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Abstract
Automated prediction of hurricane intensity from satellite infrared imagery is a challenging problem with implications in

weather forecasting and disaster planning. In this work, a novel machine learning-based method for estimation of intensity

or maximum sustained wind speed of tropical cyclones over their life cycle is presented. The approach is based on a

support vector regression model over novel statistical features of infrared images of a hurricane. Specifically, the features

characterize the degree of uniformity in various temperature bands of a hurricane. Performance of several machine learning

methods such as ordinary least squares regression, backpropagation neural networks and XGBoost regression has been

compared using these features under different experimental setups for the task. Kernelized support vector regression

resulted in the lowest prediction error between true and predicted hurricane intensities (approximately 10 knots or 18.5 km/

h), which is better than previously proposed techniques and comparable to SATCON consensus. The performance of the

proposed scheme has also been analyzed with respect to errors in annotation of center of the hurricane and aircraft

reconnaissance data. The source code and webserver implementation of the proposed method called PHURIE (PIEAS

HURricane Intensity Estimator) is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#PHURIE.

Keywords Hurricane intensity prediction � Tropical cyclones � Machine learning-based forecasting � Support vector
regression

1 Introduction

Hurricanes are among the most destructive natural phe-

nomena on earth. They form over warm tropical and sub-

tropical oceans during summers or early fall. Upon making

landfall, hurricanes can cause significant property damage,

and loss of life [1]. Timely analyses and forecasts of track,

intensity and wind structure can help authorities raise

warnings, evacuate high-risk regions, estimate expected

losses, and minimize mortalities.

Due to the limited availability of direct measurements,

satellite images of hurricanes throughout their life cycles

have been analyzed for the past several decades. One of the

earliest methods for tropical cyclone (TC) intensity esti-

mation is the Dvorak technique [2], which is a manual

method that characterizes a TC based upon the cloud

structure seen in an image. To reduce the reliance on

human experts, the Objective Dvorak Technique [3] was

proposed in 1989 for automatic intensity estimation based

on rules similar to the original Dvorak technique. More

sophisticated rules were introduced in the Advanced

Dvorak’s Technique [4], which resulted in an improvement

in prediction accuracy. However, human involvement was

still required and the method could not be automated

completely. Since then, many studies have been carried out

to help automate the process for improvement in speed and

reduction in need for human intervention. A brief

description of several of such studies is presented below.

& Fayyaz ul Amir Afsar Minhas

afsar@pieas.edu.pk; fayyazafsar@gmail.com

1 Department of Computer and Information Sciences, Pakistan

Institute of Engineering and Applied Sciences (PIEAS), PO

Nilore, Islamabad, Pakistan

2 National Hurricane Center, National Oceanic and

Atmospheric Administration (NOAA), Miami, FL, USA

123

Neural Computing and Applications (2020) 32:4821–4834
https://doi.org/10.1007/s00521-018-3874-6(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-9129-1189
http://faculty.pieas.edu.pk/fayyaz/software.html#PHURIE
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3874-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3874-6&amp;domain=pdf
https://doi.org/10.1007/s00521-018-3874-6


Piñeros et al. [5] proposed a method based on the

variance of the deviation angle of brightness temperature

values in infrared (IR) images. Their method was built on

the premise that the lower the variance in the histogram of

deviation angles, which is inversely proportional to TC

organization, the higher would be intensity of the TC. A

sigmoid curve was fit to use variance of deviation angles

for intensity estimation. In their study, Piñeros et al. used

IR images from the GOES-12 satellite for hurricanes in

years 2004–2009 in the North Atlantic Basin. Their method

gives a root-mean-squared error (RMSE) of 14.7 knots

when evaluated over a randomly selected set of hurricanes

over the period 2004–2008. The same model, when trained

over data from 2004 to 2008 and tested over TC IR images

from year 2009, produced an RMSE of 24.8 kt. An

improved version of their technique was presented by

Ritchie et al. [6]. That study added some additional con-

straints to the existing technique and re-trained it after

removing low-intensity (\ 34 kt) TC images from data and

using data from an additional year (2010). This resulted in

an RMSE of 12.9 kt. The Deviation Angle Variation

technique was used to estimate the intensities of TCs in the

north Pacific ocean in a 2013 study [7] with an RMSE of

14.3 kt. [8] proposed a k-nearest neighbor-based algorithm

for TC intensity estimation. Their algorithm estimated the

intensity based on the intensity of the 10 most similar

images to the query image. In a study carried out by

Jaiswal et al. [9] brightness temperature histograms in the

radial and angular directions were computed and histogram

matching was used for intensity predictions. Their study

used TC data collected using satellites GOES-8 and -12

from 2000 to 2005 from the HURSAT database [10]. The

method yielded an overall RMSE of 15.5 kt. The study by

Zhao et al. [11] presents a multiple regression-based

method using deviation angle and radial profiles in IR

images for intensity estimation. The method was tested on

hurricane data from northwestern Pacific Ocean over the

years 2008 and 2009, and an RMSE of 12.1 kt was

reported.

