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ABSTRACT

A real-time, weather adaptive, dual-resolution, hybrid Warn-on-Forecast (WoF) analysis and forecast

system using theWRF-ARW forecast model has been developed and implemented. The system includes two

components, an ensemble analysis and forecast component, and a deterministic hybrid three-dimensional

ensemble–variational (3DEnVAR) analysis and forecast component. The goal of the system is to provide on-

demand, ensemble-based, and physically consistent gridded analysis and forecast products to forecasters for

making warning decisions. Both components, the WRF-DART system with 36 ensemble members and the

hybrid 3DEnVAR system, assimilate radar data, satellite-retrieved cloud water path, and surface observa-

tions at 15-min intervals with dual-resolution capability. In the current hybrid configuration, one-way cou-

pling of the two analysis systems is performed: ensemble covariances derived from the WRF-DART system

are incorporated into the hybrid 3DEnVAR system with each data assimilation (DA) cycle. This study ex-

amines deterministic, 3-h forecasts launched from the hybrid 3DEnVAR analyses every 30min for three

severe weather events in 2017. The performance of the deterministic component is evaluated for four con-

figurations: dual-resolution coupling, single-resolution coupling, forecasts initialized using a cloud analysis for

reflectivity assimilation, and forecasts initialized from the WRF-DART ensemble mean. Quantitative and

subjective evaluation of composite reflectivity and updraft helicity (UH) swath forecasts for the three events

indicate that the dual-resolution strategy without the cloud analysis performs best among the four configu-

rations and provides the most realistic prediction of reflectivity patterns and UH tracks.

1. Introduction

Increasing lead times for severe thunderstorm, tornado,

and flash flood warnings is the mission of NOAA’sWarn-

on-Forecast (WoF) project, which was funded in order to

reduce the loss of life and property, injury, and economic

costs of high-impact weather. This goal is attainable ow-

ing to advances in convection-allowing numerical weather

prediction (NWP; Stensrud et al. 2009, 2013). Convection-

allowing NWP must include an explicit microphysics

scheme and run with small horizontal grid spacing

(typically ,4km). The nonhydrostatic Advanced Re-

search version of the Weather Research and Fore-

casting (WRF-ARW) Model (Skamarock et al. 2008)

developed at the National Center for Atmospheric Re-

search (NCAR) is widely used for this purpose.

Another important component for improving convective-

scale forecasts is the development of convective-scale dataCorresponding author: Dr. Jidong Gao, jidong.gao@noaa.gov
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assimilation (DA) schemes. TheseDA schemes can take

advantage of dense, remotely sensed observations that

can sample the internal structure of storms. In particu-

lar the Weather Surveillance Radar-1988 Doppler

(WSR-88D) and the Geostationary Operational En-

vironmental Satellite R-series (GOES-R) are able to

generate observations of convection having very fine

temporal and spatial scales. These high-resolution ob-

servations should be assimilated into the convection-

allowing NWP model in real time with high-frequency

cycles (5–15min) to provide an accurate analysis of

convective storms. To meet these requirements, Gao

et al. (2013) developed an efficient, real-time, weather-

adaptive three-dimensional variational (3DVAR) anal-

ysis system for the WoF project that utilizes a moveable

analysis domain and assimilates radar observations using

3DVAR (Gao et al. 1999, 2002, 2004; Ge et al. 2010, 2012;

Hu et al. 2006a,b; Stensrud and Gao 2010; Schenkman

et al. 2011). Some key features of the analysis system

include: 1) incorporating radar observations from multi-

ple WSR-88Ds with the North American Mesoscale

model (Janjić et al. 2003) forecast product as the back-

ground field for the analysis, 2) real-time analysis and

detection of hazardousweather events at small horizontal

grid spacing (1km) with high cycling frequency (5min),

and 3) the capability to identify strong midlevel circula-

tions embedded in thunderstorms (Gao et al. 2013).

To assess the potential value of the weather-adaptive,

real-time analysis system to warning operations, it was

formally tested and evaluated by forecasters who par-

ticipated in the NOAA Hazardous Weather Testbed

(HWT) spring experiments from 2011 to 2013. During

this period,many severeweather events were successfully

detected and analyzed automatically by this 3DVAR

system (Gao et al. 2013; Smith et al. 2014; Calhoun et al.

2014). The analyzed storm structures not only matched

quite well with synthesized reflectivity fields from mul-

tiple radars, but the most intense storms corresponded

with the location and time of the National Weather

Service (NWS) local storm reports. While the system

was able to accurately analyze convective storms, uti-

lizing these analyses for initializing a convection-

allowing NWP model remains a significant challenge

because WSR-88D radars only observe radial velocity

and reflectivity, and the 3DVAR system has limited

ability to retrieve unobserved model variables from

these radar data alone.

To properly initialize a convection-allowing NWP

model, the Advanced Regional Prediction System

(ARPS; Xue et al. 2000, 2001, 2003) also implemented

the above 3DVAR system together with a complex cloud

analysis package (Albers et al. 1996; Zhang et al. 1998;

Brewster et al. 2005; Hu et al. 2006a,b). The combined

system produced promising forecasts for a tornadic

supercell occurring 28 March 2000 near Fort Worth,

Texas, with accurate forecasts of individual thunder-

storm cells provided with 2–3 h of lead time. Schenkman

et al. (2011) applied the same 3DVAR system/cloud

analysis system to an Oklahoma tornadic mesoscale

convective system (MCS), utilizing a 1-h assimilation

period with 5-min DA cycles to initialize 3-h forecasts.

Both qualitative and quantitative comparisons showed

good correspondence between observed and model

forecast reflectivity fields. However, this study also

shows that repeated application of the original 3DVAR

plus cloud analysis with high-frequency assimilation

cycles (5min) led to unrealistic warming in the middle

troposphere and over forecast of precipitation (Schenkman

et al. 2011).

