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Abstract

Horizontal behavior of highly migratory marine species is difficult to decipher because ani-
mals are wide-ranging, spend minimal time at the ocean surface, and utilize remote habitats.
Satellite telemetry enables researchers to track individual movements, but population level
inferences are rare due to data limitations that result from difficulty of capture and sporadic
tag reporting. We introduce a Bayesian modeling framework to address population level
questions with satellite telemetry data when data are sparse. We also outline an approach for
identifying informative variables for use within the model. We tested our modeling approach
using a large telemetry dataset for Shortfin Makos (/surus oxyrinchus), which allowed us to
assess the effects of various degrees of data paucity. First, a permuted Random Forest anal-
ysis is implemented to determine which variables are most informative. Next, a generalized
additive mixed model is used to help define the relationship of each remaining variable with
the response variable. Using jags and rjags for the analysis of Bayesian hierarchical models
using Markov Chain Monte Carlo simulation, we then developed a movement model to gen-
erate parameter estimates for each of the variables of interest. By randomly reducing the tag-
ging dataset by 25, 50, 75, and 90 percent and recalculating the parameter estimates, we
demonstrate that the proposed Bayesian approach can be applied in data-limited situations.
We also demonstrate how two commonly used linear mixed models with maximum likelihood
estimation (MLE) can be similarly applied. Additionally, we simulate data from known param-
eter values to test each model’s ability to recapture those values. Despite performing simi-
larly, we advocate using the Bayesian over the MLE approach due to the ability for later
studies to easily utilize results of past study to inform working models, and the ability to use
prior knowledge via informed priors in systems where such information is available.

Introduction

Where and why animals move remain relatively poorly understood population processes.
Underlying these simple questions are complex interactions among life history, physiology,
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behavior, forage distributions, and habitat, which make understanding movement a difficult
endeavor. A myriad of techniques have been developed to study the movement of animals
across terrestrial, marine, and aerial environments. Some are direct methods such as visual
observations, or tagging [1-6]; while others are indirect such as genetics or stable isotopes [7-
11].

Our focus in this study is on direct methods, specifically those using electronic tagging tech-
nology. Over the last several decades the scientific literature has seen a steady expansion in the
number of studies utilizing various forms of electronic tags to record data on animal move-
ment and associated environmental parameters [12, 13]. For various reasons (concealment,
remoteness, etc.) observations of marine animal movement have proven particularly challeng-
ing, most notably for large pelagic fish species like sharks, tuna, and billfish, which can cover
vast distances and do not require regular trips to the surface to breathe [e.g. 14, 15-17]. For
these animals such challenges have resulted in various levels of data paucity. Many of the cur-
rently available meta-analytical statistical methods require data to meet certain basic criteria,
such as having one data point per day of a track (or the ability to interpolate to that level), or
information on movement speed and or turning angle to accurately define a behavioral state
[e.g. 18, 19, 20]. In data-limited situations, these prerequisites restrict available analytical
approaches. While not true of all studies, these data restrictions lead many researchers to
approach their data at the individual level in a qualitative, largely descriptive manner, rather
than quantitatively and at a population level as indicated by Jonsen et al. [21], Heupel et al.
[22], and Papastamatiou and Lowe [23].

Restricting these data limited tagging studies to qualitative analysis at the individual level
can lead to gaps in our knowledge of population level movements, often resulting in estab-
lished paradigms being repeatedly stated by successive studies. Common Thresher sharks (Alo-
pias vulpinus) and Lemon sharks (Negaprion brevirostris) are examples of species that have
seen extensive amounts of tagging work with most to all of the analysis focused at the individ-
ual level [24-27]. In the case of Threshers this has led to hypotheses about population level sea-
sonal migrations established in the late 1980s and early 1990s based on CPUE of the California
drift gill net fishery to persist in the literature and be used as the basis for seasonal movement
in stock assessment work [28]. Despite advances in statistical techniques, without a clear
approach for data limited situations, the owners of such data will likely continue to couch their
analyses in more qualitative methods and stick to established paradigms, meaning these kinds
of situations are likely to persist.