The objective of our study is to develop a machine

learning-based automated system that can predict intensity

of a hurricane when given its satellite infrared (IR) image.

The workflow of the proposed system is illustrated in

Fig. 1. The proposed system computes statistical and

deviation angle-based features for an input IR image. For

prediction, the features are passed to a machine learning

model that has been trained using existing data comprising

of satellite images of previous hurricanes with known

intensity. In this paper, we present details of our proposed

method. The dataset, feature extraction and machine

learning models are described in Sect. 2, results are pre-

sented in Sect. 3 and conclusions are summarized in

Sect. 4.

2 Methods

In this section, we present the details of the dataset, feature

extraction technique, machine learning models and the

experimental setup employed in our study. The primary

task of the proposed technique is to use machine learning

for predicting the maximum sustained wind speed or

intensity of a hurricane (in knots or kilometers per hour)

from infrared satellite images of the hurricane. Section 2.1

provides a description of the dataset used for training and

evaluation of the machine learning model. In Sect. 2.2, we

explain feature extraction methods. Analysis of feature

importance is presented in Sect. 2.3. Different machine

learning models analyzed in the study are described in

Sect. 2.4. Post-processing and experimental setup used for

performance evaluation are explained in Sects. 2.5 and 2.6,

respectively.

2.1 Dataset

Our study used infrared images from the publicly available

HURSAT-B1 (version-05) dataset [10] of different hurri-

canes. The original dataset contained hurricane season data

for years 1978–2009 and included imagery from multiple

satellites including SMS-2, GOES-1 to 13, Meteosat-2 to 9,

GMS-1 to 5, MTSAT-1R, MTS-2 and FY2-C/E. HUR-

SAT-B1 contains both visible and IR window channel

imagery. Some example satellite infrared images from the

dataset are shown in Fig. 2 in false coloring. A pixel value

corresponds to temperature at a certain location as captured

by the satellite with higher temperatures shown in red and

lower ones shown in blue. The spatial resolution of the data

are about 8 km/pixel (4.32 nautical miles per pixel), i.e., a

single pixel represents the average temperature in an

8 km 9 8 km region on the Earth’s surface. The dataset

contains images from a number of hurricanes taken every

3 h for each hurricane. Images in the dataset are centered

on the TCs. Information about the intensity of a given

image of a hurricane was taken from IBTrACS (Interna-

tional Best Track Archive for Climate Stewardship) [12].

The intensity of a hurricane at a given time is defined as the

maximum sustained surface wind speed (in knots) of the

hurricane at a height of 10 m from the surface of the Earth

over a period of 1 min (60 s). Based on the maximum

sustained surface wind speed (in knots), a tropical storm

can be classified into five categories. IBTrACS stores the

intensity of the hurricane based on a consensus of auto-

mated, semi-automated and aircraft reconnaissance data. In

line with previous studies, the best track data were linearly

interpolated to match the temporal resolution of the image

data. We used the intensity in knots as our target or output

value.

4822 Neural Computing and Applications (2020) 32:4821–4834

123



We restricted our study to hurricane data collected by

GOES-12 satellite in the North Atlantic Basin from years

2004 to 2009. Only infrared (IR) window channel imagery

was used in our study. Images taken after a TC made

landfall were removed from the dataset for our experi-

ments. The subset used in the study included a total of 4552

images. Details about the intensity distribution of the

sample are presented in Table 1.

2.2 Feature extraction

In satellite IR images, high-intensity TCs present them-

selves as well-organized low-temperature circular cloud

structures. For low-intensity TCs, the cloud structure

becomes less organized. This phenomenon is shown in

Fig. 2. It can be seen that as the intensity increases, the

cloud structure becomes more symmetric and the organi-

zation of the clouds increases. This relationship was also

the basic premise of the deviation angle technique descri-

bed earlier.

We use the above-mentioned phenomenon to extract

features for intensity estimation of TCs. That is, the region

around the center tends to exhibit a more uniform low-

temperature circular structure in high-intensity TCs in

comparison with low-intensity TCs. Therefore, we com-

pute statistical features around the center to characterize

the TC structure. To compute these features, we first

divided each image into five circular bands of eight pixels

Fig. 1 Illustration of workflow of the proposed system

Fig. 2 Images for Hurricane

Katrina (2005). It can be seen

that the cloud gets organized to

a circular structure as the

intensity increases
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each (equivalent to 64 km or 34.56 nautical miles) around

the center. For each band, mean, standard deviation (SD),

entropy, minimum and maximum are computed. Division

of images into bands is illustrated in Fig. 3. Formulae for

computation of statistical features are listed in Table 2. The

correlation of these features with hurricane intensity is

shown in Fig. 4 as discussed in the next section.

