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EXECUTIVE SUMMARY

The Bay and Channel hydrodynamic models within the Galveston Bay Operational Forecast
System (GBOFS) have been used to simulate the dispersion of a tracer in the Houston Ship
Channel and upper Galveston Bay. With two concentration algorithms added to each model, the
hydrodynamic model simulates the movement of the passive tracer sulfur hexafluoride (SF)
with and without surface gas transfer over a ten day period, November 2-11, 2004. To
accomplish this, GBOFS has been extended to enable a hindcast on demand capability for up to a
one month duration.

The two hydrodynamic models have been set-up for simulating the tracer movement for a
planned release of 1.0 mole of SF¢ at the confluence of Patrick Bayou and the Houston Ship
Channel. The Bay model is forced with USGS river inflows, PORTS observed surface winds and
PORTS water levels at Galveston Pleasure Pier at the lateral open boundaries, which extend to
the 20m isobath in the near Gulf. The Bay model is one-way coupled to the Channel model,
which is also forced with USGS river inflows and PORTS observed surface winds. Discharges at
the Trinity River, San Jacinto River, and Buffalo Bayou are considered as a one-dimensional
inflow with a zero input of tracer. The simulated water levels, currents, and density are validated
with PORTS observations to ensure model accuracy. Model simulated tracer concentration
distributions and the total tracer mass balance are studied and were used to design the May 17 -
27, 2005 field experiment conducted by Columbia University. The areal extent of the 10 day
residence time contours for both flux and no flux SF6 conditions were used to determine the
necessary extent of boat survey coverage. While the actual survey was conducted in May 2005
and the numerical simulations were for November 2004, the numerical and experimental
residence time estimates were very similar and demonstrated the utility of the numerical models
in planning actual tracer release field studies.

In addition, surface gravity wave algorithms have been incorporated in both hydrodynamic
models to simulate short period waves with and without wave-current interaction. Results
presented indicate the feasibility of including the wave algorithms within GBOFS.
Recommendations for additional SF¢ simulation and wave-current interaction experiments are
presented.



1. INTRODUCTION

Recently attention has been focused on investigating the computation of residence time in
estuaries and bays via multi-dimensional numerical modeling to aid in NOAA-EPA exposure
assessment studies. In conjunction with a NOS Partnership Project, a workshop was held in June
2004 (NOS, 2005) to further study the problem. One area of application was the Houston Ship
Channel and the potential for toxic releases from the EPA Superfund site at Patrick Bayou. Wei
(2004) has studied the transport of sulfur hexafluoride (SF¢) within New York Harbor using the
New York Harbor Operational Forecast System (NYOFS) model. Here, we attempt to build on
this work and investigate the transport of SF¢ within the Houston Ship Channel and Galveston
Bay.

Galveston Bay (Figure 1.1) has a complex geometry with the Houston Ship Channel bisecting
the Bay and connecting the Port of Houston to the near Gulf. The Houston Ship Channel is
important for both safe navigation and hydrodynamics in the Bay. Tidal currents through the
channel play an important role in determining the dispersion characteristics. Flows from Buffalo
Bayou, the San Jacinto River (Lake Houston Dam), and the Trinity River provide freshwater to
Galveston Bay. These river inflows interact with the tidal currents to further complicate the
circulation and transport in Galveston Bay.

Columbia University researchers conducted a field experiment in the Houston Ship Channel to
study the circulation, mixing, and the transport and the fate of solutes using SF¢ during the period
17-27 May 2005. Approximately 1.0 mol of SF¢ was injected in the Houston Ship Channel at
Patrick Bayou (downstream of a EPA superfund site) and the SFg tracer was observed over the
next 10 days using a high-resolution measurement system similar to that used in June 2003 in the
East River, NY. Measured data were processed and compiled for dispersion characteristics
interpretation (Schlosser et al., 2006). Detailed measurement system description and results from
the NY study are described in Caplow et al. (2003).

NOAA’s National Ocean Service (NOS) has developed the Galveston Bay Operational Forecast
System (GBOFS) to simulate water levels, current velocities, and density for use by mariners
navigating in Galveston Bay and the Houston Ship Channel (NOS, 1999; Schmalz, 1998b,
1998c; Schmalz, 2000a, 2000b; Schmalz and Richardson, 2002) based on the Princeton Ocean
Model (POM, Blumberg and Mellor, 1987). This forecast system (Schmalz, 2004) has been
running operationally since June 2004 utilizing the near real-time water level and current
information from NOS’ Physical Oceanographic Real-Time System (PORTS). The
hydrodynamic models in this system have been used to simulate the SF¢ transport in the Houston
Ship Channel and upper Galveston Bay during the ten day period 2-11 November 2004 to
examine the dispersion characteristics of the upper Houston Ship Channel. Areal extents of tracer
concentration above background levels of 2 fmol/L. were computed for the case of zero and non-
zero SF6 surface fluxes and bracketed the areal extent of the measured SF6 concentrations above
background level measured. (Refer to Figure 3 in Appendix 3 of Schlosser et al., 2006) and
demonstrated the ability of numerical models to assist in the planning of the tracer release
experiments in Galveston Bay. This report documents the modeling work performed to simulate
the transport of SFs. The model set-up, simulation procedures, and results are described.
Conclusions and future work based on the simulation results are discussed.
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2. LONG WAVE HYDRODYNAMIC MODEL
2.1. Governing Equations

A three-dimensional sigma coordinate Galveston Bay and near shelf model (GBM) has been
developed (Schmalz, 1996) based on a version of the Blumberg and Mellor (1987) model
extended to orthogonal curvilinear coordinates. GBM is a three-dimensional baroclinic
circulation model, based on POM, for simulating water levels, current velocities, and density.
The model is forced with: water levels at the near shore open boundaries based on observed
levels at Galveston Pleasure Pier; freshwater inflows from the Buffalo Bayou, San Jacinto, and
Trinity Rivers; and surface winds. In addition, a high resolution Houston Ship Channel model
(HSCM) has been incorporated to provide finer spatial resolution (Schmalz, 1998a; 2000a;
2000c). The governing equations in a vertical sigma coordinate are briefly given as follows.
Detailed formulation is contained in Blumberg and Mellor (1987), Mellor (2003b), and Schmalz
(2001).

