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Changes to patterns of wind and ocean currents are tightly linked to climate

change and have important implications for cost of travel and energy

budgets in marine vertebrates. We evaluated how El Niño-Southern Oscil-

lation (ENSO)-driven wind patterns affected breeding Laysan and black-

footed albatross across a decade of study. Owing to latitudinal variation in

wind patterns, wind speed differed between habitat used during incubation

and brooding; during La Niña conditions, wind speeds were lower in incu-

bating Laysan (though not black-footed) albatross habitat, but higher in

habitats used by brooding albatrosses. Incubating Laysan albatrosses bene-

fited from increased wind speeds during El Niño conditions, showing

increased travel speeds and mass gained during foraging trips. However,

brooding albatrosses did not benefit from stronger winds during La Niña

conditions, instead experiencing stronger cumulative headwinds and a smal-

ler proportion of trips in tailwinds. Increased travel costs during brooding

may contribute to the lower reproductive success observed in La Niña con-

ditions. Furthermore, benefits of stronger winds in incubating habitat may

explain the higher reproductive success of Laysan albatross during El

Niño conditions. Our findings highlight the importance of considering

habitat accessibility and cost of travel when evaluating the impacts of

climate-driven habitat change on marine predators.
1. Background
Climate change is rapidly altering marine systems and is predicted to have

increasing and widespread effects in future years [1–7]. The mechanisms

through which climate change influences marine organisms are diverse, and

include changes to physical habitat characteristics, prey availability, trophic

interactions and phenology [1–3,8,9]. Distributional shifts across a broad

range of marine taxa have been linked with changes in a number of oceano-

graphic variables [10–12]. Shifts in suitable habitats can cause habitats to

become inaccessible and/or can increase energetic costs of travel, but climate

impacts on the accessibility of habitats have received less attention.

The intensity and location of dominant wind patterns and ocean currents have

been significantly impacted by climate change and these changes are predicted to

accelerate in the future [13–19]. These changes will directly impact the movement

and energetic costs of transport for animals that fly or swim [20–24]. Large marine

vertebrates such as tuna, sharks, cetaceans, seabirds and sea turtles are likely to be

particularly sensitive to changes in fluid flow as they experience high drag while

swimming and/or flying through marine habitats due to their large body sizes

and rapid travel speeds [25–30]. Variability in wind and ocean currents may be

especially influential on the population-level processes of marine vertebrates like
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seabirds and pinnipeds that function as central place foragers

while breeding, returning to the breeding colony to incubate

eggs and/or feed their young. Energy acquisition and

allocation of these central place foragers have direct conse-

quences for fitness and reproductive performance [31–34]. In

the light of ongoing environmental change, it is therefore

important to consider the effects of wind or ocean currents

when examining and interpreting the movement patterns, dis-

tribution and habitat use of these species (e.g. [25,28,35–38]).

While a growing body of work has examined how environ-

mental change in foraging habitat influences the distribution

of marine vertebrates (e.g. [39,40]) there is a dearth of infor-

mation about the consequences of climate-driven changes to

wind patterns and ocean currents for migrations and energy

budgets (e.g. [41]).

Wind speed and direction are major factors that

influence seabird movement [42,43] and distribution [44],

particularly for albatrosses whose foraging strategy of

exploiting ephemeral, widely separated prey patches requires

energetically efficient gliding flight (e.g. [45–48]). The ener-

getic cost of flight for albatrosses is among the lowest

measured for flying animals; this allows albatrosses to

cover extensive distances, flying thousands of kilometres

during a single foraging trip and achieving speeds of more

than 100 km h21, while expending very little energy

(e.g. [45,46,49–53]). Albatrosses require sufficient wind for

energetically efficient flight and albatross ranges are typically

limited to regions with some of the highest winds speeds

globally [41,44,48,54,55]. The magnitude and direction of

the wind field can have important influences on where alba-

trosses forage; birds often use flight paths that maximize

travel with favourable winds [41,46,48,56].

