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1. Supporting Methods 

1.1. Study animals and tagging methods 

Overall, 113 sharks were tagged between 2006 and 2012; however, since 14 tags reported 

poor data, we restricted our analysis to 99 tracks collected over 7,990 cumulative days and 

representing six species: blue (Prionace glauca) n = 38 individuals; shortfin mako (Isurus 

oxyrinchus) n = 14; longfin mako (Isurus paucus) n = 1; tiger (Galeocerdo cuvier) n = 32; 

great hammerhead (Sphyrna mokarran) n = 12, and scalloped hammerhead (Sphyrna lewini) 

n = 2. Figure S1 shows the tagging locations and numbers of sharks tagged at each location. 

Table S1 provides summary information of individuals tagged including size, sex, and tag 

type. 

At coastal locations in the north-eastern Atlantic (southern England and mainland 

Portugal) capture and tagging methods of blue sharks followed Queiroz et al. (1, 2). Briefly, 

sharks were captured using rod and line and brought on-board for body-length measurement 

and tagging. Pop-off satellite-linked archival transmitter tags (PSATs; models PAT4 and 

PAT-Mk10, Wildlife Computers, Redmond, WA, USA) were attached via a monofilament 

tether (250 lb test) connected to a 5-cm long stainless steel T-bar arrowhead or an ‘umbrella’ 

type nylon dart. Tags were inserted into the dorsal musculature at a 45º angle to a maximum 

depth of 10 cm. Argos satellite platform transmitter terminals (PTTs) (Smart position-only 

tags, SPOT; model SPOT5, Wildlife Computers, Redmond, WA, USA) were attached to the 

first dorsal fin with stainless steel bolts, neoprene and steel washers, and steel screw-lock 

nuts. In the north-western Atlantic, tiger and hammerhead capture and tagging methods 

followed Hammerschlag et al. (3, 4). Sampling was conducted within the U.S. east coast 

(southern Florida) and off the Bahamas (Grand Bahamas). Sharks were captured using 

standardised circle hook drumlins, each consisting of a submerged weight base tied to a line 

running to the surface by means of an attached, visible float. Captured sharks were secured 

alongside the boat or on a partially submerged platform. A seawater hose was placed in the 

sharks’ mouth, permitting oxygenation of the gills while the shark was temporarily 

immobilised. SPOT tags were affixed to the first dorsal fin using titanium bolts, neoprene and 

steel washers, and high-carbon steel nuts. A subset of tiger shark data published previously 

(3) was analysed differently in this study. 

At oceanic locations blue and mako sharks were captured on baited longlines deployed 

from a commercial fishing vessel. Sharks were brought alongside the vessel in the beginning 
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of the gear-hauling phase, lifted and tagged while suspended against the vessel’s side in the 

vertical position. PSAT tags were rigged with a monofilament tether covered with silicone 

tubing and looped through a small hole made in the base of first dorsal fin; SPOT tagging at 

oceanic locations followed a similar procedure to coastal deployments. 

All shark tagging procedures undertaken in this study were approved by institutional 

ethical review committees and completed by licensed, trained and experienced personnel. 

The procedures used by the UK personnel were licensed by the UK Home Office under the 

Animals (Scientific Procedures) Act 1986. 

 

 

 

Fig. S1. Shark tagging locations showing the number of tags (#) deployed at each location. NAC-LCCZ denotes 

the North Atlantic Current – Labrador Current convergence zone.  
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Table S1. Summary data for satellite tagged sharks; F – female; M – male; * poor transmission. 

Shark ID PTT ID Species Fork length (cm) Sex Tag type Location tagged Tagging date Days-at-liberty 

Shark 1 40390 Prionace glauca 210 F SPOT5 Oceanic 29 Aug. 2011 46 

Shark 2 40406 Prionace glauca 150 F PAT-Mk10 England 21 Aug. 2007 69 

Shark 3 40421 Prionace glauca 180 F PAT-Mk10 Portugal 04 Jun. 2008 11 

Shark 4 40461 Prionace glauca 180 F PAT-Mk10 Portugal 04 Jun. 2008 50 

Shark 5 49022 Prionace glauca 199 F PAT4 England 06 Jul. 2006 29 

Shark 6 66935 Prionace glauca 200 F PAT-Mk10 Portugal 03 Jun. 2008 28 

Shark 7 66936 Prionace glauca 95 F PAT-Mk10 Portugal 10 Oct. 2006 19 

Shark 8 66938 Prionace glauca 199 M PAT-Mk10 Oceanic 17 Jun. 2007 23 

Shark 9 66940 Prionace glauca 130 F PAT-Mk10 England 01 Aug. 2007 12 

Shark 10 66942 Prionace glauca 115 F PAT-Mk10 Portugal 04 Oct. 2007 41 

Shark 11 66945 Prionace glauca 153 F PAT-Mk10 England 21 Jul. 2006 19 

Shark 12 66946 Prionace glauca 130 F PAT-Mk10 England 08 Aug. 2006 20 

Shark 13 66951 Prionace glauca 186 F SPOT5 England 15 Aug. 2006 8 

Shark 14 66952 Prionace glauca 170 F SPOT5 England 18 Aug. 2006 14 

Shark 15 66954 Prionace glauca 160 F SPOT5 England 31 Aug. 2007 21 

Shark 16 66955 Prionace glauca 145 F SPOT5 Portugal 01 Jun. 2009 23 

Shark 17 66957 Prionace glauca 220 M SPOT5 Portugal 01 Jun. 2009 102 

Shark 18 66963 Prionace glauca 90 M SPOT5 Portugal 10 Oct. 2006 23 

Shark 19 66967 Prionace glauca 130 F SPOT5 Portugal 06 Jun. 2008 101 



5 

 

