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Skilful forecasting of global fire activity using
seasonal climate predictions
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Societal exposure to large fires has been increasing in recent years. Estimating the

expected fire activity a few months in advance would allow reducing environmental and

socio-economic impacts through short-term adaptation and response to climate variability

and change. However, seasonal prediction of climate-driven fires is still in its infancy. Here,

we discuss a strategy for seasonally forecasting burned area anomalies linking seasonal

climate predictions with parsimonious empirical climate–fire models using the standardized

precipitation index as the climate predictor for burned area. Assuming near-perfect climate

predictions, we obtained skilful predictions of fire activity over a substantial portion of the

global burnable area (~60%). Using currently available operational seasonal climate pre-

dictions, the skill of fire seasonal forecasts remains high and significant in a large fraction of

the burnable area (~40%). These findings reveal an untapped and useful burned area pre-

dictive ability using seasonal climate forecasts, which can play a crucial role in fire man-

agement strategies and minimise the impact of adverse climate conditions.
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Over the past 30 years, the development of seasonal climate
prediction models has grown from pure research to
routine operational activities1 across a range of applica-

tions around the world (e.g. energy and water management,
insurance, agriculture2,3). However, studies assessing the skill of
seasonal climate predictions (as obtained from dynamical climate
models) to forecast fire burned areas (BA) are still relatively
scarce4–8 and mostly limited to a single season or region.
Moreover, most studies that exploit the use of statistical models
for forecasting fire activity based on climate information rely on
few predictors and have regional focus9–11. Lack of long-term
global fire data, needed to establish solid empirical or statistical
relationships between climate and fire activity as the basis to
predict BA, has prevented global scale studies12. The situation has
recently changed as the global dataset of monthly BA described in
Giglio et al.13 is now spanning the last two decades, making
comprehensive analysis of the climate–fire links worldwide
possible14,15. However, a global assessment of dynamical seasonal
climate forecast systems to be used for BA prediction has not
been addressed so far.

The overarching goals of this study are to develop empirical
predictive relationships between fire and climate variables for the
entire globe and to explore the performance of an integrated
climate–BA model that combines empirical fire–climate models
with global climate seasonal forecasts, to obtain seasonal pre-
dictions of fire activity worldwide.

The key contribution of this study is to assess the current skill
of BA predictions using multi-model seasonal climate predictions
at a global scale and for each season separately. The results
revealed substantial BA predictability based on antecedent and
forecasted climate conditions that can be exploited for fire risk
management months ahead. Our study could serve as the basis
for the development of a global fire seasonal forecast product.

Results
Defining the climate–fire model with observations. Precipita-
tion is a first-order driver of BA globally16. For this reason, and
after evaluation of other potential climatic drivers, here we
selected the standardized precipitation index (SPI17,18) as the
climate indicator/predictor of BA. SPI transforms accumulated
precipitation values over a specific period (usually from 1 to
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Fig. 1 Schematic view of the proposed burned area forecast system. In order
to forecast burned area (BA) in JJA of year N (dark grey shadow), we rely
on the climate forecast issued on May of the same year (dashed line).
Before May, we have the observed climate data, while from May on (light
grey) we only have seasonal climate forecasts. Observations and forecasts
can be merged to construct the SPIt(M−m)−BA model, depending on the
values of the parameters t (which can take a value of 3, 6 or 12 months) and
M−m (which, in the illustrated example, can vary between March and
August of year N, i.e. from the last month of the season being forecasted,
back to the prior 6 months). As examples, we represent how climate
observations and forecasts should be merged to compute SPI12(7) (purple
line); how SPI3(8) is constructed from climate forecasts only (light blue
line); and how SPI6(4) (orange line) is computed only from observations
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Fig. 2 Maximum skill of burned area predictions obtained using observed climate. Correlations of out-of-sample burned area (BA) predictions using the
SPI–BA model fed with observed SPI data for a December–January–February (DJF), b March–April–May (MAM), c June–July–August (JJA) and d
September–October–November (SON). Only correlations that are significant (p-value < 0.05) are shown in green colours. Grey colour shadows those grid-
points with non-significant correlation values. White indicates areas where fires do not occur (e.g. sea) or have not been recorded
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12 months) into a standard Gaussian distribution with zero mean
and unit variance, with positive and negative values indicating
wet and dry conditions, respectively. In addition to SPI, we also
explored other indicators and variables including the standar-
dized precipitation evapotranspiration index (SPEI19), tempera-
ture, and a regression-based precipitation–temperature indicator
(i.e. a linear combination of SPI and temperature).