El Niño-Southern Oscillation (ENSO) events cause wide-

spread biological changes in marine systems [57–60] and

seabird species often serve as useful indicators of the extent

and severity of the biological effects of these events

(e.g. [57,61,62]). Driven by changes in wind patterns in the

equatorial Pacific, ENSO events are a major source of climatic

and oceanographic interannual variability and can impact

marine ecosystems throughout the world (e.g. [63–67]).

Studies examining ENSO effects on seabird populations

have largely focused on diet, foraging behaviour and oceano-

graphic aspects of foraging habitat (e.g. [57,62,68–70]), while

the impacts of the underlying wind patterns on seabirds have

not been investigated in detail. We postulate that changes in

wind patterns associated with ENSO events will influence

seabird fitness and reproduction by impacting the energetic

costs of travel and foraging (sensu [41]).

El Niño events typically have negative impacts on marine

organisms in the eastern North Pacific (e.g. [66,71–73]), but

can have positive effects on marine predators in the central

Pacific [70,74]. Laysan (Phoebastria immutabilis) and black-

footed albatrosses (P. nigripes) experience substantial declines

in reproductive success (chicks fledged per eggs laid) during

La Niña conditions when the contraction of the subarctic

gyre displaces suitable foraging habitat further north [70].

However, stronger trade winds during La Niña events

(e.g. [75,76]) may decrease foraging costs of albatross by

facilitating at-sea travel rates.

Here we examine how ENSO conditions influence wind

available to foraging Laysan and black-footed albatrosses

during breeding, and how this in turn impacts albatross

movement and habitat use.
2. Material and methods
2.1. Study species
Laysan and black-footed albatrosses are long-lived species with

slow reproductive rates [77] that are faced with a number of

anthropogenic threats (particularly bycatch) [78] in addition to

impacts of climate-driven environmental change [70]. These

species breed in subtropical waters of the North Pacific, with

the vast majority breeding in the Northwest Hawaiian Islands

[79]. Both species exhibit prolonged breeding periods; egg

laying occurs in November and December, and chicks fledge in

June or July. Parents take turns foraging and incubating eggs

or brooding chicks. Foraging trips of adult albatrosses are

relatively long during the 65 day incubation period (typically

10–31 days) [80–82]. However, during brooding, rapidly grow-

ing chicks must be fed frequently and foraging trips of the

parents are much more constrained (typically 1–3 days)

[70,80,81,83]. During chick-rearing, chicks are left unattended

while both parents forage, alternating between short (1–2

days) and long (more than 12 days) foraging trips [80,83]. Pre-

vious work has suggested that climate-driven environmental

variability has the greatest impacts during brooding when

parents are most constrained [70]. Here, we compare the effects

of wind on albatross movement during more constrained (brood-

ing) and less constrained (incubating) breeding stages.
2.2. Study area
Albatross telemetry studies were conducted from Tern Island at

French Frigate Shoals in the Northwest Hawaiian Islands

(23.8788888N, 166.2888888W; figure 1), where the US Fish and Wildlife

Service (USFWS) maintained a field station until 2012. Tern

Island provides breeding substrate for thousands of seabirds,

as well as monk seals and green sea turtles [84]. Easterly (from

the east) trade winds are prevalent at Tern Island and are stron-

gest during summer months and during La Niña conditions

(figure 1).
2.3. Albatross telemetry and mass data
Laysan and black-footed albatross were tracked from Tern Island

during 2002/2003–2005/2006 and 2007/2008–2011/2012 breed-

ing seasons using satellite platform terminal transmitters (PTTs;

30 g Pico-100, Microwave Telemetry, Columbia, MD, USA, 42 g

SPOT4 and SPOT5, Wildlife Computers, Redmond, WA, USA)

and GPS data loggers (40 g Technosmart GPS, 35 g TechnoSmart

GiPSy, 32 g E&O Technologies, and 30 g igotU, GT-120, Mobile

Action Technology Inc, Taiwan), all well below the rec-

ommended mass threshold of 3% of body weight [85]. PTT

tags are accurate to less than 10 km [86], while GPS tags are accu-

rate to less than 12 m [87]. Tags were attached to three to five

dorsal feathers using Tesa cloth adhesive tape (Tesa, Hamburg,

Germany; electronic supplementary material, figure S1). At the

end of each trip, the tag and tape were gently removed from

the feathers. No albatrosses were lost during the study and all

tagged birds returned to the nest site, though a small proportion

of tags deployed (4.2%) were lost at sea during foraging trips.

