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SI Text
Derivation of Natural Capital Asset Prices for Multiple Interacting
Stocks. Let siðtÞ be the i th natural capital stock of an N stock
ecosystem, and let dsi=dt describe the change in the capital stock
i through time:

dsi

dt
= _si =GiðsðtÞÞ− f iðs, xðsðtÞÞÞ,   i= 1,⋯,N, [S1]

where superscripts are indices;, sðtÞ= ðs1ðtÞ, s2ðtÞ,⋯, sNðtÞÞ is a
vector of multiple (natural) capital stocks at time t, and Gi is a
growth function for stock i, which can be a function of other
natural capital stocks. For example, in a biological system, G
includes prey–predator relationships. The function f i is an an-
thropogenic impact function (e.g., harvesting behavior) on stock i.
The vector x represents human feedback responses shaped by
governing institutions. Specifically, define Mðs,ΩÞ as a time-
autonomous economic program that accounts for the vector of
capital stocks and a vector of parameters defining institutional
arrangements, Ω (19, 23), that maps into a vector-valued func-
tion M : ðsðtÞ,ΩÞ→ xðsðtÞ;ΩÞ, where the length of x is L and is not
necessarily equal to the length of s. We suppress the parameter
vector Ω when doing so does not cause confusion. To clarify, in a
fishery, f i may be harvest of species i, whereas x may include
decisions, such as time at sea and gear choices, that combine
with stock si to lead to f i.
Define DðsðtÞ, xðsðtÞÞÞ as an index of the net benefits or divi-

dends flowing to society at time t. Suppressing the dependence
on time, assume that Dðs, xðsÞÞ is measured in stable monetary
terms, so that discounting at a constant exponential rate is jus-
tified (49). At a time t, the present value of net benefits is

V ðsðtÞÞ=
Z∞
t

e−δðτ−tÞDðsðτÞ, xðsðτÞÞÞdτ. [S2]

The term δ is the social discount rate (e.g., the US Office of
Management and Budget rate of 3%) (50). Substituting xðsÞ, it
is possible to redefine D over the stock vector s, so that
DpðsðτÞÞ≡DðsðτÞ, xðsðτÞÞÞ, where the asterisk indicates the elimi-
nation of x. We slightly abuse notation and assume that the partial
derivative of D includes the feedback through the economic pro-
gram: Dp

si =DsiðsðτÞ, xðsðτÞÞÞ= ∂D=∂si + ð∇xDÞ′dx=dsi, where ∇xD
is the gradient vector of D with respect to x, dx=dsi is the ðL× 1)
derivative vector of x with respect to si, and ′ indicates transpose.
A similar substitution of the economic program into f i yields
f iðs, xðsÞÞ= f ipðsÞ,   so  that  f isi = ∂f i=∂si + ð∇xf iÞ′dx=dsi = f ipsi . To be
clear, the first step is substituting in the economic program. There-
fore, although the second term looks like it comes from a total
derivative, it is in fact just an application of the chain rule.
Substitution of the economic program into D, the assumption

of an infinite time horizon, and assuming that the resource dy-
namics (Eq. S1) and economic program are time-autonomous
enable V to be expressed solely as a function of sðtÞ. The
shadow price of stock i at time t for a given economic program is

piðsðtÞÞ≡∂V ðsðtÞÞ
∂siðtÞ . [S3]

Note that pi is a function of all stocks, s, rather than a single
stock. Each stock can impact D, the stock dynamics, and the

feedback rules embodied in x. The asset price of pi includes
cross-stock effects (Eq. 1).
Following the works by Dasgupta and Maler (32) and Arrow

et al. (44) and adopting the definition (Eq. S3), we differentiate
V ðsðtÞÞ with respect to t and express it as

dV
dt

= δV −Dðs, xðsÞÞ= ð∇sV Þ′ ds
dt

= pðsÞ′ ds
dt
, [S4]

where ∇sV is a (N × 1Þ gradient vector, ds=dt is an (N × 1Þ Jacobian
matrix, and p= ðp1ðsÞ, p2ðsÞ,⋯, pNðsÞÞ is an (N × 1Þ shadow price
vector. Eq. S4 states that the time rate of change of the present
value of benefits is equal solely to the effect from changes in the
natural capital stocks evaluated at appropriate prices (19) or
dIW=dt= p′ _s= dV=dt. Rearranging the terms in Eq. S4,