Shark ID PTT ID Species Fork length (cm) Sex Tag type Location tagged Tagging date Days-at-liberty 

Shark 20 66969 Prionace glauca 130 M SPOT5 Portugal 17 Jun. 2008 112 

Shark 21 84174 Prionace glauca 190 F SPOT5 Oceanic 30 Aug. 2011 18 

Shark 22 84175 Prionace glauca 220 F SPOT5 Oceanic 02 Sep. 2011 33 

Shark 23 85136 Prionace glauca 260 M PAT-Mk10 Oceanic 21 Aug. 2011 91 

Shark 24 85140 Prionace glauca 250 M PAT-Mk10 Oceanic 22 Aug. 2011 119 

Shark 25 85693 Prionace glauca 240 M PAT-Mk10 Oceanic 26 Aug. 2011 81 

Shark 26 85697 Prionace glauca 200 M PAT-Mk10 Oceanic 26 Aug. 2011 119 

Shark 27 86395 Prionace glauca 185 M PAT-Mk10 Oceanic 26 Jun. 2010 88 

Shark 28 86396 Prionace glauca 192 F PAT-Mk10 Oceanic 27 Jun. 2010 56 

Shark 29 86403 Prionace glauca 125 F PAT-Mk10 Portugal 26 May 2009 120 

Shark 30 91026 Prionace glauca 240 F PAT-Mk10 Oceanic 21 Aug. 2011 89 

Shark 31 91658 Prionace glauca 260 F PAT-Mk10 Oceanic 26 Aug. 2011 121 

Shark 32 96034 Prionace glauca 260 F PAT-Mk10 Oceanic 29 Jun. 2010 119 

Shark 33 96035 Prionace glauca 240 F PAT-Mk10 Oceanic 30 Jun. 2010 26 

Shark 34 96036 Prionace glauca 200 M PAT-Mk10 Oceanic 25 Jun. 2010 13 

Shark 35 96037 Prionace glauca 210 M PAT-Mk10 Oceanic 25 Jun. 2010 7 

Shark 36 96039 Prionace glauca 235 M PAT-Mk10 Oceanic 25 Jun. 2010 179 

Shark 37 107084 Prionace glauca 220 F PAT-Mk10 Oceanic 27 Aug. 2011 119 

Shark 38 107085 Prionace glauca 220 F PAT-Mk10 Oceanic 28 Aug. 2011 93 

Shark 39 40392 Isurus oxyrinchus 210 F SPOT5 Oceanic 05 Sep. 2011 58 
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Shark ID PTT ID Species Fork length (cm) Sex Tag type Location tagged Tagging date Days-at-liberty 

Shark 40 40393 Isurus oxyrinchus 200 M SPOT5 Oceanic 08 Sep. 2011 50 

Shark 41 86399 Isurus oxyrinchus 140 M PAT-Mk10 Oceanic 25 Jun. 2010 59 

Shark 42 86400 Isurus oxyrinchus 125 M PAT-Mk10 Oceanic 23 Apr. 2009 29 

Shark 43 86401 Isurus oxyrinchus 220 M PAT-Mk10 Oceanic 30 Jun. 2010 86 

Shark 44 86402 Isurus oxyrinchus 170 F PAT-Mk10 Oceanic 24 Apr. 2009 59 

Shark 45 86407 Isurus oxyrinchus 130 M PAT-Mk10 Oceanic 03 Jul. 2010 89 

Shark 46 86408 Isurus oxyrinchus 180 M PAT-Mk10 Oceanic 27 Jun. 2010 113 

Shark 47 96030 Isurus oxyrinchus 130 F PAT-Mk10 Oceanic 04 Jul. 2010 117 

Shark 48 96031 Isurus oxyrinchus 165 F PAT-Mk10 Oceanic 05 Jul. 2010 117 

Shark 49 98334 Isurus oxyrinchus 270 F SPOT5 USA 13 Nov. 2010 150 

Shark 50 107089 Isurus oxyrinchus 220 F PAT-Mk10 Oceanic 21 Aug. 2011 119 

Shark 51 107090 Isurus oxyrinchus 255 F PAT-Mk10 Oceanic 22 Aug. 2011 119 

Shark 52 107091 Isurus paucus 245 F PAT-Mk10 Oceanic 30 Aug. 2011 49 

Shark 53 107092 Isurus oxyrinchus 170 M PAT-Mk10 Oceanic 03 Sep. 2011 119 

Shark 54 33992 Galeocerdo cuvier 203 F SPOT5 USA 26 May 2010 34 

Shark 55 34020 Galeocerdo cuvier 164 M SPOT5 USA 26 May 2010 41 

Shark 56 34021 Galeocerdo cuvier 217 F SPOT5 USA 26 May 2010 25 

Shark 57 34029 Galeocerdo cuvier 205 F SPOT5 USA 26 May 2010 191 

Shark 58 34203 Galeocerdo cuvier 210 F SPOT5 USA 13 Nov. 2010 47 

Shark 59 55494 Galeocerdo cuvier 210 F SPOT5 USA 10 Jun. 2010 96 
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Shark ID PTT ID Species Fork length (cm) Sex Tag type Location tagged Tagging date Days-at-liberty 