S =0, (1)
3W) - v+ gp 2 = 0| Ku OU 1 gD joa—pd £ aD —dap o+ F,, (2)
ox Oo| D JOo Lo
S0+ U+ gp = 0| K OV 1 gD joa—pd &b aDj a_pd +F,, 3)
oy Oo oo Py O
orT
RIVAES + F,, 4
=[BT, "
0| K, oS
3(S)=—| L= |+ Fq, 5
(5) 80‘[ D 60} s )
K 2 2 2 3
S(qz):i _qai +21<_M [a_UJ +(6_Vj +2gﬁa_p_ﬁ+Fq’ (6)
oo| D 0o D oo oo po 0o Bl

Dq

> (7)

1

K 2 ?
S(g?ny =2 | 2o 0D | K [OU) +(8—Vj B8y,
do| D oo oo oo Lo oo

* * * *
where 3(*)= oD + oub + b + O and ¢ = (z-n)/(H+n). Here (x,y,z,t) are the Cartesian
ot ox oy oo

spatial and temporal coordinates and D=H+7 is the total water depth with H the depth and n the
water surface elevation with respect to model datum. U and V are horizontal velocities, S and T
are salinity and temperature, K, and Ky are the vertical kinematic viscosity and diffusivity,
respectively, K, is vertical turbulence mixing coefficient, ¢’ is twice the turbulence kinetic
energy, and / is the turbulence length scale.

Note W =1+ E, (é)z, k = 0.4 is the von Karman constant with L' =(y-z)”'+(H+z)”, and B, E,,

E>, and Ej; are constants. g is the acceleration due to gravity, f'is the Coriolis parameter, p=£(S,7)
is the water density, and o is the transformed vertical velocity normal to a sigma surface. The
relation of o ( Hdo / dt) to the Cartesian vertical velocity w is
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w= a)+U{oa—D+an}+V[ 6_D+677}FO_6_D+6_77. (8)

ox  Ox oy Oy ot ot
The horizontal viscosity F and F, and diffusion terms /'« are defined as
F =2 [2DA aU} 9| pa, [V )
T Ox ox ay oy Ox
F =20apa, V| 9 pa, | YLV (10)
oy oy Bx dy Ox
%k %
F. :E{DAH a_}g pa,| 2|, with *=(T.8,¢,1,.C) 11
ox ox | Oy oy

where 4y = Ay are the horizontal eddy viscosity and diffusivity, defined by the Smagorinsky
formula (1963)

2 0.5
A, =C, AxAy (aUJ os[ ULV (o , (12)
ox oy Ox oy
with Cy, a non-dimensional parameter.
For the passive tracer SFg, the concentration equation is
S(C):i[K_Ha_C}FC (13)
where C is the concentration of SFg

Boundary conditions at the free surface (G—O) are as follows:

8U v oS aT oC el 2 23
=0, T ) p | 2 2 S| =(S8,T,C),1=0,q% = B}u] 14
Boundary COIldlthIlS at the bottom (G——l) are as follows:
K, (oU oV oS or oC .
0=0,p—L| — — |=(1,, —,—,— |=(0,0,0),/=0,¢° =B}" 15
P |7 (60 56) (Thy by) [50 PSPy j ( ) q 1 U (15)

where 7, and 7, are the wind stress and bottom friction and (S,7,C) are surface fluxes.

The above equation set is transformed into orthogonal horizontal coordinates after Blumberg and

Herring (1987) with
d d
dx = hde,,dy = hyde,,ds> = dx> +dy® = h’de? + h2de? andU, =, %,Uz =h, %.

3(1)=0 (16)

3(U,) - fDU +8P on Ky 0], OU | gD D[’ P g +-P joa—dap o|+F,
h, hos, D oo oo | p, o h,0¢, hog, %o Oo

(17)
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h, h,0e, D Oo oo Lo 7 h,0¢, h,0g, *°  Oo
(18)
0| Ky, oT
I(T)=—|—L—|+F 19
"”aa{mo} \ (19)
o | K, oS
J(S)=— | L |4+ F 20
"”aa{paa} ) (20)
K 2 2 2 3
S(qz)zi Ky 0q +ZKM ou, N ou, +2gKH8_p_2Dq L F 1)
ooc| D 0o D oo oo p, 0o Bl 1
K 2 2 2 3.
S(q2 =2 | B 0@ D gt Ko U\ [9Y B8y P D4y (22)
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k sk %k sk
where S+ 20, 20U DY) 8hU,DY) | o(e)
ot hhoe, — hhde, 0o
]}=f+ U, oh, U, 0h
hh, 0, hh, O¢,
The relationship of ® with the Cartesian vertical velocity w is
w=a)+ﬂ 0_6_D+6_77 +ﬁ O_@_D+8_77 +06_D+8_77‘ (23)
,| 0Og O¢g h, og, 0Oe&, ot ot
The horizontal viscosity F; and diffusion terms F« are defined as
h.oU, ouU. hoU.
FI.I:L 2 2DA4,, L -2 DA, 1oU, +2 (24)
T hih; | Os, h0¢; O¢ h;0¢;  h;0¢g,
k %
Foe | 2 pa, MO 0 py [ MO with *=(TS,0.1.C) 25)
hh, | Os, hog, | Os, h,0¢,
where
ou, Y ou, ou,Y (v, V]
Ay = Ay =Cyhhy| | —L | +0.5 —L+—2 | +| —2 , (26)
og, 0g, 0g os,

where Cy, a non-dimensional parameter, is set to be 0.005 for both Bay and Channel models.

