
Operational numerical weather prediction models are being developed to improve wind 

energy forecasts by leveraging a multiscale dataset from the Second Wind Forecast 

Improvement Project field campaign in the U.S. Northwest.
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Numerical weather prediction (NWP) models 
provide the foundation for forecasting a wide 
range of meteorological phenomena, from 

tropical cyclones to gentle breezes. The development 
of many operational NWP models has tradition-
ally been motivated, in large part, by imperatives 
to improve forecasts of high-impact weather events 
and routine, near-surface “sensible” weather, while 
comparatively little effort has been devoted to im-
proving wind forecasts at heights of 50–200 m AGL, 
where wind turbines harvest wind energy. Currently 
wind energy constitutes 6% and 4% of the electric-
ity production of the United States and the world, 
respectively, and the rate of growth since 2001 is 
17% and 21%, respectively. Wind energy is expected 
to become a large component of the electrical-
generation portfolio of United States and the world 
as a whole (AWEA Data Services 2017; Global Wind 
Energy Council 2018). In particular, the 2015 Wind 
Vision of the Department of Energy (DOE) study has 

mapped out a target scenario for wind energy to pro-
vide 35% of the United States’ electricity demands 
by 2050 (Department of Energy 2015). However, 
winds are an inherently variable source of electric 
generation, and for commonly used wind turbines, 
a 1 m s–1 change in rotor-layer wind speeds from 7 
to 8 m s–1 can result in energy output changes up to 
50%, owing to the cubic relationship between wind 
speed and power (International Electrotechnical 
Commission 2007). Furthermore, these changes 
in wind speeds over short time intervals (∆t < 4 h), 
known as wind ramps, make forecasting of avail-
able wind energy resources very challenging. Due 
to these sensitivities, the efficiency of wind energy 
operations and the integration of wind energy into 
electric grids and electricity markets are greatly af-
fected by the accuracy of wind forecasts. To this end, 
the strategic aims of NWP model development must 
broaden, to include the goal of improved forecasts 
of rotor-layer winds.
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A substantial amount of wind-generation capac-
ity exists in regions of complex terrain. Skillful wind 
forecasts in complex terrain are challenging, owing 
largely to the prevalence of terrain-modulated flows, 
such as mountain wakes, mountain waves, gap flows, 
valley cold pools, and mountain–valley circulations, 
all of which can be difficult to simulate due to limi-
tations in NWP models or they may have inherent 
limits of predictability.

In the U.S. Northwest, the Columbia basin (CB) 
is an example of a high-wind-resource region within 
complex terrain. The CB is situated east of the Cas-
cade Range, which not only features towering volcanic 
summits—some 4,000 m above mean sea level—but 
also a transecting river cut, known as the Columbia 
River Gorge (CRG). The CRG provides a near–sea 
level airflow conduit across the Cascade Range, and is 
a favored location for intense horizontal pressure gra-
dients to develop, generating strong gap flows. During 
the warm season, a pronounced, diurnally varying 
horizontal pressure gradient within the CRG often 
emerges in response to land–sea temperature con-
trasts, producing strong westerly gap flows through 
the CRG that are directed into the CB (Fig. 1a). 
During the cold season, the horizontal pressure gradi-
ent in the CRG evolves largely in response to mobile 
synoptic-scale features, and both westerly and easterly 
gap flows through the CRG can develop (Baker et al. 
1978; Sharp and Mass 2004). Moreover, in the winter, 
cold pools can deepen within the CB, shielding the 
wind farms within the basin from overlying winds. 
Throughout the year, electrical generation from wind 
in the CB can reach near 5 gigawatts, but rotor-layer 
wind forecasts in this region pose a difficult forecast-
ing challenge, with errors often exceeding 2.8 m s–1, 
which is approximately one standard deviation of 
the hub-height wind speed errors in modern NWP 
models (shown later, Fig. 11).

The overarching objective of the Second Wind 
Forecast Improvement Project (WFIP2) is to develop 
NWP models in a manner that leads to improved 
low-level wind forecasts in regions of complex terrain 
for short-range (i.e., 1–24 h) applications (Shaw et al. 
2019). These model improvements are expected to 
proceed from a better understanding of the physi-
cal processes associated with the wind flow in and 
around wind farms. Due to the complexity of these 
processes and the feedbacks they may exert, forecast 
errors in rotor-layer winds may originate from nu-
merous model components or model initial condi-
tions. While model initial-condition improvements 
were investigated in the first WFIP (Wilczak et al. 
2015), the focus of WFIP2 is primarily on developing 
improved model physical parameterizations and the 
application of improved model numerics. Forecast 
improvements are sought for a range of model hori-
zontal grid spacing (∆x), from very high resolution 
(∆x ≤ 1 km) models, coarse resolution (∆x > 10 km) 
models, and in between, to provide improved opera-
tional numerical guidance as well as higher-resolution 
modeling within the academia and the private sector. 
Therefore, the WFIP2 model-development effort at-
tempts to develop scale-adaptive physical parameter-
izations that can represent subgrid-scale processes 
across all scales.

In support of the WFIP2 model-development ef-
fort, the U.S. DOE—in collaboration with NOAA, 
Vaisala Inc., other private firms, universities, and 
DOE national laboratories—deployed numerous 
wind profiling and scanning instruments within or 
near the CRG and CB (Fig. 1b) as part of an 18-month 
WFIP2 field study that spanned October 2015–March 
2017 (Wilczak et al. 2019). The scientific challenges 
were outlined at the beginning of the field project and 
aggressive model-development goals were set within 
the limited timeline of the project. The following 
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sections overview these efforts and present results of 
this intensive model development effort.

SCIENTIFIC CHALLENGES. There are several 
scientific challenges with NWP model development 
that are general to any forecast application, but there 
are additional challenges specific to applications in 
complex terrain. The primary challenges include

•	 linking the evolution of terrain-modulated flows 
to specific physical processes;

•	 improving the physical parameterizations that rep-
resent subgrid-scale physical quantities/processes;

•	 improving numerical methods for solving con-
tinuous equations on discrete grids;

•	 improving initial conditions;
•	 improving the accuracy and representativeness of 

lower-boundary conditions (terrain elevation, soil 
state, vegetation coverage, albedo, etc.);

•	 improving the scale-adaptive flexibility of physical 
parameterizations, thereby allowing a parameter-
ization to run satisfactorily at any grid spacing;

•	 optimizing a set of physical parameterizations to 
perform well together as a full physics suite; and

•	 unambiguously attributing forecast errors to spe-
cific model components or initial conditions.