Shark 60 55495 Galeocerdo cuvier 206 F SPOT5 USA 09 Jun. 2010 129 

Shark 61 68471 Galeocerdo cuvier 245 F SPOT5 USA 29 Jan. 2011 28 

Shark 62 68477 Galeocerdo cuvier 201 M SPOT5 USA 29 Oct. 2010 128 

Shark 63 68485 Galeocerdo cuvier 162 F SPOT5 Bahamas 19 Feb. 2011 95 

Shark 64 68486 Galeocerdo cuvier 280 F SPOT5 Bahamas 20 Feb. 2011 99 

Shark 65 68488 Galeocerdo cuvier 267 F SPOT5 Bahamas 20 Feb. 2011 252 

Shark 66 68494 Galeocerdo cuvier 245 F SPOT5 Bahamas 19 Feb. 2011 191 

Shark 67 68495 Galeocerdo cuvier 306 F SPOT5 Bahamas 20 Feb. 2011 232 

Shark 68 68496 Galeocerdo cuvier 271 F SPOT5 Bahamas 20 Feb. 2011 217 

Shark 69 68529 Galeocerdo cuvier 232 F SPOT5 Bahamas 19 Feb. 2011 551 

Shark 70 68554 Galeocerdo cuvier 271 F SPOT5 Bahamas 19 Feb. 2011 185 

Shark 71 68555 Galeocerdo cuvier 340 F SPOT5 Bahamas 20 Feb. 2011 253 

Shark 72 68556 Galeocerdo cuvier 237 F SPOT5 Bahamas 20 Feb. 2011 240 

Shark 73 98332 Galeocerdo cuvier 269 F SPOT5 USA 12 Nov. 2010 85 

Shark 74 105594 Galeocerdo cuvier 148 F SPOT5 Bahamas 19 Feb. 2011 10 

Shark 75 105595 Galeocerdo cuvier 315 F SPOT5 Bahamas 22 Feb. 2011 35 

Shark 76 105599 Galeocerdo cuvier 271 F SPOT5 Bahamas 19 Feb. 2011 9 

Shark 77 106660 Galeocerdo cuvier 285 M SPOT5 Bahamas 10 Apr. 2011 53 

Shark 78 106661 Galeocerdo cuvier 167 F SPOT5 Bahamas 10 Apr. 2011 49 

Shark 79 112986 Galeocerdo cuvier 267 F SPOT5 Bahamas 23 Jul. 2012 25 
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Shark ID PTT ID Species Fork length (cm) Sex Tag type Location tagged Tagging date Days-at-liberty 

Shark 80 112987 Galeocerdo cuvier 204 F SPOT5 Bahamas 22 Jul. 2012 26 

Shark 81 113534 Galeocerdo cuvier 246 F SPOT5 Bahamas 15 Dec. 2011 33 

Shark 82 113536 Galeocerdo cuvier 268 F SPOT5 Bahamas 15 Dec. 2011 86 

Shark 83 113537 Galeocerdo cuvier 254 F SPOT5 Bahamas 05 Feb. 2012 72 

Shark 84 115906 Galeocerdo cuvier 290 M SPOT5 USA 27 May 2012 40 

Shark 85 115907 Galeocerdo cuvier 162 M SPOT5 Bahamas 10 Feb. 2012 24 

Shark 86 33933 Sphyrna mokarran 204 M SPOT5 USA 04 Jun. 2010 20 

Shark 87 33938 Sphyrna mokarran 193 M SPOT5 USA 12 Mar. 2010 42 

Shark 88 33994 Sphyrna lewini 155 F SPOT5 USA 17 Mar. 2010 23 

Shark 89 68472 Sphyrna mokarran 212 F SPOT5 USA 29 Jan. 2011 26 

Shark 90 68480 Sphyrna mokarran 196 F SPOT5 USA 29 Jan. 2011 116 

Shark 91 68481 Sphyrna mokarran 218 F SPOT5 USA 29 Jan. 2011 101 

Shark 92 98328 Sphyrna mokarran 173 M SPOT5 USA 20 Feb. 2010 10 

Shark 93 98329 Sphyrna mokarran 184 M SPOT5 USA 20 Feb. 2010 62 

Shark 94 105597 Sphyrna mokarran 255 M SPOT5 Bahamas 19 Feb. 2011 49 

Shark 95 106662 Sphyrna lewini 197 M SPOT5 USA 30 Apr. 2011 65 

Shark 96 106663 Sphyrna mokarran 199 F SPOT5 USA 13 Jul. 2011 156 

Shark 97 106895 Sphyrna mokarran 204 F SPOT5 USA 05 Aug. 2011 32 

Shark 98 106896 Sphyrna mokarran 222 M SPOT5 USA 18 Jul. 2011 4 

Shark 99 111550 Sphyrna mokarran 195 M SPOT5 USA 12 Sep. 2011 53 
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Shark ID PTT ID Species Fork length (cm) Sex Tag type Location tagged Tagging date Days-at-liberty 

Shark 100* 40460 Prionace glauca 140 M PAT-Mk10 Portugal 09 Jun. 2008 – 

Shark 101* 40462 Prionace glauca 200 F PAT-Mk10 Portugal 06 Jun. 2008 – 

Shark 102* 40463 Prionace glauca 200 M PAT-Mk10 Portugal 11 Jun. 2008 – 

Shark 103* 66937 Prionace glauca 110 F PAT-Mk10 Portugal 12 Oct. 2006 – 

Shark 104* 66962 Prionace glauca 90 F SPOT5 Portugal 10 Oct. 2006 – 

Shark 105* 66964 Prionace glauca 90 M SPOT5 Portugal 10 Oct. 2006 – 

Shark 106* 66965 Prionace glauca 95 M SPOT5 Portugal 11 Oct. 2006 – 

Shark 107* 66966 Prionace glauca 120 F SPOT5 Portugal 12 Oct. 2006 – 

Shark 108* 66968 Prionace glauca 120 F SPOT5 Portugal 12 Jun. 2008 – 

Shark 109* 85698 Prionace glauca 240 M PAT-Mk10 Oceanic 27 Aug. 2011 – 

Shark 110* 86406 Prionace glauca 165 F PAT-Mk10 Oceanic 25 Jun. 2010 – 

Shark 111* 107088 Prionace glauca 220 F PAT-Mk10 Oceanic 29 Aug. 2011 – 

Shark 112* 34107 Galeocerdo cuvier 210 F SPOT5 USA 25 May 2010 – 

Shark 113* 98331 Sphyrna mokarran 185 F SPOT5 USA 07 Feb. 2010 – 
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1.2. Track processing 