For the passive tracer SFs, the concentration equation is

3(C) = i[K—H 6—C} i F, 7)

where C is the concentration of SFg.

Boundary conditions at the free surface (c=0) and at the bottom c=-1) remain as given above,
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while the concentration lateral open boundary condition during the outflow is specified with one-
a(DC) .\ a(pcu,)
h.0¢,

dimensional advection, =0, where U, is the velocity in the normal direction to

o\DCU,
the boundary while the following gradient condition is used for inflow, a(lé)t ) = (h aCU’ ) =0.
[OE;

2.2. Model Grids

The GBM computational grid as shown in Figure 2.1 consists of 181x101 horizontal cells (dx =
254-2482m, dy= 580-3502m) with 5 levels in the vertical. GBM water depths range from 1 m in
the shallows to 20m along the shelf boundary. The HSCM grid shown in Figure 2.3 was
developed in three sections. Each grid section was linked in order to develop the final composite
channel grid consisting of 71 x 211 horizontal cells (dx=63-1007m, dy=133-1268m) with the
same 5 sigma levels as in the GBM. Note navigation channel depths are order 14m. The two
models were then nested in a one-way coupling scheme, wherein GBM water surface elevation,
salinity, temperature, turbulent kinetic energy, and turbulent length scale time histories were
saved at 6-minute intervals to provide boundary conditions to drive the HSCM. For salinity,
temperature, turbulent kinetic energy, and turbulent length scale, a one-dimensional (normal to
the boundary) advection equation is used. On inflow GBM values are advected into the HSCM
domain, while on outflow HSCM internal values are advected through the boundary.

2.3. Air-Water Gas Transfer

After injection into the water column, part of the gaseous SF¢ tracer exits from the water into the
air. The gas transfer velocity, ksrs, which measures the air-water SF¢ transfer rate, is determined
based on kg, the transfer velocity relative to a Schmidt Number of 600, which is determined

based on a wind speed term (0.296 coefficient after Caplow et al., 2003) plus a temperature
enhancement term reported by Wanninkhot (1992) as follows:

kgoo =0.296U 7 +2.5(0.5246 +1.6256x10 T, +4.9946x107* %) (28)

Next the Schmidt number, Sc, is computed as a function of temperature (0 to 30 °C) for salinity
at 0 and 35 psu using the following relations given by Wanninkhof (1992):

Sc, =3255.3-217.13T, + 6.83707, —0.0860707,

(29)
Scys =3531.6—231.407, +7.2168T —0.0905587T,
The final transfer velocity, ksrs, is then determined after Ho et al. (2002) as follows:
k . . .. .
ks =—2— , where Sc;, is the Schmidt number based on the surface salinity as determined

Sc, n’
60
from a linear interpolation from Scy and Scss, and 7 is an exponent, which is set to 0.5 for no

wave current interaction and is made a function of significant wave height, if wave current
6



interaction is considered (Jahne et al., 1987). The surface flux of SFg, c , 1s then determined by:

C = kgp (C, —csol), (30)

where C;, is the surface SF¢ concentration, and csol is the equilibrium solubility of SFe, here
taken as 2 fmol/L, as reported by Caplow et al. (2003).
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3. SHORT WAVE HYDRODYNAMIC MODEL

Schmalz (2003) has compared two USACE parametric wave models (CETN-I-6, 1981; Project
CW-167, 1955) with the finite difference based Donelan (1977) wave model for wind events
over Galveston Bay. The two parametric models considered were run on the same grid employed
for the Bay circulation model (Figure 2.1), while a uniform square grid was used for the Donelan
model. Further details on the Donelan (1977) wave model may be found in Schwab et al. (1984).
Details of the initial testing may be found in Schmalz (2003). Best results as given in section 3.2
below were achieved by the following mixture of the two parametric models as presented in the
governing equations below.

3.1. Governing Equations

CETN-I-6 (1981) significant wave height, H; (ft):

2705
gHZS 0283 tanh[0.530[gD /U "™ tanh[— 2000318/ UAQ] - (31)
U3 tanh[0.530[gD /U ;1" ]
CW-167 (Project CW-167, 1955): significant wave period, 7 (sec):
T, = 6.262U—A(g—D2)°‘45°7 (32)
g Uj

using the following notation:

g = Gravitational acceleration (32.2 ft/sec?)
U, = Windspeed (kts)

F = Fetch (nm)

D = Total water depth (ft)

3.2. Initial Validation

The January 25-30, 1997 time period was studied due to the availability of USACE wave
measurements off Eagle Point. Application of the models to this period revealed that despite the
incorporation of shallow water effects in the finite difference based Donelan model by using a
linear reduction in transfer of wind to wave momentum as described in Schmalz (2003), best
results were achieved by using a combination of the two simpler parametric wave models. Total
significant wave height was computed as the sum of the CETN-I-6 results plus the swell, which
was determined at the open boundary from the NDBC Buoy 42035 measurements. The total
significant wave period was taken as equal to the CW-167 result alone. Results for January 25-
30, 1997 are shown in Figure 3.1 at Eagle Point and in Figure 3.2 at NDBC Buoy 42035,
respectively. Note, the peak at Eagle Point is no longer delayed relative to the observations as
experienced using the Donelan model with the shallow water adjustment and the peak at NDBC
Buoy 42035 is well reproduced.

