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Abstract
Topobathymetric lidar is becoming an increasingly valuable tool for benthic habitat mapping, enabling safe, efficient data
acquisition over coral reefs and other fragile ecosystems. In 2014, a novel topobathymetric lidar system, the Experimental
Advanced Airborne Research Lidar-B (EAARL-B), was used to acquire data in priority habitat areas in the U.S. Virgin
Islands (USVI), spanning the 0–44-m depth range. In this study, new algorithms and procedures were developed for generating
seafloor relative reflectance, along with a suite of shape-based waveform features from EAARL-B.Waveform features were then
correlated with percent cover of coral morphologies, domed and branched, and total cover of hard and soft corals. Results show
that the EAARL-B can be used to produce useful seafloor relative reflectance mosaics and also that the additional waveform
shape-based features contain additional information that may benefit habitat classification—specifically, to aid in distinguishing
among hard corals and their coral morphologies, domed and branched. Knowing the spatial extent of changes in coral commu-
nities is important to the understanding of resiliency of coral reefs under stress from human impacts.
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Introduction

Coral reef ecosystems provide essential ecosystem services to
millions of people around the world (Hughes et al. 2017). The
habitat and food provided by these reefs are essential for many
coastal communities, including the US Caribbean. In the U.S.

Virgin Islands (USVI), these ecosystems are estimated to pro-
vide economic benefit over $187 million annually to the local
economy, by supporting tourism, providing coastal protection
from storms, and providing habitat for commercially impor-
tant fisheries (Van Beukering et al. 2011). Over the last several
decades, coral reefs have undergone an unprecedented rate of
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decline in the USVI and worldwide (Gardner et al. 2003;
Pandolfi et al. 2003; Bellwood et al. 2004). It is likely this
decline will endure as these ecosystems continue to be impact-
ed by anthropogenic stressors from ocean warming and acid-
ification (Hughes et al. 2017). In the face of these threats, the
ability to map and characterize coral reef ecosystems is a crit-
ical tool for coastal managers to monitor these rapid changes
on a broad scale (Mumby and Harborne 1999; Brown et al.
2011; Monaco et al. 2012). Such maps would facilitate poli-
cies designed to improve the resiliency of these important
ecosystems and to sustain the value services these ecosystems
provide for coastal communities.

Benthic habitat maps that depict the spatial extent and dis-
tribution of coral reefs and other seafloor habitats are valuable
to coastal management and policymakers in managing coastal
ecosystems and assessing change over time. Mapping of these
habitats using divers is infeasible, due to inability of divers to
access dangerous or challenging locations and to the time it
would take to create maps of sufficient spatial extent. While
acoustic techniques are most effective in temperate ecosys-
tems or in deeper waters, airborne bathymetric lidar has in-
creasingly gained recognition as a viable technology for ben-
thic habitat mapping and characterization (Collin et al. 2008;
Narayanan et al. 2009; Costa et al. 2009). Past habitat map-
ping efforts have used lidar for consistent classification of
broad functional groups (seagrass, coral, etc.). However, the
development of topo-bathymetric lidar systems that record
waveform metrics presents an opportunity to explore their
use for finer classification of coral reef communities.
Linking lidar waveforms metrics to biological characteristics
of coral reef habitats and the seafloor may provide new or
unique information that will help to capture fundamental
changes in these habitats. This may provide another tool to
better determine optimal sites for species restoration projects
or to focus limited resources on areas that may be of national
or conservation value.

This study included developing and testing procedures for
generating relative reflectance mosaics and additional wave-
form features, including area under the curve, skewness, and
standard deviation, from the Experimental Advanced Airborne
Research Lidar-B (EAARL-B) to benefit mapping of coral reef
habitats. The EAARL-B is well suited to acquire spatially
dense data in the depth ranges of interest for benthic habitat
mapping (Wright et al. 2016). However, the EAARL-B system
and its processing software, ALPS (Airborne Lidar Processing
System) (Nagle and Wright 2016), did not previously (prior to
this study) provide functionality for generating seafloor reflec-
tance products or bottom return waveform shape-based fea-
tures. Reflectance mosaics may greatly enhance the value of
the system to benefit benthic habitat mapping, while the addi-
tion of other shape-based waveform features may further facil-
itate assessment of coral communities and benthic composition
(Collin et al. 2011; Rogers et al. 2015). The procedures were

implemented and investigated using EAARL-B data collected
over two priority locations in the USVI in 2014 and assessed
using in situ seafloor reflectance spectra collected from a small
boat. Correlations between waveform metrics and coral reef
communities were performed using 100-m2 photo mosaics of
sites surrounding Flat Cay.