Here we seek to spur the use of quantitative methods to investigate population level ques-
tions with telemetry data, even when data are sparse. Questions such as the likelihood of move-
ment in and out of marine protected areas, or across state and international boundaries,
ontogenetic shifts in habitat use, and the impacts of various environmental conditions on such
movements. We outline three approaches to analyzing telemetry data and provide a guide for
using them, as well as to test their robustness to various levels of data paucity. In keeping with
our focus on data limited situations our approaches do not require regular data intervals or
measurements of speed, and turning angles. They do however, require that variables of interest
and the modeling question itself be scaled properly relative to the uncertainty in available data,
and that questions be designed with a binary response variable (more on this below).

The approaches presented here in and of themselves are not novel; neither is putting them
in sequence to provide a robust framework for testing model assumptions. Instead, these steps
are laid out and tested for their performance under various levels of data paucity, to provide a
framework that can be applied in data limited situations. To test the effects of data paucity on
population level inferences, we had to find a robust dataset and randomly pare it down to
assess if the smaller datasets provided the same inferences as the full set. We also use simulated
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data, which are described in greater detail below, to assess each approach’s robustness to data
availability. Parameter estimates from increasingly sparse datasets are directly compared,
allowing us to discuss the effects of limited data on inferences. We endeavor with this work to
make these statistical tools available to a broad and perhaps less quantitative audience, as well
as to spur the use of quantitative methods in data limited situations.

Methods
General overview

Three modeling approaches are presented here: a Bayesian approach using Just Another Gibbs
Sampler (JAGS) (R package: rjags [29]), and two generalized linear mixed models (GLMM),
penalized quasi-likelihood (PQL) (R package: MASS [30]), and “glmer” using the Laplace
approximation (R package: Ime4 [31]). Given our emphasis on data limited situations our
approaches focus on binary questions e.g., whether an animal migrates across the equator or
from one known habitat to another, or when an animal switches from one behavior to another,
such as from foraging to transiting (e.g., [32]). Given telemetry data, and a binary response
variable, these approaches attempt to estimate parameter values that relate variables of interest
such as environmental conditions (various environmental indices, sea surface temperature,
etc.) or demographic values (sex, size, etc.) to that response variable. All analyses presented
here are conducted in R (version 3.2.3; [33]).

As discussed by Bolker et al. [34], describing the use of GLMMs or Bayesian models to ana-
lyze data necessarily touches on controversial statistical issues such as the debate over null
hypothesis testing, or the use of informative or vague priors. These topics have been thor-
oughly covered by others [35-37] and further discussion is outside the scope of this paper.
These discussions aside, however, comparing the results of GLMMs and Bayesian models in
various states of data paucity seems prudent when providing a practical framework in the
hopes of spurring a more quantitative approach to sparse telemetry data.

Throughout this paper we deal with two datasets. The first is a real satellite-linked radio-
telemetry-tag (SLRT) dataset of Shortfin Mako (Isurus oxyrinchus; hereafter Mako) in the
northeast Pacific provided by the Southwest Fisheries Science Center. This dataset was selected
because of the abundance of data (9440 locations across 34 tracked individuals), which allowed
us to randomly pare it down to create “data poor” subsets to test the effects of data paucity on
population level inferences. The second dataset, a simulated Mako dataset generated to mirror
the real Mako dataset in size and level of individual variation, but with known, true parameter
values. Both datasets were subjected to various levels of subsetting to assess the effects on infer-
ences. The simulated dataset alone would be adequate for testing the effects of limited data on
model inferences however; our desire to provide a framework for a broad audience will be
assisted by showing our model outcomes when using both a real world and a simulated
examples.