In addition to the statistical features, we used variance of

the deviation angle histogram as another feature for TC

intensity estimation. The idea was motivated from the

approach proposed by Piñeros et al. [5]. Deviation angle at

a pixel is defined as the angle between the gradient vector

and the line joining the hurricane center and that pixel. For

well-organized circular structures, most of the deviation

angles around the center are zero or near to zero. The

concept is illustrated in Fig. 5a–c. Since high-intensity TCs

exhibit more circular structures, most of the deviation

angles in their images would be small and the histogram of

these angles will have a low variance. We have used

variance of deviation angle histogram for 81 9 81 pixel

window (equivalent to 648 9 648 km or 350 9 350 nau-

tical miles) centered at the center of an image as another

feature.

2.3 Analysis of importance of features

To assess the effectiveness of statistical features around the

center for intensity estimation, we plotted the features

against intensity values for hurricane Rita (2005). The

scatter plots are shown in Fig. 4. It can be seen that a high

negative correlation exists for most of the features. For

example, the mean temperature of bands 2–4 shows neg-

ative correlations with magnitude greater than 0.75 with

TC intensity. Similarly, the standard deviation of IR values

also shows a high inverse correlation. Thus, the mean IR

intensities within 24–48 km (12.96–25.92 nautical miles)

of the center of the TC and their uniformity are highly

predictive of intensity. The entropy and maximum values

of temperatures in various bands are also inversely corre-

lated with intensity. These plots clearly show the efficacy

of using these statistical features in our technique.

The effectiveness of the Deviation Angle Variance

feature in terms of correlation with true intensity values has

also been measured for hurricane Rita (2005). The plot for

deviation angle variance versus true intensity values is

shown in Fig. 5d. It is worth mentioning here that simple

statistical features such as mean, standard deviation, min-

imum and maximum temperatures for the third band pro-

duce comparable correlation values as the complex

deviation angle variance-based feature. Hence, we deduce

that the statistical features despite being simpler, are as

informative as deviation angle variance feature and hence,

may help improve hurricane intensity predictions.

2.4 Machine learning models

In this study, our goal is to develop a system that, given a

TC image and a center position, can predict its intensity.

We have modeled the problem of predicting the intensity of

a hurricane at a given time as a regression problem. For this

purpose, we consider a dataset of N example training

images represented by their d-dimensional feature vectors

x1; x2; . . .; xN corresponding to different infrared satellite

images of hurricanes and their associated intensity values

y1; y2; . . .; yN in knots. The objective of hurricane intensity

prediction is to develop a machine learning prediction

function f ðxÞ that can predict the intensity of the hurricane

at a given time using a feature vector x corresponding to an

image of the hurricane at that time. To choose the best-

suited machine learning model for this problem, we carried

out detailed performance analysis and comparison over

different regression techniques: Ordinary Least Square

(OLS) [13], Support Vector Regression (SVR) [14] with

Radial Basis Function (RBF) kernel, feed-forward back-

propagation neural networks (BPNNs) [19] and gradient

boosted tree (XGBoost) regression [20]. To establish ifFig. 3 Central region of an image is divided into circular bands for

computing statistical features

Table Intensity distribution of images used in the study (C1–C5

correspond to category of the hurricane)

Category Number of images

Pre-developmental (\ 20 kt) 82

Tropical depression (20–34 kt) 1617

Tropical storm (35–64 kt) 2088

Hurricane: C1 399

Hurricane: C2 183

Hurricane: C3 210

Hurricane: C4 95

Hurricane: C5 2

Total 5531
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these models are significantly effective in comparison with

a naı̈ve prediction, we compared their results to a zero-

order baseline that uses the average intensity of the hurri-

canes in our dataset as a constant prediction. Multiple

machine learning techniques were compared to identify the

best suited one for this task and to analyze the effectiveness

of features used in this work by studying the difference in

prediction errors of these techniques. Low variation in

performance across the techniques implies that the features

are significantly informative and a difference in choice of

machine learning model would not have a considerable

impact on the accuracy of the system and that the deployed

model will generalize well to unseen cases. Further details

of performance comparison are presented in Results sec-

tion. In the following sections, we present description of

the various techniques used in this study.

2.4.1 Baseline method

To establish a baseline, we used the average intensity of

TCs in the whole dataset as a zero-order intensity estimator

for any given image.

