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Gridding Process for Observations and Model Output 

After quality control, snowpack point observations were gridded to the 200, 50, and 25 km 

AOGCM grids using a nearest neighbor approach where stations in each grid cell were grouped 

and averaged to form gridded values (1). At coarser scales, this appears to grossly overestimate 

SWE (Fig. 1) because values for zero snow (where stations do not exist) are not included. The 

simulated AOGCM SWE was similarly regridded from one model resolution to another using a 

linear interpolation for comparison with observations on a common grid (Figs. 3, 4). Regional 

comparisons are made only in gridcells with positive SWE climatologies from the AOGCMs 

(Fig. S1), removing those points in Fig. 1 where the station regridding process produces snow 

almost everywhere. We assume that the regridding process captures regional interannual 

variability in snowpack for prediction skill validation found in Fig. 3. This highlights the need 

for either high resolution (for regridding to coarser grids) or scale-independent observational data 

products for model evaluation.  

 

Normalized Regional Snowpack Anomaly 

Due to differences in resolution affecting elevation height (Fig. S1) and potentially limiting SWE 

magnitudes (Figs. 1,S1,S2), we use a measure of SWE anomalies (time series example shown in 
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Fig. S8) normalized by each region’s mean SWE for across-model comparisons and prediction 

skill: 

normalized anomaly =  ! ! !!
!

  (Equation S1) 

Where 𝑥(𝑡) represents the SWE at time 𝑡 and 𝑥 represents the mean SWE.  

 

Climate Indices 

Various climate indices have been used previously to explore intraseasonal covariance with 

WUS snowpack variability (2-8). Here we use the monthly observed values of the Pacific / North 

American (PNA) pattern, Multivariate El Niño Southern Oscillation (ENSO) index, and Pacific 

Decadal Oscillation (PDO) index. The June PNA was downloaded from the NOAA Climate 

Prediction Center (information described here: 

http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml). The PNA index is a measure of 

the state of the atmosphere, based on atmospheric 500 mb height anomalies standardized by the 

1981-2010 climatology. We use the Multivariate ENSO index based on 6 variables across the 

Pacific region reflecting the atmosphere and ocean states: sea-level pressure, zonal and 

meridional components of the surface wind, sea surface temperature, surface air temperature, and 

total cloudiness fraction. The May/June ENSO value was downloaded from the NOAA Earth 

System Research Laboratory (https://www.esrl.noaa.gov/psd/enso/mei/). ENSO values are 

standardized by the 1950-1993 climatology. The PDO index was downloaded from the 

University of Washington (http://research.jisao.washington.edu/pdo/) (12). Data was accessed 

for all indices on May 23, 2016 and again for the PDO on February 7, 2017.  

 The standardized observed climate indices available on July 1 are used to determine if the 

climate state on July 1 has information for prediction of spring snowpack 8 months later. The 
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covariance of winter climate indices with April 1 snowpack (2-7) suggests that there may be 

prediction skill, but has not previously been quantified. We use this straightforward static 

statistical prediction in comparison with our dynamics AOGCM prediction to determine if the 

dynamical system provides additional information beyond the initial climate state to improve 

prediction skill. 

  

Gridded Non-Snow Observations 

Temperature and total precipitation observations were obtained from the University of East 

Anglia Climate Research Unit (CRU) for comparison with model output. Version ts3.2.3 

(https://crudata.uea.ac.uk/cru/data/hrg/) is used in our analysis of November-February 

temperature and precipitation, spanning November 1980 through February 2015. (Data for 2016 

is presently unavailable). For calculating storm track prediction skill, the v-component of winds 

was obtained at 850 mb from ERA-Interim, a reanalysis product produced by the European 

Centre for Medium-Range Weather Forecasts (10) for November 1980 through February 2015 

for consistency.  

 

Storm Track Definition 

In the midlatitudes, concentrated regions of storminess are regularly found during the winter. 

These regions are referred to as storm-tracks (13). They have high concentrations of disturbing 

meridional winds (northward or southward) throughout the atmospheric column. Here we choose 

to define storm tracks by 6-hourly values of the v-component of 850 mb winds because we are 

interested in the influence of storms over the land surface in the mountains. We use a storm track 

index previously documented (9), where: 
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storm track index =  !
!

x t+ 24hr − x t !!
!!!   (Equation S2) 

 

where N is the sample size in days of each season (120 or 121 in a leap year), x is the climate 

variable defining storms (here we use the v-component of 850 mb winds), t is time, and t+ 24hr 

represents a time step 24 hours later than t. We focus our storm track seasonal prediction on the 

months important for March snowpack development: November through February. Storm track 

predictive skill is therefore provided 4 months in advance (since it is initialized July 1). 