Any of these challenges can hinder the model-devel-
opment process, so model developers must remain 

cognizant of all of them. In a project such as WFIP2, 
not all of these challenges can be addressed within 
the scope of the project; instead, the primary empha-
sis is placed on the improvement of model physical 
parameterizations by improving the representation 
of specific processes and the accuracy of numerical 
methods. In the context of complex terrain, this focus 
implies a requirement for scale-adaptive physical 
parameterizations.

Improving model physical parameterization is a 
broad scientific challenge. One approach is to ensure 
that all important physical processes are represented 
in the model. An example of such a process is the rep-
resentation of subgrid-scale clouds and their interac-
tion with radiation, which is essential for simulating a 
realistic surface energy balance and properly driving 
the turbulence parameterization. Other examples 
include the impacts of horizontal heterogeneity on 
surface fluxes and PBL mixing, the representation of 
the effects of subgrid-scale orography (e.g., Beljaars 
et al. 2004; Steeneveld et al. 2008), and the represen-
tation of wind farms (e.g., Fitch et al. 2012, 2013a,b). 
Some of these processes are often neglected or only 
crudely included. Without the representation of all 
relevant processes, the attribution of wind speed 
forecast errors to specific model components is prac-
tically impossible, and existing parameterizations 
may be inappropriately designed to compensate for 
nonrepresented processes.

Fig. 1. (a) An example of a gap flow event taken from an 18-h forecast of the 80-m wind speed and vectors from 
the HRRRNEST for 5 Jul 2016. The 3-km HRRR (parent domain) was initialized at 1200 UTC 5 Jul 2016 and 
the HRRRNEST was initialized off the 1-h HRRR forecast and run concurrently. All wind vectors <4 m s–1 were 
omitted. (b) A station map of the WFIP 2 region included all stations with 915 MHz and RASS (yellow), lidars 
(red), and sodars (blue) over roughly the same regions as in (a).
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Another approach for improving physical pa-
rameterizations is to adapt the parameterizations to 
perform under a less restrictive set of assumptions. 
One commonly used simplification is the flat-terrain 
approximation, which can cause errors in surface 
momentum and scalar f luxes when slopes become 
sufficiently steep (>30°; Epifanio 2007). In these 
conditions, it may be justifiable to represent the 
horizontal momentum stress and heat fluxes within 
a full 3D surface flux and turbulence parameteriza-
tion schemes.

Traditionally, most physical parameterization 
schemes have been designed for forecasting applica-
tions at specific grid spacing, causing poor perfor-
mance when applied in other configurations. With 
a growing reliance on community modeling codes 
and parameterization interoperability, parameteriza-
tion schemes must be designed with scale-adaptive 
flexibility, allowing the scheme to self-adjust for any 
choice of model grid spacing. For example, param-
eterizing all of the turbulent vertical mixing may be 
an appropriate approximation when ∆x is relatively 
large (>>1 km). However, as ∆x decreases below the 
traditional lower limit for mesoscale simulations 
(~1 km), this approximation may not be justified. 
Moreover, horizontal turbulent mixing is typically 
calculated in separate horizontal diffusion schemes, 
with no direct communication with the parameter-
ized vertical mixing, but vertical and horizontal mix-
ing in the convective PBL is often accomplished by 
the same turbulent eddies and PBL rolls, suggesting 
that fully 3D turbulence schemes are appropriate for 
∆x < 1 km (Boutle et al. 2014).

In addition to improved physical parameteriza-
tions, numerical methods within the dynamic core 
of NWP models can be improved, especially for 
application to complex terrain. Terrain-following 
coordinate used in many NWP models work well over 
smoothly varying terrain, but numerical errors can 
arise in complex terrain. As the horizontal resolution 
increases, finescale terrain features are captured, 
leading to larger terrain slopes and resulting in a 
skewed computational grid. Large grid skewness 
can introduce numerical errors and can even lead 
to numerical noise and computational instabilities. 
These deficiencies can potentially impact each spa-
tially discretized term of the Navier–Stokes equations, 
including the horizontal pressure gradient, diffusion, 
and advection terms. Methods for reducing these 
errors include alternative formulations of terrain-
following coordinates which smooth quickly with 
altitude (Leuenberger et al. 2010; Schär et al. 2002), 
more accurate finite difference stencils (Mahrer 1984; 

Klemp 2011; Zängl 2012), use of the immersed bound-
ary method (Lundquist et al. 2010, 2012; Ma and Liu 
2017), and improvements to grid quality by control-
ling grid aspect ratio (Daniels et al. 2016). Improved 
numerical methods can improve the ability to accu-
rately represent the physics of atmospheric processes 
that drive winds and turbulence at hub height.

In our experience of developing operational mod-
els, the approximate time scale of physical parameter-
ization development is two years or greater before a 
scheme reaches maturity and demonstrates improved 
skill within a defined physics suite, primarily because 
of the time-consuming iterative process of diagnosing 
untoward behavior, modifying the model to reduce 
errors and performing further evaluation. Because of 
this, most of the science challenges overviewed above 
may not be surmountable within the span of a single 
model development project, but it is our intention to 
make progress. The following section overviews the 
model development tasks initiated in WFIP2 toward 
this end.

MODEL AND COMPONENTS TARGETED 
FOR DEVELOPMENT. NOAA’s Rapid Refresh 
(RAP; ∆x = 13 km; Benjamin et al. 2016) and High-
Resolution Rapid Refresh (HRRR; ∆x = 3 km) models 
were selected as the basis for development during 
WFIP2. The reason for choosing these models was 
threefold. First, both models utilize a common set 
of well-tested physical parameterizations, known as 
the RAP/HRRR physics suite. Second, both models 
are run operationally by NWS/NCEP, such that im-
provements made during WFIP2 would be readily 
transferable into upgraded versions of these models. 
And third, both models utilize the underlying Ad-
vanced Research version of the WRF Model (WRF-
ARW; Skamarock et al. 2008), such that WFIP2 
model improvements would be transferable to the 
open-source WRF-ARW repository. The RAP/HRRR 
physics suite and with the WRF-ARW dynamical 
core comprise the model framework for the WFIP2 
model-development effort. The domains of the RAP 
and HRRR are shown in Fig. 2 with white and gold 
boxes, respectively.