1.2.1. Pop-off Satellite Archival Transmitters (PSAT) 

The movement of PSAT-tagged sharks was estimated using either satellite relayed data from 

each tag or from archival data after the tags were physically recovered. Positions of each 

shark between attachment and tag pop-up were reconstructed using software provided by the 

manufacturer (WC-GPE, global position estimator program suite), where daily maximal rate-

of-change in light intensity was used to estimate local time of midnight or midday for 

longitude calculations, and day-length estimation for determining latitude. Anomalous 

longitude estimates resulting from dive-induced shifts in the estimated timings of dawn and 

dusk from light curves were automatically discarded from the dataset using software provided 

by the manufacturer (WC-GPE); latitude estimates were subsequently iterated for the 

previously obtained longitudes. An integrated state-space model [unscented Kalman filter – 

UKFSST (5); using spatially complete NOAA Optimum Interpolation Quarter Degree Daily 

SST Analysis data] was then applied to correct the raw geolocation estimates and obtain the 

most probable track. A regular time-series of locations was then estimated using a 

continuous-time correlated random walk Kalman filter, CTCRW (6) performed in R (crawl 

package). UKFSST geolocations were parameterised with standard deviation (SD) constants 

(K) which produced the smallest mean deviation from concurrent Argos positions (7).   

1.2.2. Argos Satellite Transmitter tags 

Location class (LC) Z data (failed attempt at obtaining a position) were removed from the 

dataset. The remaining raw position estimates (LC 3, 2, 1, 0, A and B) were analysed point-

to-point with a 3 m s
-1

 speed filter to remove outlier locations. Subsequently, the CTCRW 

state-space model was applied to each individual track, producing a single position estimate 

per day. Argos positions were parameterised with the K error model parameters for longitude 

and latitude implemented in the crawl package (6). 

 

1.3. Spatial density analysis and statistics 

As described above, to obtain unbiased estimates of shark space use, gaps between 

consecutive dates in the raw tracking data were interpolated to one position per day. 

However, and even though the frequency of long temporal gaps (> 20 days) in the dataset 
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was small (Table S2), any tracks with gaps exceeding 20 days were split into segments prior 

to interpolation, thus avoiding the inclusion of unrepresentative location estimates (8). 

Table S2. Number of temporal gaps of a given length per track for the different species and tag type. 

  Frequency of gaps; mean (± SD)  

Species Tag type > 5d > 10d > 20d Number of tracks 

Prionace glauca 
PAT-Mk10 4.3 (4.2) 0.9 (1.1) 0.1 (0.3) 27 

SPOT5 1.4 (1.7) 0.3 (0.6) 0.0 11 

Isurus spp. 
PAT-Mk10 4.2 (3.9) 1 (1.4) 0.1 (0.3) 12 

SPOT5 0.0 0.0 0.0 3 

Galeocerdo cuvier SPOT5 3.9 (2.4) 1.4 (2.2) 0.1 (0.4) 32 

Sphyrna spp. SPOT5 2.6 (4.5) 0.5 (0.9) 0.1 (0.3) 14 

 

To account for the spatial error around real individual geolocations, these were randomly 

resampled (100 times) along tag-specific longitudinal and latitudinal Gaussian error fields (7, 

9). To reduce tagging location and track length bias, the number of resampled positions per 

grid cell were normalised by the number of individual sharks within each grid cell (10); thus, 

an effort-weighted index of residence per unit area (number of mean days per grid cell) was 

calculated from the initial resampled geolocations using ArcGIS geographical information 

system (ESRI Inc., CA, USA) (see Fig. S2). We then applied a spatial hotspot analysis, the 

Getis-Ord Gi* hotspot analysis (11), implemented in ArcGIS to identify objectively the 

patterns of spatial significance. For a set of weighted features, this analysis identifies clusters 

of points with higher (hotspot) or lower (coldspot) values in magnitude than expected by 

random chance (12). Briefly, the procedure analyses spatial data and determines the 

correlation of a given data point value (in our case mean days per grid cell) with the values in 

surrounding (neighbour) areas, automatically performing a test of significance (z-score) for 

each area. At a significance level of 0.05, a z-score would have to be smaller than -1.96 or 

greater than 1.96 to be statistically significant. Hence, hotspots and coldspots of shark 

geolocations were defined as high (above the resampled mean days) and low (below the 

resampled mean days) space use areas, respectively. In the analysis the spatial relationship 

was conceptualised through a fixed distance band and importantly, the appropriate value was 

objectively calculated within ArcGIS (spatial statistics tool). To test whether serial 
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correlation was an issue in the performed analysis, we applied a spatial hotspot analysis using 

every fifth location in the observed tracks (Fig. S3). 