 

Ensemble Spread Characterization 

Results based on ensemble means alone obscure valuable information about a prediction system 

and the range of possible outcomes in an ensemble system. A coherence index like that defined 

in (11,14) can provide us with an assessment of the spread in individual ensemble members and 

how the ensemble spread relates to the spread in interannual variability in the ensemble mean. 

Similarly to (11,14), we define a coherence index Ω(snow) for each model as: 

 

Ω snow =  !∗!!"#$%&""
! !!!"##

!

!!! !!"##
!     (Equation S3) 

σ!"##!  is the variance across all individual prediction values (SWE!) for all E ensemble members 

(E = 10 for the 200 km and E = 12 for the 50 and 25 km models) and all 36 years, giving E ∗ 36 

data points: 

 

σ!"##! = !
!∗!"!!

SWE! − µ
!!∗!"

!!!     (Equation S4) 
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µ is the mean SWE for all ensembles and all years (represented in Fig. 1). 

σ!"#$%&""!  is the variance of ensemble annual mean values across all 36 years (the interannual 

variability of the ensemble mean prediction for 1981-2016): 

 

σ!"#$%&""! = !
!"

µ! − µ !!"
!!!     (Equation S5) 

 

where µ! is the ensemble mean SWE for a given year i. 

If all of the E ensemble members produce the same result, the two variance calculations 

are the same and Ω snow = 1. If the individual ensemble members for each year are 

independent, then σ!"#$%&""!  reduces to σ!"##! /E and Ω snow = 0. This metric is useful to 

understand spatial differences in prediction coherence. Higher values imply more coherence—

either due to lower modeled internal variability (potentially reflecting the true real-world natural 

variability) or a prediction system tendency to a solution. 

 

Test of How A Model Predicts Itself Versus Observations 

Prediction system bias may increase the likelihood of a specific solution (also known as a 

systematic bias). We quantify this tendency, by calculating how well the models predict 

themselves. Instead of calculating how the ensemble mean predicts observations, we isolate each 

individual ensemble member to see how the remaining multi-ensemble mean predicts it (using a 

Spearman correlation across all 36 years). These 10 (200 km model) or 12 (50, 25 km models) 

solutions are averaged to produce a measure of the model’s ability to predict itself. Higher 

correlation values for the model predicting itself relative to its ability to predict observations 

suggests a systematic prediction system bias leading to a tendency towards a solution. This does 
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not identify what causes this bias however. This test gives hope that future prediction system 

compositions can be developed to improve the ability of the model to predict observations. 
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Supporting Figures 
 

Fig. S1. Mountain regions for regional analysis (top) and elevations across model simulations 
and station observations (bottom). Note that for the 200 km model, narrow mountain ranges 
(Sierra Nevada, Oregon Cascades, Arizona and New Mexico) are not resolved. 

Figure	S1:	ElevaEon	and	Mountain	Regions	of	Interest.	Mountain	regions	for	regional	
analysis	(top)	and	eleva@ons	across	model	simula@ons	and	sta@on	observa@ons	
(boMom).	Note	that	for	the	200	km	model,	narrow	mountain	ranges	(California	Sierra	
Nevada,	Oregon	Cascades,	Arizona	and	New	Mexico)	are	not	resolved.	
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Fig. S2. Bias in Simulated Snowpack. Box and whisker plot of bias in regional March snow 
water equivalent (SWE) for 1981-2016. Regional SWE calculated for each region shown in Fig. 
S1. Bias calculated as simulated regional SWE minus observed regional SWE. Red line shows 
the median, top and bottoms of the filled boxes for the 25th and 75th percentiles. Outliers plotted 
by black dots. 

Figure	S2:	Bias	in	Simulated	Snowpack.	Box	and	whisker	plot	of	bias	in	regional	March	
SWE	for	1981-2016.	Regional	SWE	calculated	for	each	region	shown	in	Fig.	S1.	Bias	
calculated	as	simulated	regional	SWE	minus	observed	regional	SWE.	Red	line	shows	the	
median,	top	and	boMoms	of	the	filled	boxes	for	the	25th	and	75th	percen@les.	Outliers	
ploMed	by	black	dots.	 Dra<:	not	for	distribu@on	
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Fig. S3: Bias in Simulated Normalized Snowpack Anomalies. Same as Fig. S2, but for 
normalized snowpack anomalies (Equation S1).  
 