Improvements to the 3DVAR DA system are ex-

pected with implementation of balance constraints for

the convective scale (Ge et al. 2012) and/or optimal in-

corporation of ensemble information (Gao and Stensrud

2014). One of the hybrid DA approaches that combined

variational and ensemble Kalman filter (EnKF) tech-

niques was proposed by Lorenc (2003). Many research

articles describing hybrid methods have been published

in recent years, with most of them focused on synoptic-

scale and mesoscale NWP (e.g., Barker et al. 2012;

Buehner 2005; Buehner et al. 2010a,b; Wang et al. 2008,

2013; Zhang et al. 2013; Pu et al. 2016). Only a few

studies have been done with convective-scale weather

(Gao and Stensrud 2014; Gao et al. 2016; Wang and

Wang 2017; Kong et al. 2018). Gao and Stensrud (2014)

demonstrated the value of the hybrid method on the

convective scale in an observing system simulation ex-

periment (OSSE). Specifically, they showed that in-

corporation of ensemble-estimated covariances into

a variational approach (3DVAR in this case) can sig-

nificantly improve the accuracy of analyses produced

through assimilation of simulated radar data for a

supercell storm. This conclusion holds even when a

small ensemble (about 5–10 ensemble members) is used

and/or the estimated covariance contains severe sam-

pling errors. This kind of frequently updated, numerical

model–based, probabilistic, convective-scale analysis

and forecast system could be used to support WoF op-

erations. However, the EnKF method used in that

study was preliminary without computational opti-

mization, specifically for real-time application (Gao

and Stensrud 2014).

Recently, a more advanced ensemble adjustment

Kalman filter (EAKF; Anderson 2001) included in the

DA Research Testbed software (DART; Anderson and

Collins 2007; Anderson et al. 2009) of the National

Center for Atmospheric Research (NCAR) was used to
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assimilate WSR-88D observations and satellite-derived

cloudwater path in a storm-scale ensemble by theNational

Severe Storms Laboratory (NSSL)WoF team (Jones et al.

2013, 2014, 2016; Wheatley and Stenstrud 2010, 2015;

Yussouf et al. 2015). Based on these studies, the NSSL

Experimental WoF System for ensembles (NEWS-e)1

was developed and tested during the past several years.

To evaluate the capabilities of this system, storm-scale

ensemble analyses and forecasts were produced for

many severe weather events since 2014 (Wheatley et al.

2015; Jones et al. 2016, 2018; Skinner et al. 2018). Results

indicate that for most cases, the ensemble forecasts were

able to accurately predict rotational characteristics of

supercell thunderstorms, as well as the location and

timing of convective storms (Skinner et al. 2018).

However, the current NEWS-e real-time settings are

only in convection-allowingmode (with 3-km horizontal

grid spacing). A reduction in horizontal grid spacing will

allow the system to resolve internal storm structures for

high-impact weather events in greater detail and offers

the potential to improve the system.

As pointed out in Stensrud et al. (2009), it is essential

that ensemble forecasts are utilized by WoF to produce

robust probabilistic forecast guidance, but relatively

large ensembles are generally needed to create a robust

pure-ensemble DA system, as shown in Wheatley et al.

(2015). However, Gao and Stensrud (2014) demon-

strated that relatively small ensembles may be adequate

for WoF-type forecasts. Therefore, it is appropriate to

test a WoF system that uses a hybrid approach of both

the 3DVAR and WRF DART ensemble DA systems.

Gao andXue (2008) andYang et al. (2009) found that an

ensemble of forecasts at lower resolution (LR) can be

used to estimate the background error covariance of

higher-resolution (HR) analysis. The idea was im-

plemented by the Japan Meteorological Agency re-

cently in its local ensemble transform Kalman filter

(LETKF) system in a preoperational environment

(Fujita 2010). Indeed, almost all major operational

weather prediction centers in the world run two sep-

arate systems—a relatively LR ensemble prediction

system (EPS) and a single HR model prediction. The

HR model run usually provides more detailed de-

terministic weather information with information

on uncertainty provided by the LR ensemble fore-

casts. Therefore, it is appropriate to develop a dual-

resolution hybrid ensemble and variational DA and

forecast system for convective-scale weather within

the WoF strategy.

In this study we introduce and test a real-time, weather

adaptive, dual-resolution hybrid WoF analysis and fore-

cast system (WoF-AFS). The system includes two com-

ponents: an EAKF-based ensemble analysis and forecast

approach (NEWS-e; Jones et al. 2013, 2014, 2016;

Wheatley et al. 2015; Yussouf et al. 2015), and a deter-

ministic, convective-scale, hybrid 3DEnVAR analysis and

forecast approach (NEWS-var; Gao and Stensrud 2014;

Gao et al. 2016; Wang et al. 2018). Only the deterministic

component of the system is examined here though the

ensemble approach is also used in all experiment designs.

Coupled with hybrid 3DEnVAR analysis, one deter-

ministic, 180-min-long forecast is launched every 30min

following high-frequency, dual-resolution DA cycles.

To show the improvements on the deterministic com-

ponent we have made during the past several years,

several sensitivity forecast experiments, including fore-

casts initialized from dual-resolution (DR) coupled DA

cycles, single low-resolution (SLR) coupled DA cycles,

the WRF-DART ensemble mean, as well as DA cycles

that combine cloud analysis and hybrid 3DEnVAR are

performed for several 2017 severe weather events with

the WoF-AFS. Forecast evaluation is conducted with

quantitative metrics and subjective evaluation. The

quantitativemetrics include the neighborhood equitable

threat score (nETS; Gilbert 1884; Clark et al. 2010) and

frequency bias for the composite reflectivity that is

verified against observations obtained from NSSL

Multi-Radar Multi-Sensor System (MRMS; Smith

et al. 2016). The subjective comparisons are performed

with the NWS local storm reports for the tracks of the

updraft helicity (UH) between 2 and 5km above ground

level (Kain et al. 2008, 2010) and the MRMS observa-

tions for reflectivity, respectively.