To support the goals of WFIP2 using the limited 
computational resources afforded to the project, a 
nonoperational version of the HRRR is utilized for 
WFIP2. This provisional WFIP2 HRRR configura-
tion encompasses a smaller domain than its opera-
tional counterpart, as shown by the large green box 
in Fig. 2. The provisional WFIP2 HRRR is also a 
“cold start” configuration, where initial conditions 
are supplied from the RAP without additional data 
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assimilation or antecedent 
cycling. Aside from these 
differences, the provisional 
WFIP2 HRRR utilizes the 
same ∆x and physics suite 
as its operational counter-
part. Hereafter, the term 
“HRRR” will refer to the 
provisional WFIP2 con-
figuration of the HRRR, 
unless otherwise noted.

Recognizing that very 
h ig h  re s olut ion  hor i-
zonta l  g r id spacing is 
required to resolve ter-
rain features that largely 
govern the formation of 
wind f lows in complex 
terrain, a nested domain 
with ∆x = 750 m, hereafter 
called the HRRRNEST, is 
run inside the provisional 
WFIP2 HRRR. This grid 
spacing is chosen because 
a fundamental assumption 
often made in mesoscale 
PBL parameterizations—
namely, that the magnitude of the vertical gradients of 
basic-state variables far exceeds that of the horizontal 
gradients, known as the PBL approximation—is re-
garded as questionable for ∆x < 1,000 m in simple ter-
rain and may even be questionable for ∆x < 4,000 m 
in complex terrain. Moreover, the 3D local diffusion 
schemes applied in large-eddy simulations (LES) are 
generally inappropriate for ∆x > 500 m. This inter-
mediate scale of ∆x, where 500 m < ∆x < 1,000 m, 
has been termed the “terra incognita” (Wyngaard 
2004), where the traditional approaches to PBL pa-
rameterizations begin to lose their applicability. Thus, 
the choice of ∆x = 750 m makes the HRRRNEST a 
useful platform for model development within terra 
incognita. The domain of the HRRRNEST is shown 
by the small green box in Fig. 2.

The complete set of model physical parameteriza-
tions and relevant numerical methods targeted for 
development in WFIP2 is summarized in Table 1. 
This set of components represents a combination of 
new parameterizations, improvements to existing 
parameterizations, and improvements to numerical 
methods. Together, this set of updated model compo-
nents is hypothesized to address some of the science 
challenges discussed above, while also being suitable 
for future implementation in the operational RAP and 

HRRR. A brief discussion of each component listed 
in Table 1 follows:

PBL local mixing: Mixing length revision. Mixing lengths 
describe the distance parcels can be displaced by tur-
bulence processes within a known meteorological en-
vironment. They have been singled-out as important 
factors for regulating the behavior of some turbulence 
parameterization schemes as far back as Mellor and 
Yamada (1982). This revision to the mixing length 
formulation in the Mellor–Yamada–Nakanishi–Niino 
(MYNN) PBL scheme (Nakanishi and Niino 2009), 
described in detail in Olson et al. (2019), is focused on 
improving the forecast performance in stable PBLs. 
This is accomplished by reformulating the mixing 
length to be independent of height above ground 
(i.e., using a “z-less” formulation) whenever strong 
static stability limits the depth of turbulent eddies 
to be smaller than the depth of the model layer. This 
formulation helps to better maintain stable bound-
ary layers.

PBL nonlocal mixing: Mass-flux scheme. The original 
MYNN PBL scheme only mixed scalars and momen-
tum locally, that is, down the gradient produced by 
differencing adjacent model levels. This neglects the 

Fig. 2. Map showing the domains of the RAP (∆x = 13 km; white box), HRRR 
(∆x = 3 km; gold box), provisional WFIP2 HRRR (∆x = 3 km; large green 
box), and provisional WFIP2 HRRRNEST (∆x = 750 m; small green box), 
as annotated.
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representation of the nonlocal turbulent transport by 
thermal plumes in convective PBLs, which produce 
countergradient mixing of heat at the top of the PBL 
and can mix higher momentum aloft down into 
the PBL. This nonlocal mixing is best represented 
by mass-flux schemes, which are basically models 
of thermal plumes that advect parcel properties in 
the vertical. A mass-flux scheme, following Neggers 
(2015) and Sušelj et al. (2014), was added to the 
MYNN PBL scheme, making it an eddy-diffusivity 
mass-flux (EDMF) scheme. The details of this scheme 
are described in Olson et al. (2019) and examples of 
performance in single column testing are shown in 
Angevine et al. (2018).

SGS clouds and coupling to radiation. The subgrid-
scale (SGS) cloud representation of Chaboureau and 
Bechtold (2002, 2005) was implemented with minor 
modifications (Olson et al. 2019). This addition pro-
vides both a convective (from the mass-flux scheme) 
and a nonconvective (from the eddy diffusivity 
scheme) component of the SGS cloud mixing ratio, 
cloud fraction, and the SGS buoyancy flux produced 
by SGS clouds. The primary impact is to improve 
the surface energy balance, which can then more 
accurately drive the turbulent mixing.

Drag due to SGS topography. The representation of 
drag due to SGS orography was added to the HRRR 

Table 1. Summary of all WFIP2-led model development tasks associated with particular model compo-
nents, their general impact on forecasts within the CB, and their progress status. In this table, RAP and 
HRRR versions refer to their respective operational versions at NWS/NCEP. “EXP” implies the new/mod-
ified component was used in the experimental simulations. “OPER” implies the new/modified component 
has been integrated into the operational RAP and HRRR. “UD” implies still under development. See text 
for discussion.

Physical 
parameterization Aspect General impact on forecasts Status

1D turbulence 
(MYNN-EDMF)

Local mixing: z-less  
mixing length

Improves maintenance of cold pools and stable layers in gen-
eral by reducing mixing lengths in strong stratification (see 
Results section, part c).

EXP 
OPER

Subgrid-scale (SGS) 
clouds

Improves representation of SGS stratus, shallow cumulus and 
the simulated downward shortwave radiation. Small direct 
impact on low-level winds.

EXP 
OPER

Nonlocal mixing:  
mass-flux scheme

Improves coverage of shallow cumulus and improves profiles 
of temperature and humidity compared to LES. Small impact 
on low-level winds during the day.