 

Fig. S2. Tagging location and track length bias reduction procedure; the number of resampled positions per grid 

cell (A) were normalised by dividing it by the number of tracked sharks (B), thus calculating the number of 

mean days per grid cell (C); the kernel smoothing parameter was calculated using a smooth cross validation 

procedure in R and was kept constant to enable the visual comparison of residence probabilities. 
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Fig. S3. Map of the estimated high (hotspot; red) and low (coldspot; blue) use habitats of sharks using daily (A) 

or every fifth location (B). 

 

1.4. Vessel monitoring system data 

Vessel monitoring system (VMS) data from 186 Spanish and Portuguese longliners (> 15 m 

length) operating in the north-east Atlantic were obtained from the respective national 

fisheries monitoring centres. The Spanish dataset spanned from January 2005 to December 

2009, whereas the Portuguese data ranged from January 2003 to December 2005 and January 

2009 to December 2011. Each record contained the Global Positioning System (GPS) 

position of the vessel (accurate to < 500 m), time stamp, and a vessel identification number. 

All records were anonymous with respect to the vessel registration number, dimensions and 

administrative ports. Received data duty cycle/reporting frequency ranged from 10 min to 

two hours. To determine the actual fishing locations where each individual longline was 

deployed, we developed an algorithm which detected sharp turning angles (> 130º), 

considered to be the point between longline deployment and retrieval (see Fig. S4). When a 

possible turn point was found, the inbound leg was retraced until the distance travelled 



14 

 

exceeded the longline length (between 80 and 100 km); the prior point was then taken as the 

start of deployment and the outbound leg was traced until the end-of-deployment point was 

determined in a similar fashion. A further check was undertaken that the endpoints were 

within a short distance of each other to confirm that a proper ‘V’ shape was defined. 

Subsequently, all movements between fishing locations were ignored (including trips to and 

from fishing ports), retaining only data pertaining to fishing activity (n = 1,063,861 data 

points). To estimate longliner space-use, fishing data were first normalised by calculating 

daily centroids and then mapped onto a grid at a spatial resolution of 1º × 1º with fishing 

effort computed as the number of vessels in each grid cell per day (Fig. 3). 

 

Fig. S4. Examples of area restricted searches with distinct soak time phases in tracked surface longliners, in 

areas with low (A) and high (B) abundance of targeted prey. 

 

For a subset of 50 longliners, fishing data was further analysed to identify areas of 

restricted search, or spatial clusters of longline deployment locations. Briefly, when searching 

for fish species, longliners move from and back to the start position in three distinct phases: 
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line deployment, soak time and line retrieval (Fig. S4A). However, when sufficient numbers 

of target fish are found, the vessel remains stationary during soak time, thus allowing the 

longliners to target the same areas repeatedly (Fig. S4B), which results in (i) higher spatial 

concentration of fishing locations (data points), (ii) a higher number of turn points per grid 

cell, and (iii) increased number of hours between turn points, which were identified by the 

filtering algorithm as area-restricted spatial clusters. Environmental field data (section 1.5) 

were then extracted for the spatial clusters (see Fig. S5). 

 

Fig. S5. Area restricted searches spatial clusters of longline deployment locations associated with frontal 

boundaries in the ocean. 

 

1.5. Null model simulations and environmental preferences 

1.5.1. Simulations of shark movements 

To test shark associations with oceanographic features (a measure of habitat selection) quasi-

realistic ‘null’ shark tracks, based on a random-walk model, were generated using custom-

written R code. At the start of each simulated track, the null shark was placed at a random 

position within the actual tagging location error field (7, 9) and the initial turning angle 

derived from a 360º uniform distribution. The movement path of each shark comprised a 

sequence of discrete steps (each representing one day) and turning angles, with the former 

limited by the actual number of individual steps recorded for each real shark. In each 

iteration, the step length and angle were drawn from species-specific step length/angle 
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distributions estimated from the tracked sharks, and a move was performed. After computing 

a new position, a check was made to ensure that it did not fall within land masses, in which 

case the position was rejected and a new step length and angle were redrawn. The simulated 

walks were also restricted to occur within the area defined by the minimum convex polygon 

(MCP) that encompassed all observed locations of each species. 

For each tracked shark a total of 200 simulation runs were completed (for examples see Fig. 

S6). Simulated random walks were then combined with satellite-derived environmental data. 

The environmental data used were daily (i) sea surface temperature, SST and (ii) SST 

anomalies derived from NOAA Optimum Interpolation Quarter Degree Daily SST Analysis 

(OISST) data; based on the OISST data we also calculated (iii) daily SST maximum gradient 

maps by calculating for each pixel a geodetic–distance-corrected maximum thermal gradient 

(ºC/100 km), and (iv) thermal front frequency (Ffreq) seasonal maps (0.1º spatial resolution), 

derived from a front-following algorithm (13); (v) monthly merged chlorophyll a levels 

(0.25
o
 spatial resolution), acquired from GlobColour (European Space Agency – ESA); and 

finally, (vi) weekly merged sea surface height (SSH) anomalies (0.33
o
 spatial resolution) 

obtained from AVISO satellite altimetry data. To determine the optimal number of simulated 

pseudo-absences we calculated, for each environmental variable, the mean and standard 

deviation of increasing numbers of ‘null’ tracks were computed. Calculated statistics 

stabilised with sample sizes of about 50 to 75 simulated tracks for each observed track (Fig. 

S7A-D), and thus, we set our sample size at 75 ‘null’ tracks per shark track.  