GPS data were offloaded as raw binary data which were con-

verted into latitude and longitude coordinates by commercial

software (E&O Technologies, TechnoSmart Software and

Mobile Action software, respectively), while positions from

PTT tags were downloaded as latitude and longitude coordinates

from Argos system software. Body mass was measured during

tag deployment and retrieval using a spring-loaded Pesola

scale (Pesola AG, Baar, Switzerland). During tag retrieval in

the brooding period, we could not ensure that body mass

measurements occurred before adults offloaded food to their
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Figure 1. Wind speed and direction in the North Pacific during El Niño (a) and La Niña (b) conditions relative to Tern Island and albatross foraging habitat. Foraging
habitat is shown as the 95% utilization distribution (UD) during the incubating and brooding phases for Laysan (a) and black-footed albatrosses (b), respectively.
Wind speed and direction represent mean seasonal (December – February) values during incubation and brooding phases from 2003 to 2012 for El Niño conditions
(MEI . 0.5) and La Niña conditions (MEI , 20.5). Wind speed and direction is represented by the size and rotation of arrows, respectively.

Table 1. Number of tracks used in analyses by species, ENSO conditions
and breeding stage.

species
ENSO
conditions

breeding
stage

no.
tracks

Laysan El Niño incubation 26

brooding 21

La Niña incubation 23

brooding 38

black-footed El Niño incubation 33
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chicks; therefore, analyses of body mass change across foraging

trips focused on incubating birds only.

We tracked a total of 107 Laysan and 108 black-footed alba-

trosses (table 1). Only one foraging trip was tracked and

analysed for each individual bird. Telemetry data were

resampled to equal time steps (a 3-h time scale) in the R statistical

package using the Minimum Covariance Determinant robust

estimator in the MASS library. For each albatross foraging trip,

we assessed cumulative trip distance and the duration of each

trip using the ArgosFilter (v. 0.63) and MASS libraries in

R. Albatross tracks have been contributed to Bird Life Interna-

tional’s seabird tracking database (www.seabirdtracking.org;

see Hawaii/ French Frigate Shoals datasets).
brooding 20

La Niña incubation 25

brooding 29
2.4. Wind patterns in albatross habitat during El Niño
and La Niña conditions

Wind data at a spatial resolution of 0.25 degrees were obtained

from NOAA’s ERDDAP server (www.http://coastwatch.pfeg.

noaa.gov/erddap/griddap). Rainy areas are removed from this

dataset as rain can alter the ocean surface and can lead to unreli-

able wind speeds measurements [88,89]. Data from the

QuikSCAT satellite, in operation until November 2009, were

used for the 2003–2009 breeding periods, whereas data from

the METOP/ASCAT satellite (operational after October 2009)

were used for 2010–2012. We evaluated the zonal (east–west)

and meridional (north–south) components of wind separately,

as well as the overall magnitude of the wind. Raw daily satellite

wind data did not provide complete and consistent coverage for

analysis of albatross tracks due to data gaps in between satellite

orbits, particularly for data from the METOP/ASCAT satellite at

lower latitudes [90], and removal of rain-flagged data. We there-

fore used daily composites of zonal and meridional wind
components and wind speed (calculated daily using an 8-day

moving window).