EXP 
OPER

3D turbulence
Scale-aware 3D-TKE 
scheme

Improved representation of finescale turbulence. Expected 
benefits at subkilometric scales.

UD

Subgrid-scale 
orographic drag

Small-scale gravity wave 
drag (SSGWD) and form 
drag

SSGWD improves the maintenance of cold pools by reduc-
ing the near-surface wind speeds and therefore reduces the 
near-surface vertical wind shear in stable conditions (see 
Results section, part c). Form drag has smaller impact than 
the SSGWD at high resolutions (∆x < 5 km).

EXP 
OPER

Surface layer
3D surface momentum 
fluxes

Includes horizontal fluxes. Expected benefits at subkilometer 
scales only.

UD

Wind farm 
parameterization

Elevated momentum drag 
and TKE source

Including wind directional awareness and rotor-equivalent 
wind speed (small impact). Improves high wind speed bias 
within wind farms but can contribute to a slight low wind 
speed bias near wind farms.

EXP

Numerics Aspect General impact on forecasts Status

Horizontal finite 
differencing

1) Diffusion gradient in 
physical x–y–z coordi-
nates (not on σ levels),  
2) Modified numerical 
stencils for horizontal 
diffusion

Horizontal diffusion calculations in physical space improve 
the maintenance of cold pools by no longer mixing vertically 
when model vertical coordinates follow steep terrain (see 
“Cold pool improvements” section). Modified stencils for 
horizontal diffusion show error reductions in idealized cases.

EXP 
OPER
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physics suite in two forms: a small-scale gravity wave 
drag (Steeneveld et al. 2008; Tsiringakis et al. 2017) 
and form drag (Beljaars et al. 2004). The small-scale 
gravity wave drag acts in stable PBLs and the form 
drag acts in all conditions. Both are tapered off by 
∆x = 1 km, so neither are active in the HRRRNEST. 
Improved representation of drag will be shown to 
improve near-surface wind speeds.

Surface layer scheme. Fundamental to Monin–Obuk-
hov theory is the flat-terrain approximation, imply-
ing that all momentum, heat, and moisture f luxes 
are in the vertical. However, horizontal stresses can 
become as large as the vertical stresses when the 
slopes become sufficiently large. The 3D surface flux 
algorithm of Epifanio (2007) has been targeted for 
implementation, with the intent to interface with 1D 
PBL schemes as well as 3D schemes.

3D turbulence scheme. A new 3D TKE scheme was 
developed to improve very high resolution (∆x < 1 km) 
simulations, where the impact of horizontal fluxes can 
be of similar magnitude as the vertical fluxes. This new 
scheme includes a diagnostic parameterization of all 
six turbulent 3D stress components and computational 
stress divergence. A separate manuscript is in prepara-
tion which will detail the features of this new scheme 
and highlight improvements in case studies.

Horizontal finite differencing. The WRF Model has had 
the capability to perform horizontal diffusion in Carte-
sian space instead of along terrain-following sigma co-
ordinates for years, but this option was not sufficiently 
computationally stable for operational use. During 
WFIP2, several bug fixes were found in the horizontal 
diffusion code and modifications were introduced to 
improve the conservation of scalars. Improvements 
to the maintenance of mountain valley cold pools are 
demonstrated in the results section and are shown to 
reduce errors for a commonly used atmosphere-at-rest 
test case (Lundquist 2018). This option is a replacement 
to mixing along sigma coordinates, which can produce 
artificial vertical mixing when the vertical coordinated 
become sloped along steep topography.

Wind farm parameterization. A representation of wind 
farm drag was introduced by adopting the WRF wind 
farm parameterization (Fitch et al. 2012, 2013a,b). 
Additional work to add the effects of wind directional 
changes across the rotor layer as well as the use of the 
rotor-equivalent wind speed as an alternative to the 
hub-height wind speed was also investigated (Redfern 
et al. 2019).

TESTING FRAMEWORK AND STRATEGY. 
Addressing the model development goals in WFIP2 
required a two-stage approach. First, starting from 
known limitations in the operational RAP/HRRR 
physics suite and an a priori knowledge of systematic 
wind speed forecast errors in the operational RAP/
HRRR, specific components of the model were tar-
geted for development at the outset of WFIP2. Later, 
during the field campaign, real-time model validation 
against measurements permitted a more complete 
characterization of wind speed forecast errors within 
the rotor layer. This real-time comparison of model 
forecasts with field measurements was highlighted in 
weekly weather discussions, which included scientists 
from the public and private sectors. These activities 
were essential for defining the industry’s primary 
forecast problems and were crucial in shaping the 
model-development priorities during the field project.

In the first stage of model development, candidate 
model components (i.e., new or modified) were de-
veloped to alleviate systematic model forecast errors. 
Development of these candidate components utilized 
a hierarchy of approaches (Fig. 3, left side), which in-
clude both single-column model (SCM) tests and 3D 
test cases. SCM testing was used primarily as an early 
step of development, to determine code functionality 
in an idealized framework. Following satisfactory 
SCM tests, candidate components were tested in 3D 
case studies and validated against WFIP2 observa-
tional data. Cases were often run numerous times to 
incorporate new changes until simulated low-level 
flow features better matched the observational data. 
During this stage, other forecast fields in the CB (e.g., 
cloud cover, 2-m temperature, precipitation) were 
also compared against the control simulation and 
conventional data to ensure that the model changes 
were not detrimental to these fields. Next, candidate 
components were tested in non-WFIP2 cases outside 
the CB to demonstrate that these components did not 
adversely impact forecasts of other phenomenon not 
pertinent to WFIP2 (e.g., severe convection, low cloud 
ceilings, lake-effect snow events).

The set of candidate model components that had 
successfully emerged from developmental testing 
were aggregated and deemed the experimental model 
configuration (Table 2, third column). Although 
this configuration encapsulates a large portion of 
WFIP2-related development, some candidate com-
ponents, such as the 3D surface-layer and 3D turbu-
lence schemes, were not included in the experimen-
tal configuration. Development of these schemes is 
regarded as a longer-term (beyond 3 years) research 
topic. A control model configuration, representing 
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the state of the operational RAP/HRRR physics 
suite and numerics at the outset of WFIP2 circa 
summer of 2015, was also defined (Table 2, second 
column), which approximately corresponds to the 
configuration used in the operational RAPv2 and 
HRRRv1 (these versions were run operationally 
at the beginning of WFIP2). Both the control and 
experimental simulations utilized the same under-
lying WRF-ARW code version, such that forecast-
performance differences are solely attributable to 
the configuration differences in Table 2.