δV =Dðs, xðsÞÞ+ pðsÞ′ _s=Hðs, x, pÞ=Hpðs, pÞ. [S5]

Hpðs, pÞ is the current value Hamiltonian as evaluated along the
economic program xðsÞ, and it is composed of the flow of current
benefits, Dðs, xðsÞÞ, and the value of increments to the stocks, p′ _s.
Dividing by δ on both sides, Eq. S5 yields

V ðsÞ= δ−1ðDðs, xðsÞÞ+ pðsÞ′ _sÞ, [S6]

which Shapiro and Stiglitz (51) call the fundamental asset equa-
tion. Differentiating Eq. S6 with respect to si,

piðsÞ=
Dsiðs, xðsÞÞ+

 
∂pi
∂si _s

i +
PN
j≠ i

∂pj

∂si _s
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!
+
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j≠ i

p j ∂ _sj
∂si

δ−
�
Gi

siðsÞ− f isiðs, xðsÞÞ
� . [S7]

After creating the definitions MDi ≡Dsi, MGi ≡Gi
si, and

MHIi ≡ f isi to preserve consistency with ref. 18, Eq. S7 is identical
to Eq. 1.
The cross-price term, ∂pj=∂si, determines whether two stocks

are capital complements or substitutes. Assuming that increasing
stock i raises the value of V ðsÞ (i.e., stock i is an asset), then
stocks i and j are only complements if VsisjðsÞ= ∂piðsÞ=∂sj > 0.
That is, endowing the system with more of stock j makes stock i
more valuable. The reverse would be true if the stocks
were substitutes, because the idea that stock j is a substitute for i
implies that it can replace stock i, thereby lowering stock i’s
marginal value. We explore the slope of the level sets of the
shadow price of pi =Vsi in stocks i and j by invoking the implicit
function theorem: dsj=dsi =−ðVsisi=VsisjÞ, where Vsisi = ∂pi=∂si and
Vsisj = ∂pi=∂sj. Assuming that ∂pi=∂si < 0, a result that Fig. 2 shows
holds in our case study, then ∂piðsÞ=∂sj > 0 implies upward slop-
ing contours in state space for the case of complements. The
reverse is true for the case of substitutes. However, the value of
∂pi=∂sj must be recovered jointly with shadow prices, and the
shadow prices themselves are not obvious ex ante.

Approximating Shadow Prices.We use a polynomial approximation
approach following refs. 18, 52, and 53 to approximate solutions
to Eqs. S2 and S3. The function approximation uses a linear
combination of a series of nonlinear basis functions evaluated at
a finite number of points in state space (53). We use Chebyshev
polynomials for the basis functions. Chebyshev polynomials are
used, because they have desirable orthogonality properties that
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enable them to provide the lowest error approximations to unknown
functions, while also offering multiple differentiability (54, 55).
First, we located the evaluation nodes by specifying M uni-

variate evaluation points for each of the N state variables and
then calculated D and _si at all combinations of these points. The
evaluation nodes were selected by finding the M roots of each
unidimensional Chebyshev polynomial on the bounded approxi-
mation interval of each state variable. Node coordinates were then
combined to locate a node in multidimensional space. We define
φi as the M × ðqi + 1Þ univariate basis matrix of qi th degree over
bounded ranges for each state variable. We expand the univariate
bases matrices to allow for approximation over the bounded RN

domain by finding the tensor product across dimensions to form
an MN ×

QN
i=1ðqi + 1Þ basis matrix: ΦðSÞ=φN ⊗φN−1 ⊗⋯⊗φ1,

where S is the MN ×N matrix of evaluation points (i.e., all grid
nodes of M evaluation points for all N state variables), and ⊗ is
the Kronecker product.
Second, we let VkðSÞ≈ΦkðSÞβ, where k= 1, . . . ,MN indexes

the MN distinct capital stock vectors (i.e., individual evaluation
points in an N-dimensional grid) formed by the tensor product
basis, ΦkðSÞ is the kth row of ΦðSÞ, and β is a

QN
i=1ðqi + 1Þ× 1

vector of unknown approximation coefficients. Stacking these
MS vector equations, we obtain the matrix equation:

V ðSÞ=

266664
V1ðSÞ

«
VkðSÞ

«

VMNðSÞ

377775≈

266664
Φ1ðSÞ

«
ΦkðSÞ

«

ΦMN ðSÞ

377775β=ΦðSÞβ. [S8]