 
 
 

Figure	S3:	Bias	in	Simulated	Normalized	Snowpack	Anomalies.	Same	as	Fig.	S2,	but	for	
snowpack	anomalies	(simulated	anomaly	minus	observed	anomaly).		
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Fig. S4. Interannual variability of March snow water equivalent (SWE) normalized by 
climatology (fraction of standard deviation of ensemble mean SWE divided by mean SWE 
climatology) for 1981-2016. As in Fig. 2, points have been masked for only those with a 
minimum of 1 cm of SWE in the climatology. 
 

 
Fig. S5. Interannual variability of the ensemble mean snow water equivalent (SWE) for the 
month of March 1981-2016. As in Figure S4, but without normalization. 
 

Figure	S3:	Interannual	Variability	of	SWE	Normalized	by	Climatology.	Frac?on	of	
standard	devia?on	of	ensemble	mean	SWE	divided	by	mean	SWE	climatology	for	the	
month	of	March	1981-2016.	As	in	Figure	2,	points	have	been	masked	for	only	those	
with	a	minimum	of	1	cm	of	SWE	in	the	climatology.	
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Figure	S5:	Interannual	Variability	of	SWE.	Standard	devia@on	of	ensemble	mean	SWE	
for	the	month	of	March	1981-2016.	As	in	Figure	S4,	but	without	normaliza@on.	
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Fig. S6. Trend in March snow water equivalent (SWE) from 1981-2016 in observations and 
native model grids. As in Fig. 2, points have been masked for only those with a minimum of 1 
cm of SWE in the climatology. 
 

Fig. S7. Detrended regional predictive skill of models and climate indices. As in Fig. 3 but for 
variables with the linear trend removed. 
 

Figure	S4:	Trend	in	SWE	from	1981-2016.	Trend	in	March	SWE	from	1981-2016	in	
observa?ons	and	na?ve	model	grids.	As	in	Figure	2,	points	have	been	masked	for	only	
those	with	a	minimum	of	1	cm	of	SWE	in	the	climatology.	
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Figure	S6:	Detrended	regional	predicEve	skill	of	models	and	climate	indices.	As	in	
Figure	3	but	for	variables	with	the	linear	trend	removed.	

	D
et
re
nd

ed
	P
re
di
c@
on

	S
ki
ll	

SoCal   NoCal   OR Cascd WA State Gr Basin NoRocks AZ & NM Wasatch ColRocks

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

FLOR    Grid: (a) Detrended Regional Predictions: 1981−2016

C
or

re
la

tio
n

 

 

p>0.05			p≤0.05	

11 11.5 12 12.5 13
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 
All Mods
Mods 2&3
CM21
FLOR
HiFLOR
NINO
PNA
PDO

11 11.5 12 12.5 13
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 
Multi−Model Mean
50 & 25 km Models
200 km Model
50 km Model
25 km Model
NINO MEI (May/Jun)
PNA (Jun)
PDO (Jun)

11 11.5 12 12.5 13
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 
All Mods
Mods 2&3
CM21
FLOR
HiFLOR
NINO
PNA
PDO

11 11.5 12 12.5 13
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 
Multi−Model Mean
50 & 25 km Models
200 km Model
50 km Model
25 km Model
NINO MEI (May/Jun)
PNA (Jun)
PDO (Jun)

Northern	Rockies	
Arizona	&	New	Mexico	
Great	Basin	
Oregon	Cascades	
Wasatch	
Washington	State	
Colorado	Rockies	
Northern	Sierra	Nevada	
Southern	Sierra	Nevada	

-(50	&	25	km	WUS	Mean)	

AOGCM	Mean	
50	&	25	km	AOGCMs	
200	km	AOGCM	
50	km	AOGCM	
25	km	AOGCM	
ENSO		
PNA	
PDO	
	

Southern	
Sierra	
Nevada	

Northern	
Sierra	
Nevada	

Oregon	
Cascades	

Washing-
ton	State	

Great	
Basin	

Northern	
Rockies	

Arizona	&	
New	

Mexico	

Wasatch	 Colorado	
Rockies	

Sierra	
Nevada	

Mari@me	 All	WUS	

		(a)	Individual	WUS	Mountain	Ranges	 	 	 									 	 									(b)	Grouped	Ranges	

Dra;:	not	for	distribu@on	



 12 

 
Fig. S8: Comparison of Northern and Southern Sierra Snowpack Estimates. Northern (a), 
Southern (b), and Total (c) Sierra Nevada snowpack anomalies from 1985-2016 estimated from 
snow stations (Figure S1) and snow reanalysis. Anomalies calculated as the deviation in snow 
water equivalent (SWE) from the mean divided by the mean value (Eq. 1). Correlations provided 
in the upper right hand corners for the station product versus the two reanalysis estimates: mean 
March SWE (blue) and the averaged 1st of March and 1st of April SWE values (red).  
 