The experimental model configuration is hypoth-
esized to produce the forecast improvements sought 
in WFIP2 relative to the control configuration. To 
test this hypothesis, two long-term model-production 
frameworks—retrospectives and reforecasts—were 
utilized for both the control and experimental con-
figurations (Fig. 3, right side). Retrospective tests, 
consisting of two 10-day forecast periods, utilize 
the same data-assimilation and cycling procedures 

as exist in the operational RAP and HRRR. Due to 
their limited duration, results of retrospectives will 
not be shown. Reforecasts, on the other hand, consist 
of four forecast periods of ~6 weeks each, centered at 
the middle of each season (Table 3), thereby sampling 
a considerable portion of the annual cycle.

RESULTS. This section will highlight the test results 
from the reforecasts, presented in a variety of ways to 
determine the degree of forecast improvement and to 
assess which weather regimes were most improved.

80-m wind speed evaluation. Each set of simulations 
(HRRR and HRRRNEST, control and experiment) is 
compared against the 19 sodars deployed throughout 
the WFIP2 study area (Fig. 1b). A pronounced diurnal 
cycle in 80-m wind speed mean absolute error (MAE) 
is evident in the four-season composites for the 
HRRR (Fig. 4a) and HRRRNEST (Fig. 4d), with the 
largest MAEs found at night for both the control and 

Fig. 3. Model physics/numerics development, 
and testing framework.
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experimental versions. The HRRRNEST has slightly 
smaller errors than the HRRR at night, but the errors 
are comparable during the day. The improvement in 
80-m wind speed forecasts is expressed as the differ-
ence in MAE (control minus experiment; Figs. 4b,e). 
For most hours of the day, the experimental versions 
have a reduced MAE by about 0.05–0.2 m s–1 for 
the HRRR and 0.02–0.15 m s–1 for the HRRRNEST, 
which results in a 5%–10% improvement for the 
HRRR and 2%–7% improvement for the HRRRNEST 
(Figs. 4c,f). The confidence intervals (Figs. 4b,e), show 
that these results are statistically significant with 

95% confidence for only a few hours of the night and 
early morning.

Considering the individual 6-week periods reveals 
that the degree of improvement varied substantially 
for each season (Fig. 5). Spring and summer showed 
the least improvements, where the HRRRNEST (red 
lines) generally showed small positive or neutral re-
sults throughout the diurnal cycle, while the HRRR 
(blue lines) struggled during the evening transition 
(0000–0500 UTC) but was mostly neutral other-
wise. The forecast improvements were most robust 
in the fall and winter (Figs. 5c,d), where both the 

Table 2. Control, experimental, and possible future model configurations of the HRRR with WFIP2-led 
model developments in bold. All components not under development in WFIP2 (regular font) are de-
scribed in Benjamin et al. (2016) and references therein.

Model component Control Experimental Future

Land surface RUC 9-level RUC 9-level RUC 9-level

Surface layer MYNN MYNN 3D surface stresses

PBL MYNN level 2.5 MYNN-EDMF 3D TKE scheme

SW radiation RRTMG RRTMG RRTMG

LW radiation RRTMG RRTMG RRTMG

Microphysics Thompson Aero Thompson Aero Thompson Aero

Shallow convection — MYNN-EDMF
Mass flux from MYNN-

EDMF

Horizontal diffusion Smagorinsky on sigma levels
Smagorinsky on cartesian 

coordinates
3D TKE scheme on carte-

sian coordinates

Orographic drag —
Small-scale gravity wave 

drag (inactive when 
∆x ≤ 1 km)

Small-scale gravity wave 
drag form drag (inactive 

when ∆x ≤ 1 km)

Wind farm drag — Fitch et al. (2012)
Wind direction-aware, 
rotor-equivalent wind 

speed

Vertical levels 51 levels 51 levels 100 levels

Vertical coordinate Sigma Hybrid sigma–pressure
Hybrid sigma–pressure 

with immersed boundary 
method at ∆x ≤ 1 km

Albedo AVHRR AVHRR
MODIS + solar zenith 

angle dependence

Table 3. Description of the reforecast model runs used in WFIP2 and their associated time periods.

Reforecast 
period name

Inclusive dates  
(~6 weeks)

Domains
Run cadence and 
forecast length

Initial and lateral 
boundary conditions

Spring 25 Mar to 7 May 2016
HRRR and 

HRRRNEST  
(provisional domains)

12-hourly forecast 
initializations (i.e., 0000 
and 1200 UTC); fore-

casts to 24 h

Operational RAP analyses 
provide cold-start initial 
conditions and lateral 

boundary conditions; no 
data assimilation or cycling

Summer 24 Jun to 7 Aug 2016

Fall 24 Sep to 7 Nov 2017

Winter 25 Dec 2016 to 7 Feb 2017
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improvement to the HRRR and HRRRNEST stayed 
positive or near-neutral for most of the diurnal cycle. 
The HRRR showed larger improvements than the 
HRRRNEST, with MAE reductions often exceed-
ing 10% in the fall and 15% in the winter. These 
largest improvements were associated with better 

maintenance of cold pools (demonstrated in the “Cold 
pool improvements” section).

Vertical profile evaluation. Vertical profile evaluations of 
simulated wind speeds help assess how representative 
the 80-m wind speed improvements are in the rest of 

Fig. 4. The 80-m wind speed forecast verification results, as obtained from sodar measurements at 19 locations 
during all four reforecast periods. Shown are diurnal composites of (a) MAE (m s–1) of the HRRR control (red 
solid line) and HRRR experimental (black dashed line) configurations; (b) MAE difference (m s–1) between the 
HRRR control and HRRR experimental configurations (blue solid line), overlaid with 95% confidence intervals; 
and (c) percentage improvement of the HRRR experimental configuration MAE over the HRRR control configu-
ration MAE (green solid line). (d)–(f) As in (a)–(c), but for HRRRNEST control and HRRRNEST experimental 
configurations.