With the focus here being on methods, a meaningful discussion of Mako ecology is beyond
the scope of this work. As such, our binary question concerns whether Mako were found east
or west of an arbitrary line (longitude 125°W) (Fig 1). This question was not selected for its
ecological relevance, but more to provide an interpretable example of a binary question about
horizontal movement. With this question, we outline a practical framework for the use of
quantitative tools by stepping through each stage of analysis while providing sample data and
R code. We first describe the preparation of data (i.e. refining locations and standardizing vari-
ables to comparable scales). We then develop a linear model through the process of variable
selection using Random Forest, and test to confirm variable linearity using a Generalized
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Fig 1. Map of Mako locations. Aggregated SLRT locations for 34 individual Makos (9440 total locations). Points in red are east of 125°W longitude
boundary. Points in blue are in west of the boundary.

https://doi.org/10.1371/journal.pone.0188660.g001

Additive Mixed Model (GAMM). Finally, we develop both Bayesian and GLMM frameworks
to analyze the data.

Data acquisition

Data from 34 SLRT tags were used for model development. All tags were placed on Makos
(between 152 and 259 cm TL; total length) in the Southern California Bight as part of the
annual juvenile shark survey conducted by the NOAA Southwest Fisheries Science Center
(SWESC) [38]. Tags were deployed between 2004-2015 primarily during the summer (June-
August). All individuals had tracking data that covered at least 1 year with an average of 278
locations per individual (86, SD). Locations were filtered to provide no more than one loca-
tion estimate per day; on days where multiple records were available only the highest quality
location was kept, with location qualities ranked 3, 2, 1, 0, A, B, Z. The Mako telemetry data
used here had a range of location qualities but the majority were of Argos location class 1, 2, or
3 (Fig 2), with associated errors between 326-1265 meters latitude, and 742-3498 meters lon-
gitude [39]. Location classes A and B have no accuracy estimates according to the manufac-
turer (Wildlife Computers, Redmond, WA). Data were not interpolated; days with no location
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Fig 2. Tag location quality histogram. Histogram of SLRT location quality (best to worst from left to right with the exception of D, which is the deployment

location).
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estimates were not included in the dataset. Some large gaps of weeks or months between points
existed but on average the gap between two data points was 2.08 days (+ 4.15, SD).

Variable selection

The first step in designing a model requires selecting potential variables that could influence
movements. In the case of Makos, size, sex, season (a set of 4 variables, one for each season,
with 1 indicating when the record is in the given season and all others zero), environmental
index (in this case the Multivariate ENSO Index (MEI), North Pacific Gyre Oscillation
(NPGO), and the Pacific Decadal Oscillation (PDO)), moon phase (a continuous variable
from 0-1, new-full), sea surface temperature, and chlorophyll-a concentrations (a measure of
productivity) were selected as potentially important predictors affecting movement. Variables
then need to be examined to ensure the scales, both spatial and temporal, match the scales of
the telemetry data. For instance, latitudinal and longitudinal position estimate errors varied
due to a number of factors (animal behavior, time of year, etc.) so temperature and chloro-
phyll-a concentrations were gathered from ERDDAP (Environmental Research Division’s
Data Access Program) with “xtracto” (R package: xtractomatic) using longitude and latitude
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errors based on the location class position estimate error [39], thus matching the scales of the
position estimate errors with those of SST and chlorophyll-a. The spatial and temporal cover-
age of the telemetry data dictated which ERDDAP datasets could be used. Unfortunately, chlo-
rophyll-a data which matched the span of the Mako tagging data only existed on a monthly
average scale. Relating the movement of Makos to a monthly average of chlorophyll-a was con-
sidered to be of little value and was removed. SST, on the other hand, was available daily for
the entire dataset from the Multi-scale Ultra-high Resolution (MUR) SST dataset. In this way,
location qualities and their associated errors were used to correctly bound the scale of match-
ing SST data, while also identifying the mismatch between our movement data and available
chlorophyll-a data.