The rest of this paper is organized as follows. Section 2

provides a brief description of the WoF-AFS. Experi-

ment designs are described in section 3. Experiment

results are reported and assessed in section 4. We con-

clude in section 5 with a summary and future work.

2. The description of the WoF analysis and
forecast system

As described in the introduction, the hybrid system

includes two components, the NEWS-e and NEWS-var.

Both systems use the WRF-ARW, version 3.8.1. The

NEWS-e also uses the EAKF within DART. It updates

the mean and perturbations of the atmospheric state

given a set of observations and their associated error

based on a prior estimate of the state’s probability dis-

tribution (Anderson and Collins 2007). The prior prob-

ability distribution is estimated from the statistics of an

ensemble, which incorporates flow-dependent covariance

1 In 2019, the NEWS-e acronym was changed to the Warn-on-

Forecast System (WoFS).
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information. Further details on the DART EAKF can

be found in Anderson et al. (2009). In the WoF ap-

plication, 36 ensemble members are used (Wheatley

et al. 2015).

The NEWS-var is based on the 3DVAR system

designed for radar DA at the convective scale at the

Center for Analysis and Prediction of Storms (CAPS;

Gao et al. 1999, 2002, 2004; Hu et al. 2006a,b; Ge et al.

2010, 2012) and National Severe Storms Laboratory

(NSSL; Stensrud and Gao 2010; Gao and Stensrud 2012;

Gao et al. 2013). It applies weak constraints, which are

suitable for convective storms in a different manner than

that of other 3DVAR systems developed for large-scale

applications. In this convective-scale 3DVAR scheme,

cross correlations among state variables were not in-

cluded in the background error covariance; addi-

tionally, some balances between analysis variables

were realized by incorporating weak constraints in

the cost function (Gao et al. 2004; Ge et al. 2012).

Specifically, the use of the weak mass continuity

constraint links the three components of wind field

provided by the 3DVAR method in response to the

assimilation of the radial velocity observations, and

the use of the ARPS model derived equation con-

straint couples the other model variables and ensures

the analysis variables are in balance with each other

(Ge et al. 2012). The spatial correlation is modeled

by a recursive filter proposed by Purser et al. (2003).

A method for directly assimilating reflectivity with

hydrometeor classification was proposed recently for

this scheme (Gao and Stensrud 2012). In this method,

a modified forward operator for radar reflectivity was

developed that classifies the hydrometeor species

based on the background temperature from NWP

model output.

The WoF-AFS simply couples the above two systems

using the so-called alpha control method initially

proposed by Lorenc (2003). This coupling technique

has been applied in synoptic- and mesoscale NWP

systems by Buehner (2005), Buehner et al. (2010a,b),

and Wang et al. (2008, 2013), and also been used op-

erationally at NOAA (Kleist and Ide 2015; Wu et al.

2017). The current hybrid development is based on

the hybrid 3DEnVAR system of Gao and Stensrud

(2014), which was developed for convective-scale

NWP. For the new development, ARPS is replaced

by WRF-ARW, and the simplified EnKF system is

replaced by the DART EAKF (also called NEWS-e

as described above). Both components assimilate ra-

dar data, satellite retrieved cloud water path, and

surface observations to perform a hybrid 15-min DA

cycles with dual-resolution capability. With the cur-

rent settings, one-way coupling of the two systems is

performed; flow-dependent ensemble error covari-

ances derived from the DART EAKF analysis system

are incorporated in the hybrid 3DEnVAR in each DA

cycle (Fig. 1). However, the analysis from the hybrid

3DEnVAR is not used to recenter the ensemble mean

for the DART EAKF ensemble members. In the hy-

brid 3DEnVAR, the background error covariances

are prescribed a weight of 50% of the ensemble co-

variance and static error covariance the remaining

50%. Coupled with the hybrid 3DEnVAR analysis, a

180-min deterministic forecast is launched every

30min from these high-frequency dual-resolution

DA cycles (Fig. 2).

FIG. 1. Workflow of a single data assimilation cycle for the hybrid 3DEnVar and WRF-DART system.
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3. Model configuration and experiment design

The WRF-ARW model physics configuration is pro-

vided below. For both the NEWS-e ensemble forecasts

andNEWS-var deterministic member forecast, the NSSL

full double-moment microphysics scheme with variable-

density graupel and hail is used (Mansell et al. 2010).

Other physics options for NEWS-var forecast include

the Dudhia shortwave radiation scheme (Dudhia 1989),

the Yonsei University (YSU; Hong et al. 2006) plane-

tary boundary layer scheme, and the Rapid Radiative

Transfer Model (RRTM) longwave radiation scheme

(Mlawer et al. 1997). For NEWS-e forecast members,

planetary boundary layer options include YSU, Mellor–

Yamada–Janjić (Janjić 1994), and Mellor–Yamada–

Nakanashi–Niino (Nakanishi and Niino 2006) schemes,

which are mixed with either the Dudhia and the RRTM

or the Rapid Radiative Transfer Model for GCMs

(RRTMG; Iacono et al. 2008) parameterizations for

shortwave and longwave radiation. Full details on the

NEWS-e configuration can be found in Wheatley et al.

(2015) and Skinner et al. (2018).

During the 5-week HWT Spring Forecasting Experi-

ment (HWT-SFE) 1 May–2 June 2017 (e.g., Gallo et al.

2017), theNEWS-e andNEWS-var analysis and forecast

domain was 750km 3 750km. For the NEWS-e compo-

nent, ensemble analyses and forecast cycles were pro-

duced on 250 3 250 horizontal points at 3km (LR) and

51 vertical levels. For the NEWS-var component, the

single deterministic HR analyses and forecasts were

produced on 500 3 500 horizontal points at 1.5-km hor-

izontal grid spacing and 51 vertical levels (Fig. 2). Ana-

lyses were produced by both components every 15min

between 1800 and 0300 UTC each day. The LR 36-

member ensemble was initialized using initial and

boundary conditions provided by the High-Resolution

Rapid Refresh Ensemble (HRRRE) from the Earth

System Research Laboratory/Global Systems Division

(ESRL/GSD), while the single deterministic HR run used

initial and boundary conditions provided by the High-

Resolution Rapid Refresh (HRRR; Alexander et al.