2.4.2 Ordinary least square (OLS) regression

OLS is one of the simplest regression techniques. The

principle of OLS is to find a linear function that minimizes

the sum of squared errors between target and estimated

values for a given dataset. The objective in OLS is to find

parameters w and b of a linear function f xð Þ ¼ wTxþ b

such that that the difference between the target value yi and

f xið Þ is minimized for all training examples i ¼ 1. . .N. The

OLS learning problem can be written as:

w; b ¼ argminw;b
PN

i¼1 yi � f xið Þð Þ2. The parameters esti-

mated from training data are then used for estimation of

values for independent cases.

There are two shortcomings of using OLS for our

problem. First, OLS is prone to over/under-estimation due

to the presence of outliers, as its sole aim is to minimize the

sum of squared errors [15]. Second, we were not sure if a

linear function would successfully be able to model the

relationship between the features we extracted and the

corresponding intensity values. Therefore, we needed a

method that was less sensitive to outliers, offered better

generalization and could model nonlinear relationships. As

a consequence, we used Kernelized Support Vector

Regression [14].

2.4.3 Kernelized support vector regression

Kernelized SVR is a variant of Support Vector Regression

which, originally, is a linear regression technique, i.e., its

prediction function can also be written as: f xð Þ ¼ wTxþ b.

However, it can work for nonlinear estimation using kernel

functions. For a given dataset, SVR finds a weight vector w

such that the norm of w is minimized and the absolute

difference between the actual and predicted values for all

examples does not exceed a threshold e[ 0. The opti-

mization problem in this case can be given as: minw;b w
2

such that f xið Þ � yij j\e for all i 2 1; 2; . . .;Nf g. Mini-

mization of the norm of the weight vector ensures that the

weight values do not become large and small changes in

the inputs do not cause a large variation in the output. This

regularization helps improve prediction performance in

high dimensional and noisy feature spaces. To allow some

violations, a nonnegative slack variable ni is introduced for

each example xi and the optimization problem can there-

fore be modified to minw;b;n<0w
2 þ C

PN
i¼1 ni such that

f xið Þ � yij j\eþ ni for i 2 1; 2; . . .;Nf g. This problem

formulation ensures that the prediction errors are minimal,

and the predictor is regularized. The hyper-parameter C

controls the amount of penalty imposed for each constraint

violation. It is important to note that SVR minimizes the

absolute error and not the square-error function. This

reduces the impact of outliers in comparison with OLS. An

alternative representation of the SVR [14], allows nonlin-

ear regression by using RBF kernel functions k a; bð Þ ¼
exp �ca� b2

� �
and changing the prediction function to

f xð Þ ¼
PN

i¼1 aik x; xið Þ [16], [17]. This kernelized formu-

lation of the SVR learns parameters ai while enforcing

regularization and error minimization over training data.

The kernel function k a; bð Þ is a symmetric positive definite

function that essentially measures the degree of similarity

between examples. We have used SVR with RBF kernel

for our experiments as RBF has the ability to model spaces

of very high dimensionality effectively [18]. The hyper-

parameters c and C are set using nested cross-validation.

2.4.4 Backpropagation neural networks

Neural Networks are function approximators inspired from

the structure of human brain. They are composed of layers

of small computational units called neurons. The output of

Table 2 Formulae for computation of statistical features

Statistic Formula

Mean �v ¼ 1
n

PN
i¼1 vi

� �

Standard

deviation s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
vi��vð Þ

n�1

r

Entropy H vð Þ ¼ �
Pn

i¼1 p við Þ log10 p við Þ
p við Þ is the probability of vi based on its relative

frequency or counts of occurrence.
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Fig. 4 Statistical features plotted against intensity values for images

from Hurricane Rita (2005). Mean (a), standard deviation (b),
maximum (c), entropy (d) and minimum (e) of the band temperatures

have been used as features. A high correlation for most of the bands in

a–d can be seen. The correlation between minimum band tempera-

tures (e) and intensities is low, showing this feature may not be very

informative
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neurons in a layer is fed to the neurons in the next layer.

Each neuron computes its output by applying an activation

function over the dot product of its weights and inputs. The

final output is computed in the last layer. During training,

the objective is to minimize the error between output of the

neural network and the target values. To fit a model using a

BPNN, an example or a batch of examples from the

training data is passed to the network and output is com-

puted. The error is calculated and weights of the network

are updated in a direction opposite to the gradient of error

[19]. The process is repeated iteratively to minimize

training loss. Since the error surface is not always convex,

backpropagation may yield suboptimal solutions. For

comparison with our methods, we have used a BPNN with

two hidden layers, 64 neurons per layer, and rectified-linear

unit (ReLu) activation functions with a single output layer

neuron. The neural network has been implemented using

Keras [21].

2.4.5 XGBoost

XGBoost [20] is a random forest-based method that uses

gradient boosted decision trees. A decision function that

performs minimization of average regression loss is

learned using gradient boosting on a set of decision trees

trained in an iterative manner. The training in each incre-

ment is performed using residual error of the preceding

step. Further details of the technique can be found in [20].