Methods

Study Locations

Two study locations in the USVI (Fig. 1) were selected for this
research, as they had a diverse range of seafloor habitat types,
bottom complexity, and bathymetric relief. The first location
was relatively small (25 km2) and included the Buck Island
Reef National Monument (BIRNM), north of St. Croix. The
second location, situated due south of St. Thomas, was larger
(120 km2) and included Flat Cay island and surrounding wa-
ters. These locations are of high interest to marine conserva-
tion managers because they include several federal and terri-
torial marine protected areas, including Virgin Islands
National Park (VINP), St. Thomas East End Reserve
(STEER), and Cas Cay-Mangrove Lagoon Marine Reserve
and Wildlife Sanctuary (CCMLMR). These areas provide a
home to several species protected under the federal
Endangered Species Act, including Hawksbill Turtles
(Eretmochelys imbricata), Elkhorn Coral (Acropora palmata),
and Staghorn Coral (Acropora cervicornis) (Pittman et al.
2008, NOAA OPR 2019). For these reasons, these locations
have been studied intensively in the past, and as a result, they
contain a variety of remotely sensed and in situ data sets that
could help support the research described here. An additional
benefit of the two locations is that the data for Buck Island
were useful for testing (specifically, for comparisons of the
output relative reflectance mosaics against in situ reflectance
spectra), while Flat Cay was used to test if waveform metrics
could be used to distinguish or characterize coral reef
communities.

Data Collection

Bathymetric lidar data were collected by the USGS using the
EAARL-B. The data were collected on 11 separate days be-
tween March 7 and March 21, 2014. The airborne data acqui-
sition parameters are listed in Table 1. Processing of lidar
point clouds and digital elevation models of the region was
conducted by United States Geological Survey (USGS), as
described in Fredericks et al. (2015).

To process the lidar data, we adopted the definitions of lidar
radiometric processing levels given in Kashani et al. (2015),
wherein level 0 = raw intensity; level 1 = intensity correction
(i.e., correction for range, angle of incidence); level 2 =

Estuaries and Coasts



intensity normalization (i.e., histogram normalization to
match adjacent flight strips or data collected across different
days, sites, following the level 1 processing); and level 3 =
full, rigorous radiometric correction and calibration to obtain
“true” surface reflectance (generally unattainable, due to lack
of manufacturer-proprietary system information and full envi-
ronmental characterization). With reference to these process-
ing levels, seafloor relative reflectance, as defined in this

study, is a level 2 product, whereas true reflectance corre-
sponds to level 3.

The reference data for testing the seafloor relative reflec-
tance mosaics consisted of underwater spectral reflectance
measurements acquired from a small boat in July, 2012, at
Buck Island (Fig. 2). These reference underwater spectral re-
flectance measurements (see Pe’eri et al. 2013, for details on
data collection) were acquired for assessing the lidar-derived

Fig. 1 Study sites. Top: larger
(120 km2) project site south of St.
Thomas and encompassing the
Flat Cay subsite. Bottom: smaller
(25 km2) site surrounding Buck
Island, north of St. Croix. The
spatial coordinates are in UTM
Zone 20 N, NAD 83 (2011), with
units of meters
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relative reflectance. While this fieldwork was performed spe-
cifically for this experiment, delays in fielding the EAARL-B
led to the ~ 20-month gap between the field and airborne data
collections. A consequence of the temporal offset between the
field and airborne data collection is that some change in ben-
thic habitat type occurred. Specifically, some of the seagrass
bed boundaries were observed to have changed. These
seagrass bed distribution changes were relatively easy to iden-
tify using our own aerial imagery collected with the EAARL-
B lidar data, Google Earth imagery, and Esri World Imagery.
Reference spectra collected in areas of seagrass bed migration
were removed from the analysis, as well as a few additional
spectra that were collected outside of the EAARL-B coverage
extents, which were not precisely known at the time of the
fieldwork. The number of remaining points (14) was fewer
than desired but spanned a range of seafloor reflectance values
and habitat types (including seagrass, coral, and sand) in the
1–10-m depth range (Fig. 3).

