aggregation found in the
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tropical atmosphere. This suggests that aggregation of convection in Earth’s atmosphere,

whatever the mechanism, provides a useful conceptual model through which to view

important aspects of cloud feedbacks on climate (Mapes 2016).
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