Using Eq. S5 and the fact that ∂V=∂siðSÞ= piðSÞ≈ ð∂ΦðSÞ=∂siÞβ,
we obtain δΦðSÞβ≈DðSÞ+PS

i=1diagð _siÞð∂ΦðSÞ=∂siÞβ. Now let
MN >

QN
i=1ðqi + 1Þ, so that it is not possible to satisfy the equal-

ity exactly at all approximation points. If we minimize the sum
of squared approximation errors, then the resulting solution
for β is

β= ðΨðSÞ′ΨðSÞÞ−1ΨðSÞ′DðSÞ, [S9]

where ΨðSÞ= δΦðSÞ−PN
i=1diagð _siÞ∂ΦðSÞ=∂si.

With solutions for β in hand, we now have the ability to cal-
culate the shadow prices at any vector of capital stocks in the
approximation domain s through evaluation of the partial de-
rivative of the basis vector: piðsÞ≈ ð∂ΦðsÞ=∂siÞβ. We implement
the approximation using the R package {capn}, which is avail-
able at environment.yale.edu/profile/eli-fenichel/software.

Baltic Sea Model Adaptation Details. We adopt Hutniczak’s (40)
ecological–economic model of the Baltic Sea fishery that con-
tains multiple agent and species interactions and follow her de-
scription of institutional arrangements. In this model, changes in
the ecosystem result from species growth, predation, and indi-
vidual fishing vessels’ behaviors under a set of regulatory rules.
Regulators annually set species-specific TACs based on single-
species stock assessments and target fishing mortalities. Harvest
allocations are distributed among vessels in the form of indi-
vidual nontransferable quotas. We assume that vessels in the
fishing fleet seek to maximize current net revenue through
harvest choices—subject to regulations, physical constraints,
owned capital, production structure, individual technical ef-
ficiency, and available stock abundance.
The biological component of themodel includes age-structured

submodels for cod, herring, and sprat linked through predation as
described in appendix A of ref. 40. The International Council for
the Exploration of the Sea (ICES) provides annual stock as-
sessments for major Baltic Sea species. The model parameters
(tables A1, A3, A4, and A6 of ref. 40) are updated based on the

Report of the Baltic Fisheries Assessment Working Group (56)
and available in Tables S1–S3.
The largest and only conceptual change in the current bio-

logical model relative to ref. 40 is that we follow the Report of
the Benchmark Workshop on Baltic Multispecies Assessment
(57) approach, and we estimate weight of cod recruitment (wa,t;
a = 2) as a function of parental weight (wSSB) in addition to
weight of adult cod (wa,t; a ≥ 3) as a function of the amount
of prey available, with a indicating age.

wa,t =ψ1 +ψ2ln
�
wSSB,t−2

�
; a∈ ½2� [S10a]
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[S10b]

The subscripts z and h indicate prey species (sprat and herring,
respectively); furthermore, y is the biomass, Ksh is the half-
saturation constant, n is a functional response constant, and
Greek letters are estimated parameters. Eqs. S10a and S10b
are jointly estimated by generalize methods of moments with
robust SEs using cod weight based on 1991–2014 data (56). Es-
timated parameters are provided in Table S4, and details on
constants can be found in the work by Hutniczak (40).
The commercial harvest model closely follows the work by

Hutniczak (40). Vessels operate as decision-making units that
seek to maximize net revenue constrained by quota allocations,
stock levels, and vessel characteristics, including technical effi-
ciency constraints, through adjusting fishing behavior. The input
requirement, the amount of effort required to land the chosen
species composition in units of days at sea, is estimated with
one-way fixed effects to account for the heterogeneity in fleet
input efficiency, and estimation results are given in Table S5.
This method offers the advantage of enabling us to account
for effects, such as costly targeting and joint production.
Landing price data calculated in 2013 Euros (EUR) are provided
in Table S6. Data come from the Polish Fisheries Monitoring
Centre in Gdynia, the Polish Marine Institute in Gdynia, and the
2015 Annual Economic Report on the European Union (EU)
Fishing Fleet (36).*
We forecast two target fishing mortality scenarios. First,

we consider BAU, which models historical and current policy.
The fishing mortality rates associated with this case are 0.30,
0.26, and 0.29 for cod, herring, and sprat, respectively. Second,
we adopt the MMSY approach suggested by the ICES (57) and
planned for implementation in 2017. The mortality rates for
this case are 0.55, 0.3, and 0.3 for cod, herring and sprat,
respectively (40).