2018). The observations assimilated include WSR-88D

radar data, satellite derived cloud water path from

GOES-13 (GOES-16 products were used beginning in

2018), and surface observations from surface aviation ob-

servations (SAO), Oklahoma mesonet, and west Texas

mesonet if available. Three-hour, HR, deterministic

NEWS-var forecasts were launched every half hour

during the HWT-SFE period (1900–0300 UTC, Fig. 2).

Four types of sensitivity experiments are performed

during the evaluation period to demonstrate the im-

provements made over the past several years. The con-

trol DR run (i.e., the real-time configuration in 2017,

which is named CNTR_Exp) performs the NEWS-var

HR (1.5 km) analysis and forecast using ensemble

background error covariances from the LR NEWS-e

forecasts. The second experiment is a single low reso-

lution run (SLR_Exp), which performs the NEWS-var

deterministic analysis and forecast at the same 3-km

horizontal grid spacing as the NEWS-e ensemble fore-

casts. The third experiment, named as CLD_Exp, is

similar to the control DR run except that analyses of

model hydrometer variables are generated using the

cloud analysis method similar to that used by Hu et al.

(2006a,b) and Schenkman et al. (2011) instead of being

generated by the NEWS-var through assimilating re-

flectivity directly (Gao and Stensrud 2012). The mixing

ratio of precipitation (including rainwater, snow, and

hail), potential temperature, and water vapor mixing

ratios are adjusted within the cloud analysis based on

reflectivity measurements (Schenkman et al. 2011).

Finally, an additional deterministic forecast is initial-

ized from the WRF-DART ensemble mean analysis

(MEAN_Exp) at 1.5-km grid spacing to serve as a

benchmark for the hybrid analyses. The performance

of all four types of experiments is evaluated in the next

section for three real data cases just after the convec-

tion initiation and for the forecast duration with severe

weather events.

To gain an overall impression about the quality of

the analyses and forecasts, the nETS and frequency bias

metrics for forecast reflectivity against MRMS reflecti-

vity over 7 (the first two cases) and 11 (the third case)

FIG. 2. Flowchart of the real-time run settings during Hazardous Weather Testbed spring

experiments in 2017.
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3-h forecasts (during active thunderstorm periods for

each case respectively) are first examined and compared

across the four types of experiments. The nETS and bias

values are computed against MRMS composite reflec-

tivity with two different reflectivity thresholds (20 and

40 dBZ) during the period of greatest thunderstorm

coverage for each case. Both nETS and bias values are

computed with neighborhood radii between 6 and 24km

and similar results are reached with the different radii.

For brevity, only results with a neighborhood radius of

12 km (i.e., using 4 grid points for 3-km grid spacing and

8 grid points for 1.5-km grid spacing) will be presented in

the paper. A perfect analysis or forecast is defined when

the nETS equals 1, and a poor analysis and forecast are

associated with nETS values close to 0. For bias, a value

of one indicates no bias, while a bias greater than (less

than) 1 indicates an over (under) forecast.

The second evaluation metric will compare maximum

UH tracks during the 15-min forecast outputs against

the NWS local storm reports over three selected 3-h

forecasts launched one hour apart. TheNWS local storm

reports for each event day include tornadoes, hail of

1-in. diameter or larger, and wind gusts equal to or in

excess of 50 kt (1 kt ’ 0.51m s21) (or 58 mph). The

NWS local storm reports, especially the reports for

hail and tornadoes contain information about updraft

rotation (Milne et al. 2018); however, reporting fre-

quency may vary with population density and other

nonmeteorological factors (e.g., Trapp et al. 2006;

Potvin et al. 2019). Therefore, subjective evaluation is

also performed for selected times in the 3-h forecast

against composite reflectivity observations produced

by MRMS.

4. Results of experiments

During the 5-week HWT-SFE period in 2017, there

were three major severe weather outbreak periods

(8–11 May; 16–19 May; 25–28 May). In this study, we

chose three cases, 9 May, 16 May, and 27 May (one day

from each of the above periods, respectively). The per-

formance of the NEWS-e for severe thunderstorm an-

alyses and forecasts in 2017, including these case studies,

was reported in Skinner et al. (2018) and Jones et al.

(2018). Only the results of the deterministic component

of the hybrid WoF-AFS and comparisons between the

four experiments are reported in this study.

a. 9 May severe weather events in Texas Panhandle

The first case examined is a tornadic supercell that

occurred on 9 May 2017 over the Texas Panhandle

(Fig. 3a). From 8 to 10 May, a slow moving upper low

combined with rich Gulf moisture to produce several

FIG. 3. The analysis and forecast domain with NWS local storm

reports (red triangles for tornado reports, green rhombuses for hail

reports, and blue triangles for damaging winds) for the (a) 9 May

2017 case, (b) 16 May 2017 case, and (c) 27 May 2017 case; county

names mentioned in the paper are annotated specifically.
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rounds of severe weather over the southern High Plains

(not shown). The initial phase of severe weather oc-

curred in eastern New Mexico during the afternoon and

evening of 8 May. As the storm systemmoved eastward,

severe thunderstorms developed in the western South

Plains the evening of 9 May. Scattered supercell thun-

derstorms moved across the Texas Panhandle during

the evening. The most intense storm tracked slowly

northeastward from north Cochran County, Texas, past

Sudan (west Lamb County), Texas, and produced very

large hail and torrential rain along its path. It also pro-

duced two brief tornadoes, one in northeast Cochran

County and another in Sudan. The largest hail re-

ported to the NWS was tennis ball sized (2.5-in. di-

ameter) and observed 4 mi south of Enochs (south

Bailey County), Texas. In addition, 2–4 in. of rain fell

in Muleshoe (south Bailey County), Texas, within 2–3h,

causing street flooding.