Oceanographic variables were also sampled for real tracks; however, to account for 

estimated error distribution around individual geolocations, we calculated a spatially 

weighted average of the environmental data for each location using 75 randomly resampled 

locations (from section 1.3).  
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Fig. S6. Examples of random walk simulations for the different shark species; blue (A), mako (B), tiger (C) and 

hammerhead (D). Red lines are tagged shark movements; orange lines are 75 replicate random-walk model 

sharks. 
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Fig. S7. Effects of different number of pseudo-absence locations on the mean and SD variation for the different 

environmental variables, shark species and longliners; blue (A), mako (B), tiger (C), hammerhead (D) and 

longliners (E); SST, sea surface temperature; SSH, sea surface height. 
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Fig. S7 (cont’d). Effects of different number of pseudo-absence locations on the mean and SD variation for the 

different environmental variables, shark species and longliners; blue (A), mako (B), tiger (C), hammerhead (D) 

and longliners (E); SST, sea surface temperature; SSH, sea surface height. 



20 

 

 

Fig. S7 (cont’d). Effects of different number of pseudo-absence locations on the mean and SD variation for the 

different environmental variables, shark species and longliners; blue (A), mako (B), tiger (C), hammerhead (D) 

and longliners (E); SST, sea surface temperature; SSH, sea surface height. 

 

1.5.2. Simulations of longliner movements 

Similarly, to test longliner associations with oceanographic features quasi-realistic ‘null’ 

vessel tracks were generated for a subset of 300 vessel/year combinations [selected amongst 

the vessels with both (i) the highest number of data points (days) in a year and (ii) largest 

fishing area]. At the start of each simulated track, the null vessel was placed at a random 

position within the daily estimated standard deviation of fishing locations (latitude SD: 0.19º; 

longitude SD: 0.30º) and the initial turning angle derived from a 360º uniform distribution. 
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All subsequent simulation steps were similar to those described in section 1.5.1 with 

simulated tracks also restricted to occur within defined MCP area defined by all observed 

longliner locations (for examples see Fig. S8). Given that environmental statistics for vessels 

also stabilised at about 75 simulated tracks (Fig. S6E) we set our sample size at 75 ‘null’ 

tracks per vessel.  

Oceanographic variables were sampled for both the simulated and real tracks; however, to 

account for the daily dispersion in fishing locations, we averaged the environmental data for 

all fishing points in a given day, and assigned the mean value to the daily centroid (calculated 

in section 1.4). 

 

Fig. S8. Examples of random walk simulations for two different longliners. 

 

1.5.3. Habitat modelling 

To investigate habitat preferences we tested associations of individual sharks and vessels with 

oceanographic features by comparing real with simulated random tracks using Resource 

Selection Probability Functions (RSPFs; 14, 15, 16, 17). Before running the analyses, records 

with incomplete environmental information, e.g. where remotely sensed data were not 
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available due to cloud cover, were removed from the datasets. Also, to avoid pseudo-

replication and spatial auto-correlation of oceanographic data, locations within a radius of 

0.33
o
 (lowest spatial resolution of satellite-derived environmental data – AVISO SSH 

anomalies) of the previous position were removed. Predictor variables were subsequently 

checked for co-linearity using Spearman’s rank correlation matrix; however, none of the 

variables exceeded the 0.75 correlation coefficient (18; see also Table S3) and thus all 

variables were considered in the same candidate model.  

RSPFs are models used to compare the amount of used habitat with the amount of 

available habitat (15). Furthermore, logistic regression has become one of the most common 

statistical approaches to estimate habitat selection models (19). We estimated logistic RSPF 

models [implemented in R (ResourceSelection package); (16, 17)] under a use-availability 

framework. The obtained variable estimates were post-hoc standardised based on standard 

deviations (20) which allowed for comparisons between the relative influence of variables 

and habitat use, regardless of the measurement scale quantifying the resource. As a result, the 

explored habitat (defined by used/real locations) was analysed in contrast to available 

(random) locations. RSPF models were estimated using maximum likelihood methods with 

the final model form and covariates selected using Bayesian information criterion (BIC). 

Habitat modelling can be affected by serial correlation in telemetry data (21). However, the 

0.33
o
 spatial reduction performed previously, also resulted in significant sub-sampled 

temporal datasets (mean temporal gaps in real tracks: 5.02 days; mean temporal gaps in 

simulated tracks: 5.64 days). Therefore no further temporal sub-sampling was performed.  
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Table S3. Spearman’s rank correlation coefficient matrix for predictor variables; SST – sea surface temperature; 

Chl. a conc. – chlorophyll a concentration; SSH – sea surface height. 

 

 

Species 
Variable SST gradients SST anomalies Chl. a conc. Front frequency SSH anomalies 

P
ri

o
n

a
ce

 g
la

u
ca

 SST -0.37 -0.11 -0.36 -0.11 0.04 

SST gradients – 0.18 0.20 0.20 0.09 

SST anomalies – – 0.07 0.06 0.13 

Chl. a conc. – – – -0.15 -0.07 

Front frequency – – – – 0.02 

Is
u

ru
s 

sp
. 

SST -0.35 -0.18 -0.29 -0.27 0.04 

SST gradients – 0.33 0.20 0.29 0.09 

SST anomalies – – 0.18 0.14 0.15 

Chl. a conc. – – – 0.04 -0.01 

Front frequency – – – – 0.00 

G
a

le
o

ce
rd

o
 c

u
vi

er
 SST -0.42 -0.30 0.01 -0.11 -0.04 

SST gradients – 0.39 0.12 0.15 0.00 

SST anomalies – – 0.21 0.01 0.00 

Chl. a conc. – – – -0.04 -0.07 

Front frequency – – – – 0.02 

S
p

h
yr

n
a

 s
p

. 