We compared wind conditions between El Niño and La Niña

events in two ways. We first examined overarching trends in

albatross habitat using seasonal climatologies. Monthly wind

composites were calculated during the albatross incubating and

brooding periods (mean wind speed and zonal and meridional

wind, respectively, from December through February). Next,

we examined zonal wind, meridional wind and wind speed

during albatross foraging trips. We sampled wind speed and

direction for each location on albatross tracks using daily maps

of wind components described above. We used the Multivariate

El Niño Southern Oscillation (ENSO) Index (MEI) to assess El

Niño conditions (http://www.esrl.noaa.gov/psd/enso/mei/

table.html).

http://www.seabirdtracking.org
http://www.http://coastwatch.pfeg.noaa.gov/erddap/griddap
http://www.http://coastwatch.pfeg.noaa.gov/erddap/griddap
http://www.http://coastwatch.pfeg.noaa.gov/erddap/griddap
http://www.esrl.noaa.gov/psd/enso/mei/table.html
http://www.esrl.noaa.gov/psd/enso/mei/table.html
http://www.esrl.noaa.gov/psd/enso/mei/table.html
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Figure 2. Latitudinal variability in zonal and meridional wind components and wind speed during strong El Niño and strong La Niña conditions (MEI . 0.5 and , 20.5,
respectively). Values represent deviations from seasonal (December – February) means values during incubation and brooding phases from 2003 to 2012, sampled every 0.2
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2.5. Influence of wind on albatross habitat use
We examined albatross movement during incubation and brood-

ing relative to cumulative wind using the following metrics:

maximum distance travelled to the north, south, east and west

from Tern Island, and the ratio of latitudinal to longitudinal

travel. Cumulative wind values (zonal, meridional and wind

speed) represent wind in albatross foraging habitat summed

for each day of the foraging trip. We used 95% utilization distri-

butions (UDs) of Laysan and black-footed albatross tracks during

incubation and brooding, respectively, to represent foraging

habitat. UDs were produced in ArcGIS using the Kernel Density

Spatial Analyst tool and were calculated using a 100 km radius

for habitat used during incubation, and a 50 km radius for habi-

tat used during brooding.

The speed and direction of wind experienced by albatrosses

varied dramatically with latitude (figures 1 and 2). Albatrosses

travelling farther north experience more westerly zonal winds

as a result of wind patterns, leading to a spurious strong positive

correlation between albatross trip distance and zonal winds.

Therefore, albatross movement was examined relative to wind

variables at the centroid of albatross foraging habitat for each

day an albatross was at sea.

We used generalized additive models (GAMs) to evaluate the

influence of wind variables on Laysan and black-footed albatross

movement parameters as exploratory data analyses indicated
nonlinear relationships between these variables. GAMs are particu-

larly useful in ecological studies because they allow nonlinear

relationships to be evaluated by incorporating both categorical

and continuous variables [91,92]. To avoid over-fitting, we used

cubic spline smoothers with 3 or fewer degrees of freedom. Signifi-

cantly correlated variables were not included in the same model

(table 2). GAMs were performed in the R statistical package

(v. 3.1.3) using the mgcv (v. 1.8–7) library, and model selection

was performed by comparing generalized cross-validation scores.

2.6. Effects of El Niño-Southern Oscillation-driven wind
patterns on albatross movement and wind
conditions

To gain insight into the effects of ENSO-driven wind patterns

on energetic demands of foraging albatrosses, we assessed the

angle between the flight direction of the bird and the direction of

winds at each 3 h track location. Tail winds were defined as

angles less than 608; side winds as angles between 608 and 1208
and head winds as angles greater than 1208 [46]. We quantified

average and cumulative wind speed experienced by foraging alba-

trosses during head, side and tail winds; assessed the proportion of

each track spent in each of these three categories of wind; and com-

pared values during El Niño and La Niña conditions using



Table 2. Pearson’s correlation coefficients between zonal and meridional wind and wind speed in Laysan and black-footed albatross habitat during incubation
and brooding, respectively. p-values are shown in brackets; bold values represent significant correlations ( p , 0.05). We used the absolute value of zonal or
meridional wind to calculate linear correlations with wind speed.