Data Generation. To implement the shadow price approximation
approach, we generate an MN × ð2N + 1Þ matrix of simulated
(pseudo)data. There areMN evaluation nodes, N columns of stock
levels (three in our case study), N columns of changes in stock with
respect to time _si (three in the case study), and a column of div-
idend flows, D. The MN × ð2N + 1Þ matrix must span over all re-
gions of the state space for which we wish to calculate shadow
prices (i.e., all combinations of stocks for each species). In practice,

*These data are individual logbook data with confidentiality protections for the individ-
ual vessel owners. They may only be accessed in cooperation with the Polish Fisheries
Monitoring Centre in Gdynia, a part of the Polish Fisheries Department under the Min-
istry of Maritime Economy and Inland Waterways.
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such data are rarely available, because observational time series
data from ecological–economic systems rarely sample very broadly
through the state space. “Pseudodata” generated by models can fill
this gap—while also ensuring that the resulting data are consistent
with the underlying bioeconomic model of the system (37).
Before generating the pseudodata, we must establish the do-

main that those data fill. This domain must be defined sufficiently
broadly, so that it fully captures the system dynamics originating
from any stock level for which one wants to produce a shadow
price. We established the steady-state stock vector by simulating
from 2013 initial conditions. By year 50 (2063), the stocks of the
three species are stable at [cod, herring, sprat] = [439, 1,163,
1,252] thousand metric tons under the BAU scenario and [cod,
herring, sprat] = [364, 1,585, 1,864] thousand metric tons under
the MMSY scenario. In addition to these steady-state vectors,
we also considered the range of the transition path to the
steady state from the observed 2013 stocks [cod, herring,
sprat] = [175, 1,303, 1,753] thousand metric tons as well as the
recent range of the stocks in defining the domain for gener-
ating pseudodata.
For herring, we set the lower bound at 60% of the BAU steady-

state biomass (698 thousand metric tons) and the upper bound
at 140% of the BAU steady-state biomass (1,628 thousand
metric tons). For sprat, we set the lower bound at 60% of the
BAU steady-state biomass (751 thousand metric tons) and the
upper bound at 160% of the BAU steady-state biomass
(2,128 thousand metric tons). A greater relative range was
used for sprat because of the large initial stock size. These
ranges do a good job of capturing the full future projected
trajectory and a large fraction of the historical stock sizes. The
2013 stock of cod and the recent historical cod biomass have
been substantially lower than the steady state. Therefore, we set
the lower cod bound at 130 thousand metric tons and the upper
cod bound at 800 thousand metric tons, which capture both the
recent history and projection values. The lower and upper
bounds of domains also safely cover the range of the MMSY
scenario.
Having established the domain, we generate a 20th-order

three-dimensional Chebyshev polynomial defined over the do-
main for each of the three species and use the combined roots of
these polynomials to establish 8,000 points at which to simulate
the model. At each of these 8,000 simulation nodes, we simulate
profit, D, and growth rates, _si. We use fixed biomass at age shares
based on 2008–2013 averages to map the full age-structured
model into a biomass dynamic model (Table S7). For estimates
requiring a two period lag (e.g., cod recruitment), we use the same
biomass at t − 1 and t.
The bioeconomic simulation model solves for net revenue

maximizing fishing effort for all individual Polish fishing vessels
active in 2012. Then, for D, we sum over the fleet at each sim-
ulation node. We scale these predictions using multipliers, as-
suming that the Polish fleet is representative of the other fleets
fishing in the Baltic Sea, to translate these sample results on
fishing behavior and economic returns to the entire Baltic Sea
fleet. We use fixed shares based on 2012 TAC distribution be-
tween EU members: 0.30 for cod, 0.28 for herring, and 0.29 for
sprat. Our shares approach is justified, because allocation among
EU members is based on the principle of relative stability, which
implies that each country receives a fixed share of each TAC
(58), and similarity of the composition of EU fleets participating
in the Baltic Sea harvest (36). The results for the Polish fleet
indicate that TAC utilization can vary considerably with chang-
ing individual quotas and biomass levels. The underutilization of
TAC occurring in our model is an expected response to varying