In our experiments, we used Python XGBoost v. 0.7 API

for XGBoost regression.

2.5 Post-processing

Our model generates predictions using a single image. To

reduce noise, a time-smoothing operation is performed

after generating predictions for different images of a TC.

For this purpose, we used a simple linear exponentially

weighted averaging filter that, at a time step t, produces a

weighted average of predicted intensities for current and

previous time steps as follows: g xtð Þ ¼ 0:41f xtð Þþ
0:25f xt�1ð Þ þ 0:15f xt�2ð Þ þ 0:1f xt�3ð Þ þ 0:06f xt�4ð Þ þ
0:03f xt�5ð Þ. It is important to note that the coefficients of

the filter sum to 1.0 and decrease exponentially with time.

Fig. 5 Illustration of concept of deviation angles. a A test image

exhibiting a circular structure. b Gradient vectors for each pixel. Most

of the vectors are directed toward the center, hence the angles

between the gradient vectors and the lines joining other pixels with

the center are mostly zero. c A histogram of deviation angles for the

image shown in a. d A plot of deviation angle variance against

intensity values for Hurricane Rita (2005). A high correlation can be

seen for deviation angle variance, making it an informative feature
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2.6 Experimental setup

We performed multiple experiments over features and

regression models discussed earlier for the 2004–2009

sample. We have used root-mean-squared error (RMSE)

[22] as the performance metric to evaluate and compare the

efficacy of our methods with previously published works.

Results for the experiments are presented and discussed in

Sect. 3.

2.6.1 Leave one TC out cross-validation

For all TCs over the period 2004–2009, we left one hur-

ricane out for testing and trained over the rest. RMSE

scores for each of the test hurricanes were computed and

then averaged. The experiment was performed for all of the

regression techniques described in Sect. 2.4: OLS, SVR,

Feed-forward BPNN and XGBoost.

2.6.2 Stratified error analysis

We have performed stratified error analysis of our method

for different stages of TC development to get an idea of

prediction accuracy for low versus high-intensity hurri-

canes using leave one TC out cross-validation.

2.6.3 Comparison with deviation angle variance technique

To compare our method with the deviation angle variance-

based method, we replicated the experiments carried out in

[5]. Two experiments were performed in the study. The first

experiment uses data from 2004 to 2008. The following

hurricanes were left out for testing: Bonnie (2004), Earl

(2004), Jeanne (2004), Matthew (2004), Nicole (2004),

Dennis (2005), Irene (2005), Katrina (2005), Nate (2005),

Rita (2005), Tammy (2005), Delta (2005), Debby (2006),

Isaac (2006), Arthur (2008), Cristobal (2008), Fay (2008),

Hanna (2008), Kyle (2008) and Paloma (2008). The rest of

the TCs over the period 2004–2008 were used for training.

In the second experiment, all TCs from 2004 to 2008

were used for training and data from 2009 were used for

testing. We report the RMSE results for both OLS and

SVR.

2.6.4 Leave-one-year-out cross-validation

In this experiment, we used the data for all years from 2004

to 2009. TCs from 1 year are left out for testing and

training is performed over the rest. This experiment was

performed to compare our method with the improved

version of the DAV technique [5] proposed by [6]. Their

experiment used long-range IR images from GOES-E

satellite and used data of one additional year (2010). We

report RMSE results for our data using the same leave-one-

year-out cross-validation method.

2.6.5 Comparison with aircraft reconnaissance data

Aircraft reconnaissance data is available for several hurri-

canes and it gives very reliable estimates of hurricane

intensity at certain times. We compared the predictions of

the proposed model with aircraft measurements by per-

forming leave one TC out cross-validation and restricting

our error evaluation to only those times that were within

3 h of an aircraft pass.

2.6.6 Center annotation error analysis

As the proposed scheme relies on center annotations for

feature extraction, we also analyzed the effect of error in

annotating the center of the hurricane on intensity esti-

mation. For this purpose, we selected a single hurricane

from every year at random for evaluation through leave one

TC out cross-validation. The annotated center in IR images

of a hurricane was shifted along both axes by a random

amount within the interval �r;þr½ � prior to feature

extraction and intensity prediction. The magnitude of the

shift, r, was varied from 0 to 10 pixels (corresponding to a

maximum center position error of 80 km or 43.2 nautical

miles) to model the effect of center annotation errors of

existing center prediction methods [1]. This process is

repeated five times for each hurricane to get reliable esti-

mates. The prediction error of the proposed technique is

then plotted against the magnitude of the shift in the

annotated center for analyzing the effect of center anno-

tation error on intensity prediction error.