The nETS values and frequency bias values of seven

3-h forecasts are computed during the period of active

thunderstorms from 2300 to 0200 UTC 9 May (Fig. 4).

For composite radar reflectivity fields, the MEAN_Exp

produces the largest nETSs among all experiments for

both reflectivity thresholds in this particular case. Both

the CNTR_Exp and the SLR_Exp produce similar

nETSs. This similarity suggests that the CNTR_Exp and

the SLR_Exp with reflectivity assimilated in the varia-

tional framework are able to produce reasonable 3-h

forecasts with generally low bias values (Figs. 4b,d). How-

ever, the biases for the 3-h forecasts in the CLD_Exp are

larger (at times by a factor of 2) indicating an overprediction

for reflectivity.

FIG. 4. The aggregated (left) nETS and (right) bias of seven 3-h free forecasts launched every half hour during

the storm active period 2300 UTC 9 May–0200 UTC 10 May 2017 for composite reflectivity with a threshold of

(a),(b) 20 and (c),(d) 40 dBZ verified against the MRMS observations.
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To subjectively examine the impact of the DR as-

similation strategy, the 2–5-km UH tracks for 3-h fore-

casts launched at three different times are overlaid with

the NWS local storm reports during the same 3-h period

(Fig. 5). The UH tracks are provided for three 0–3-h

model forecasts with output every 15min. For the fore-

cast launched at 2300 UTC, the CNTR_Exp (Fig. 5a)

provides a more accurate prediction of mesocyclones

than the other three experiments (Figs. 5d,g,j). The pre-

dicted UH tracks match quite well with the observed

NWS local storm reports, especially for the two tracks

with hail and tornado reports near the border of eastern

NewMexico and the Texas Panhandle (Fig. 5a). The UH

tracks produced by the SLR_Exp agree with the NWS

local storm reports in northeast Cochran and western

LambCounties, but not for another UH track that moves

to the north of those hail reports through Curry County,

New Mexico, and Deaf Smith County, Texas (Fig. 5d).

Furthermore, SLR_Exp produces much smaller (almost

2 times smaller) UH values than those produced with

CNTR_Exp because of the lower resolution. The UH

tracks produced by MEAN_Exp capture the storm re-

ports in Curry County, New Mexico, and Deaf Smith

County in the Texas Panhandle, but misses the reports in

Cochran and Bailey Counties in Texas. For the two later

forecasts launched at 0000 and 0100 UTC 10May, almost

all severe hail and tornado reports are covered by the

predicted UH tracks during the 3-h forecast period in

the CNTR_Exp (Figs. 5b,c). However, the predicted

UH tracks in other three experiments miss some severe

weather events as indicated by NWS local storm reports

(Figs. 5e,f,h,i,k,l). Additionally, the CLD_Exp produces

spuriousUH tracks in extreme northernNewMexico and

the Texas Panhandle where no storms were observed.

Figure 6 shows the composite reflectivity mosaicked

from the WSR-88D radars within the domain alongside

predicted 3-h composite reflectivity from 0000 UTC

10 May. Although all experiments are able to predict

most of the observed storms with little phase error 1 h

into the forecast (Figs. 6d,g), almost all predicted storm

cells are stronger than those observed (Fig. 6a) except

for theMEAN_Exp (Fig. 6m).However, in theCLD_Exp,

initial clusters of storms in eastern New Mexico grow

upscale into an MCS along the border of eastern New

Mexico and the Texas Panhandle (Fig. 6j). This evolu-

tion represents an erroneous prediction of the primary

storm mode and, along with a spurious cluster of

storms in central North Texas, is responsible for the

overprediction bias in the CLD_Exp (Fig. 4).

Two hours into the forecast, the CNTR_Exp produces

accurate forecasts for two supercell thunderstorms mov-

ing through Cochran and Bailey Counties of Texas

(Fig. 6e). In addition to accurate predictions of the

Cochran and Bailey County supercells, theMEAN_Exp

also produces good forecasts for a storm cell at the

southeastern corner of Chaves County in New Mexico.

The accurate prediction of the Chaves County storm

likely contributes to higher nETS values for composite

reflectivity in MEAN_Exp relative to the other ex-

periments (Figs. 4a,c). The three supercells of interest

are barely present in the SLR_Exp (Fig. 6h) and con-

tain large phase errors in the CLD_Exp (Fig. 6k versus

Fig. 6b).

By three hours into the forecast, the thunderstorm

that produced the Morton (northeastern Cochran

County) and Sudan (western Lamb County) tornadoes is

well predicted (Fig. 6f versus Fig. 6c) by bothCNTR_Exp

andMEAN_Exp, but not by the SLR_Exp (Fig. 6i versus

Fig. 6c). The CLD_Exp does a good job with the 3-h

forecast of the storm, but also produces several spuri-

ous storms nearby. By this time, the CNTR_Exp, the

SLR_Exp, and CLD_Exp correctly predict the cluster

of storms in Chaves County, New Mexico; however,

the CLD_Exp underpredicts storm intensity (Figs. 6f,i,l

versus Fig. 6c), andMEAN_Exp misses the storm at this

time. In general, the CNTR_Exp provides the most ac-

curate prediction of thunderstorms across the domain

for 9 May case. The MEAN_Exp produces a similarly

skillful forecast; however, with smaller storm areal cov-

erage (Figs. 6n,o versus Figs. 6b,c). Smoothing of storm-

scale fields in the ensemblemean likely contributes to the

smaller storm size.

b. 16 May tornadic supercells in northeastern Texas
and southwestern Oklahoma

On 16 May 2017, there were many severe weather

events in the midwestern United States. Our analysis

and forecast domain focuses on three states: Kansas,

Oklahoma, and Texas (Fig. 3b), portions of which were

in a moderate risk of severe storms in the Day 1 con-

vective outlooks by the Storm Prediction Center (SPC).