harvest conditions that cause lack of profitability for some quota
combinations. Annual ICES reports show that historical TAC
utilization was ∼39–89% (2010–2015†) for cod, ∼35–109%
(1989–2015) for herring, and ∼41–103% (1987–2015) for sprat
between 2008 and 2012. Our simulation results suggest that the
TAC utilizations from our simulation model fall within realistic
ranges.
The 8,000 simulation nodes create a somewhat “bumpy” sur-

face linking the status of the three species, the economic pro-
gram xðsÞ, and hence, simulated profit D and growth rate _si.
These irregularities create numerical issues for shadow price
approximation because of their tendency to produce locally un-
stable estimates of derivatives. This bumpiness occurs, because
the simulation compresses the decisions of 411 representative
vessels over a state space of 24 age categories for three species
down to three dimensions. The discrete changes of vessel be-
havior across this large, but finite, number of vessels at critical
stock thresholds create small but nontrivial discontinuities in
overall effort predictions from the simulations. The bumpiness of
the implied surface can be viewed as a surface with discrete
jumps that lead to the Gibbs–Wilbraham phenomenon (59). The
Gibbs–Wilbraham phenomenon is an overshoot in the conver-
gence of a functional approximation (i.e., Gibbs oscillations) in
the neighborhood of a discontinuity of the function being ap-
proximated (60). High-dimensional Chebyshev approximations
can be particularly vulnerable to Gibbs oscillations when fitted to
a discrete sample of nodes (59).
To avoid these numerical problems, we avoid approximating

the shadow prices on the raw pseudodata, but instead, we fit
smooth, locally well-fitting surfaces for D and _si and use the
predictions from these fitted surfaces for the approximation of
shadow prices. To accomplish this smoothing, we use the linear
spline local fitting method applied to the 8,000 simulation nodes.
This method performs well and demands fewer parameters
compared with other options. The bandwidths are selected using
cross-validation for each D and _si linear spline. Adopting the
fitted splines, we smooth the simulated population dynamics of
each species using a linear approximation [siðt+ 1Þ≈ siðtÞ+b_s iðtÞ]
and predicted profit [D̂ðtÞ], where carets indicate the function
relationship based on the splines. The percentage root mean
square errors of three _si (cod, herring, and sprat) and D are 5.78,
1.63, 0.48, and 0.71%, respectively, for the BAU and 1.07, 1.62,
0.56, and 0.51%, respectively, for the MMSY. This smoothing
process provides reasonable derivatives, while capturing the
overwhelming majority of information contained in the pseu-
dodata. We compare simulation results from the original
model with the smoothed model based on the linear splines,
which are repeated from Fig. 1 (Fig. S1). An alternative to our
smoothing approach would be to use a denser set of simulation
nodes for the shadow price approximation. This alternative
would further smooth the surface, allowing the shadow price
approximation to occur without additional intermediate steps.
However, generating the pseudodata requires that each of the
411 vessels solve a constrained optimization problem at each
time step. It currently takes 21.7 h to generate the 8,000 nodes
using 40 processors (48 gigabytes of random access memory) on
the high-performance Omega computing cluster at the Yale
Center for Research Computing. Our approach of fitting a
smoothed model on a smaller set of nodes provides a compu-
tationally efficient approach that likely will be necessary for
ecosystem management models with dimensions beyond our
three-species model.

†We report cod TAC utilization for a shorter time series because of incomplete reporting
and a considerable lack of enforcement in earlier years.
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A B

Fig. S1. The figure compares the original (circles) and smoothed (curves) simulations. A shows the ecological system, and B shows net revenue.

Table S1. Maturity rates and weights at age in stock (56). NA stands for not applicable

Age, y 1 2 3 4 5 6 7 ≥8

Maturity, % of mature stock
Cod 0.00 0.13 0.36 0.83 0.94 0.96 0.96 0.98
Sprat 0.17 0.93 1.00 1.00 1.00 1.00 1.00 1.00
Herring 0.00 0.70 0.90 1.00 1.00 1.00 1.00 1.00

Average weight 2008–2013, g
Cod NA 179 366 827 997 1,279 1,898 2,216
Sprat 5 9 10 11 11 11 12 12
Herring 13 22 28 32 37 41 46 51

NA, not applicable.