2.6.7 Analysis of images from other channels

The focus of this study has been to predict TC intensity

from IR images. However, in order to assess the effec-

tiveness of the features proposed in this work over data

from other channels, we have also evaluated leave-one-

year-out cross-validation analysis over other available

channels including: Visible channel observations

(VSCHN), water vapor observations (IRWVP), near-in-

frared channel observations (IRNIR) [10].

2.7 PHURIE webserver

We have developed a freely available webserver called

PHURIE (PIEAS HURricane Intensity Estimator) for the

proposed method which accepts an IR image in NetCDF file

format, extracts features, and generates a prediction from

machine learning model. The center of the image input
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should correspond to the center of the hurricane. PHURIE

uses a kernelized SVR model, since the SVR-based models

had shown to generally outperform others in different

experiments. Details of the performance comparison of

different regression techniques are presented in the Results

section. It is important to note that the webserver generates

predictions using a single input image without any post-

processing. The websever has been developed using Python

and scikit-learn and is available at the URL: http://faculty.

pieas.edu.pk/fayyaz/software.html#PHURIE.

3 Results and discussion

In this section results for all the experiments performed

under the setup discussed in the previous sections are

presented and discussed.

3.1 Leave one TC out cross-validation

Using the mean intensity (zero-order predictor) as the

predicted intensity for a given image, gives an RMSE of

24.3 kt as shown in Table 3. This is the expected maximum

error of any technique and is used as a baseline for

comparison.

For evaluation of our method, we used leave one hurri-

cane out cross-validation model as described in Sect. 2.4.1.

Mean RMSE values obtained using SVR, OLS, BPNN and

XGBoost regression models are presented in Table 3. Using

SVR, we obtained a mean RMSE of 11.2 kt. As expected,

the proposed method performs much better than the zero-

order predictor. The error of SVR is much lower than other

machine learning models. Furthermore, the post-processing

smoothing step reduces these errors even further to 9.5 kt

which is comparable to CIMSS satellite consensus (SAT-

CON) intensity prediction error (9.1 kt) [23].

We have also performed leave one TC out cross-vali-

dation with a feed-forward backpropagation neural net-

work. The average RMSE for the neural network is 12.0

knots which is marginally higher than RMSE of 11.2 knots

obtained with support vector regression. We tuned different

parameters of the neural network but no significant

reduction in error was noted. We have also used XGBoost

regression for this problem which gives an RMSE of 11.3

knots after optimization of various hyper-parameters such

as the number of estimators and subsampling.

3.2 Stratified error analysis

Figure 6 shows a scatter plot of the true and SVR-predicted

intensities for all images of all TCs. The overall Pearson

correlation between true and predicted intensities is 0.91,

whereas, the overall RMSE is 10.6 kt, which indicates the

effectiveness of our approach. Figure 6 also shows RMSE

errors for different TC stages. We hypothesize that the

increased error at higher intensities is a consequence of the

presence of relatively fewer training images at these

intensities (see Table 1) and the nature of the error function

(RMSE) being used. For a deeper evaluation of the per-

formance of our method, we present plots of SVR-pre-

dicted versus actual intensities for hurricanes Katrina and

Rita (2005) in Figs. 7 and 8, respectively. A high correla-

tion can be observed for both the cases. It can be seen that,

in contrast to most of the existing techniques, our method

performs well even for low-intensity images.

3.3 Comparison with deviation angle variance
technique

Results of the two experiments replicated from [5] are

given in Tables 4 and 5. The comparison of our approach

with their results using the same experimental conditions

show that all machine learning models used in this work

outperform their approach in both the experiments. A

major improvement has been seen in the second experi-

ment (Table 5), where the TCs from years 2004 to 2008

were used for training and testing was performed on hur-

ricanes in 2009. We obtained a mean RMSE of 13.4 kt

compared to the previously reported 24.8 kt [5]. Post-

processing using temporal smoothing filter improves the

results even further to 11.5 knots. It is important to note

that the proposed scheme offers better accuracy than the

recently published method by Zhao et al. [11] which gives

an RMSE of 12.1 knots over typhoons in the northwestern

Pacific Ocean in 2009 as well.

3.4 Leave-one-year-out cross-validation

In this experiment, the aim was to compare our method

with the improved version of the method proposed by [5] in

[6]. They used TC data over the period 2004–2010. Our

dataset comprised data over the period 2004–2009 obtained

Table 3 Comparison between RMSE values for leave one hurricane

out cross-validation for different machine learning models used in this

work with statistical and deviation angle variance features and zero-

order predictors with and without post-processing

Method Mean RMSE (kt) Mean RMSE after

smoothing

PHURIE: SVR 11.2 9.5

PHURIE: OLS 12.8 10.5

PHURIE: BPNN 12.0 10.1

PHURIE: XGBoost 11.3 9.8

Baseline predictor (mean) 24.3 –

The lowest RMSE values are shown in bold
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from the GOES-12 satellite. Also, in their experiment,

Ritchie et al. used only the data for TCs with a minimum

speed of 34 kt as low-intensity TCs are reported to

adversely affect the accuracy of their method.