Most severe weather events on 16May, especially reports

of tornadoes and large hail, were located in these three

states. Most of the 26 tornado reports during the forecast

period were associated with two intense supercells that

moved from the western Texas Panhandle through

western Oklahoma. One of the long-lived supercells

produced a severe damaging tornado (EF3 according to

the enhanced Fujita scale with estimated wind speeds

136–165 mph) that struck Elk City, Oklahoma, killing 1

person, injuring 12, and damaging dozens of structures.

The values of nETS and frequency bias for seven 3-h

forecasts for composite reflectivity during the most active

period of severe weather on 16 May (2100–0000 UTC)

are computed (Fig. 7). For composite reflectivity, nETS

values stay close for all experiments, especially for a
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FIG. 5. The tracks of UH between 2 and 5 km above the ground (shaded) during the 3-h forecast period launched from (left)

2300 UTC 9 May 2017, (center) 0000 UTC 10 May 2017, and (right) 0100 UTC 10 May 2017, for (a)–(c) CNTR_Exp, (d)–(f) SLR_Exp,

(g)–(i) CLD_Exp, and (j)–(l) MEAN_Exp,. NWS local storm reports at the corresponding duration are also attached (red triangles

for tornado reports, green rhombuses for hail reports, and blue triangles for damaging winds). Note that the lower-resolution runs in

(d)–(f) produce UH values that are 2 times smaller.
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FIG. 6. (a)–(c) The composite reflectivity mosaicked from MRMS and forecasted composite reflectivity initiated at

0000 UTC 10May 2017. The results for the forecast from (d)–(f) CNTR_Exp, (g)–(i) SLR_Exp, (j)–(l) CLD_Exp, and

(m)–(o) MEAN_Exp. The (left) 1-, (center) 2-, and (right) 3-h forecast.
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threshold of 20 dBZ (Figs. 7a,b). The MEAN_Exp has

slightly larger nETS values than other experiments for a

threshold of 40 dBZ. For bias, CNTR_Exp is smaller

only than CLD_Exp up to the 120-min forecast.

The 2–5-km UH tracks for 3-h forecasts launched

16 May at 2100, 2200, and 2300 UTC, respectively, are

overlaid with the NWS local storm reports to sub-

jectively assess forecast skill for supercells. In the

2100 UTC forecast, UH tracks in the CNTR_Exp are

more consistent with the NWS tornado and hail re-

ports (Fig. 8a) than the other three experiments, espe-

cially near the Oklahoma and Texas Panhandle border

(Figs. 8d,g,j versus Fig. 8a). In the 2100 UTC forecast,

the UH track associated with the Elk City tornado,

which occurred between 2346 and 0012 UTC, is pre-

dicted accurately by the CNTR_Exp. However, no other

experiments maintain a UH track associated with the

Elk City supercell through the forecast period. The

forecast tracks of the two main supercells in the center

of the domain continuously improve in subsequent

CNTR_Exp forecasts launched at 2200 and 2300 UTC,

as evidenced by the greater overlap of tornado and hail

reports with predicted UH tracks (Figs. 8b,c). In con-

trast, both the SLR_Exp and MEAN_Exp maintain

northward displacement biases in the UH tracks for

the two primary supercells in forecasts launched from

2200 UTC (Figs. 8e,k). Additionally, the CLD_Exp fails

to predict the UH track associated with the tornado that

hit Elk City in forecasts launched from 2200 UTC

(Fig. 8h). For forecasts launched from 2300 UTC, the

SLR_Exp predicts UH tracks well alignedwith theNWS

local storm reports, but the MEAN_Exp contains large

northward phase errors for UH tracks near Beckham

County, Oklahoma. In all three 0–3-h forecasts, greater

coverage of UH tracks is present near the northern do-

main boundary in the CLD_Exp, which may be attrib-

utable to the large overprediction bias in storm coverage

(Figs. 7 and 8g–i).

FIG. 7. As in Fig. 4, but for storm active period 2100 UTC 16 May 2017–0000 UTC 17 May 2017.
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FIG. 8. As in Fig. 5, but for the Elk City, Oklahoma, tornadic thunderstorm event on 16May 2017. The 3-h forecast period launched from

(left) 2100, (center) 2200, and (right) 2300 UTC.
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As an example for a 3-h forecast, the predicted and

observed MRMS composite reflectivities from over

20 NEXRAD radars over a 3-h period beginning at

2100 UTC are compared (Fig. 9). Our discussions focus

on two supercells that produced over a dozen torna-

does across the eastern Texas Panhandle and western

Oklahoma. All four experiments generally capture the

location of convective storms 1 h into the forecast.

However, each experiment except the MEAN_Exp

overpredicts the amplitude of composite reflectivity in

individual storms compared to observations (Figs. 9a,d,g,j).

However, the prediction for the southern supercell

near the border of Oklahoma and Texas is very weak

for MEAN_Exp (Fig. 9m). Additionally, convective

coverage is generally larger for the CLD_Exp and a

large, spurious cell is present in Blaine and Kingfisher

Counties in central Oklahoma.

In 2-h forecasts valid at 2200 UTC, the two intense

supercells near the border of Texas and Oklahoma are

well predicted in the CNTR_Exp (Fig. 9e). However,

only one supercell is maintained in this region in the

SLR_Exp and the CLD_Exp (Figs. 9h,k). Two super-

cells exist near the border of Oklahoma and Texas in the

MEAN_Exp, butwith northward location biases (Fig. 9n).