Fig. 5. Diurnal composites of the percentage improvement of 80-m wind speed forecast MAE in the HRRR 
experimental configuration over the HRRR control configuration (blue) and the HRRRNEST experimental 
configuration over the HRRRNEST control configuration (red) during the (a) spring, (b) summer, (c) fall, and 
(d) winter reforecast periods.
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the planetary boundary layer. Diurnal composites of 
the wind speed MAE differences between the HRRR 
control and experiment are computed by compari-
son to the eight 915 MHz radar wind profilers in the 
WFIP2 region (locations in Fig. 1b) for each of the 

four seasons (Fig. 6). Reduced wind speed MAEs (blue 
shades) dominate all seasons, especially at night and 
during the winter, where reductions in MAE exceed 
0.5 m s–1 up through 300 m AGL for most of the diurnal 
cycle. The only significant degradations near the rotor 

Fig. 6. Diurnal composite time–height cross sections depicting the change in MAE of wind speed forecasts 
(color fills, m s–1) between the experimental and control HRRR (∆x = 3 km) configurations for the (a) spring, 
(b) fall, (c) summer, and (d) winter reforecast periods, as verified against eight 915-MHz radar wind profilers. 
Shades of blue (red) correspond to MAE improvements (degradations) in the experimental configuration over 
the control configuration.

Fig. 7. As in Fig. 6, but for HRRRNEST (∆x = 750 m) forecasts.
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layer are found in the daytime during the summer, 
where the control MAE were typically smallest to begin 
with. Part of this degradation has since been removed 
by adding momentum transport in the mass-f lux 
scheme, which acts to mix higher wind speed down 
into the rotor-layer to improve the negative wind speed 
bias during the daytime (not shown). The depth and 
magnitude of the improvements in the HRRRNEST 
are much smaller (Fig. 7). The largest improvements 
in the HRRRNEST are mostly isolated near the rotor 
layer for most seasons, and the same degradation seen 
in the HRRR is found in the daytime summer.

Improvements to wind forecasts are less valuable 
if accompanied by degradations in the predictions 

of other important variables, such as temperature. 
To investigate this, the HRRR and HRRRNEST re-
forecasts were compared to Radio Acoustic Sounding 
System (RASS) virtual temperature measurements for 
the winter, when the largest wind forecasts improve-
ments were found (Fig. 8). Improvements in virtual 
temperature MAE were found to exceed 0.5°C in the 
rotor layer for approximately half the diurnal cycle in 
the HRRR but less than half that improvement was 
found in the HRRRNEST.

Cold pool improvements. Improvements to low-level 
temperature were only robust in the winter, where 
cold pool mix-outs were found to be the primary fore-

cast challenge. An example 
of wind speed improve-
ments tied to cold pool 
mix-out events is shown for 
a 10-day period in January 
2017 (Fig. 9). The mean 
rotor-layer wind speeds 
from three sodars located 
in the middle of the CB 
(Fig. 9a) show weak wind 
speeds (<4 m s–1) when cold 
pools are established and 
wind ramps occur as the 
cold pools are sufficient-
ly eroded away, resulting 
in stronger mean winds 
(>4 m s–1). The simulated 
biases (Fig. 9b) and stan-
dard deviations (Fig. 9c) 
differ the most during the 
period with wind ramps 
and stronger winds be-
cause the forecasted ero-
sion, maintenance, and 
reestablishment of the cold 
pools can differ from real-
ity, resulting in significant 
model errors. The control 
HRRR (red lines) clearly 
shows higher biases and 
standard deviations than 
the experimental HRRR, 
suggesting that much of 
these improvements in 
wind speeds come from 
better simulated cold pool 
depths.

T he  model  compo -
nents that are primarily 

Fig. 8. Diurnal composite time–height sections depicting the change in MAE 
of virtual temperature forecasts (color fills, K) between the experimental 
and control for the (a) HRRR (∆x = 3 km) and (b) HRRRNEST (∆x = 750 m) 
configurations for the winter reforecast periods, as verified against RASS. 
Shades of blue (red) correspond to MAE improvements (degradations) in the 
experimental configuration over the control configuration. RASS measure-
ments are performed during the last 5 min of each hour, with lowest measure-
ments around 100 m and highest measurement around 1,500 m AGL (height 
coverage of the instrument varies with atmospheric conditions). The range 
gate spacing was about 60 m (varied slightly at each sites). Previous deploy-
ments of RASS, radiosonde, and in situ temperature sensors showed a mean 
absolute error of <1 K in temperature (Bianco et al. 2017).
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▶ Fig. 9. (a) Mean wind speed from 40 to 140 m (rotor layer) for all 19 sodars for a 10-day period in January 2017. 
(b) Mean bias for the control HRRR (red) and experimental HRRR (blue), both with ∆x = 3 km. Note that there are 
two traces, as these are the 0–24 h forecasts for each model initialization (which occurred every 12 h). (c) Mean 
standard deviation for the 
HRRR control run (red) and 
the exper imenta l  HRRR 
(blue). Statistics were com-
puted over the rotor layer for 
three sodars located in the CB 
(Wasco, Arlington, and Board-
man). The gray shade repre-
sents the period when cold 
pools were present in the CB.

▶ Fig. 10. (a) Time–height 
plot of winds at Boardman, 
Oregon, on 13 Jan 2016, as 
measured by a 915-MHz wind 
profiling radar. Wind speeds 
(m s−1) are shown as color fills 
according to scale at right, and 
wind vectors (kt) are shown 
with conventional barbs. (b) 
As in (a), but that forecast 
winds are plotted from the 
HRRR (∆x = 3 km) control, 
initialized at 0000 UTC 13 
Jan 2016.
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responsible for the improved 
cold pool simulations are 
showcased in the 13 Janu-
ary 2016 case, which was a 
poorly forecasted cold pool 
mix-out event. The observed 
wind speeds (Fig. 10a) 
show stagnant winds be-
low 1,000 m ASL due to the 
stable stratification at the 
top of the cold pool. The 
overlying winds at 1,500 m 
ASL strengthen from 11 to 
16 m s–1 between 0000 and 
0800 UTC and slowly erodes 
the cold pool to less than 
300 m in depth by 0000 
UTC 14 January. The control 
HRRR (Fig. 10b) began with 
too shallow of a cold pool 
and eroded it much faster, 
completely mixing it out by 
2000 UTC, resulting in a 
high-wind-speed bias in the 
layer between the forecasted 
cold pool top and the actual 
cold pool top. The difference 
in wind speeds between the 
experimental HRRR and 
the control HRRR shows 
a large reduction in wind 
speeds near the top of the 
cold pool (Fig. 11a), due to 
the improved maintenance 
of the cold pool. The pri-
mary model components re-
sponsible for this improve-
ment, tested individually, 
show that the mixing length 
changes (Fig. 11b) have the 
largest reduction in wind 
speeds near the top of the 
cold pool, followed by the 
modified horizontal dif-
fusion (Fig. 11c), and the 
small-scale gravity wave 
drag (Fig. 11d). Note that 
since not all cold pools have 
been resimulated to test the 
impact of each individual 
model component, the gen-
erality of these results are 
still unknown.