We have compared the performance of SVR, OLS,

XGBoost and BPNN for leave-one-year-out cross-valida-

tion over all the images including both high and low

intensity examples. The comparison is presented in

Fig. 6 Plot of actual versus SVR-predicted intensities of all test

hurricanes in leave one hurricane out cross-validation using SVR.

Different shades represent different categories of storms based on

their intensities: tropical depression (TD), tropical storm (TS) and

categories 1–5 Hurricanes

Fig. 7 Actual and predicted intensity values for Hurricane Katrina (2005). The RMSE values obtained for SVR predictions before and after

filtering are 13.9 kt and 10.9 kt, respectively
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Table 6. As evident from the results, SVR gives better

prediction accuracy (RMSE of 11.1 knots) in comparison

with other machine learning models. For TC data with a

minimum intensity of 34 kt, all machine learning models

perform better than the DAV [5] and Improved DAV

techniques [6] (Table 7).

It can be seen that including the low intensity examples

did not have much effect over the performance of our

method. It can, therefore, be concluded that the proposed

method is more robust and has a better performance than

the previously published techniques.

Fig. 8 Actual and predicted intensity values for Hurricane Rita (2005). The RMSE values obtained for SVR predictions before and after filtering

are 13.7 kt and 10.6 kt, respectively

Table 4 Comparison of results

using our method and deviation

angle variation based method

for the same hurricanes as in [5]

Method RMSE (kt) RMSE (kt) after smoothing

PHURIE: SVR 11.5 9.8

PHURIE: OLS 12.2 10.2

PHURIE: BPNN 11.5 10.0

PHURIE: XGBoost 11.6 9.9

Deviation angle variation technique [5] 14.7 –

Hurricanes Bonnie (2004), Earl (2004), Jeanne (2004), Matthew (2004), Nicole (2004), Dennis (2005),

Irene (2005), Katrina (2005), Nate (2005), Rita (2005), Tammy (2005), Delta (2005), Debby (2006), Isaac

(2006), Arthur (2008), Cristobal (2008), Fay (2008), Hanna (2008), Kyle (2008) and Paloma (2008) were

left out for testing. Rest of the hurricanes during the period 2004–2008 were used for training

Best results are shown in bold

Table 5 Comparison of results

using our method and deviation

angle variation based method

[5]

Method RMSE (kt) RMSE after smoothing

PHURIE: SVR 13.6 12.1

PHURIE: OLS 13.4 11.5

PHURIE: BPNN 13.2 11.6

PHURIE: XGBoost 13.5 12.0

Deviation angle variation technique [5] 24.8 –

In this experiment, hurricane data of years 2004–2008 were used for training, and data of year 2009 were

used for testing

Bold values represent the lowest RMSEs
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3.5 Comparison with aircraft reconnaissance
data

On restricting our error evaluation to only those points in

time that are within 3 h of an aircraft pass, we get a mean

RMSE of 12.1 kts which is only slightly above the average

RMSE for leave one TC out cross-validation (11.2 kts).

This clearly illustrates the true generalization performance

of the proposed scheme.

3.6 Center annotation error analysis

The plot of prediction error in response to center annotation

error is shown in Fig. 9. It shows that the proposed system

undergoes graceful degradation in performance with an

increase in center annotation error. Figure 9a shows the

effects of random center shifts in hurricane RITA 2005

images, whereas Fig. 9b shows the change in prediction

accuracy as a consequence of random center shifts for five

different hurricanes. The average RMSE increases from

11.5 to 16.5 kts for these hurricanes as the pixel shift is

varied from 0 to 10 pixels (corresponding to 80 km or 43.2

nautical miles). [24] showed that when only satellite data

were available, the mean position uncertainty of tropical

storms, hurricane, and major hurricanes was 29, 21 and 14

nautical miles, respectively. These roughly correspond to

seven, five and three pixel displacements in Fig. 9. For

hurricanes and major hurricanes, Fig. 9 suggests that the

position uncertainty would only slightly degrade the

intensity estimates. For tropical storms, the impact is lar-

ger. Tests with real-time position estimates are needed to

assess the accuracy of our system for operations.

3.7 Analysis of images from other channels

Leave-one-year-out cross-validation results using our pro-

posed features over images from near-infrared (IRNIR),

water vapor (IRWVP) and visible (VSCHN) channels

through SVR, OLS, BPNN, and XGBoost machine learn-

ing models are presented in Tables 8, 9 and 10, respec-

tively. The best mean RMSE values for the three channels

are 12.3 kts (using XGBoost), 12.3 kts (using SVR) and

17.9 kts (using XGBoost), respectively. It is important to

note that although these values are higher than the RMSE

obtained using IR channel (11.1 knots with SVR), the

relatively small decrease in accuracy for other channels,

especially the near-IR and water–vapor channels, clearly

indicates the effectiveness of the features proposed in this

work. The poor performance in visible channel images can

be attributed to the quality of these images being dependent

upon lighting conditions.