zonal wind meridional wind wind speed

incubation

Laysan

zonal wind — 20.11 (0.23) 20.65 (7.1 3 1027)

meridional wind — 0.34 (0.019)

wind speed —

black-footed

zonal wind — 0.19 (0.14) 20.69 (1.6 3 1029)

meridional wind — 0.40 (2.0 3 1023)

wind speed —

brooding

Laysan

zonal wind — 0.26 (0.04) 0.93 (2.2 3 10216)

meridional wind — 0.51 (4.3 3 1025)

wind speed —

black-footed

zonal wind — 0.16 (0.26) 0.97 (2.2 3 10216)

meridional wind — 0.28 (0.05)

wind speed —
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Wilcoxon rank sum tests. As foraging trips varied in duration, par-

ticularly during incubation, cumulative wind speeds experienced

by albatrosses in different wind conditions were standardized by

trip length (cumulative head, side or tail wind speeds experienced

by albatrosses in a given trip were divided by the total number of

observations in that trip and then multiplied by average incubating

or brooding trip length for each species).

To examine how wind conditions influenced albatross speed,

we calculated mean travel speed over ground during a foraging

trip (calculated from the travel speed at each 3-h time step), and

the overall travel rate (total distance travelled per trip/ trip dur-

ation). We then compared travel rates in head, side and tail

winds for trips when albatrosses were incubating or brooding in

El Niño and La Niña conditions, respectively. Lastly, we compared

mean travel speeds and overall rates of travel between El Niño and

La Niña conditions for incubating and brooding Laysan and black-

footed albatrosses using Wilcoxon rank sum tests.

Wind climatologies were calculated in ArcGIS 10 using the

Spatial Analyst extension, while the raster (v. 2.4–18), rgdal

(v. 1.0–7), geosphere (v. 1.4–3) and Imap (v. 1.32) R packages

were used to sample wind rasters and for distance and bearing

calculations.
3. Results
3.1. Wind patterns in albatross foraging habitat in

relation to El Niño-Southern Oscillation conditions
El Niño and La Niña conditions produced strong anomalies in

wind patterns within albatross foraging habitat that varied

with latitude (figure 2). Positive (negative) zonal wind

anomalies were observed during El Niño conditions (La

Niña conditions) and were particularly large between latitudes

of approximately 258–408N. Anomalies in meridional wind
were weaker than those of zonal wind and showed the oppo-

site pattern (positive (negative) anomalies during La Niña (El

Niño) conditions). During El Niño (La Niña) conditions, wind

speed showed positive (negative) anomalies in latitudes typi-

cally used by incubating albatrosses (foraging habitat during

incubation was centred at approximately 308–378N), and

negative (positive) anomalies in latitudes typically used by

albatrosses during brooding (foraging habitat during brooding

was centred at approximately 248–268N).

Differences in the latitudinal range of foraging albatrosses

during incubation and brooding resulted in differences in wind

experienced across a breeding season. For example, the incubat-

ing trips of Laysan albatrosses extend further north than the short

trips made during brooding. During La Niña conditions, incu-

bating Laysan albatrosses experienced weaker westerly winds,

stronger northerly winds and weaker overall wind speeds

(figure 3). Conversely, during brooding, albatrosses experienced

stronger easterly winds, weaker northerly winds and higher

overall wind speeds in La Niña conditions (figure 3).

Prevailing westerlies at mid-latitudes vary dramatically

with ENSO conditions and Laysan albatrosses foraged

further north into these prevailing westerlies than black-

footed albatrosses during incubation (figures 1 and 2). As a

result, wind speeds experienced by incubating Laysan alba-

trosses were significantly higher during El Niño conditions

than La Niña conditions, whereas wind speeds for incubating

black-footed albatrosses did not differ between El Niño and

La Niña conditions (figure 3).

3.2. Effects of wind on albatross movement
Wind variables were significant predictors of the spatial

extent of Laysan and black-footed albatross foraging patterns

during incubation and brooding, with GAMs explaining
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11–47% of the variance in albatross movement metrics,

respectively (table 3; electronic supplementary material,

figure S2). Increased wind speed was associated with a

larger foraging range for incubating Laysan albatrosses

(increased movement in all directions). For brooding alba-

trosses and incubating black-footed albatrosses, zonal wind

was associated with longitudinal shifts in foraging range;

birds travelled further east when zonal wind was higher

(i.e. during weaker easterlies) and generally travelled further

west when zonal wind was lower (i.e. stronger easterlies).