The ground truth for the reef cover characterization
consisted of generating 100-m2 photo mosaics of coral reef
communities around Flat Cay. Underwater video footage of 9
sites, ranging in depth from ~ 2 to ~ 17 m, was collected by
swimming in a lawnmower pattern along transects placed on

the seafloor between September 4 and 9, 2016. Overlapping
still frames were extracted from the video and stitched together
into a single composite image using texture based video mo-
saic (Rzhanov et al. 2006; Gu and Rzhanov 2006). To create a
species map for each dive site, each mosaic was georeferenced
and viewed on a high-resolution computer screen. Corals and
macroalgae were identified and manually segmented down to
the lowest possible taxonomic level, typically genus or species.
Adobe Photoshop’s Magic Wand tool was used to isolate each
coral head and patch of macroalgae and mask them with a
species-specific color. These masks were used to calculate per-
cent cover. To account for difficulties in identification to spe-
cies level (especially among octocoral genera) and the effects
of less-abundant species, we created five functional groups.
Hard corals were divided into “domed” and “branched” groups
based on colony growth form in order to represent the varied
habitat types they provide and expected differences in response
to lidar signals. The domed coral group includes boulder,
brain, hill, pillar, and star corals, while the branched coral
group includes finger, fire, and staghorn corals. The remaining
three groups comprise the octocorals, sponges, andmacroalgae
turf (mostly genus Dictyota).

Signal Processing

The bathymetric lidar equation, which is given in various forms
in the published literature (e.g., Wang and Philpot 2002; Tuell
and Park 2004; Collin et al. 2008; Narayanan et al. 2009; Tuell
and Carr 2013), relates the received optical power for a laser
return pulse to parameters related to the lidar system, the acqui-
sition geometry, and the environment. While various formula-
tions differ slightly, a general form is as follows:

PR ¼ PTηρFpArcos2θ

π nwH þ Dð Þ2 e−2n s;ω0;θð ÞKDsecϕ ð1Þ

where PR is the received optical power; PT is the transmitted

Fig. 2 Acquisition of underwater reflectance spectra, which served as
reference data for assessing the lidar-derived seafloor relative reflectance
mosaics. Left: camera frame and spectrometer probe on deck of boat.
Middle: deploying camera frame over the side (note: fiber optic cable
connects spectrometer probe to the instrument, which remains on vessel).

Right: underwater image showing one of the seagrass bed sites, with the
white reference panel rotated out of the spectrometer’s field of view. The
quadrat at the base of the camera frame is 0.3 m × 0.3 m, and the grad-
uations are 2 cm

Table 1 EAARL-B data collection parameters

Acquisition parameter Setting/value

Aircraft Cessna 310

Flight altitude (AGL) 300 m

Flying speed 55 m/s (110 kts)

Scan angle 5° forward, 22° across-track

Measurement rate 15–30 kHz

Swath width 240 m

Point spacing 0.5–1.6 m

Laser footprint (at water surface) 30 cm

Pulse width 900 ps
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power; η is the system optical efficiency factor; ρ is the reflec-
tance of bottom; Fp is the loss due to insufficient FOV; Ar is the
effective area of the receiver optics; θ is the off-nadir transmit
angle; nw is the refractive index of the water;H is the altitude of
the lidar above the water; D is the water depth; n(s, ω0, θ) is the
pulse stretching factor; s is the scattering coefficient; ω0 is the
single scattering albedo; K is the diffuse attenuation coefficient
of the water; and ϕ is the off-nadir angle of the lidar beam after
refraction at the air-water interface. Note that the termD sec ϕ is
the slant range of the laser pulse from the water surface to
seafloor. For all wavelength-dependent parameters, such as ρ,
K, and ω0, it is understood that the wavelength, λ, at which the
parameter is evaluated is that of the lidar system, which is
532 nm for nearly all current bathymetric lidar systems
(Guenther 2007).