For each point of the global grid (at a 2.5° × 2.5° spatial
discretization) and for each season separately (December–
January–February, DJF; March–April–May, MAM; June–July–
August, JJA; September–October–November, SON), we express
the possible link of year-to-year changes in BA with the SPI (and
other indicators) using the following model:

BA ¼ β � SPIt M �mð Þ þ ε ð1Þ

In Eq. (1), β represents the sensitivity of BA to dry or wet
conditions as informed by the SPI, m is the month for which the
SPI is computed (which we allow to vary from M−5 to M, where
M is the last month of the season considered; see Fig. 1), t is the
accumulation time window (number of months) used to compute
the SPI (we consider periods of 3, 6 and 12 months; for instance,
t= 3 thus corresponds to precipitation anomalies accumulated
over the three months m−2, m−1 and m; see Fig. 1), and ε is a
stochastic noise term that captures all other (neglected) factors
that influence BA other than SPI. With this approach, we take
into account the potential effect of antecedent climate conditions
on BA, as described in previous works20,21. Prior to the analysis,
the time series of fire and SPI data were linearly detrended (to
minimise the influence of slowly changing factors; see e.g. Andela
et al.16 and Turco et al.22,23) and standardized (see Methods).

First, we determine empirically the best SPI–BA model for each
grid point and season. The approach is based on finding the
values of the model parameters (β, m and t) that maximise the
correlation (r) between modelled and observed BA series. We
assess the performance of the model to achieve out-of-sample BA
predictions from the knowledge of the predictor SPI data outside
the period used to train the model, adopting a leave-one-out
cross-validation method. In the model, we use the observed SPI
values for the 21-year long period for which the BA series are
available (see Methods).

Figure 2 shows the correlations between the out-of-sample BA
predictions, obtained using the observed SPI data as drivers, and
the observed BA series. These results provide the maximum skill
of BA using the SPI–BA model as they are obtained using the best
available climate data (that is, observational references) as drivers.
We find that in a substantial fraction of the domain area (about
60% depending on the season) such correlations are statistically
significant, with an average correlation value, 〈r〉, of 0.57–0.59
depending o n the season. There is thus a promising basis for
developing a seasonal fire forecast system based on operational
dynamical climate forecast systems, as illustrated below.

To support our choice of SPI as the best predictor for BA, we show a
comparison of the BA predictions using other indicators and variables
including SPEI (which is mathematically similar to SPI, but including also
potential evaporation), temperature alone (T model) and a multiple liner
regression-based model using temperature and SPI (SPI-T model; i.e. BA
=β·SPIt(M−m)+ γ·Tt(M−m)+ ε). Figure 3 summarises the results for
all seasons, models and verification metrics. The T model shows the
worst performance, because only 40–45% of the domain area has
significant correlations (with values on the order of 0.5–0.55; Fig. 3a). The
SPEI, SPI and SPI-Tmodels perform very similarly, with around 60–65%
of the global burnable area showing statistically significant correlations
between modelled and observed BA series (with an average correlation
value of around 0.55; Fig. 3a). Similar conclusions are drawn using the

mean absolute error (MAE) metric (Fig. 3b). These results confirm that
precipitation alone explains much of the year-to-year BA variability on a
global scale16. Finally, the mean error (ME) metric, that measures the
difference between the average prediction and observation, indicates that
the systematic error is low, with values between −0.05 and 0.05 (in
standard deviation units; Fig. 3c), with the largest range of values
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Fig. 3 Summary of burned area prediction skill obtained using different
observed climate indicators and metrics. Boxplots of the spatial distribution
of a correlation values (numbers above the boxes represent the percentage
of the domain area with significant correlations, i.e. number of green against
grey plus green points in Fig. 2), b mean absolute error values (MAE) and
c mean error (ME) for the burned area predictions based on SPEI, SPI, SPI
and temperature (SPI–T model) and temperature alone (T model) for the
four seasons (depicted with different colours). The median is shown as a
solid line, the box indicates the 25–75 percentile range while the whiskers
show the 2.5–97.5 percentile range
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corresponding to the SPI-T model. Based on these analyses, the T and
SPI-T models were discarded. While the performance of the SPI and
SPEI models was very similar, the former has been selected allowing for
defining a very simple and parsimonious climate–BA model.