11



EAGLE POINT

5 —OBS == SOLID GBWP-NF == DASH ,
= 3 E
S 2. —
= = 3
s g 3
= =
(= 1LE 3
= - TN ~< T — S SN
o.E I ] | 1
24 25 26 27 28 . 29 38 3
369, -
J 3 T ] I o I I I 3
&} E s T E
= ©oame | Sy \ 3
(< - E ey | E
: = A | SO 3
s} 180, - N v/ 3
| = \ /---,‘/ =~ =
a - ol S :
E : 9. £ . 3
= |
= s E ! I ! [ | | 3
24 25 2 27 28 29 ae n
5. E
— E
n 3
— . E
m
23] 3.
. E
= 2.E
= S
< . E
=
o E l ! I I l l
24 - 31

TIME (JULIAN DAYS 1997}
Figure 3.1. Galveston Bay Wave Model vs Observed Wave Parameters at Eagle Point,
January 25-30 1997.

12



42035
—OBS == SOUD GBWP-NF == DASH

L= T 3
= 3 g
e .- 3

= E 3
s = =
= 1. ; 3
- = 3
<q = =
= = 3

o E 1 I I I 1 3
24 25 26 27 28 29 308
360. T T T T T 3
Ty = AT 3
2 0. E Rt ot d 3
A E / ' E
= : il ! o :
5 18@. g— L,"‘"V‘f‘\f \/."“ \ _g
= 98, §_ —%
> 3 3
< 3 3
= 0.E | I I 1 1 3
24 25 26 27 28 29 30
18. T T T T
—~~
-
p— 8.
(0t
=] 6.
a,
=] 4,
-
; 2.
. I I I I I
24 38

Figure 3.2. Galveston Bay Wave Model vs Observed Wave Parameters at 42035,

January 25-30 1997.

26 ; 27 28 29
TIME (JULIAN DAYS 1997)

13

n

n

k)



3.3. Joint Computation

The mixed parametric wave model has been included as a subroutine within both the Bay and
Channel long wave models and uses the same wind field. The waves are computed every six-
minutes. In the Bay model, fetch data are specified for each octant of wind direction at 25
locations surrounding the Bay. An inverse distance squared interpolation is performed to
determine the fetch distribution over the Bay for each wave computation. The long wave model
provides the updated total water depth. At each wave computation in the Bay model, the swell
height and fetch at each boundary point required by the Channel model are written on the
transfer file in addition to the one-way coupled long wave information. Swell effects in the Bay
model are input as a boundary condition and are reduced from the offshore boundary by a
inverse distance squared interpolation of empirical reduction factors supplied at the above 25
locations around the Bay.

3.4. Refraction, Diffraction, and Reflection Limitations

Wave refraction due to changes in bathymetry is not specifically treated. The wave field is
represented here by a single frequency, height, and direction rather than a continuous spectrum.
Thus no wave-wave interaction is considered. Wave diffraction around breakwaters and jetties
and wave reflection are also not included.

To include these three effects, a much more complicated and computationally intensive shallow
water wave model must be included such as the Delft Technical University SWAN, which
simulates the following physical phenomena: 1) wave generation and propagation in time and
space, 2) shoaling, 3) refraction, 4) frequency shifting, 5) nonlinear wave-wave interactions, 6)
whitecapping, and 7) blocking of waves by current. Note that diffraction and reflection are not
explicitly modelled in SWAN but can be handled in the Delft Technical University PHAROS, a
wave penetration finite element model. For further details refer to Rif (1997) for SWAN and
Hurdle et al. (1989) for PHAROS.

As pointed out by Mellor and Donelan (2006), to perform shallow water wave computations with
SWAN on the same grid as the POM circulation model a factor of 100 in computer time is
needed. In practical applications, these computational requirements for shallow water wave
computations are so severe that Mellor and Donelan (2006) advance a different initial approach.
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4. WAVE-CURRENT INTERACTION MECHANICS
We consider a wave field with significant wave height, H ;, dominant period, C, and wave
direction, @. The wave direction is assumed to be in the direction of the wind. To determine the

. 2
wave age, it is necessary to compute the wave phase speed, C, =%, where a)zg, and

»* ) S(1+2e —12¢™) S>2
k=—-——, with 7k=
g tanh(rk) So's(l+0.169S+0.03IS2 S<2

D and g as defined previously as reported at http://web.mit.edu/fluids-
modules/www/potential flows/Lectures.

}, where S=Dw”/g with

The friction velocity, u=, is then computed asu. =U,,,+/Cp,, » and the wave age is formed as the
ratio of C, to ux.

4.1. Surface Drag Coefficient Adjustment

In the presence of waves, the surface drag coefficient is increased. Following Drennan et al.
(2003), we employ their Figure 10 in which the drag coefficient, Cp;gy, and wind speed, Ujgy,
are given versus inverse wave age, u+/C,. Wind speed ranges are from 5 to 20 m/s. The following
relationships are used in the algorithm to define the adjustment factor of the surface drag, F,
based the ratio of measured Cp;pv With respect to inverse wave age to the Smith (1980)
relationship.