Typically, it is not possible to directly solve Eq. 1 for ρ, the
reflectivity of the seafloor at the laser wavelength (532 nm),
due to unknown lidar system parameters (e.g., PT, η, FP) and
environmental parameters (e.g., s, ω0, θ, K, n). It is for this
reason that most studies of topo-bathymetric lidar reflectance
mapping, including this one, aim to produce relative

reflectance, rather than “true” or “absolute” seafloor reflec-
tance. In this work, a data-driven approach was taken to derive
corrections to lidar bottom intensity (i.e., the data itself was
used to drive the determination of correction coefficients) to
obtain seafloor relative reflectance. The full, end-to-end
workflow for generating the relative reflectance mosaics is
depicted in Fig. 4. It is important to note that this workflow
was designed to be applied to very large data sets, covering up
to hundreds of square kilometers of the seafloor and
encompassing tens of millions of lidar points collected over
a period of several days to weeks. Therefore, key consider-
ations in developing the workflow included the following: (1)
reducing human operator time, (2) reducing computer pro-
cessing time, and (3) reducing seamline artifacts at the junc-
tions of flight lines and acquisition dates.

The input to the relative reflectance mapping process
depicted in Fig. 4 consisted of georeferenced EAARL-B lidar
point clouds created with the USGS ALPS software. (Readers
interested in the details of this step and the algorithms imple-
mented in ALPS are referred to Nagle and Wright et al.
(2016).) Importantly for this work, each bottom return lidar

Fig. 3 Locations of underwater reflectance spectra (green triangles) that
served as the reference data set for evaluating the EAARL-B relative
reflectance mosaic. Note that the EAARL-B coverage extends to the
northeast, as shown in Fig. 1, but the seafloor reflectance spectra were
limited to this region of the site. Fortunately, however, these sites include

a range of different habitat types and depths. The inset (locator map)
shows the location of the project site in the Caribbean and in relation to
the U.S. East Coast. The red line indicates the southern border of the
project site.
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point in each point cloud had an intensity value, I, which was
taken to be the peak amplitude of the detected bottom return
and, in turn, proportional to the received optical power. The
first step in our procedure was to perform pre-processing or
cleaning of the lidar data set, which entailed removing areas of
land, as well as obvious noise points. The next step was to
apply intensity corrections, corresponding to level 1 process-
ing, as defined in Kashani et al. (2015). Corrections were
applied for the following: (1) depth (or, perhaps more precise-
ly stated, for the range-dependent attenuation of radiant flux in
the water column) and (2) angle of incidence.

The depth correction was obtained by first considering a
simplified form of the bathymetric lidar equation (Eq. 1),
adapted from Guenther (1985):

PR ¼ PTWρe−2KDsecϕ ð2Þ

The form of the lidar equation given in Eq. 2 is based on the
simplifying assumptions that (a) the above-water flying height
is relatively large compared to the depth, (b) pulse stretching
can be neglected, and (c) other unknown parameters in Eq. 1
can be assumed constant and combined into a constant
system-loss term,W. From Eq. 2 (and with the further assump-
tions that the transmit power and system losses are constant
throughout the data collection), it can be seen that the natural
log of the bottom reflectance is linearly related to depth (or to
slant range through the water column), with linear parameters
that are functions of the diffuse attenuation coefficient and
seabed reflectance. As the goal of the depth correction was
to remove the depth dependence to obtain better estimates of
ρ, we performed a linear regression of uncorrected intensities

on depth for areas of constant bottom type and water clarity.
The linear transformation parameters were then used in the
correction to remove the depth dependence. Figure 5 shows
a heatmap created using points from entire day of data collec-
tion with the resulting linear best-fit line. The color scale can
be interpreted as “hotter” regions being those of high point
concentration. This type of heatmap was found very beneficial
in this study for visualizing trends in large volumes of data.