Feeding the climate–fire model with seasonal forecasts. Here we
assess the skill of retrospective forecasts (or re-forecasts) of BA,
considering a lead-time of 1 month and using seasonal predic-
tions as drivers. For instance, the forecasts of the total BA in JJA
are obtained from the climate forecasts issued in May (see the
illustration of Fig. 1), giving 1 month of lead time. We consider
seven seasonal dynamical predictions (Table 1). Exploring the
feasibility of BA predictions from operational multi-model pro-
ducts is an important novelty of this study.

Figure 4 shows the percentage of the domain with statistically
significant correlation between predicted and observed BA,
considering the different dynamical forecast systems, driver
climate variables and seasons. For the sake of comparison, the
results obtained with observations described above are also
reported. Three main conclusions can be drawn from this
analysis. First, we further confirm that the SPI is the best
predictor when the BA prediction model is fed with actual
seasonal forecasts (note that Figs. 2 and 3 were obtained using
climate observations to feed the BA prediction model) after
balancing performance and parsimony among the various
approaches. Second, quite similar results across seasons were
found. Third, among the various seasonal forecast products, the
best results are achieved with the seasonal forecast systems cfs-v2,
ecmwf-s4 and ecmwf-s5.

We also explored how to best combine the various forecasts
products to obtain the most skilful predictions, as ensemble
means of multiple forecast models typically have better skill than
any particular model24–28. We considered two different ensem-
bles: the ensemble mean of the seven forecast systems (ENS
hereinafter), and the ensemble mean of the three best performing
models (BESTENS hereinafter, i.e. cfs-v2, ecmwf-s4 and ecmwf-
s5). The two lower rows in Fig. 4 show that ENS reaches a similar
percentage of global burnable area with skilful BA predictions as
the best single model, while BESTENS systematically outperforms
the individual models. Consequently, we consider the ensemble
BESTENS results in the following.

Figure 5 shows the correlations between the predicted and observed
BA series in each season, using the SPI predicted from the BESTENS
seasonal climate forecasts for the BA predictions. These results allow for
determining the skill of our forecast system to produce BA predictions.
Whilst the predictive capability of the model is reduced when compared
to the results of Fig. 2, the skill is still high (〈r〉 from 0.55 to 0.57
depending on the season) and significant over a large fraction of the

domain (about 40% depending on the season). The regions where
significant correlations are found include also extra-tropical areas, such as
Mediterranean Europe and the central-northern Asian regions, where
dynamical forecast systems are known to have a limited prediction
skill1,29,30. The skill found here largely relies on merging observational
information (for the months previous to the fire season) with seasonal
forecasts (for the fire season). The MAE of the BESTENS is slightly
higher than the BA prediction using observations, as expected, and the
ME is between −0.15 and 0.1 (Fig. 6). To complete the BA skill
assessment, we also evaluated the added value of the forecast model
framework against a null model obtained by considering only long-term
averages of observed BA (i.e. a forecast based on BA climatology).
Figure 7 confirms that the forecast model produces higher correlations
than the null model, supporting the usefulness of current seasonal
forecast systems over a naïve climatology estimate.