F=1.-(0.16)U,, —5)/15 u./C, <0.06,
F=1.16-(0.13)(U,,, —5)/15 0.06 <u,/C, <0.08, .
F=127-(0.07)U,,, —5)/15 0.08 <u.,/C, <0.10,

F =1.38-(0.05)(U,,, —5)/15 0.10 <u,/C,

The effective surface drag coefficient, is given as the product of the adjustment factor, F, and the
Large and Pond (1981) surface drag relation:

;|12 Uy <1lm/s
Cpionx10° =
(0.49 +0.065U,, ) Uy =11m/s

Ce/f =FCpioy

Note with no wave current interaction, F=1.0.

(35)

4.2. Bottom Friction Adjustment

In the presence of waves, the near bottom wave orbital velocity based on linear wave theory, U,

is first computed as U, = 0.5H,@ after Signell et al. (1990). The near bottom excursion

sinh(kD)

. . . U .
amplitude, as, and effective roughness, k, are then determined as a, =—=and k, =30z,, with z
(4]
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the bottom roughness. The wave friction velocity, ux,, is determined based on S, =k, /a, in the
relationship reported by Grant and Madsen (1982) in the following manner:

0.1357% S, <0.08
f, =10.2385)% 0.08<S, <1.0{, with u,, =4/0.57,U’ (36)
0.23 S, =1.0

Next the current friction velocity, ux«., is determined based on the model horizontal velocity
components (U, V), at the level nearest the bed as follows (see Davies and Lawrence, 1995):

f. =2k /In(0.1/z,)), with u., =:J0.5£. (U +V}) (37)

The total friction velocity is then determined based on the current friction velocity and the wave
friction velocity in the direction of the current as follows:

Usp =\/qu + (i, cos(@,,))’ , where 6

wc

is the angle between the wave and wind directions (refer

we 2

to Grant and Madsen, 1979). A roughness adjustment is determined as F, =

reported by Signell (1990). The bottom friction adjustment factor, F,,, is given
In(h, /z,)
by pb = : :
In(h, / F,z,)
roughness is the product of the bottom roughness and this adjustment factor. Note in this
approach, wave and current effects are considered independently (zy is never altered) and are

then combined to determine the adjustment factor. In theory, an iterative approach on zj is
desired.

2
} . In the present study, F,, cannot exceed 2. The effective bottom

4.3. Surface Gas Transfer Velocity Adjustment

Jahne et al. (1987) report that in the presence of waves on the surface, two important
mechanisms are exhibited. First, the hydrodynamic boundary layer changes such that local
divergences and convergences occur; this results in the exponent of the Schmidt number, #,
decrease from 2/3 to '2. Second, additional energy is cycled with the energy gained by the waves
being transferred to the near-surface turbulence. In our approach, the following relation is used to
determine the Schmidt number exponent based on significant wave height.

n=0.667 H. <03
n=0.60 03<H, <04

‘ (38)
n=0.55 04<H <05
n=0.50 0.5<H,

Note, for the case of no wave-current interaction, we still set #=0.50.

4.4. Breaking Wave Limitation
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Within the context of the wave-current interaction algorithms considered above, wave breaking
effects are not explicitly considered. Under the present approach, wave-current interactions act to
increase surface and bottom stress, which leads to an increase in turbulence and enhanced
vertical mixing. Mellor and Blumberg (2004) have considered wave breaking effects on the sea
surface temperature. It would appear that additional research is needed on shallow water wave
breaking effects and ultimately a shallow water wave and circulation model must be coupled.
See Mellor and Donelan (2006) for one approach in this regard.
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5. NOVEMBER 2004 SFs TRACER SIMULATION

A simulated release of SF¢ was conducted from November 2 to November 11, 2004. One mole
was injected and assumed to be uniformly dissolved over the vertical at 00 CST on 2 November
at the confluence of Patrick Bayou and the Houston Ship Channel (Figure 5.1). Note during the
May 2005 experiment conducted by Columbia University approximately 1 mole of SF¢ was also
injected at the same location as indicated in Appendix 2 of Schlosser et al. (2006). After the
injection, the SF¢ tracer was then simulated over the next 10 days under the assumption of
surface (CS1) and no surface gas (CS2) transfer. This was accomplished by using two separate
concentration algorithms for CS1 and CS2. Detailed injection characteristics are given in Table
5.1. The Bay model long and short wave results were used to provide the boundary conditions
for the finer resolution Houston Ship Channel simulation. Simulations were performed initially
with no wave current interaction and are described here. Simulation results with wave-current
interaction yielded essentially the same results, with a change in water surface elevations of
order 0.5 cm.
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Figure 5.1. Patrick Bayou Superfund site. Injection site is at the confluence of Patrick Bayou and
the Houston Ship Channel
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Table 5.1. SF Injection Characteristics at 00 CST on November 2, 2004. Note CS1 represents
SF¢ with surface gas transfer, while CS2 represents SF¢ with no surface gas transfer.

Parameter Galveston Bay Model Houston Ship Channel Model
Total Mass (moles) 1.0 1.0

(ILJ) Grid Location (50,88) (31,178)

(DX,DY) grid spacings (m) (378.0, 1043.9) (213.8, 786.3)

Water depth with respect to | 5.2 11.2

model datum (m)

Total water depth (m) 5.5347 11.5452

Volume (m°) 2,183,710 1,941,180

CS1 (k=1,5) (fmol/L) 457937 515151

CS2 (k=1,5) (fmol/L) 457937 515151

5.1. Set-Up

Observed river discharges for the Trinity River, San Jacinto, and Buffalo Bayou are shown in
Figure 5.2 and exhibit relatively low flow conditions with a peak total flow of order 10,000 cfs
on the 4 and 5 of November. Winds and atmospheric pressure as reported at the PORTS met
stations shown at Bolivar Roads, Eagle Point, and Morgans Point in Figures 5.3-5.5,
respectively, are uniform over the Bay with wind speeds order 10 to 12 kts. Water level residuals
at Galveston Pleasure Pier are less than 25 cm, indicating a rather tranquil period.