Using the parameters of the linear fit depicted in Fig. 5, the
depth correction is given by the following:

I
0 ¼ ln Ið Þ

aDsecϕþ b
ð3Þ

Fig. 4 Processing workflow used in this study. The color scheme is as follows: green denotes an input to a process; yellow denotes an output of a process
(i.e., a final, processed data product); gray denotes an intermediate step; and orange denotes the use of these products to meet science objectives

Fig. 5 Heatmap scatterplot of the log of the uncorrected intensity, I, and
depth and fitted line (blue line)
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where I′ is the corrected intensity, I is the input (uncorrected)
intensity, a and b are the coefficients of the linear fit described
above, D is water depth, and ϕ is the off-nadir angle of the
laser beam in the water. As before, the product D sec ϕ is the
slant range of the laser pulse from the water surface to
seafloor.

The next step in the process was the incidence angle
correction. This correction is extremely important, since,
unlike other bathymetric lidar systems, such as the
Optech CZMIL (Feygels et al. 2013) and SHOALS
(Collin et al. 2008), the EAARL-B does not attempt to
maintain a constant off-nadir transmit pulse angle but
instead scans back and forth across the field of view,
passing nearly through nadir. This created a pronounced
reduction in intensity towards the outer edges of the
swath.

Fig. 6 Heatmap scatterplot of depth-corrected intensity, I′, and incidence
angle, along with fitted curve (blue line)

Fig. 7 Seafloor relative reflectance mosaic for the 120-km2 St. Thomas site
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The incidence angle correction was computed in a
data-driven approach, similar to the depth correction.
The form of the incidence angle correction, based on
the Phong reflectance model (Phong 1975; Jutzi and
Gross 2009; Hasegawa 2006) is:

I
0 0 ¼ I 0

αcosβθ
ð4Þ

In a manner similar to the depth correction, the parameters
α and β (which relate to the specular or non-Lambertian na-
ture of the seafloor) were determined empirically through a
curve-fitting procedure (Fig. 6).

An underlying assumption in the correction procedures de-
scribed above is that the points used to derive the correction
parameters had the same “true” reflectance; hence, it was im-
portant that the subsets of points used as input were collected
from a homogeneous bottom type. When and where possible,
homogeneous regions were identified with the aid of imagery
and/or existing habitat maps. For the EAARL-B deep receiver
channel, an initial approximation of correction parameters was
made using all of the points calculated for given day. Then, the
resulting point cloud was used to assist in delineation of uni-
form bottom type, typically sand. The points of uniform bot-
tom were then used to determine final correction parameters.

Continuing with the workflow depicted in Fig. 4, a normal-
ization step was next performed, corresponding to level 2

Fig. 8 Before-and-after images, showing the results of the processing
performed to generate seafloor relative reflectance from the raw lidar
intensity data. Top: raw intensity, which is the peak amplitude of the
detected bottom return. Bottom: seafloor relative reflectance generated
through our processing procedures. Salient artifacts have been greatly

reduced or even eliminated. The dark feature visible near the middle of
the area, which is visible in both the raw intensity data and the seafloor
reflectance mosaic, was identified as a wreck in the largest-scale NOAA
Nautical chart of the area: Chart 25649-1, St. Thomas Harbor
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processing, as defined in Kashani et al. (2015). This step
consisted of first matching points from overlapping point
clouds within 1 m of each other. The distributions of the
corrected intensities of the matched points were analyzed,
and a linear transformation (shifting and scaling of the inten-
sities) was performed on the second point cloud, such that its
mean and standard deviation were made to equal that of the
first point cloud.

Next, the level 2 intensities were interpolated to a regular
grid. Although any of a number of interpolation algorithms
could have been used in this step, based on experimentation,
we used inverse distance weighting (IDW), which was found
to reduce seamline artifacts between adjacent flight lines and
to generally create a more uniform representation of regions in
which the angle of incidence correction has been either over-
or under-applied, while also keeping processing times within
practical limits.

Next, a second histogram normalization was per-
formed, such that the level 2 intensity rasters could be
combined for multiple flight lines and days, while min-
imizing seamlines. This was achieved using custom soft-
ware developed as part of this research. This software
applies semi-automated histogram scaling and shifting to
adjust the contrast and brightness across adjacent rasters
using a graphical user interface (GUI). Overlapping
gridded data were adjusted by the user until overlapping
regions visually matched. The output relative reflectance

mosaic was generated in Esri ASCII raster format, with
values linearly scaled to the 0–255 range (i.e., 8-bit ras-
ters), for compatibility with other coastal GIS data
layers. The resulting relative reflectance mosaics were
then assessed visually and through quantitative compar-
ison with the reference spectra acquired in the Buck
Island site.