Clearly, an improvement of seasonal predictions would further
enhance the usefulness of the SPI–BA model discussed here. In
this sense, the above results are conditioned on the skill of the SPI
(see Supplementary Figures 1–4) and on the characteristics of the
SPI–BA model. The values of the parameters β, m and t leading to

Table 1 Seasonal forecast systems considered in this study

Model acronym Description References

ecmwf-s4 ECMWF Seasonal Forecast System 4 Molteni et al.58

ecmwf-s5 The fifth generation of the ECMWF seasonal
forecasting system

Available user guide at https://www.ecmwf.int/sites/default/files/
medialibrary/2017-10/System5_guide.pdf (accessed March 14, 2018)

cfs-v2 NCEP coupled forecast system model version 2 Saha et al.59

cancm4 Canadian Centre for Climate Modeling and Analysis
Coupled Climate Model version 4

Merryfield et al.60

cm2p5-flor-a06 Geophysical Fluid Dynamics Laboratory Climate
Model version 2.5, flor version a06

Delworth et al.61; Vecchi et al.62

cm2p5-flor-b01 Geophysical Fluid Dynamics Laboratory Climate
Model version 2.5, flor version b01

Delworth et al.61; Vecchi et al.62

rsmas-ccsm4 The fourth version of the Community Climate
System Model

Gent et al.63
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Fig. 4 Percentage of global burnable area with skilful burned area
predictions obtained from various seasonal forecast systems. Different
rows indicate different climate forecast systems (labelled according to
Table 1), including the burned area (BA) predictions obtained with
observation (OBS), with the ensemble mean of all the models (ENS), and
the ensemble mean of the best models (BESTENS; the best models are
highlighted with underlined and bolded name). Different columns indicate
the performance of the BA prediction model based on different predictors
(SPEI, SPI, SPI and T, and T) for the different seasons
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the correlations shown in Figs. 2 and 5 are displayed in Fig. 8a–l.
This information provides insights on the way climate affects fire
activity and on the sources of BA predictability worldwide. The
coefficient β (the average across all the out-of-sample estimates;
Fig. 8a, d, g, j), representing the response of BA to SPI variations
(that is, the fingerprint of climate on BA), is generally negative
(73%, 72%, 78% and 72% of the domain with SPI–BA model, for
DJF, MAM, JJA and SON, respectively). Since negative SPI values
correspond to dry conditions, this intuitively indicates that in
most regions drier conditions led to larger BA values. These
results agree with other studies that focused on regions with
abundant fuel but rarely dry ecosystems, where fires are mainly
limited by fuel moisture, generally indicating that drier conditions
promote larger fire activity21,31. Nonetheless, there are also areas
(for instance Australia and central-eastern Africa) where the BA
sensitivity to SPI is positive (β > 0). These are arid regions, where
fire spread is mostly limited by the fuel amount, which is
enhanced by antecedent wet conditions32. We also found that the
spatial correlation between the climatological patterns of annual
water balance (provided in Supplementary Figure 5) and the
spatial pattern of β is statistically significant and negative, with
correlation values of −0.41, −0.29, −0.27 and -0.40 respectively
in DJF, MAM, JJA and SON. This suggests that droughts play a
prominent role in wetter areas, while wet conditions can promote
larger fires in arid regions. These results are in line with the
intermediate fire–productivity hypothesis20,33, which suggests
that fire activity reaches two minima, one dominated by high
aridity values where fire spread is mostly limited by fuel amount,
and another characterised by low aridity where fuels are abundant
and fires are mainly limited by fuel moisture content. In regions
with large climate/ecosystem gradients, substantially different
climate–fire links can exists close to each other. In such areas, we
should acknowledge that the spatial resolution of our analysis

might obscure the relationship, hampering local/regional
interpretations.