The models were set up to simulate the SF¢ tracer concentration and to study the dispersion
characteristics in the Houston Ship Channel and Upper Galveston Bay. The models simulated the
water levels, currents, salinity, temperature, and SF¢ concentration with and without surface gas
exchange from November 2 to November 12, 2004. The model was spun-up for one day from
rest before the tracer injection at 00 UTC, November 2.

5.2. Long Wave Results
5.2.1. Water Surface Elevation

Simulated and observed water levels at Galveston Pleasure Pier, Bolivar Roads, and Galveston
Pier 21, shown in Figure 5.6, indicate that the Bay model is accurately reproducing the water
elevations at model interior locations. Water levels at Eagle Point and Morgans Point in Figure
5.7 indicate that the Channel model is also accurately reproducing the water elevations at model
interior locations. Note the set-down of order 25cm during the period 3-8 November. In the first
half of this period, the winds are from the North, and the Bay tends to empty with levels below
the predicted astronomical tide.

5.2.2. Prediction Depth Currents

Simulated prediction depth currents at Bolivar Roads (Figure 5.8) from the Bay model and at
Morgans Point (Figure 5.9) from the Channel model are in general agreement with the data. Note
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the currents are bi-directional with strengths reduced as one proceeds from Bolivar Roads (125
cm/s) to Morgans Point (25-30 cm/s). Both models tend to slightly underestimate the peak
currents with errors in direction of order 25 degrees.

5.2.3. Temperature

Temperature at Bolivar Roads (Figure 5.10) from the Bay model and at Eagle Point (Figure 5.11)
and Morgans Point (Figure 5.12) from the Channel model are initialized to PORTS data. The
initial SST field and boundary conditions are persisted over the 11 day period. This results in an
error of order 5 °C by the end of the simulation period in sea surface temperature. Stratification
at Bolivar Roads is underestimated during the 3-5 November period. A refinement to the set-up
procedure would allow a linear increase or decrease of the initial climatological offshore
boundary condition to be applied over the simulation.

5.2.4. Salinity

Surface salinity at Bolivar Roads (Figure 5.10) from the Bay model and at Eagle Point (Figure
5.11) and Morgans Point (Figure 5.12) from the Channel model are also initialized to PORTS
data. No daily data assimilation of the PORTS salinity are performed. A persistence of the
climatological boundary condition is used. Note in Figure 5.10 at Bolivar Roads, the presence of
many lows in the observed time series, due to the advection of large gradients. Without data
assimilation the errors in surface salinity are order 5 psu at the end of the 11 day simulation
period. The above linear adjustment to the climatological offshore boundary condition would
improve the salinity results as well
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Figure 5.4. HSCM winds and sea level atmospheric pressure at Eagle Point,
November 1-12, 2004.
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Figure 5.6. GBM simulated and observed water surface elevations at Galveston Pleasure Pier,
Bolivar Roads, and Galveston Pier 21, November 1-12, 2004.
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Figure 5.8. GBM simulated and observed prediction depth currents at Bolivar Roads,
November 1-12, 2004.
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Figure 5.9. HSCM simulated and observed prediction depth currents at Morgans Point,
November 1-12, 2004.
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Figure 5.10. GBM simulated and observed temperature and surface salinity at Bolivar Roads,
November 1-12, 20004.
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Figure 5.11. HSCM simulated and observed temperature and surface salinity at Eagle Point,
November 1-12, 2004.
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Figure 5.12. HSCM simulated and observed temperature and surface salinity at Morgans Point,
November 1-12, 2004.
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5.3. Short Wave Results
5.3.1. Significant Wave Height

Significant wave heights from the Galveston Bay model shown for 1 November 2004 in the top
panel of Figure 5.13 are order 0.9m in the near shelf regions and are reduced to order 0.5m in the
lower and upper Galveston Bay and West Bay regions. In the East Bay and Trinity Bay wave
heights are order 0.3m. In the lower panel of Figure 5.13 significant wave heights from the
Houston Ship Channel model agree in magnitude with those of the Bay model.

Significant wave heights from the Galveston Bay model shown for 12 November 2004 in the top
panel Figure 5.14 are less than 0.5m throughout all Bay regions and on the near shelf. In the
lower panel of Figure 5.14 significant wave heights from the Houston Ship Channel model agree
in magnitude with those of the Bay model.

5.3.2. Wave Direction

Wave directions from the Galveston Bay model shown for 1 November 2004 in the top panel of
Figure 5.15 are to the North consistent with the wind directions shown in Figures 5.3-5.5. Wave
directions are equal to the wind directions as obtained from a two-step Barnes interpolation from
the PORTS stations. The Barnes interpolation procedure does not guarantee strict equality of the
interpolated and injected data point. Wave directions from the Houston Ship Channel model in
the lower panel of Figure 5.15 are in general agreement with those of the Bay model, but may be
slightly different due to the fact that a separate Barnes interpolation is performed over the
Channel model domain.

Wave directions from the Galveston Bay model shown for 12 November 2004 in the top panel of
Figure 5.16 are from the North consistent with the wind directions shown in Figures 5.3-5.5.
Again the same remarks regarding the two-step Barnes interpolation from the PORTS stations
apply. Wave directions from the Houston Ship Channel model in the lower panel of Figure 5.16
are in general agreement with those of the Bay model, but may be slightly different due to the
separate Barnes interpolation.