The final signal processing step was to generate addi-
tional features (metrics) that relate to the shape of the
identified bottom return in the EAARL-B lidar waveform.
The specific waveform features generated in this study
and further described in Parrish et al. (2014) were as fol-
lows: (1) standard deviation (a measure of the width or
“spread” of the bottom return pulse), (2) area under the
curve (a measure of the total energy returned from the
bottom), and (3) skewness (a measure of the asymmetry
of the bottom return waveform). The key idea underlying
the use of these features is that coral, seagrass, or other
cover types are theorized to modify the shape of the bot-
tom return waveform; hence, these features that relate to
the bottom return waveform shape could be useful predic-
tors of cover type. Further description of and justification
for the use of these types of shape-based waveform fea-
tures for seabed habitat analysis is provided by Collin
et al. (2008). The three features are computed as described
in Parrish et al. (2014):
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Fig. 9 Example cross section taken perpendicular to flight paths, colored by collection date. The top cross section shows raw intensities, while the
bottom cross section shows the same points after depth and angle of incidence corrections and histogram normalization
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where N is the length, in samples, of the subset of the
full waveform identified as the bottom return by the
ALPS software, y[n] is the digitized bottom return wave-
form; n = 0, 1, 2, …, N − 1 is the waveform sample
number, A is the area under the curve, n is the bottom return
waveform mean, σ is the standard deviation (width metric for
the bottom return), and γ is the skewness (asymmetry metric
for the bottom return).

Using the underwater image mosaics generated from the in
situ (diver) data, we performed linear regressions to assess the
associates between the percent cover of each of these groups
(along with a combined hard coral group) and the lidar wave-
form metrics. Three of the nine sites were below a depth of 10
meters and were excluded from this analysis, for two key
reasons. First, the manner by which the waveform metrics
were interpolated to into GIS-compatible formats meant that
the increasing footprint size of the lidar waveform with in-
creasing depth was not represented, so the waveform metrics
include higher amounts of error at greater depths. Second, the
deeper sites were dominated by soft corals and experienced
greater amounts of surge—the constant motion of the soft
corals within the video meant that the percent cover metrics
calculated from those photo mosaics were less accurate, as the
same moving soft corals may appear in multiple locations or
be excluded entirely.
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Fig. 10 Investigation of the
strengths of the linear relationship
between lidar-derived intensity or
relative reflectance and the in situ
reflectance data. The plots show
the coefficient of determination
from linear regression of (top) in
situ reflectance on raw intensity
and (bottom) in situ reflectance on
relative reflectance
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Results

The seafloor relative reflectance mosaic produced for the ~
120-km2 St. Thomas site is shown in Fig. 7. Data from 218
flight lines collected on eight separate project days were used
in generating the St. Thomas mosaic. A similar mosaic was
created for the ~ 25-km2 Buck Island site, encompassing data
created from 30 EAARL-B flight lines on three separate days.
Visual comparisons of the before-and-after data (i.e., raw
intensity vs. relative reflectance), such as shown in Fig. 8,
confirmed that the procedure greatly reduced or removed
salient artifacts (e.g., seamlines, falloff at swath edges,
rapid falloff with depth) and improved the ability to detect
real seafloor features.

Depth and incidence angle corrections applied to the raw
lidar intensity data had the desired effects reducing the im-
pacts of these variables. An example is shown in Fig. 9, in
which it can be seen that the corrections had the effect of
flattening the curves (raw intensity or relative reflectance vs.
along-track distance, color coded by flight line), indicating the
expected trend of greater agreement between adjacent swaths
and between different acquisition dates after applying the cor-
rections. All such plots examined were consistent in showing
substantially greater agreement after applying the depth and

incidence angle corrections and normalizations. The strength
of the linear relationship between lidar relative reflectance and
in situ reflectance (at the laser wavelength of 532 nm) was also
higher after applying the corrections, with the R2 value im-
proving from 0.46 to 0.73 (Fig. 10).