3.3. Effects of El Niño-Southern Oscillation conditions
on albatross movement relative to wind

During the incubation phase, Laysan albatrosses experienced

higher wind speeds during El Niño conditions in side and tail

winds (figure 4a), whereas winds experienced by black-footed

albatrosses did not differ between El Niño and La Niña con-

ditions (figure 4b). During El Niño conditions, Laysan

albatrosses spent significantly more time in side winds and

experienced higher cumulative wind speeds in side and tail

winds (figure 4c,e). Brooding albatrosses experienced higher

wind speeds during La Niña conditions in head, side and tail

winds (figure 5a,b). Both brooding Laysan and black-footed alba-

trosses spent significantly less time in tailwinds during La Niña

conditions, while Laysan albatrosses spent more time in side

winds and black-footed albatrosses spent significantly more

time in head winds (figure 5c,d). During La Niña conditions,

brooding albatrosses experienced significantly higher cumulat-

ive head wind and side wind speeds, while cumulative tail

wind speeds were lower (figure 5e,f ).

3.4. Effect of wind speed on foraging albatrosses
During higher wind speeds, brooding albatrosses spent propor-

tionally more time in side winds but less time in tail winds

(figure 6). Incubating Laysan albatrosses spent proportionally
more time in side winds during high wind speeds, while incubat-

ing black-footed albatrosses showed no significant differences

in the proportion of trips spent in different wind conditions.

Change in body mass adjusted for trip duration was positively

and significantly correlated with wind speed for incubat-

ing Laysan albatrosses (r¼ 0.48, p , 0.01) but not for

incubating black-footed albatrosses (r¼ 20.18, p¼ 0.24).
3.5. El Niño-Southern Oscillation effects on albatross
travel speed

During brooding trips in La Niña conditions (when wind speeds

were higher), Laysan and black-footed albatrosses travelled more

slowly in head winds than in tail or side winds and birds tra-

velled into stronger head winds (figures 5a and 7); this was

also true for incubating Laysan albatrosses during El Niño con-

ditions (associated with increased wind speeds). During ENSO

conditions with lower wind speeds (La Niña conditions for incu-

bating trips and El Niño conditions for brooding trips), speeds

travelled in head winds and tail winds were not significantly

different. Both the mean speed travelled and overall travel rate

were significantly higher for Laysan albatrosses during El Niño

conditions than in La Niña conditions, but only during incubat-

ing trips (electronic supplementary material, figure S3). ENSO

conditions did not affect mean speed travelled or overall travel

rates for black-footed albatrosses.
4. Discussion
4.1. Effects of El Niño-Southern Oscillation-driven wind

patterns on albatross habitat, movement and
energetics

Changes in wind patterns had significant impacts on the

spatial distribution of foraging albatrosses, and these effects



Table 3. Results of generalized additive models (GAMs) examining the effects of zonal wind, meridional wind and wind speed on directional movement of
incubating and brooding Laysan and black-footed albatross. Note that a negative relationship with zonal wind represents a positive relationship with the
magnitude of easterly winds.

dependent variable
explanatory
variable relationship intercept p value variable p-value