SST -0.45 -0.54 -0.05 -0.22 -0.19 

SST gradients – 0.53 0.15 0.21 0.10 

SST anomalies – – 0.32 0.14 0.09 

Chl. a conc. – – – -0.11 0.00 

Front frequency – – – – 0.06 

lo
n

g
li

n
er

s 

SST -0.29 -0.12 -0.15 -0.24 -0.01 

SST gradients – 0.32 0.19 0.26 0.18 

SST anomalies – – 0.10 0.11 0.17 

Chl. a conc. – – – 0.04 0.00 

Front frequency – – – – -0.01 

 

1.6. Overlap between sharks and longlines 

The spatial overlap (%) between sharks and longliners irrespective of time was calculated by 

counting the total number of 1
o
 × 1

o
 grid cells where both sharks and longliners occurred at 

least once, as a function of the total number of grid cells. To quantify the spatial and temporal 
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co-occurrence of longlines and sharks in the same geographic grid cell at the same time, the 

sum of the number of days with shared occupancy (overlap frequency, i.e. presence of both 

vessels and sharks in a 1º × 1º grid cell on the same day) was determined. A fixed 1º × 1º 

geographic grid cell was chosen because it encompassed the length of the longlines which 

typically range between 80 and 100 km in total length. Because there was a mismatch 

between Portuguese and Spanish data and both fleets target different oceanic regions, VMS 

data was reorganised in a total of 30 fishing scenarios which resulted from all the possible 

combinations of five years of Spanish with six years of Portuguese fishing data. The different 

fishing scenarios enabled descriptive statistics (e.g. mean, standard deviation) to be calculated 

for temporal co-occurrence for each scenario allowing us to confirm the similarity in 

estimates of overlap frequency between scenarios. Specifically, within each scenario, and for 

each day of the analysis, each vessel track was examined to determine whether a longline 

fishing point existed for that date. If so, grid coordinates were calculated and the grid cell 

vessel count updated. If the next point in the vessel track was one day later, then the vessel 

was considered to be fishing for the 24 h between those points and therefore all grid cells 

encountered while moving between the start and end fishing points were updated. Once all 

vessel tracks were processed, shark tracks were analysed in a similar way, with interpolated 

grid cells updated with occupancy and with counts made of the number of cells containing 

both longlines and sharks from which the numbers of ‘days-at-risk’ for each shark were 

calculated. 
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2. Supporting Results and Discussion 

 

 
 

Fig. S9. Processed satellite tag geolocations of six pelagic sharks overlaid on a six-year average of chlorophyll a 

concentration (A) and sea surface temperature (B). 
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Fig. S10. Temporal persistence in fishing patterns. Spatial distribution of longline fishing intensity is conserved 

between seasons across years: (A) summer (Jun – Aug) 2005 and (B) summer 2009; and (C) autumn (Sep – 

Nov) 2005 and (D) autumn 2009. (B). 

 

2.1 Reducing hotspot bias 

Defining space use ‘hotspots’ of sharks is one way of exploring shark/environment 

relationships, however, designating spatial hotspots can be biased due to several factors. For 

instance, a hotspot could be inaccurately assigned from tracking data if tags are deployed at a 

single location, the tracks are all of short duration, and no account is taken of re-weighting 

the geolocations with respect to tagging locations. In the present study we attempted to 

reduce each of these potential spatial biases. First, we spread deployments of tags across 

seven release locations spanning the North Atlantic (Fig. S1), and with tags attached to all 

species (except the one longfin mako tagged) in multiple locations (Table S1). Our efforts to 

spread tagging locations is consistent with other broad-scale tracking studies of large pelagic 

fish where hotspots and interactions have been investigated (e.g. 8, 22). Secondly, to our 

knowledge we have tagged the largest number of sharks in a single electronic tagging study 

to be undertaken in the North Atlantic Ocean (n = 113). Tagging this number of sharks for 3 

months on average per individual broadens the range of possible shark habitats recorded so 
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that the spatial ‘hotspot’ analysis may be more representative of actual shark space use 

patterns. Lastly, and as with other similar studies (8, 10), we used a hotspot mapping 

technique that statistically assigns greater weight on tag geolocations that are further away 

from tagging locations to further reduce the effects of tagging bias. Whilst it would be 

desirable to track many more sharks for longer periods to define hotspots even more 

accurately, it should be recognised that our study is a first step in exploring fine-scale 

shark/environment/fishery spatial and temporal co-occurrence across the broad scale. 

 

2.2. Species-specific high-use areas 

The tagging location and track length bias-reduction procedure was applied to tracking data 

of each species separately, to evaluate the presence of species-specific high-space-use areas 

and their contribution to the identification of hotspots (Fig. 1D). Even though tagged sharks 

generally occupied large oceanographic regions limited by temperature (Fig. 2B), areas with 

high shared space-use were observed (Fig. S10), for example in the western and eastern 

coastal and continental shelves of the North Atlantic (including the Canary and Cape Verde 

islands) and oceanic areas including the Gulf Stream, NLCZ and west and south-west of the 

Azores. These regions were also identified as areas of high seasonal fishing effort (Fig. 3) 

and were also where the highest shark-vessel overlap frequencies were observed (Fig. 4). 

Noticeably, areas of high blue shark residency were observed south of Nova Scotia (Gulf 

Stream) and south of the Azores (Fig. S10A), which were also classified as hotspots (Fig. 

1D). Likewise, higher space-use/abundance of mako sharks in the Gulf Stream, the NLCZ 

and the Azores and mid-Atlantic Ridge areas were also identified with tracking data (Fig. 

S10B). The distribution of tiger and hammerhead sharks was generally restricted to coastal 

shelf areas (Fig. S10C,D) which contributed to the identification of coastal hotspots (Fig. 