A pairwise heatmap plot, shown in Fig. 11, depicts the
correlation between each of the variables for both the full
depth range (bottom left portion of matrix) and just the 0–10
m subset (top right portion of matrix). A high correlation be-
tween the additional waveform metrics and relative reflec-
tance or depth would indicate that the additional metrics did
not add much useful information. For example, area under the
curve is highly correlated (R2 = 0.94) with relative reflectance,
indicating that it may be of limited value if included, along
with relative reflectance, in a benthic habitat classification
procedure. Skewness and standard deviation, however, are
not strongly correlated with depth or relative reflectance, sug-
gesting that these waveform metrics provide additional, un-
correlated data, useful for benthic habitat classification.

Finally, the reef cover ground truth data for Flay Cay, ob-
tained from the diver data, were analyzed along with the lidar
waveform features to identify correlations between the lidar
waveform features and cover type (Fig. 12). For sites
shallower than 10 m depth, the standard deviation of

Fig. 11 Pairwise heatmaps depict the correlation between water depth
(D), relative reflectance (ρrel), area under the curve (A), skewness (γ),
and standard deviation (σ). The main diagonal contains a histogram of
the distribution of each variable for the full data set. The off-diagonal
elements represent a heatmap comparing the two variables depicted by

the labels for that row and column. The upper right off-diagonal elements
contain the regressions for just the 0–10 m depth range, which is the
primary depth range considered in this work, while the bottom left plots
are for all depths. The solid gray lines are regression lines
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waveform skewness positively correlates with octocoral cover
and negatively correlates with hard coral cover, explaining
62.6% and 36.5% of the variation in cover, respectively.
Within hard coral cover, the contributions of domed and
branched corals can be separated by other metrics. Mean
waveform dispersion positively correlates with branched coral
cover and explains 39.4% of variation, while standard devia-
tion of area under curve positively correlates with domed coral
cover and explains 41.3% of variation. Nometric could mean-
ingfully explain macroalgae cover or sponge cover. Dictyota
turf was only highly abundant at one site, and negligible at
most others. Sponges were not abundant at any site, but more
so at sites > 10 m that were excluded from the analysis.

Discussion

Visual analysis and in situ seafloor reflectance comparisons
showed that the lidar-derived relative reflectance data are sub-
stantially free of artifacts, such as seamlines, falloff at swath
edges, and falloff with depth, which are salient in the raw
intensity data. Profiles from adjacent swaths and different ac-
quisition dates exhibit much greater agreement after our cor-
rection and normalization procedures and show substantially
higher agreement with ground truth seafloor reflectance, with
R2 values improving from 0.46 to 0.73. Importantly, the pro-
cedures were designed to be efficient, such that they could be
applied over large spatial extents, and, in the future, potential-
ly even larger areas. The achieved processing performance for

generating the seafloor relative reflectance mosaics was ap-
proximately one day of processing time per day of lidar data
acquisition and could be further reduced by optimizing the
data read/write functions within the software.

One result from our analysis of the relative reflectance data
was deemed unusual and merits additional discussion. It was
found that sun glint (specular solar reflection from the water
surface) can impact the lidar bottom return intensities and also
the relative reflectance values, if it is not accounted for in the
processing. This effect was discovered in investigating inten-
sities for one collection date, which exhibited across-flight
line artifacts not consistent with the other two different collec-
tion dates over approximately the same region, even with par-
allel flight paths. Examination of aerial photographs taken
at the time of collection for the anomalous flight line
revealed substantial sun glint. Because this sun glint arti-
fact is dependent on collection geometry (i.e., the eleva-
tion angle and azimuth of the sun at the time of acquisi-
tion), the fitted curve used to correct for angle of inci-
dence artifacts had a less pronounced trend to model
(Fig. 13). This led to some across-flight line artifacts
persisting in the final results for this day. Previous re-
search in bathymetric lidar has indicated that specular re-
flection from the water surface can change the gain in the
photomultiplier tube(s) in other lidar systems, including
the NASA Airborne Oceanographic Lidar (AOL) (Hoge
et al. 1986; Hoge et al. 1988). We suspect that this is the
cause of the change in the EAARL-B relative reflectance
when sun glint is apparent in the concurrently collected

Fig. 12 Relationships of percent cover of functional groups and highly correlated select lidar waveform metrics at the Flat Cay site
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RGB imagery, although this merits further investigation.
Interestingly, this same effect was observed independently
by Quantum Spatial Inc., using our procedures adapted
for an entirely different topo-bathymetric lidar system:
the Riegl VQ-880-G (E. Silvia, personal correspondence).