Dra;:	not	for	distribu@on	

Figure	S8:	Comparison	of	Northern	and	Southern	Sierra	Snowpack	EsEmates.	Northern	(a),	Southern	(b),	
and	Total	(c)	Sierra	Nevada	snowpack	anomalies	(Eq.	1)	from	1985-2016	es@mated	from	snow	sta@ons	
(Figure	S1)	and	snow	reanalysis.	Anomalies	calculated	as	the	devia@on	in	SWE	from	the	mean	divided	by	the	
mean	value.	Correla@ons	provided	in	the	upper	right	hand	corners	for	the	sta@on	product	versus	the	two	
reanalysis	es@mates:	mean	March	SWE	(blue)	and	the	averaged	1st	of	March	and	1st	of	April	SWE	values	(red).		
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Fig. S9: Comparison of Seasonal Prediction Skill from Two Estimates of Sierra Snowpack. 
Estimates provided for AOGCM prediction system skill from 1985-2016 for Northern (a,b), 
Southern (c,d), and Total (e,f) Sierra Nevada snowpack. (a,c,e) provide prediction skill of “raw” 
anomalies of snowpack. (b,d,f) provide prediction skill for detrended anomalies. Mean March 
snowpack reanalysis values used for “reanalysis”. Note: the station prediction skill in this figure 
differs in its start date (1985) from Figs. 3,S7 (1981). 
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Figure	S8:	Comparison	of	Seasonal	PredicEon	Skill	from	Two	EsEmates	of	Sierra	Snowpack.	Es@mates	

provided	for	AOGCM	predic@on	system	skill	from	1985-2016	for	Northern	(a,b),	Southern	(c,d),	and	Total	(e,f)	

Sierra	Nevada	snowpack.	(a,c,e)	provide	predic@on	skill	of	“raw”	anomalies	of	snowpack.	(b,d,f)	provide	

predic@on	skill	for	detrended	anomalies.	Mean	march	snowpack	reanalysis	values	used	for	“reanalysis”.	

Note:	the	sta@on	predic@on	skill	in	this	figure	differs	in	its	start	date	(1985)	from	Figs.	3,S5	(1981).	
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Fig. S10. Omega coherence index for each model (a-c). Larger values of omega reflect greater 
coherence in ensemble member outcomes whereas values approaching zero reflect greater 
independence in ensemble members. Masked for snow water equivalent (SWE) less than 1 cm as 
in Fig. 2. Perfect model calculations (d-f) to compare the correlation between ensemble mean 
versus observations (x-axis) and ensemble mean versus individual ensemble member (y-axis). 
See Methods for explanation of calculations. 
 
 

Figure	S9:	Limits	of	SWE	predicEon	system.	Omega	coherence	index	for	each	model	(a-c).	Larger	values	of	
omega	reflect	greater	coherence	in	ensemble	member	outcomes	whereas	values	approaching	zero	reflect	
greater	independence	in	ensemble	members	(masked	for	SWE	<	1	cm	as	in	Figure	2).	Perfect	model	
calcula@ons	(d-f)	to	compare		the	correla@on	between	ensemble	mean	versus	observa@ons	(x-axis)	and	
ensemble	mean	versus	individual	ensemble	member	(y-axis).	See	Methods	for	explana@on	of	calcula@ons.	
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Fig. S11. 50 km model (left) and 25 km model (right) bias (AOGCM – observed) in November 
1980 – February 2016 seasonal (November through February): temperature (a,b), precipitation 
(c,d) and storm track index (e,f) measured by standard deviation of the standard deviation of 
filtered daily v850. 
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Fig.	S11.	50	km	model	(left)	and	25	km	model	(right)	bias	(AOGCM	–	observed)	in	November	1980	–	

February	2016	seasonal	(November	through	February):	temperature	(a,b),	precipitation	(c,d)	and	
storm	track	index	(e,f)	measured	by	standard	deviation	of	the	standard	deviation	of	filtered	daily	v850.	