prop.
deviance (%) R2-value

incubation

Laysan albatross

maximum north wind speed positive ,2�10216 9.54�1026 40.90 0.37

maximum south NSD

maximum east wind speed positive ,2�10216 7.30�1023 14.80 0.15

maximum west wind speed positive ,2�10216 5.87�1024 28.50 0.27

lat. : long. travel wind speed negative ,2�10216 1.54�1025 33.20 0.32

black-footed albatross

maximum north wind speed positive ,2�10216 8.10�1026 29.30 0.28

maximum south NSD

maximum east zonal wind positive 1.35�10212 0.016 14.60 0.13

maximum west zonal wind negative 4.85�1027 1.34�1028 47.20 0.45

lat. : long. travel NSD

brooding

Laysan albatross

maximum north wind speed positive 9.14�10212 3.18�1024 21.80 0.20

maximum south NSD

maximum east zonal wind positive 2.24�10212 0.0045 18.00 0.17

maximum west zonal wind negative 1.22�1029 0.011 12.30 0.10

lat. : long. travel zonal wind negative 1.00�10214 3.43�1023 20.90 0.19

black-footed albatross

maximum north wind speed positive 3.60�10211 1.40�1023 19.60 0.18

maximum south NSD

maximum east zonal wind positive 7.08�10211 0.02 10.60 0.088

maximum west NSD

lat. : long. travel zonal wind negative 3.78�1027 4.53�1023 18.60 0.17
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differed between species and breeding phases. During the

more flexible incubating trips, Laysan albatrosses foraged

in northerly waters with high wind speeds and were able to

exploit strong prevailing winds to expand their foraging range

(table 3; electronic supplementary material, figure S2). The

range of incubating black-footed albatrosses is too limited to

allow these birds to fully take advantage of prevailing winds

to the north, while brooding albatrosses were constrained

to forage in prevailing winds in proximity to the nest site

(figure 1). The foraging range of brooding albatrosses and

incubating black-footed albatrosses shifted longitudinally with

zonal winds (table 3).

Furthermore, we found notable effects of climate-driven

changes in wind patterns on foraging albatrosses. ENSO con-

ditions are tightly linked with changes in wind patterns;

during El Niño events, easterly trade winds decrease in the

central Pacific, while trade winds increase during La Niña

events (e.g. [75,76]). ENSO conditions dramatically influence

the wind field available to albatrosses during incubation and

brooding, and latitudinal trends in wind patterns created

differences in the winds experienced by foraging albatrosses
within a given year (figures 2 and 3). Variability in the

wind field has important implications for habitat accessibility

[48] and the energetic costs of foraging trips, and, therefore,

on the ability of adult albatrosses to maintain their own

body condition and provision chicks (e.g. [47]). Increases in

wind speed can positively affect foraging albatrosses, result-

ing in increases in flight speeds, mass gained during

foraging trips and breeding success [41,48,53]. Our results

show that Laysan albatrosses putatively benefited from

increased wind speeds in incubating habitat during El Niño

conditions by experiencing faster travel rates (electronic sup-

plementary material, figure S3). Mass gain of incubating

Laysan albatrosses was positively and significantly correlated

with wind speed, providing further support for an energetic

benefit of increased wind speed during incubation. For

brooding birds, however, stronger trade winds during La

Niña conditions appeared to incur increased energetic costs.

Wind direction can influence the cost of travel in albatrosses,

with foraging costs decreasing from head winds to side

winds to tail winds [46,48]. During La Niña conditions,

brooding albatrosses of both species experienced higher
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cumulative head wind speeds and lower cumulative tail

wind speeds (figure 5e,f ), suggesting higher overall travel

costs. Differences in flight direction relative to wind between

El Niño and La Niña conditions appear to be due primarily to

changes in wind speed; when examining the impacts of high

versus low wind speed alone, differences in proportional

time spent in side and tail winds during brooding was

even more pronounced (figure 6).

Several studies have demonstrated that albatrosses avoid

travelling in headwinds for extended periods of time, often

making long, looping flights to exploit large-scale wind pat-

terns (e.g. [46,48,93–95]). However, Wakefield et al. [48]

suggest that this strategy may be less effective during brood-

ing, when birds are spatially and temporally constrained. Our

results are consistent with this finding, and suggest that less

constrained foraging albatrosses benefit from large-scale
wind patterns while more constrained brooding albatrosses

have limited capacity to avoid headwinds while foraging.