Additionally, further upscale growth of storms in south-

central Kansas predicted by the CLD_Exp is not sup-

ported by observations (Fig. 9k versus Fig. 9b). Three

hours into the forecast (valid at 0000 UTC), the super-

cell near northeastern Beckham County and south-

west Custer County in western Oklahoma is notably

stronger (Fig. 9f) in the CNTR_Exp. This result is

consistent with observations as the EF3 Elk City tor-

nado was ongoing at this time. Although one super-

cell is also predicted at 3 h into the forecast (valid at

0000 UTC) in the SLR_Exp, the CLD_Exp, and the

MEAN_Exp. Large northward displacement errors

are present in the SLR_Exp and CLD_Exp experi-

ments, and an overprediction bias exists in the

MEAN_Exp (Fig. 9o). The potential advantages of the

dual-resolution strategy with more accurate UH tracks

and reflectivity forecasts are clearly demonstrated in this

real data case.

c. 27 May MCS in southern Missouri and
northeastern Oklahoma

The third case examined contains anMCS in southern

Missouri and eastern Oklahoma on 27 May 2017 (see

the domain in Fig. 3c). Several rounds of severe thun-

derstorms brought large hail, strong damaging winds,

tornadoes, and flooding to the Missouri Ozarks, eastern

Oklahoma, and southern Kansas from 27 May into the

early morning hours of 28 May. Over 100 reports of

severe weather and flooding were received over the

region. Numerous reports of golf ball (1.75-in. diameter)

and even grapefruit (4.5-in. diameter) sized hail oc-

curred across the Missouri Ozarks, along with many

reports of tree and structural damage due to straight-line

winds. The MCS additionally produced flash flooding in

Branson, Missouri.

For this case, the primary period of severe thunder-

storm activity covered during the spring experiments

was from 2000 to 0100 UTC, which is two hours longer

than the period considered for the other two cases.

Therefore, values for nETS and bias are aggregated

across those eleven 3-h forecasts (Fig. 10). The nETSs

for composite reflectivity are similar among all experi-

ments during the first 90min of forecast time, with a

small improvement in the SLR_Exp and MEAN_Exp

relative to the other two experiments (Figs. 10a,c). Slight

improvements in nETS are seen in the CNTR_Exp

over the other three experiments for both reflectivity

thresholds during the latter half of the forecast period.

For reflectivity, bias values stay close to 1.0 for all ex-

periments (Figs. 10b,d). Again, these nETSs show the

potential improvement in forecasts initialized with the

DR variational scheme.

As with the other two cases, the quality of predicted

3-h, 2–5-km UH tracks initialized at 2200, 2300, and

0000 UTC is assessed by overlaying NWS local storm

reports (Fig. 11). Most hail and damaging wind reports

in the Missouri Ozarks are well predicted and overlap

with strong UH values in the CNTR_Exp (Figs. 11a–c).

The orientation of UH tracks match very well with the

severe weather reports in the CNTR_Exp, the SLR_Exp

and the MEAN_Exp. The CLD_Exp, however, predicts

several UH tracks in northeastern Oklahoma and

northwestern Arkansas that are not associated with

observed storms.

Examination of composite reflectivity forecasts at

three initialization times shows similar differences

between experiments as the other two cases. The

CNTR_Exp and the SLR_Exp generally predict the

MCS location well relative to MRMS observations,

though both predict higher reflectivity in convective

cores than is observed (Figs. 12a–i). In Figs. 12j–l, the

CLD_Exp looks subjectively a bit better than SLR_Exp,

as the latter features a gap in the middle of the MCS that

was not observed. The CLD_Exp, however, overpredicts

the spatial extent of the MCS and predicts an orienta-

tion of the system that is shifted counterclockwise ap-

proximately 108–208 from observations (Figs. 12j–l). The

MEAN_Exp does a good job in predicting the evolu-

tion of MCS near the border of Missouri and Arkansas,

but it misses a cluster of new convection initiation in

northeastern Oklahoma and southwestern Missouri at

2 and 3h (Figs. 12n,o).
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FIG. 9. As in Fig. 6, but for the Elk City, Oklahoma, tornadic thunderstorm event on 16 May 2017 launched from

2100 UTC.
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5. Summary and conclusions

In this study, an experimental real-time, dual-resolution

hybrid WoF-AFS with on-demand capability has been

developed and tested. The system uses the WRF-ARW

as its dynamic core and includes two components, the

WRF-DART ensemble analysis and forecast component

(NEWS-e) and a deterministic hybrid 3DEnVAR anal-

ysis and forecast component (NEWS-var). The NEWS-e

component has been extensively tested in HWT spring

experiments in recent years (e.g., Jones et al. 2018;

Skinner et al. 2018; Wilson et al. 2019). The NEWS-var

component was tested as a high-resolution analysis

system for severe weather (e.g., Gao et al. 2013; Calhoun

et al. 2014), but has not been extensively tested as a

short-term forecast system. Both the ensemble-based

and 3DVAR components of the system can incorporate

available mesoscale forecasts, radar data, satellite

retrieved cloud water path, and surface observations

through rapid DA and forecast cycles. Each component

has unique advantages and disadvantages. For example,

the NEWS-e uses the WRF-DART ensemble Kalman

filter system that provides flow-dependent error co-

variances. These flow-dependent error covariances are

important for accurately analyzing small spatiotemporal

scales characteristic of convective weather events. The

NEWS-e employs 36 ensemble model forecasts in its

15-min DA cycles, which is computationally expensive,

particularly for large model domains with high resolu-

tion. As computing resources are limited, users will have

to choose between large model domains with coarse

resolution or small model domains with high resolution.

In contrast, the hybrid analysis system combines the

ensemble covariances with the static error covariances

with a weighting factor and provides one deterministic

forecast of convective-scale weather at high resolution,

FIG. 10. As in Fig. 4, but for storm active period 2000 UTC 27 May–0100 UTC 28 May 2017.
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FIG. 11. As in Fig. 5, but for the event on 27May 2017. The 3-h forecast period launched from (left) 2200UTC 27May, (center) 2300 UTC

27 May, and (right) 0000 UTC 28 May.
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FIG. 12. As in Fig. 6, but for the case on 27 May 2017 launched from 2300 UTC.
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which is computationally more efficient. The dual-

resolution hybrid WoF-AFS leverages the advantages

of both the ensemble components and the deterministic

component, and mitigates their respective shortcom-

ings. As a first step, one-way coupling of the two systems

is performed, where ensemble covariances derived from

the NEWS-e is incorporated into the NEWS-var in each

DA cycle. NEWS-var background error covariances are

calculated by weighting ensemble covariances as 50% of

the total and static error covariances the remaining half.