Once the variables are checked for data quality, we recommend that each variable be nor-
malized so that the parameter estimates are not too small or too large in magnitude that they
are subject to issues of imprecision [40]. For example, the values of length are much larger
than those for SST or MEI, consequently, we normalized length using a z-score standardiza-
tion:

y, == (1)

Where Y; is the standardized value, X; is the measured value, Xis the sample mean for that vari-
able, and sy is the sample standard deviation for that variable.
After variable normalization, a linear model can be built of the form:

w=Pp,+B,D, + p,Dy+ ...+ B,D, (2)

where a logistic transformation of y is the probability of the response variable being '1’, §, is
the intercept term, 3, through S, are the parameter estimates for each variable, and D, through
D, represent the data for each variable, respectively.

In order to quantitatively determine which of the selected variables impact the response
variable “z” (which is binomially drawn from a Bernoulli distribution where 0 indicates that
the animal is east, or 1 that the animal is west of 125°W), we ran a classification Random Forest
analysis (R package: randomForest [41, 42]). Random Forest is an extension of classification
and regression tree (CART) analysis, in which subsets of both the variables and the data are
randomly pulled to build bifurcating classification trees, which are then internally validated by
testing the performance on the remaining out-of-bag data. The importance of each variable is
determined by the success of the trees including that variable. We used a total of 10,000 trees
for the forest (ntree = 10000) and assessed each with an OOB sample of 1/3 of the total dataset
[e.g. 43, 44]. As discussed in Strobl et al. [45] subsampling with replacement was set to false
(replace = FALSE) as a precaution in order to avoid potential problems associated with vari-
able selection when predictor variable scales are dissimilar. Since the number of data points
west of the arbitrary boundary (2759) were fewer than those east (6681), the “sampsize” com-
mand was used to balance the building of the trees (sampsize was set to 1000 for each class).
The significance of each predictor on the response variable was tested using “rfPermute” (R
package: rfPermute (Archer 2013)) with “nrep”, the number of permutation replicates to run
to construct the null distribution and calculate p-values, set to 100, and the significance level
“a” set to 0.1. The calculated p-values given by rfPermute were used in preference to the basic
Gini index scores produced by the “randomForrest” package to identify important predictors.
If any of the predictor variables are perfect predictors, they must be removed prior to running
Random Forest in order to not overfit the model. In this case, an example of a perfect predictor
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would be longitude, since any value above or below 125°W would perfectly predict whether an
animal was east or west of 125°W.

# Run permuted Random Forest on Mako data

rp <- rfPermute (formula = z ~., data = Original, sampsize = c

(1000,1000),

replace = FALSE, ntree = 10000, nrep = 100, a = 0.1)

For this and all subsequent example code our Mako data was stored in a data frame named

“Original” with the following structure:

head (Original)

## ptt sex Spring Summer Fall Winter L z NPGO Index PDO_Index
## 1 41676 M 0 1 0 0-0.3740933 0 0.78 0.04
## 2 41676 M 0 1 0 0-0.3740933 0 0.78 0.04
## 3 41676 M 0 1 0 0-0.3740933 0 0.78 0.04
## 4 41676 M 0 1 0 0-0.3740933 0 0.41 0.44
## 5 41676 M 0 1 0 0-0.3740933 0 0.41 0.44
## 6 41676 M 0 1 0 0-0.3740933 0 0.41 0.44
## MEI Index Moon sst chl

## 1 0.283 0.0586144 17.45300 0.4292030

## 2 0.283 0.3222741 19.61117 0.6521956

## 3 0.283 0.7947392 19.07908 0.4757891

## 4 0.527 0.9359048 18.95387 0.3204745

## 5 0.527 0.8210133 18.47167 0.8794785

## 6 0.527 0.5869345 20.05420 0.6362990

where ptt (a unique tag number for each animal), sex, each season, and the response vari-
able z are all saved as factors.

