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Tropical nighttime warming as a dominant driver of 1 

variability in the terrestrial carbon sink 2 

 3 

Supporting Information Text 4 

Remote-sensing data and analyses 5 

To estimate terrestrial gross primary productivity (GPP) for years in the satellite 6 

record (1982–2011), we used the MODIS GPP algorithm (1, 2). This method is based on 7 

the logic that GPP can be estimated as the total solar energy absorbed by a given area of 8 

vegetation over a given amount of time—obtained from satellite remote sensing—scaled 9 

by the efficiency with which the given area of vegetation is able to convert absorbed solar 10 

energy to usable energy (3): 11 

   (Eq 1) 12 

Where FPAR represents the satellite-derived fraction of photosynthetically active 13 

radiation absorbed by the vegetation, PAR represents the total incoming shortwave 14 

radiation, LUEmax represents biome-specific maximum light use efficiency, f(Tmin) 15 

represents a low-temperature stress-reduction scalar, and f(VPD) represents a water stress 16 

reduction scalar.  FPAR satellite data were derived from the newly available gridded 17 

Global Inventory Modeling and Mapping Studies (GIMMS) FPAR3g dataset (4); while 18 

daily gridded meteorological variables PAR, Tmin, and VPD were obtained from the 19 

NCEP/DOE reanalysis II model (5). Uncertainty bounds calculated for satellite GPP data 20 

represent the full range of potential parameter combinations for meteorological drivers 21 

)()( minmax VPDfTfLUEPARFPARGPP ××××=∑
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f(Tmin) and f(VPD), which enabled a focus on the actual satellite signal. All 22 

meteorological variables were resampled using bilinear interpolation to match the ~8-km 23 

spatial resolution of the satellite data. Biome-specific properties, such as LUEmax, were 24 

mapped using the MODIS MCD12 dataset with the University of Maryland (UMD) land 25 

cover classification system (6). We aggregated GPP by long-term climate zone, 26 

according to the Köppen-Geiger climate classification (7).  27 

We emphasize that while estimates of GPP are derived from and partially 28 

dependent on climate data, the trends in variance that we report globally and within 29 

biomes are visible in the raw satellite data (Fig S7). This provides strong evidence that 30 

the decrease in variance of GPP over the 1982–2011 window is not driven by 31 

confounding effects of climate in GPP’s formulation, but instead by robust trends in the 32 

satellite data.  33 

We compared our results on interannual variability in satellite-derived GPP to 34 

previous work (8) based on upscaled flux tower data (flux-derived GPP (9)). While we 35 

found similar increases in variability in GPP across arid climate zones, we found a starkly 36 

contrasting trend of decreasing variance in the satellite-derived GPP estimates at the 37 

global scale and for all other climate zones. We note that our satellite-derived GPP 38 

estimates are based on the latest, third-generation merged satellite FPAR3g product, 39 

which features improved data quality and algorithm calibration (4); while the flux-40 

derived GPP estimates are partially based on an earlier, first-generation merged satellite 41 

product (9). In addition, methods limitations to flux tower-based estimates and relatively 42 

low sample density of flux towers in these tropical regions also limit our confidence of 43 

GPP estimates. These findings highlight the critical need for future research aimed at 44 
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reducing uncertainties and resolving this apparent discrepancy in our best long-term, 45 

observation-based GPP datasets. 46 

 47 

Disturbance and fire analyses 48 

Fire is one of the major ecosystem disturbances that can affect the land carbon 49 

balance. CO2 and other carbon-containing compounds are by-products of combustion, 50 

estimated to total around 2.0 to 2.5 PgC yr-1 in the early 2000s (10, 11). Decomposition 51 

of fire-killed vegetation adds more emissions over a longer time period. However, 52 

vegetation regrowth following fire might be expected to result in no net effect on the 53 

carbon cycle when averaged over a long time period. Burned ecosystems also have less 54 

biomass that gets respired and/or emitted during land-use change. In sum, without fire, it 55 

has been estimated that the net carbon flux from the land to the atmosphere would 56 

actually have been about 1 Pg yr-1 higher across the 20th century (12). 57 

Unfortunately, the quality of long-term datasets regarding the amount of fire and 58 

associated emissions is poor due to a number of factors. Perhaps chief among these is the 59 

fact that reliable estimates of burned area at a global scale only extend as far back as the 60 

mid- to late-1990s, when moderate-resolution imaging satellites began coming online. 61 

Governments in some regions (namely Alaska, Canada, and Siberia) have kept records of 62 

large vegetation fires since the mid-20th century, but even those data carry large 63 

uncertainties due to the remoteness of some fires, among other reasons (13). Translating 64 

burned area into emissions also presents a challenge, since the relationship between the 65 

two varies widely across different regions, ecosystem types, and weather conditions (14). 66 

Incorporating simulations of burned area and emissions into Earth system models could 67 