Conclusions

This study developed and tested new algorithms and tech-
niques for producing relative reflectance mosaics and wave-
formmetrics from the novel EAARL-B topobathymetric lidar.
These new data sets where then investigated as an aid in
distinguishing among hard corals and their morphologies.
Results of the analysis performed using the waveform metrics
suggest that these metrics may help to detect changes in the
morphological composition of coral reef communities.
Morphological types of branched and domed corals were pos-
itively correlated with standard deviation of the area under the
curve and mean dispersion, respectively. This may be highly
beneficial for groups who are engaged in creating benthic
habitat maps for this region. Previous studies have shown that
radiometric and geometric artifacts in imagery (whether opti-
cal or acoustic) can degrade the quality and accuracy of the
resulting benthic habitat maps (Mumby et al. 1998, Costa and

Battista 2013, Kumpumäki et al. 2015, Lecours et al. 2017).
Thus, having artifact free, normalized seafloor reflectance will
be critical for developing a quality habitat map for use by
marine managers of the Buck Island Reef National
Monument, Virgin Islands National Park, St. Thomas East
End Reserve, and the Cas Cay-Mangrove Lagoon Marine
Reserve and Wildlife Sanctuary. Furthermore, these methods
could be extended to a wide range of coastal areas with clear,
shallow (≤ 40m) water, to support a variety of management
and regulatory agencies (state and federal), as well as other
coastal stakeholder groups. Regarding the extensibility to oth-
er areas, it is important to note that the methods are in no way
specific to coral reefs but can be applied to oyster reefs,
seagrass beds, and any number of substrates and bedforms
of ecological or management interest.

This study has also led to the identification of avenues for
ongoing and future work. First, while the current procedures
are reasonably efficient, it is anticipated that further efficiency
gains—particularly, reduction of human time in the process—
can be obtained by automating the determination of the coef-
ficients in the depth and incidence angle corrections. The cor-
rection parameters (a, b) from the depth correction are func-
tions of water clarity, while the parameters (α and β) from the
incidence angle correction are functions of the seafloor reflec-
tance properties. Through analysis of a large number of sites,

Fig. 13 Example of artifacts in
the relative reflectance mosaics
caused by sun glint. The top
image (a) shows sun glint visible
in the imagery for one particular
flight line. The bottom image (b)
shows the corresponding cross
section containing artifacts
(discontinuities, or large
differences in the curves) in
relative reflectance products
collected at a time when sun glint
is present (green), but not in
overlapping data sets (blue and
red) collected with the sun at a
lower elevation angle
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it may be possible to both obtain reasonable starting estimates
of the parameters for new sites and also to predict when,
where, and how frequently new parameters need to be deter-
mined. Second, the encouraging results from analyzing the
lidar waveform metrics suggest that, combined with the rela-
tive reflectance mosaics, these waveform features may further
benefit ecological assessments performed using lidar. Prior
studies suggest that reefs are degrading and shifting from hard
to soft coral or macroalgae (Fabricius et al. 2011; Inoue et al.
2013). Methods described in this study provide several met-
rics from which it may be possible to observe this degradation
over 100s to 1000s of meters. Waveform metrics of standard
deviation of the skewness and standard deviation of the area
under the curve can provide qualitative assessment of changes
in reef communities that can help to prioritize in situ, detailed
monitoring of selected sites. Lastly, the interesting effect of
specular solar reflections on lidar intensity and derived reflec-
tance values merits further investigation. By incorporating an
image processing step which identifies areas of sun glint into
the procedure, it will likely be possible to better anticipate and
correct for this effect.
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