Following the refinement of potential predictor variables by Random Forest, the assump-
tion of linearity was tested by running a Generalized Additive Mixed Model (GAMM) (pack-
age: gamm4 [46]). GAMM is designed to test and identify if the assumed linear relationship
between response and predictor variables is appropriate, or if ‘smooths’ are needed to correctly
describe a predictor variable’s relationship with the response variable [47]. By running an anal-
ysis of variance (ANOVA) on the GAMM results it is possible to identify the degrees of free-
dom for each predictor variable. A variable with a single degree of freedom can be treated as
linear while variables with more than one degree of freedom indicate that higher order terms
need to be included in the model. Setting “random” = ~(1|ptt) indicated that ptt was the ran-
dom effect for the model, while specifying “family” = binomial(link = "logit") identified that
the response variable is drawn from a Bernoulli distribution. Fall is set as the intercept in this

model and so is not explicitly listed as one of the predictor variables.

# GAMM run on the response variable z, random effect set to individual

(ptt), # and the family set to binominal with a logit link function

gamml.0 <- gamm4 (z ~ Spring + Summer + Winter + L + sex + MEI Index,
random = ~ (1|ptt),
data = Original,
family = binomial (1link = "logit"))

# ANOVA run on GAMM results to investigate degrees of freedom per

parameter anova (gamml.0$gam)

After establishing our predictor variables of interest with Random Forest, and testing them
for linearity using GAMM, our model looked as such:

w=P,+ P, xSpring + p, x Summer + f, x Winter + f, x L + f, * Sex + iy * MEI ~ (3)
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Model development

The next step is the construction of the Bayesian movement model. We used Markov chain
Monte Carlo (MCMC) methods to generate posterior probability distributions for model
parameters. While it is possible to include prior information into Bayesian models, our
approach here incorporates vague priors because often in data limited situations no prior
information exists. Also, the use of vague priors in our Bayesian analysis allows for a more
direct comparison to maximum likelihood model results. To deal with the nested nature of the
data, i.e. multiple data points for each individual, we used a hierarchical model structured by
individual tag number, which is analogous to a random effect in a generalized linear mixed
model [48]. This hierarchical structure need not be based on individuals, some other possible
hierarchies may be pod of whales, pack of wolves, or perhaps sample site for reef fish. The hier-
archical structure of these models is versatile and can be easily adapted to fit most situations.
Due to the construction of our model by individual, it’s essential that data be ordered by tag
number, or similar individual identifier, in order for the hierarchical structure to be imple-
mented correctly. First, we determine the number of data points for each individual tag
(tracks) and then create a vector which specifies the first record for each tag (tracks_2), finally
we use “cumsum” to identify the starting row, and ending row plus one, for each tag (cumul_-
tracks). This vector can then be used in the model by identifying the first location cumul_-
tracks[i] and last location cumul_tracks[i+1]-1 for each individual.
# Track lengths
tracks <- table(Original$ptt)
tracks 2 <- c(1,tracks)
cumul tracks <- cumsum(tracks 2)
# Number of unique tags in the dataset
N <- length (unique (Original$ptt))
Next the model is specified as a text file within R, in our case saved with the name
“model_stringl.0”:
# Model specification in JAGS syntax
model stringl.0 <- "model{
BO ~ dnorm (0
Bl ~ dnorm(
B2 ~ dnorm/(
B3 ~ dnorm(
B4 ~ dnorm(
B5 ~ dnorm/(
B6 ~ dnorm (0,
tau ~ dgamma (0.1, 0.01)
s <- 1/sqgrt (tau)
for(j in 1:N) {u[j] ~ dnorm(0, tau)
for (i in cumul tracks[j]: (cumul tracks[j+1]-1)) {
logit (mu[i]) <- BO + (Bl * Spring[i]) + (B2 * Summer[i]) +
(B3 * Winter([i]) + (B4 * L[i]) + (B5 * Sex[1]) +
(B6 * MEI[i]) + uld]
z[1] ~ dbern(mu[i])

0.1)
O 0.1)
0, 0.1)
0, 0.1)
0, 0.1)
0, 0.1)
0.1)