Anderegg et al. – Supporting Information – 4 
 

improve our understanding of trends and interannual variability, but only a few long-term 68 

reconstructions have been produced (12, 14, 15), and it is often difficult for such models 69 

to recreate extreme fire years. 70 

Figure S10 shows, for the period of our study, several reconstructed time-series of 71 

fire emissions (specifically, C from CO2) in terms of deviation from their respective 72 

means. The Global Inventory for Chemistry-Climate studies (GICC(16)) estimated 73 

emissions (for 1900–1996 based on burned area estimates from Mouillot & Field (2005) 74 

(17), and for 1997–2005 using satellite data), based on a vegetation type distribution from 75 

the year 2000 and assuming characteristic emissions per burned area for each vegetation 76 

type. Because of the qualitative nature of their methodology in most regions, Mouillot & 77 

Field (2005) only produced decadal burned area estimates, and therefore there is no 78 

attempt to capture interannual variability across the time-series. The Atmospheric 79 

Chemistry and Climate Model Intercomparison Project (ACCMIP (18)) based its time-80 

series for 1900–1959 on that of GICC, with a modification to allow for greater emissions 81 

from peatland fires. For the rest of the 20th century, ACCMIP used a decadally-averaged 82 

version of the RETRO database (14), which combined a mechanistic model of fire 83 

occurrence and emissions with, when available, country-level fire inventory data and 84 

satellite observations of burned area to generate an emissions time-series covering 1960–85 

2000. Yue et al. (2014) also used a mechanistic fire model, integrating it with a global 86 

vegetation model to estimate burned area across the 20th century by forcing it with 87 

climate reanalysis data and other observational datasets (15). That model also generates 88 

emissions estimates, which are shown in Figure S10. Finally, we included a time series 89 

from version 3 of the Global Fire Emissions Database (GFED3) (10), which combines 90 
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satellite observations of burned area with a vegetation model to generate emissions 91 

estimates. (ACCMIP used GFED version 2 for emissions in 2000, and used that year to 92 

harmonize the other two time-series it incorporated.) 93 

Because of the relatively low quality of data available regarding the amount, 94 

distribution, and interannual variability of carbon losses from fire, we did not explicitly 95 

include fire activity as a driver of the land carbon sink in our analysis. That said, the land 96 

use emissions estimates we used (from the bookkeeping method and two vegetation 97 

models) incorporate some global fire emissions indirectly—tropical deforestation and 98 

degradation fires accounted for about 20% of annual emissions from burning across 99 

2001–2009 (10). In addition, we compared the interannual variability of the RETRO and 100 

GFED fire emissions data to terrestrial NEE. The correlations of NEE were non-101 

significant (p=0.06) with the RETRO data and were significant with the GFED3 database 102 

(p=0.01), but the latter result was likely due to the presence of the outlier year 1998 (Fig 103 

S11). Without this severe year, the relationship is non-significant (p=0.12). Thus, 104 

currently available data indicate that NEE interannual variability is not tightly coupled to 105 

fire emissions data, but a full test of fire’s role is not currently possible due to data 106 

limitations.   107 

 108 

 109 

 110 

 111 

 112 

 113 
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SI Tables 176 

Table S1: Top-performing models from stepwise AIC model selection of all 12 climate 177 

drivers of terrestrial NEE calculated as residual of six ocean uptake models, after 178 

removing co-varying variables at r>0.5. ΔAIC is the difference in AIC from the base 179 

model with all variables included. Coefficients listed in the final model.  180 

Model ΔAIC 
NEE ~ Tmin-Tropics + SaP1 + TropP + NorthT + SaT -19.9 
NEE ~ Tmin-Tropics + SaP1 + TropP + NorthT -21.4 
NEE ~ Tmin-Tropics + SaP1 + TropP -22.4 
NEE = -0.6*Tmin-Tropics + 0.3*SaP1 -23.8 
 181 

  182 
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Table S2: Top-performing models from stepwise AIC model selection of all 12 climate 183 

drivers of terrestrial NEE calculated as residual of ocean data assimilation estimate, after 184 

removing co-varying variables at r>0.5. ΔAIC is the difference in AIC from the base 185 

model with all variables included. Coefficients listed in the final model.  186 

Model ΔAIC 
NEE ~ Tmin-Tropics + SaP1 + TropP + GlobeP + SaT -16.8 
NEE ~ Tmin-Tropics + SaP1 + TropP + GlobeP -18.3 
NEE ~ Tmin-Tropics + SaP1 + TropP -19.5 
NEE = -0.6*Tmin-Tropics + 0.2*SaP1 -20.8 
 187 

  188 
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Table S3: Top-performing models from stepwise AIC model selection of climate 189 

variables versus terrestrial respiration (R = NEEGCP – GPP), where NEE is calculated 190 

from the ocean models in the Global Carbon Project, after removing co-varying variables 191 

at r>0.5. 192 

Model AIC 
R ~ Precip-Tropics + Precip-North + GlobeT + Tmin-Tropics 3.97 
R ~ Precip-North + GlobeT + Tmin-Tropics 2.14 
R ~ Precip-North + Tmin-Tropics 0.42 
R ~ Tmin-Tropics -0.53 
 193 

  194 
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SI Figure Legends and Figures 195 

Figure S1: Wavelet transformed power-spectra of terrestrial net ecosystem exchange 196 