Increased wind speeds may be beneficial when albatrosses

are travelling with tail winds, but may result in increased

energetic costs when birds travel into headwinds. Brooding

albatrosses spent proportionally more time flying in side

winds as wind speed increased (figure 6), perhaps as a

means of offsetting energetics costs by flying less directly

into strong winds rather than facing winds head-on.

4.2. Cost of transport may amplify adverse effects of La
Niña conditions on foraging habitat

Thorne et al. [70] found that La Niña conditions and associ-

ated oceanographic patterns shifted foraging habitat

northward for Laysan and black-footed albatrosses breeding
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at Tern Island. This resulted in longer foraging trips and

decreased reproductive success. We expected that stronger

trade winds and increased wind speeds in brooding habitat

during La Niña conditions would result in energetic benefits,

but our results suggest the opposite. Thus, the negative

impacts of La Niña conditions may be amplified, rather

than mediated, by ENSO-driven wind patterns. Long-lived

seabirds like albatrosses are thought to maximize their life-

time reproductive output by minimizing annual fecundity,

and adults will abandon their chicks in order to maintain

their own body condition during poor environmental con-

ditions [96–98]. Increased energetic costs of brooding trips

could contribute to the decreases in reproductive success

observed for both species during La Niña conditions.

ENSO-driven wind patterns may also play a role in observed
differences in reproductive success between species. Incubat-

ing Laysan albatrosses experience increased wind speeds

during El Niño conditions, while the more southerly foraging

black-footed albatrosses do not. This may contribute to the

higher reproductive success of Laysan albatrosses during El

Niño conditions.

4.3. Importance of climate-driven changes to wind and
ocean currents for marine vertebrates

We demonstrated impacts of wind on the movement of

Laysan and black-footed albatrosses. Many other highly

mobile marine vertebrates are known to exploit patterns of

prevailing wind and ocean currents during movements and

migrations (e.g. [36,37,99,100]). Influences of currents and
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wind can translate into energetic costs or benefits in central

place foragers such as breeding pinnipeds and seabirds that

can have consequences for reproduction and life history

(e.g. [23,41]). Our findings suggest that in addition to impacts

on the productivity and location of foraging habitat

(e.g. [40,70,101,102]), climate-driven environmental variabil-

ity may influence whether or not it is energetically feasible

for central place foragers to reach these habitats.

Significantly, our results suggest that climate-driven

changes in wind patterns can result in changes in habitat

use, energy budgets and potentially reproductive success of

albatrosses over relatively short time periods (annual time

scales). Climate models predict much broader and more

long-term changes to wind patterns and ocean currents that

will probably amplify the short-term impacts of environmental

variability demonstrated here. For example, trade winds are

projected to weaken while mid-latitude westerlies are pro-

jected to strengthen and shift poleward [76,103–105].

Breeding Laysan and black-footed albatrosses could initially

benefit from these changes, which would decrease wind

speed in the foraging habitat of brooding birds and increase
wind speed in habitat used during incubation. However, in

the long term these benefits may be offset by increased ener-

getic costs of reaching distant foraging grounds; northward

shifts in westerlies would increase the distance from the breed-

ing colony to regions of favourable wind speed (sensu [41]).
5. Conclusion
Shifts in species distributions in response to climate change

have been well documented (e.g. [10,12,106]), but rapid rates

of change suggest that some species may not be able to keep

pace with changing climates [107,108]. Scenarios of future cli-

mate change suggest important implications for movement

and cost of transport in marine vertebrates in addition to

impacts on the productivity and location of foraging

areas (e.g. [41,109]). Climate-driven environmental variability

will directly impact the intensity, temporal variability and

spatial location of ocean currents and wind patterns

(e.g. [14,16,103–105,110]). These changes will be particularly
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relevant for marine vertebrates whose movement through air

and ocean currents is likely to be directly impacted by oceano-

graphic and atmospheric change, and for central place foragers

that may be less flexible in their responses to climate change

[111]. We suggest that wind and ocean currents are influential

metrics of habitat connectivity and accessibility that are tightly

linked to patterns of global change and should be accounted

for when considering the ecological impacts of projected

climate-driven environmental change.
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