High-resolution, deterministic forecasts are initialized

from the hybrid NEWS-var analyses.

The performance of the WoF-AFS deterministic

component is evaluated with four potential config-

urations, DR coupling, SLR coupling, cloud analysis,

and forecasts initialized from the ensemble mean for

three severe weather events in 2017. The DR coupling

(CNTR_Exp) forecast is initialized with the NEWS-e

analysis with 3-km grid spacing and the NEWS-var

generates analyses with 1.5-km grid spacing. The SLR

coupling (SLR_Exp) is implemented with both the

NEWS-e and the NEWS-var run at 3-km grid spacing.

The cloud analysis option (CLD_Exp) is similar to DR

coupling, except that the reflectivity observations are

not assimilated through the NEWS-var directly. Instead,

the model hydrometeor variables are updated with the

cloud analysis scheme (Hu et al. 2006a,b; Schenkman

et al. 2011). The ensemble mean forecast (MEAN_Exp)

is initialized from WRF-DART ensemble analysis.

Three hazardous weather events on 9 May, 16 May, and

27 May 2017 are examined in this study.

For the 9 May case, the nETSs and biases for com-

posite reflectivity indicate the MEAN_Exp is most ac-

curate. Subjective examination of predicted UH tracks

and composite reflectivity reveals the CNTR_Exp pro-

vides the most accurate prediction of storm location

and intensity relative to NWS local storm reports and

MRMS composite reflectivity. The MEAN_Exp pre-

dicts storm location well, but the UH track forecasts are

not as accurate as the CNTR_Exp, and the storm areas

are small relative to other experiments. The smaller size

of storms in theMEAN_Exp indicate storm-scale details

may be excessively smoothed in the ensemble mean.

For the 16 May case, the averaged nETSs and biases

for composite reflectivity from seven 3-h forecasts shows

that the performance of all experiments is close, though

the MEAN_Exp and CNTL_Exp are more skillful with

40-dBZ threshold. Three 3-h forecasts launched from

different times all reveal that the CNTR_Exp again

predicts UH tracks that match the location of NWS local

storm reports better than all other three experiments.

Among 3-h forecasts from all other three experiments,

the MEAN_Exp contains large displacement errors,

especially for the supercell storm which produced the

Elk City tornado. A specific example of the improved

skill in the CNTR_Exp is found in a 3-h forecast

launched from 2100 UTC, which shows the parent su-

percell of the EF-3 Elk City tornado is accurately pre-

dicted over two hours in advance in the deterministic

forecast. In contrast, none of the other three experi-

ments clearly maintain the Elk City supercell through

the 3-h forecast period.

For the 27 May case, results show that the CLD_Exp

again overpredicts storm coverage within an MCS and

additionally has the largest biases and displacement errors

relative to observations. Although both the CNTR_Exp

and the MEAN_Exp outperform the CLD_Exp and

SLR_Exp statistically, the most skillful forecast in both

quantitative and subjective evaluation is provided by the

CNTR_Exp.

In general, multiple 3-h forecasts launched from dif-

ferent times for these events demonstrate that DR

strategy without using the cloud analysis performs bet-

ter, qualitatively and quantitatively, than the SLR and

the CLD strategies in most forecasts. Specifically, the

DR experiment provides more accurate prediction of

UH tracks than the other three experiments for each

case considered. Although the MEAN_Exp is simi-

larly skillful for some forecast periods, especially

for the reflectivity threshold of 20 dBZ on 9 May,

the CNTR_Exp provides the most accurate guidance

through the full forecast experiment for each case.

In addition, deterministic experiments with fore-

casts launched fromWRF-DART ensemble mean have

been performed with both 3- and 1.5-km grid spacing

resolution for all three cases. It is illustrated that the

forecasts with 1.5-km grid spacing generally improve

over 3-km grid spacing. These extra experiments give a

useful baseline, and the added value of the hybrid is

more clearly demonstrated.

This study represents our initial effort to assess the use

of a hybridWoF-AFS for 0–3-h severe weather forecasts

with one-way coupling. Though many scientific and

technical challenges remain, we have illustrated some

potential benefits provided by a DR system. The next

step will be to develop two-way coupling for the hybrid

WoF-AFS and test it with real-data case studies. We will

also continue to conduct sensitivity tests for various

system configurations to identify further performance

improvements.

Besides observations used in this study, other types of

observations are expected to help improve short-term,

convective-scale NWP. For examples, the multilayer

precipitable water contents (PW) derived from the

GOES-16 satellite could help improve the near-storm

environment estimation, which can result inmore accurate
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prediction of stormplacement andmovement. Preliminary

results assimilating PW data into the NEWS-var system

have shown forecast improvement (Pan et al. 2018). We

plan to introduce this product into the WoF-AFS and

evaluate its impact on short-term convective-scale NWP

with retrospective severe weather events and in real-time

experiments. Future development will also focus on re-

placing the WRF model with the NOAA FV3 stand-

alone regionalmodel (Black et al. 2019). The FV3model

is NOAA’s next generation unified global and regional

NWP model developed by NOAA’s Geophysical Fluid

Dynamics Laboratory (Lin 2004). We are planning to

develop interfaces for both WRF and FV3 first, then

complete thorough comparisons. Our eventual goal is

to help meteorologists make better forecasts for se-

vere weather events beyond 1 h using convective

NWP models and provide better warning information

to the public, ultimately saving lives and reducing

property damage.
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