5.3.3. Wave Period

Wave periods from the Galveston Bay model shown for 1 November 2004 in the top panel of
Figure 5.17 are order 3-4 sec, with 5 sec waves found in the near shelf regions and in the deeper
navigation channel. In the lower panel of Figure 5.17 wave periods from the Houston Ship
Channel model agree in magnitude with those of the Bay model with longer period waves being
again found in the navigation channel.

Wave periods from the Galveston Bay model shown for 12 November 2004 in the top panel
Figure 5.18 are of the same order as found on 1 November. In the lower panel of Figure 5.18
wave periods from the Houston Ship Channel model agree in magnitude with those of the Bay
model.
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Figure 5.13. GBM and HSCM simulated significant wave height, November 1, 2004.
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Figure 5.14. GBM and HSCM simulated significant wave height, November 12, 2004
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Figure 5.15. GBM and HSCM simulated wave direction, November 1, 2004.
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Figure 5.16. GBM and HSCM simulated wave direction, November 12, 2004.
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Figure 5.17. GBM and HSCM simulated wave period, November 1, 2004.
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Figure 5.18. GBM and HSCM simulated wave period, November 12, 2004.
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5.4. SFg Tracer Results
5.4.1. Concentration Fields

Near surface Galveston Bay Model SF¢ concentration fields 10 days after the injection, on 00
CST on 12 November, 2004 are shown in Figure 5.19. In the top panel, results are shown for the
case of surface gas transfer, while in the bottom panel results are shown for no surface gas
transfer. For the no surface flux case, the surface concentrations are elevated from those for the
surface flux case and present in the lower portions of the Port of Houston at Morgans Point.

Near bottom Galveston Bay Model SFs concentration fields are given in Figure 5.20. In the top
panel, results are shown for the case of surface gas transfer, while in the bottom panel results are
shown for no surface gas transfer. Note that in the surface flux CS1 fields, the maximum legend
value is order 10° and the concentrations are elevated at the bottom (from the surface, Figure
5.19 top panel). In the no surface flux CS2 fields, the maximum legend value is 10* and the
fields are uniformly mixed over the vertical.

Corresponding results for the Houston Ship Channel Model SF¢ concentration fields are shown
at the near surface in Figure 5.21 and at the near bottom in Figure 5.22. The SF6 tracer reaches
the boundary and therefore there is some uncertainty as to the influence of the zero flux inflow
condition on the results. The southern extent of the tracer in both surface and bottom figures is
reduced from the Bay model results.
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Figure 5.19. GBM simulated near surface SFs Concentrations at 00 CST on 12 November, 2004.
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Figure 5.20. GBM simulated near bottom SF¢ Concentrations at 00 CST on 12 November, 2004.
(Upper panel surface flux (CS1), Lower panel no surface flux (CS2)).
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Figure 5.21. HSCM simulated near surface SFs Concentrations at 00 CST on 12 November,
2004. (Upper panel surface flux (CS1), Lower panel no surface flux (CS2)).
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Figure 5.22. HSCM simulated near bottom SF4 Concentrations at 00 CST on 12 November,
2004. (Upper panel surface flux (CS1), Lower panel no surface flux (CS2)).
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5.4.2. Residence Time

The time to exposure for SFe is defined as the time since the start of the injection when the
concentration at the given point exceeded a threshold value of 2 fmol/L. The residence time is
defined as the difference in the time to exposure of the given point and the injection point. Since
at the injection time, the initial concentration of SF¢ equaled 457937 fmol/L in all 5 vertical
levels in the GBM and equaled 515151 fmol/L in all 5 vertical levels in the HSCM, which
exceeded the threshold value, the time to exposure and residence times are equivalent.

In Figure 5.23, the GBM near surface residence times are given for CS1 surface flux and CS2 no
surface flux. In the case of no surface flux, the extent of the nonzero residence time is greatly
enhanced. This may be used by the field research team to plan the area of coverage over a ten
day experiment. In Figure 5.24, the GBM near bottom residence times are given for CS1 and
CS2, with the areal coverage of nonzero residence time increased for the no surface flux
condition. The area of nonzero residence time at the surface for CS1 is similar to the bottom
area. For CS2 the surface and bottom areas are quite different.

In Figures 5.25 and 5.26, the corresponding HSCM residence time results are shown. Note that
the southern extent of the nonzero residence times is reduced from that shown in the GBM. The
extent of the nonzero residence time, however, does reach the lateral boundaries and this may be
a source of error, since a zero gradient condition is used on inflow.

5.4.3. Exposure Level and Duration

To further assess the exposure, the average exposure level and maximum exposure levels are
determined as well as the duration of the exposure. Note the exposure level is determined as the
concentration of SFs exceeding the threshold value of 2 fmol/L. While these results are available
at each of the 5 vertical layers, we examine here only the first near surface layer. The near
surface average and maximum exposure levels are shown in Figure 5.27 and Figure 5.28,
respectively, for both of the models. In Figure 5.29, the duration of exposure is presented. These
type of computations should enable direct exposure assessments.
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Figure 5.23. GBM near surface residence time. (Upper panel surface flux (CS1), Lower panel no
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Figure 5.25. HSCM simulated near surface residence time. (Upper panel surface flux (CS1),
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5.4.4. Turnover Time

With respect to the initial injection grid cell, the total turnover time is determined as the time at
which the total mass is reduced by 1/e of the initial mass. The turnover times are given in Table
5.2 for both Bay and Channel models for each of the 5 levels as well. Note it is possible, that
once the mass is reduced to 1/e of its initial mass, the mass may increase again. This is not
indicated in the turnover time and must be determined by examining the concentration time
history at the given location.