(NEE). (Left) Morlet wavelet transformations, which gives higher resolution in the 197 

frequency (1/period) domain, for detrended NEE values (top) and detrended NEE with 198 

volcanic and ENSO signals removed (bottom). (Right) Mexican hat wavelet 199 

transformations, which gives higher resolution in the time domain, for detrended NEE 200 

values (top) and detrended NEE with volcanic and ENSO signals removed (bottom). 201 

Colors indicate intensity.    202 
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Figure S2: Trend in coefficient of variation of mean values of terrestrial carbon uptake, 206 

using 20-year moving windows (blue) and 10-year moving windows (black).  207 
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Figure S3: Time-series in variance of atmospheric growth rate of carbon dioxide, using 219 

NOAA global estimate (black) and Mauna Loa observatory (blue) using 20-year moving 220 

windows. 221 
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Figure S4: (a) Time-series in standard deviation of terrestrial NEE (black) with volcanic 227 

forcing removed (blue), ENSO removed (green), and both volcanic forcing and ENSO 228 

removed (red) using 10-year moving windows.  229 
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Figure S5: Interannual variability in the terrestrial C sink (NEE) is associated with 241 

nighttime tropical temperatures. All variables were detrended prior to analyses. (a) Partial 242 

correlations and their statistical significance (* is p <0.05) for each variable against NEE 243 

while conditioning on all other variables. Variables are minimum (nighttime) tropical 244 

temperatures (TropTmn), average tropical temperatures (TropT), maximum tropical 245 

temperatures (TropTmx), global average temperature (GlobT), average temperature of 246 

latitudes >30N (NorT), precipitation for the globe (GlobP), tropical regions (TropP), 247 

Northern extra-tropics (NorP), Semi-arid temperature (SaT) and 1 year lag (SaT1), and 248 

semi-arid precipitation (SaP) and 1 year lag (SaP1). (b) Trend in 20-year moving 249 

windows of partial correlation between terrestrial NEEAOGCM and nighttime tropical 250 

temperatures when accounting for (red) daytime maximum tropical temperatures, solar 251 

radiation, and tropical precipitation; (black) global mean annual temperature, solar 252 

radiation, and tropical precipitation. 253 
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Figure S6: Interannual variability of net ecosystem exchange (NEE) is driven primarily 259 

by tropical nighttime temperature. Probability density of the relative likelihoods 260 

determined by AIC of each model of NEE as a function of minimum (nighttime) tropical 261 

temperatures (TropTmn), average tropical temperatures (TropT), maximum tropical 262 

temperatures (TropTmx), global average temperature (GlobT), average temperature of 263 

latitudes >30ºN (NorT), global land precipitation (GlobP), tropical land precipitation 264 

(TropP), Northern extra-tropics land precipitation (NorP), average temperature for semi-265 

arid regions (SaT) and with a one year lag (SaT1), and average precipitation for semi-arid 266 

regions (SaP) and with a one year lag (SaP1). Black bars indicate median relative 267 

likelihood of the single-variable model. 268 
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Figure S7: Declining variability of satellite-derived GPP. Moving 10-year windows of 270 

standard deviation of satellite-derived GPP (solid line), flux-derived GPP (thin dashes), 271 

and FPAR3g (thick dashes) from 1982–2011 for (a) the globe, (b) tropical regions, (c) 272 

temperate regions, (d) arid regions, and (e) cold regions. Shaded interval shows the full 273 

distribution of uncertainty due to climate inputs in the satellite-derived GPP algorithm 274 

and straight lines give the best fit via ordinary least-squares regression. 275 
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Figure S8: Global respiration is driven primarily by tropical nighttime temperature. (a) 281 

Standardized anomaly (Z-score) of detrended global terrestrial respiration (blue) and 282 

detrended tropical nighttime temperature (red). (b) Relative likelihood of each model of 283 

climatic drivers in global total respiration, determined by the likelihood that each model 284 

minimizes the information loss measured by AIC. 285 
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Figure S9: (a) Time-series of average minimum monthly temperature anomaly for the 290 

globe land surface (black) and tropical land surface (red). (b) Diurnal temperature 291 

range (DTR = Tmax – Tmin) for the globe land surface (black) and tropical land 292 

surface (red). 293 
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Figure S10: Emissions of C from CO2 from 1959–2011, as estimated by several 307 

inventories, global models, and satellite-based products (see Methods). Each time-series 308 

is normalized to its mean. 309 
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Figure S11: Emissions of C from fire from the (a) RETRO fire model from 1960–2000 325 

and (b) the GFED3 database from 1998–2010 versus detrended terrestrial NEE 326 

anomalies. 327 
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Figure S12: Comparison of Dec-Jan calculations (blue) of atmospheric growth rate 343 

(AGR) of carbon dioxide versus annual values (black) for the globe (left) and Mauna Loa 344 

(right).  345 
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Figure S13: Land variance increases in both datasets of the land C sink (i.e., NEE), where 352 

ocean uptake is estimated either by the six AOGCMs from the Global Carbon Project 353 

(GCP; a-c) or by data assimilation (DA; d-f).  354 
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