Fig. 11. Time–height plots of forecast wind speed at Boardman, Oregon, for a 
series of four HRRR (∆x = 3 km) forecasts initialized at 0000 UTC 13 Jan 2016. 
In all panels, wind speed (m s−1) is shown as black solid lines, and the wind 
speed difference (m s−1) from the HRRR control forecast (i.e., the forecast 
shown in Fig. 10b) is shown as color fills according to scale at bottom. In (a), 
the forecast uses the HRRR experimental configuration. In subsequent pan-
els, the HRRR forecasts use (b) the mixing-length revision only, (c) modified 
horizontal diffusion only, and (d) the small-scale gravity wave drag only, but 
are otherwise identical to the HRRR control configuration.
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Large-error forecasts. A primary goal of WFIP2 is to 
reduce large forecast errors, which are defined as er-
rors greater than two standard deviations from zero, 
where the standard deviation is taken from the set 
of control simulations. Large forecast errors of wind 
resources wreak havoc on electrical grid operators 
trying to balance the load on the grid. Histograms 
of the model wind speed errors reveal important 
changes in characteristics due to the collective 
model physics changes (Fig. 12). For the HRRR 
(Fig. 12a), the histogram of model errors becomes 
slightly thinner for the experimental HRRR (blue), 
with a standard deviation of σ = 2.76 m s–1 compared 
to σ = 3.01 m s–1 in control HRRR (red), but the mean 
bias is shifted from positive in the control HRRR 
(red dashed line) to negative in the experimental 
HRRR (blue dashed line). This overall shift in the 
mean bias to become slightly negative comes with 
a pronounced reduction in the right-side tail, rep-
resenting large overforecasted wind speed, but also 
comes with a slight increase in the total number 
of large underforecasted wind speeds. The experi-
mental HRRRNEST (blue, Fig. 12b) shows a taller 
peak in the small errors range (|error| < 1 m s–1), 
with a smaller standard deviation of σ = 2.79 m s–1 
compared to σ = 2.89 m s–1 in the control (red). There 
is also a reduction in the large high-wind-speed 

forecast error tail, while only a negligible increase 
in the large low wind speed forecast error tail. The 
larger shift toward negative wind speed biases in the 
HRRR is caused by the additional orographic drag 
employed at ∆x = 3 km, which is not activated when 
∆x < 1 km. Future revisions of the orographic drag 
in the HRRR will address this issue.

The frequency of large forecast errors plotted 
as a function of forecast length for both the HRRR 
(Fig. 13a) and HRRRNEST (Fig. 13b) shows a sys-
tematic reduction in large forecast errors in the ex-
perimental runs (blue) compared to the control (red), 
even at longer forecast times (>12 h). The reduction 
is much larger in the winter for both the HRRR and 
HRRRNEST. The overall mean reductions in the 
frequency of large forecast errors for all seasons are 
30.4% in the HRRR (3.7% in control, 2.6% in ex-
perimental) and 11.7% in the HRRRNEST (3.5% in 
control, 3.1% in experimental). Note that the model 
improvements in the experimental HRRR result in 
a lower mean frequency of large forecast errors than 
that found in the experimental HRRRNEST in the 
winter and all seasons combined. This may be due to 
the problem of more detailed wind features at higher 
resolution being penalized by objective point-based 
model validation (Mass et al. 2002; Done et al. 2004).
Wind ramps. Another primary goal of WFIP2 is to 

Fig. 12. Histograms of model errors for all hourly forecast hours from all seasons of the reforecast for control 
(red) and experiment (blue) runs for the (a) HRRR (∆x = 3 km) and (b) HRRRNEST (∆x = 750 m). Analysis of 
the statistical significance of the changes in the mean and standard deviation for both the 3-km and 750-m ver-
sions is tested using the Student’s t test and the F test of equality of variance, respectively. In both cases, the 
null hypothesis is rejected at significance level of 0.05 with a p value of zero or near zero due to shear number 
of data points (n > 3 million).
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improve the forecast skill of 
wind ramps. Wind ramps 
are large changes in wind 
speeds (i.e., ∆U > 3 m s–1) 
over short periods of time 
(minutes to a few hours) 
that make wind power gen-
eration extremely volatile. 
By use of the ramp metric 
tool developed in the first 
WFIP (Bianco et al. 2016), 
ramp skill was diagnosed 
for each season and model 
(Fig. 14, upper panel) using 
the full set of 80-m wind 
speeds from 19 sodars. A 
positive ramp skill is found 
for every model seasonally 
and annually. The relative 
improvement/degradation 
(Fig. 14, lower panel) var-
ies significantly with each 
season with a positive an-
nual improvement due to 
the improved physics in the 

Fig. 13. (a) Forecast-length composite of the fraction of rotor layer wind speed forecasts verifying as outliers 
(i.e., |error| > 2σ from the observed wind speed) for both the HRRR control configuration (red solid line) and 
HRRR experimental configuration (blue solid line), both with ∆x = 3 km, aggregated across all four reforecast 
periods, as verified against lidar measurements at two locations. The mean outlier fractions for the control and 
experimental configurations are shown by horizontal red and blue lines, respectively. (b),(c) As in (a), but for the 
winter and summer reforecast periods, respectively. (d)–(f) As in (a)–(c), but for the HRRRNEST (∆x = 750 m).

Fig. 14. (a) The ramp skill score for each model seasonally and annually with 
error bars indicating statistical significance [σ/(N − 1)1/2] and (b) the percent-
age improvement in the forecast skill due to improved physics for the HRRR 
(blue; ∆x = 3 km) and HRRRNEST (red; ∆x = 750 m) models.
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HRRR and HRRRNEST. The largest improvement 
of nearly 60% is found in winter for the HRRR. The 
winter improvement is statistically significant as seen 
by the nonoverlapping error bars in the upper panel 
between the control and experimental HRRR models.