PRI IR

pn
where the B terms are the parameters for each variable in the model. Because there were no
previous data to populate informed priors, the model is designed to include vague priors from
anormal distribution with a mean of 0 and a variance of 10 (JAGS uses precision which is 1/
variance in dnorm so a variance of 10 in JAGS is defined as 0.1). Tau is drawn from a gamma
distribution with a mean of 10 (mean = 0.1/0.01) and a variance of 1000 (variance = 0.1/
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(0.01)?) and used to define the model process error “s”, which is error that is not accounted for

« »

by individual variation. Individual variability is assigned to “u” and allowed to vary for each

«s»

loop of “j”. Since the response variable is binomial, the model is set with a logit link function

«,_»

and the response variable “z” is drawn from a Bernoulli distribution. We then run the model
using rjags (R package: rjags [49, 50]) and save the result to the object “modell.0”.
# Run JAGS model and specify initial parameter values
modell.0 <- jags.model (textConnection (model stringl.O0),
n.chains = 4,
n.adapt = 100000,
data = list (Spring = Original$Spring,
Summer = Original$Summer,
Winter = OriginalS$Winter,
L = Original$L,
Sex = Originalé$sex,
MEI = OriginalSMEI Index,
z = Original$z,
N = N,
cumul tracks = as.vector
(cumul tracks)),
inits = function ()

{

list('BO' = runif (1, 0, 1),
'B1' = runif (1, 0, 1),
'B2' = runif (1, 0, 1),
'B3' = runif (1, 0, 1),
'B4' = runif (1, 0, 1),
'B5' = runif (1, 0, 1),
'B6' = runif (1, 0, 1))

~

o)
update (modell.0, 10000)

Within the rjags command we specify our model (as saved in the text file above), the num-
ber of parallel chains for the model with “n.chains”, the number of iterations for adaptation
with “n.adapt”, the data (as a list drawn from our data frame “Original” and the previously cre-
ated cumul_tracks object), and a list of initial starting values for each parameter, in this case a
single random value drawn from a uniform distribution between zero and one. The uniform
distribution is used here so that any value between zero and one is just as likely to be selected
as any other, unlike a normal distribution where values will typically come from near the
mean. The starting point is not particularly important as the chains will eventually converge to
a posterior distribution given sufficient steps. However, using starting points that are close to
the resulting posterior distribution would make the computation more efficient [51]. The
function “update” is then used to update the Markov chain associated with the model, with “n.
iter” set to 10,000 indicating the number of iterations of each Markov chain to run.

Posterior samples are then coerced into a single mcmc.list object (draws1.0) using “coda.
samples” [49]:

# Runs coda and identifies parameters to monitor
drawsl.0 <- coda.samples (model = modell.O,
In.iter = 500000,
lvariable.names = ¢ ("BO", "B1", "B2",
"B3", "B4", "B5",
"BEM, "s", "u"),
thin = 10)

where modell.0 specifies the JAGS model, 500,000 indicates the number of iterations to

monitor, “variable.names” indicates the variables of interest that we want to be tracked and
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reported on (in this case all of the B parameters, model process error (s), and individual vari-
ability (u)), and 10 is the thinning interval set so that only every 10" value out of all MCMC
iterations will be saved [51]. Results from coda.samples are stored in the “draws1.0” object.
An important step in our Bayesian model development is to test the assumption that our
priors are truly vague and not unintentionally influencing the model. To test this we specified
a priors-only (data-free) model “model_string0.0”:
# Priors-only model specification in JAGS syntax
model string0.0 <- "model({
BO ~ dnorm (0
Bl ~ dnorm(O
B2 ~ dnorm (0,
B3 ~ dnorm (0,
B4 ~ dnorm (0,
B5 ~ dnorm (O,
B6 ~ dnorm (0,
tau ~ dgamma (0.1, 0.01)
s <= 1/sqgrt (tau)
for(j in 1:N) {u[j] ~ dnorm(0, tau)
for (i in cumul tracks[j]: (cumul tracks[j+1]-1)) {
logit(mu[i]) <- BO + (B1l) + (B2) + (B3) + (B4) + (B5) + (B6)

0
0
0
0.
0
0
0.

e e e

1)
)
)
)
)
)
)

+uljl
z[i] ~ dbern(mul[i])

}

po

which we then run as before using rjags but with only the response variable “z” in the data
list. When plotted on the same scale as the posterior distribution of the data-full model, the
posterior of the priors-only model should be nearly undetectable if priors are truly vague. If
instead plots indicate that the priors-only posteriors are detectible, then the priors are still hav-
ing an impact on the model results and need to be expanded.