4 Conclusions and future work

In this paper, we presented a support vector regression-

based technique for TC intensity estimation from satellite

IR images. Since the shape of the cloud patterns helps in

estimation of TC intensity in manual methods, we used

several statistical features to characterize the structure in

circular bands around the center of a hurricane image.

These features included mean, minimum, maximum,

standard deviation and entropy of bands. Apart from these

features, variance of deviation angle histogram of an image

Table 6 Comparison among different methods for leave-one-year-out

cross-validation

Year Method

SVR OLS BPNN XGBoost

2004 12.7 14.2 15.0 12.6

2005 10.2 11.3 10.3 11.5

2006 10.3 10.4 11.1 10.2

2007 9.7 11.1 10.8 9.9

2008 11.6 11.4 12.3 11.8

2009 12.1 11.5 11.9 12.1

Mean 11.1 11.7 11.9 11.4

Best results for each year are shown in bold

Table 7 Comparison with DAV

and improved DAV technique

for leave-one-year-out

experiment for intensities higher

than 34 kt

Year Method

DAV [5] Improved DAV [6] SVR OLS BPNN XGBoost

2004 15.6 13.3 13.9 13.7 12.0 12.9

2005 17.3 14.1 9.8 10.6 9.9 11.6

2006 11.7 10.3 11.1 11.1 11.2 10.9

2007 12.8 11.4 10.5 11.5 11.4 10.0

2008 12.2 12.0 10.3 9.9 10.2 10.5

2009 17.9 10.6 12.7 10.9 11.4 11.4

Mean 14.6 12.0 11.3 11.3 11.0 11.2

Best results for each year are shown in bold
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was also used. The method proposed in this paper gives

robust and state of the art performance on a number of

different experiments and can be adapted for practical use.

The features proposed in the study can also be employed

for other prediction tasks related to hurricane IR imagery

such as path-tracking. Although the main focus of this

study was hurricane intensity prediction using infrared

images, we have evaluated the proposed method on images

from other channels including near-infrared, water vapor

and visible channels. In the future, we plan on making a

single machine learning method that can learn to predict

both the center of a hurricane and its intensity.

The results from this study show that the PHURIE

intensity estimates are more accurate than other automated

methods documented in published papers, and comparable

to methods that use a consensus of several methods (such

as the CIMSS SATCON). However, some assumptions

such as the use of best track positions may inflate the

accuracy of the estimates. The next step is to perform

completely independent tests using only input that is

available in real time. That will provide a true estimate of

applicability of PHURIE for operational forecast centers.
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Fig. 9 Effect of hurricane center annotation errors on root-mean-

square error (RMSE) in predicted intensity using leave one TC out

cross-validation. a Plot for pixel shift versus RMSE for Rita (2005)

and, b combined plot for pixel shift versus RMSE for Alex (2004),

Rita (2005), Gordon (2006), Felix (2007), Bertha (2008) and Ana

(2009)

Table 8 RMSE values for leave-one-year-out cross-validation over

images from near-IR channel

Years SVR OLS BPNN XGBoost

2004 14.3 15.7 15.2 14.2

2005 11.1 13.0 12.2 11.6

2006 10.8 10.5 11.5 11.1

2007 10.3 12.3 11.8 11.3

2008 14.5 13.9 12.1 11.5

2009 13.9 12.5 15.0 14.3

Mean 12.5 13.0 13.0 12.3

Lowest RMSE values for each year are in bold

Table 9 RMSE values for leave-one-year-out cross-validation over

images from water vapor channel (IRWVP)

Years SVR OLS BPNN XGBoost

2004 15.6 14.6 17.8 18.0

2005 11.6 13.7 15.9 12.0

2006 9.1 10.8 11.1 10.4

2007 11.2 12.9 14.9 11.1

2008 12.0 11.3 11.0 11.6

2009 14.5 15.6 13.5 12.3

Mean 12.3 13.15 14.03 12.6

Bold values represent the lowest RMSE for a given year

Table 10 RMSE values for leave-one-year-out cross-validation over

images from visible channel

Years SVR OLS BPNN XGBoost

2004 23.2 23.8 22.4 21.6

2005 17.9 18.5 17.9 16.7

2006 12.9 12.6 12.8 12.1

2007 17.6 19.6 20.5 20.5

2008 21.4 16.2 15.5 15.8

2009 24.4 23.2 45.7 18.5

Mean 19.6 19.00 22.5 17.6

Best results for each year are shown in bold
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