Improvements extend to standard forecast metrics. 
It is important that the improvements to the RAP/
HRRR physics suite can be transferred to future 
operational versions. However, the operational 
model upgrade process is contingent upon proving 
that these modifications do not negatively impact 
other key variables important for general weather 
forecasts (i.e., 2-m temperature, 10-m wind speed, 
precipitation, cloud ceilings, etc.). An example that 
these changes can maintain (and even improve) 
the forecasts of 2-m temperature and 10-m wind 
speed as they are integrated into each successive 
operational HRRR upgrade is shown in Fig. 15. Early 
versions of the subgrid clouds and mixing length 
revision were integrated into HRRRv2 (August 2016) 
and the mass-f lux scheme, horizontal diffusion, 
small-scale gravity wave drag, and further refine-
ments to the subgrid clouds and mixing lengths 
were integrated into HRRRv3 (July 2018). With each 
upgrade, the biases and RMS error show improved 
skill over east and west CONUS, demonstrating that 
the model improvements from WFIP2-led efforts 

were successfully integrated into the operational 
HRRR along with other improvements from non-
WFIP2 efforts.

SUMMARY. Throughout the 18-month WFIP2 
field study, several modes of model forecast error 
were identified in the operational real-time HRRR 
by way of cross-institutional coordinated efforts to 
compare model forecasts with observations. Valuable 
insight from the private sector participants informed 
model developers of key forecast challenges that were 
specific to the wind energy industry. Meteorologi-
cal characteristics of each day within the 18-month 
period were captured in an event log and important 
case studies were selected to focus model development 
efforts around. A set of model physical parameteriza-
tions in the RAP/HRRR physics suite were targeted 
for development based on previously known deficien-
cies and on the findings from the efforts above. The 
set of model components under development which 
showed improvements in particular case studies 
were promoted to an experimental physics suite, 
replacing the preexisting components or added as 
new components. Multiseasonal reforecasts with the 
control and experimental versions of the HRRR and 
HRRRNEST were performed to assess the impact 
of the model physics changes on the forecast skill of 
rotor-layer winds.

Fig. 15. Multiyear validation of the 12-h forecasts from the operational HRRR (∆x = 3 km) against METAR data 
over the western (blue) and eastern (red) CONUS areas for (a),(b) 2-m temperature and (c),(d) 10-m wind 
speed. Panels (a) and (c) show the RMS and panels (b) and (d) show the bias. The brown vertical lines represent 
the operational transitions between HRRRv1 to HRRRv2 and HRRRv2 to HRRRv3. The yellow boxes represent 
the time period of the WFIP2 field campaign and the green lines represent the time of the model development 
code freeze to begin the experimental simulations.
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The success of model development efforts within 
WFIP2 is demonstrated by comparisons of the 
control and experimental versions of the HRRR 
and HRRRNEST over the multiseason reforecast 
simulations. The average 80-m wind speed MAE at 
all 19 sodar sites within the WFIP2 region has been 
reduced by 4%–10% averaged over all seasons, and 
by 20%–30% over the winter. This translates into 
reduced MAE of power forecasts of about 5%–12% 
averaged over all seasons. The largest reduction in 
power (and wind speed) MAE are found within the 
stable PBL irrespective of the forecast length. The 
increased skill in forecasting 80-m wind speed was 
greater for model grid spacing of ∆x = 3,000 m than 
∆x = 750 m in the winter, due to 1) more physical 
parameterization development work completed for 
mesoscale modeling applications (∆x > 1,000 m) 
compared to terra incognita applications (500 m < 
∆x < 1,000 m) and 2) the original model wind speed 
errors at ∆x = 3,000 m being generally larger than at 
∆x = 750 m, making more room for improvement.

In addition to improvements found in the mean 
statistics, we also demonstrate improvements to other 
practical forecast needs, such as reduction in the 
frequency of very large forecast errors and improve-
ments to wind ramp forecasts. Mean frequency of 
large errors, defined as errors greater than two stan-
dard deviations from zero, are reduced by about 30% 
and 12% averaged over all four seasons at grid spacing 
of ∆x = 3,000 m and ∆x = 750 m, respectively. Region-
ally aggregated wind ramp forecasts validated against 
the full set of 80-m level wind speeds from 19 sodars, 
show a 10% and 2% improvement averaged over four 
seasons in the HRRR and HRRRNEST, respectively, 
with the most positive improvement up to 60% in 
winter for the HRRR. These results are encouraging 
because operational forecasts at ∆x = 750 m for the 
entire operational HRRR domain are not feasible at 
this time, but the implemented physics changes help 
the 3-km model be more competitive with the high-
resolution runs, at least in the study area.

Despite the positive results demonstrated in this 
extensive model development effort, this only rep-
resents a first-step in a much longer-term challenge. 
Further analysis of the diverse multiscale set of obser-
vation data and comparisons with model reforecasts 
is in progress. The goal is to further improve our 
understanding of the physical processes important in 
regulating the rotor-layer winds, as well as refine our 
characterization of the model errors in order to direct 
further model development efforts. Analysis of other 
quantities, such as simulated PBL height, cloud cover, 
surface f luxes, and radiation are uncovering new 

model development opportunities that may indirectly 
provide feedback improvements to low-level winds. 
Other ongoing HRRR model development focused 
on general weather improvement have proceeded 
since the WFIP2 project ended and must eventually 
be examined in the WFIP2 context. Their impact on 
rotor-layer winds is still unknown.

Revisiting the extensive WFIP2 observational 
dataset many times over the following decades will 
be an advantage to any model physics developer or 
scientist working on research in complex terrain, 
and may yield new and interesting science updates. 
For example, the WFIP2 observations and improved 
HRRR model output is used successfully in the Meso-
scale–Microscale Coupling project (Haupt et al. 2019) 
with the aim of providing the boundary conditions 
and a validation dataset for realistic high-resolution 
large-eddy simulations through wind farms. We an-
ticipate that the diverse multiscale set of observations 
captured within and surrounding the CB will inspire 
many future process studies and model development 
efforts that can extend upon the forecast improve-
ments already achieved during WFIP2.
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