Table 5.2. SF¢ Turnover times (days). Note CS1 represents SF¢ with surface gas transfer, while
CS2 represents SF¢ with no surface gas transfer and k=1 (surface),2,3,4, and 5 (bottom) sigma
levels.

Parameter Galveston Bay Model Houston Ship Channel Model
Total (CS1,CS2) (0.1674, 0.1708) (0.1019,0.1030)
(CS1,CS2.k=1) (0.1965, 0.2056) (0.2024,0.2111)
(CS1,CS2.k=2) (0.0701, 0.0750) (0.0378,0.0378)
(CS1,CS2.k=3) (0.1097,0.1486) (0.0497,0.0496)
(CS1,CS2.k=4) (0.1458,0.1492) (0.0766,0.0766)
(CS1,CS2.k=5) (0.1514,0.1555) (0.1297,0.1300)

5.4.5. Mass Inventory

To check on the mass consistency of the computations, a mass inventory was determined at the
end of the simulation. The difference in the initial mass and the sum of the final mass, mass lost
through the surface, and the mass lost through the lateral boundaries was determined as the mass
error. It should be noted that while the mass balance computations were carried out using double
precision, the quantities making up the balance were computed based on single precision
arithmetic. The mass relative error was determined as the ratio of the mass error to the initial
mass and was order 107, which represent the precision of the single precision arithmetic. Results
are given in Table 5.3 for the Galveston Bay Model and in Table 5.4 for the Houston Ship
Channel model computations. It is interesting to observe the difference in the results for the Bay
and Channel models, particularly with respect to final mass. Note the negative mass losses
through the surface for CS2 in both model computations are not theoretically possible, but are
due to the single precision arithmetic. Also note that the initial mass should show no nonzero
numbers after the leading 1, and again shows the limits of the single precision arithmetic. Decay
coefficients are computed based on an exponential decay from initial to final mass plus surface
mass loss for CS1 and from initial to final mass for CS2. The decay coefficients for the
Galveston Bay Model are nearly equal, while there is an order of 3 difference for the Houston
Ship Channel Model.
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Table 5.3. Galveston Bay Model: SFs Mass inventory (10~ fmoles). Initial mass at 00CST on 2
November 2004 and final mass O0CST on 12 November 2004. Note CS1 represents SF¢ with
surface gas transfer, while CS2 represents SF¢ with no surface gas transfers. Note the mass

balance region considered is [ = (15,76), J=(79,95).

Parameter CS1 CS2

Initial Mass 1000000034488.555 1000000034488.555

Final Mass 55303991283.367 994803495802.576

Mass lost through the surface 941127766951.415 -430414.673

Mass lost through the lateral 3568325477.928 55197231770.618
boundaries

Mass error -49224.155 -262669.966
Mass relative error to the | -4.922x10° -2.627x107’

initial mass (-)

Decay coefficient (days™) -0.00036 -0.00052

Table 5.4. Houston Ship Channel Model: SFs Mass inventory (10° fmoles). Initial mass at
00CST on 2 November 2004 and final mass 00CST on 12 November 2004. Note CS1 represents
SF¢ with surface gas transfer, while CS2 represents SF¢ with no surface gas transfers. Note the
mass balance region considered is I = (9,64), J=(174,205).

Parameter CS1 CS2
Initial Mass 1000000034488.555 1000000034488.555
Final Mass 156231572263.406 759593945725.248

Mass lost through the surface

774541589083.615

-945999.427

Mass lost through the lateral
boundaries

69227572621.036

240406536065.383

Mass error -699479.503 498697.350
Mass relative error to the | -6.994x10” 4.987x107

initial mass (-)

Decay coefficient (days™) -0.0073 -0.0274
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6. CONCLUSIONS AND FUTURE WORK

The estuarine dispersion characteristics of the Houston Ship Channel and upper Galveston Bay
have been investigated by the simulated movement of SF¢ tracer at Patrick Bayou in November
2004. With the addition of two concentration subroutines (with and without surface gas transfer)
to the Bay and Channel hydrodynamic models and forcing with proper boundary conditions, the
models have been set up to simulate the tracer movement during 2-11 November 2004.
Computed areal extents of the 10 day residence time contours for both zero and nonzero surface
fluxes of SF¢ bracketed the measured SF¢ contours above background concentration and
demonstrated the utility of the numerical models in planning field experiments, which will
determine residence and flushing times directly from measured tracer concentration data.

The concentration subroutine approach is an effective tool for characterizing the dispersion
features of a soluble substance in an estuary. For other pollutants particle tracking may be a more
appropriate approach. This report only documents the model simulation of the SFg tracer
dispersion using the concentration approach. Lagrangian trajectory modeling, as reported by Wei
(1994) and Blumberg et al. (2004), could also be applied to study the SF¢ tracer dispersion
experiments and compared with results from the concentration modeling. In addition, the concept
of age, introduced by Deleersnijder et al. (2001) as applied by Shen and Hass (2004), could also
be investigated to further characterize dispersion characteristics. The residence time estimates as
studied by Wang et al. (2004) might also be tried as alternative measures as well.

Additional wave-current interaction experiments, should be conducted in which the limit on the
bottom adjustment factor of 2.0 is altered. Additional work in this area, by Mellor (2003a),
Johnson (1992), and Monahan (2002) should also be considered in an effort to develop an
iterative approach for z). It would also be of interest to compare the SWAN and simpler
parametric model results to further quantify their limitations.
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