Table S2. Recruitment function coefficients (SEs) based on 1974–2014 data

Species αi: Intrinsic growth rate βi: Density dependence γi: Environmental impact

Cod 0.382*** (0.086) −1.32 × 10−3*** (2.78 × 10−4) 0.304*** (0.052)
Sprat 4.745* (0.253) −4.22 × 10−4*** (2.35 × 10−4) NA
Herring 3.574*** (0.134) −6.74 × 10−4*** (1.32 × 10−4) NA

Cod recruitment dependent on environmental conditions is described by the average deep water salinity
(*10% of significance level; ***1% of significance level). The source data are from ref. 56. NA, not applicable.

Table S3. Harvest parameters estimated from data from ref. 56 for years 2008–2013

Age, y 1 2 3 4 5 6 7 ≥8

Selectivity—cod NA 0.072 (0.014) 0.325 (0.031) 0.297 (0.028) 0.355 (0.024) 0.331 (0.051) 0.280 (0.064) 0.270* (0.085)
Selectivity—sprat 0.085 (0.009) 0.170 (0.012) 0.209 (0.016) 0.231 (0.012) 0.247 (0.011) 0.261 (0.017) 0.221 (0.025) 0.227 (0.027)
Selectivity—herring 0.026 (0.004) 0.056 (0.006) 0.093 (0.007) 0.119 (0.011) 0.130 (0.011) 0.150 (0.017) 0.189 (0.018) 0.174 (0.015)
Discard multiplier—cod NA 2.038 (0.190) 1.314 (0.057) 1.152 (0.021) 1.122 (0.026) 1.059 (0.027) 1.028 (0.022) 1.014 (0.016)

SEs are in parentheses. All estimates are significant at the 99% confidence level, except those indicated (*significant at the 95% confidence level). NA, not
applicable.
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Table S5. Input requirement coefficients

Coefficient Vessels ≥12 m Vessels 8–11.99 m

αc 0.162 (0.026) *** 0.311 (0.029) ***
αh 0.164 (0.033) *** 0.017 (0.029)
αs 0.154 (0.034) *** NA
αo 0.109 (0.025) *** 0.115 (0.029) ***
αk −1.031 (0.464) ** −0.098 (0.211)
αcc 0.042 (0.007) *** 0.058 (0.007) ***
αch −0.004 (0.002) * −0.012 (0.003) ***
αcs −0.006 (0.003) ** NA
αco −0.010 (0.002) *** −0.041 (0.004) ***
αhh 0.046 (0.008) *** −0.001 (0.008)
αhs −0.011 (0.003) *** NA
αho −0.009 (0.003) *** −0.020 (0.003)
αss 0.051 (0.009) *** NA
αso −0.011 (0.003) *** NA
αoo 0.026 (0.006) *** 0.042 (0.006) ***
αkk 0.651 (0.934) −0.049 (0.428)
αkc −0.074 (0.017) *** −0.018 (0.015)
αkh −0.048 (0.028) * 0.028(0.016) *
αks 0.014 (0.023) NA
αko −0.021 (0.025) −0.025 (0.017)
Fixed effects

Individual Yes Yes
Time No No

NA, not applicable.
*At 10% of significance level.
**At 5% of significance level.
***At 1% of significance level.

Table S6. Summary of the landing price data in 2013 Euros per
1 kg fresh weight

Vessel length, m Cod Herring Sprat Other

8–9.99 1.261 0.427 0.318 1.164
10–11.99 1.280 0.388 0.358 0.610
12–17.99 1.147 0.370 0.274 0.434
18–23.99 1.104 0.340 0.270 0.431
≥24 1.055 0.362 0.275 0.527

The source data are from ref. 36.

Table S7. Fixed biomass at age shares based on the 2008–
2013 data from ref. 56

Age, y 1 2 3 4 5 6 7 ≥8

Cod Not included 0.158 0.234 0.311 0.166 0.074 0.034 0.023
Sprat 0.293 0.310 0.181 0.095 0.064 0.031 0.014 0.012
Herring 0.184 0.216 0.176 0.140 0.108 0.077 0.043 0.056

Table S4. Cod growth function coefficients estimated from the
2008–2013 data from ref. 56

Coefficient ψ1 ψ2 ϑ2 ϑ3 ϑ4+

Value 0.215*** 0.119*** 1.464*** 1.717*** 0.803***
SEs −0.002 −0.009 −0.022 −0.013 −0.006

***At 1% of significance level.
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