1D). 
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Fig. S11. High species-specific space-use areas calculated for blue (A), mako (B), tiger (C) and hammerhead 

(D) sharks. The kernel smoothing parameter was kept constant to enable the visual comparison of residence 

probabilities. 

 

2.3. Environmental preferences 

As previously mentioned (section 1.5.3), we used RSPF models to test associations of 

individual sharks with oceanographic features. The analysis showed that, overall, sharks 

prefer frontal boundary habitats characterised by steep temperature or productivity gradients 

(from remote-sensing images of sea surface temperature, SST, or Global colour, Chl ‘a’) (see 

Fig. 1). Preferences for areas identified with the thermal front frequency (Ffreq) algorithm 

were, when significant, low. It is possible that (i) the seasonal scale of the Ffreq metric 

calculation and/or (ii) the 76.5 km spatial scale of the smoothing Gaussian Ffreq filter were 

inadequate for comparing with shark tracks, since daily position estimates were used in the 

analysis. This seems to be supported by general higher preferences observed for the daily, 

higher spatial resolution, SST thermal gradient fields we used. Therefore, it seems likely that 

tagged sharks were responding at a smaller temporal and spatial scale than possible to 

measure with the automated front detection filter we implemented, whereas longliners 
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selected SST and productivity boundaries with much greater temporal persistence, i.e. front 

frequency (Fig. 2). The use of a higher resolution front frequency product may have further 

improved indication of shark habitat preferences for the movement analysis (e.g. 23). 

We found that the risk from fisheries differed between tagged blue and mako sharks, with 

blue sharks spending on average 2.6 days-at-risk/month and makos 3.0 days-at-risk/month 

(Mann-Whitney U-test = 163.5; p < 0.05), which was likely related to differing habitat 

preferences in mako sharks. For example, RSPF analysis shows that longliners prefer 

productive habitats characterised by high frontal frequencies, thermal and SSH anomalies for 

longline deployment (Fig. 2). Hence, similar habitat preferences of sharks and longliners are 

likely driving co-occurrence, potentially leading to higher probability of shark capture on 

longlines through increased encounter rates (see also Figs. 4, 5E,F). 

Even though tiger and hammerhead sharks displayed similar overall levels of 

environmental preferences to oceanic sharks, their high space-use of coastal and shelf areas 

(Fig. S10C,D) – where they were tagged – meant that no overlap with the longlining fleets for 

which we have data, was observed for hammerhead sharks. In addition, for only two tiger 

sharks (#66 and #67; Table S1) was co-occurrence recorded during offshore movements into 

deep water (west of the Azores). Both sharks spent on average 0.4 and 1.0 days-at-risk during 

the 309 and 122 d tracks, respectively.  

 

2.4 Species-specific differences and exploitation 

Species differences in habitat selection and a high degree of spatio-temporal overlap between 

sharks and longliners combined with different life-history traits may help in part to explain 

observed pelagic shark catch trends. For example, we found that shortfin mako sharks 

actively select frontal habitats and overlap the most with longliners. Moreover, they have 

amongst the lowest fecundity of any shark (~10-12 young every second or third year). In 

contrast, blue sharks are not only less strongly associated with steep SST gradients thereby 

overlapping less with longliners, but it also has relatively high fecundity (~80 young per 

year). This predicts greater susceptibility of makos for capture by longliners compared with 

blues, and consequently due to lower fecundity, a more rapid potential decline of mako 

population abundance compared with blue sharks in the North Atlantic. However, although 

regional analyses of catch per unit effort (CPUE) data from U.S. longliners in the western 
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north Atlantic indicates significant declines for both species, declines were apparently greater 

for blues than makos (24). The 2009 Atlantic shark stock assessments do not provide any 

support for regional declines previously reported; they suggest that current North Atlantic 

blue shark biomass appears to be well above the biomass that would support maximum 

sustainable yield and close to an unfished biomass (25, 26), whereas despite initially 

reporting declines for makos, recent estimates now show no evidence for declines (27). These 

trends are clearly at odds with reported regional declines for blue and mako sharks
 
(24, 28, 

29) and in addition with species predictions arising from our space use study. Overall the 

apparent contradictions in CPUE trends of some oceanic sharks and with our predictions 

argue for full disclosures of accurate spatial catch data because without them sustainable 

management will not be possible. Many countries exploiting North Atlantic oceanic habitats 

do not make, or do not have, full high-quality catch or landings data available for scientific 

assessments (30). Hence, CPUE trends for blue and mako sharks in the North Atlantic are 

difficult to interpret because despite VMS technology, the precise location and composition 

of catches is lacking, therefore it is challenging to determine if the observed trend variability 

is more closely related to variations in the area targeted or the changing sharks’ spatial 

distributions. 
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4. Data Access 

The Vessel Monitoring System (VMS) data used in this paper are freely available for non-

profit, scientific use from the national government departments given below. 

Access to the Portuguese VMS data should be directed to: 

Direção Geral de Recursos Naturais, Segurança e Serviços Marítimos 

www.dgrm.mam.gov.pt/ 

Av. Brasilia  

1449-030 LISBOA - PORTUGAL                                           

Phone: +351 21 3035700         

Fax: +351 21 3035702 

dgrm@dgrm.mam.gov.pt 

 

Access to the Spanish VMS data should be directed to: 

Ministerio de Agricultura, Alimentación y Medio Ambiente 

www.magrama.gob.es 

Pº Infanta Isabel, 1  

28014 MADRID - SPAIN 

Phone: +44 91 347 45 80  

Fax: +44 91 347 55 80  

gprensa@magrama.es 