Models were also constructed to estimate parameters using maximum likelihood estimation
(MLE). Despite the philosophical differences between Bayesian and MLE approaches, with
vague priors, the parameter estimates from both approaches should be similar [52, 53]. We
implemented GLMMs with individual tag number as a random effect to account for the nested
nature of repeated sampling within individuals using:

1) glmer using the Laplace approximation in the R package Ime4 [31]

glmerl.0 <- glmer(z ~ Spring + Summer + Winter + L + sex + MEI + (1]
ptt),
family = binomial (1link = "logit"), data = Original)
and

2) Penalized quasi-likelihood PQL in the R package MASS [54]

glmm pqgl <- glmmPQL(z ~ Spring + Summer + Winter + L + sex + MEI,
random = ~ 1|ptt, family = binomial, data = Original)
where z is the binomial response variable followed by each variable of interest. Both meth-
ods, glmer and glmmPQL have slightly different syntax for indicating random effects and the
family of the distribution but the concept remains the same. Penalized quasi-likelihood is the
simplest and most widely used GLMM method despite known issues of biased parameter esti-
mates if the standard deviations of the random effects are large, especially with binary data
[30-32]. Our use of PQL is meant as a comparison to perhaps more appropriate methods
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given the nature of our data, an important point of discussion given PQLs ubiquity in the liter-
ature. Glmer is a more suitable GLMM approach for the data used here.

Model performance with data paucity

Since one of the primary reasons that many previous telemetry studies lack population level
inferences is the absence of large datasets, we decided to test both the Bayesian and MLE
approaches on pared down subsets of the full dataset of 9440 locations. We randomly selected
25 replicates each of 75, 50, 25, and 10 percent of the full dataset (7080, 4720, 2360, 944 data
points respectively) resulting in 100 new, “data poor” datasets. Data subsetting was done with-
out concern for individuals, i.e. individuals were not selectively removed to make smaller data-
sets, instead points were randomly removed across the whole dataset. Each of these data poor
datasets were analyzed using the Bayesian and the two MLE approaches. Mean parameter esti-
mates from each level of data paucity were compared to the congruous parameter estimates
calculated using the full dataset to evaluate accuracy. The variance in parameter estimates for
each level of data paucity were also examined to test the precision of these models given the
smaller sample sizes from a larger population.

Test of model performance with simulated data

While the pared down datasets function as a useful example of model performance with real
world data, to truly test model performance, simulated data were created with known parame-
ter values and then run through the model to see if the parameter values could be recovered.
Code for creating a simulated dataset can be found in the Appendix. We created 10,000 unique
simulated datasets each with a comparable number of individuals (n = 34) and data points per
individual (~278) as the Mako dataset. Individual variation was accounted for by including an
error term in the simulation code which was comparable to the amount of individual variation
in the real Mako dataset. Testing a model by simulating data and then recovering the parame-
ter estimates used to create it is one of the best ways to test model performance, however a sim-
ulation test is not a necessary step in creating a movement model and hence its discussion here
is brief and only focused on model performance.

Spatial and temporal autocorrelation

We focus here on movement models that treat data points from an individual fish as indepen-
dent from one another. We recognize that in many cases spatial and temporal autocorrelation
can have a major impact on analyses and inferences from tagging studies [55-58]. Often,
where an animal is at time x effects where it will be at time x+1. Much time and effort have
been spent grappling with this issue and no single method for dealing with it has yet been
accepted in the scientific literature. We built a version of our Bayesi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>