Figure 8 (panels b, c, e, f, h, i, k, l) also shows the time scales
(i.e. duration of dry/wet periods) and timing of climate conditions
that more strongly influence fires across the globe (parameters t
and m, respectively). Although the spatial variability of these
patterns is quite high, some distinct behaviour can be inferred, in
keeping with the discussion above. Overall, short-term drought
conditions (concomitant with the fire season) lead to larger BA in
humid regions (e.g. northern Asia in JJA), while antecedent
wetter conditions over longer accumulation periods favour higher
values of BA in arid areas (e.g. Australia). The values of m
are generally close to the end of the fire season considered
(Fig. 8b, e, h, k). For instance, over extended regions, in the
optimisation of the SPI–BA model the SPI of February/August is
selected for the DJF/JJA season. In these cases it is necessary to
resort to the four-months-ahead predictions of precipitation to
compute the SPI. There are also regions (e.g. Australia) where BA
is related to antecedent SPI in such a way that dynamical climate
forecasts are unnecessary (i.e. m ≤ 4; prior to November/May for
forecasting DJF/JJA BA). Clearly, where antecedent observed SPI
allows predicting BA months in advance, the SPI seasonal
forecast errors do not affect the skill of the BA prediction model.
Also, the SPI and thereby BA prediction skill increases with larger
values of t (Fig. 8c, f, i, l), since our forecast employs more
observed data for longer SPI accumulation windows34. In fact,
merging observational information (for the months previous to
the fire season) with seasonal forecasts (for the fire season) is a
special feature of our approach that substantially contributes to
increase fire predictability, making the most of the best
information available to the users. This is especially useful over
areas where the performance of the dynamical forecast systems is
still affected by significant errors. For instance, our models show
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Fig. 5 Skill of burned area predictions obtained from the seasonal forecast ensemble BESTENS. Correlations of out-of-sample burned area (BA) predictions
using the SPI–BA model fed with seasonal forecasts of SPI from the BESTENS for a December–January–February (DJF), b March–April–May (MAM), c
June–July–August (JJA) and d September–October–November (SON). Only correlations that are significant (p-value < 0.05) are shown in green colours.
Grey colour shadows the grid points with non-significant correlation values. White indicates areas where fires do not occur (e.g. sea) or have not been
recorded
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skill also in mid-latitude regions, where dynamical forecast
systems show acceptable skill only for particular seasons and
events (see e.g. Frías et al.35; Doblas-Reyes et al.1; Ceglar et al.36).

Discussion
Predicting fires is a challenging issue owing to the complexity of
the processes involved, limitations in observational data and
concurrence and compounding effects of multiple drivers. Bear-
ing this in mind, we proposed a parsimonious mathematical
model to describe the impact of climate variability on BA.
Assuming climatic processes act as top-down controls on the
regional pattern of year-to-year changes in fire, we provided
seasonal BA predictions. Our study provides a basis for the
development of a global fire seasonal forecast product. In this
context, it is worth noting that the generalisation of the proposed
method is technically straightforward. For applying our approach

to continuously-updated fire forecasts to cover all trimesters of
the year, one should resort to seasonal forecasts issued every
month for rolling three-month periods (e.g. JFM, FMA,…, DJF).
The development of a prototype real-time operational forecast
system, however, may be challenging owing to the uncertainties
of the observed near-real-time data, especially over data-poor
regions such as Africa and South America37,38. Thus, although
actionable near-real datasets are available (see e.g. Janowiak and
Xie39; Chen et al.40), it is recommended that, before imple-
menting our approach for real-time application, a careful
assessment of the available data sets is performed. This system is
not designed to replace existing systems that are currently in use.
Instead, it offers complementary information to the existing
systems while providing a global perspective. Some of the key
drivers of fires (e.g. droughts, high temperatures) often affect
extensive areas beyond national boundaries. For this reason,
extreme fires can affect multiple countries, justifying the efforts
for a transnational system for fire prediction and risk manage-
ment. The proposed modelling framework offers a unique avenue
to move toward such a system.

This first assessment of seasonal prediction of BA on a global
scale, based on dynamical seasonal climate forecasts represents a
baseline study for future analyses. Possible future developments
include more refined fire-specific seasonal climate forecast sys-
tems, improved climate–fire data products, more sophisticated
empirical methods with better calibration of the predictors, other
climatic variables (see e.g. Williams et al.41 that consider the
Vapor Pressure Deficit, or Turco et al.42 that consider the stan-
dardized soil moisture index), use of probabilistic forecasts, and/
or higher spatial resolution. In particular, given the still rather
moderate skill of seasonal forecasts, further efforts are clearly
necessary to increase the forecast quality of the climate condi-
tions. Also, as the length of the records and the quality of global
fire datasets increase over time, climate–BA models may become
more accurate. Despite current limitations in observations and
model predictive skill, the results reported here contribute to a
better characterisation of the climate–fire relationship. We show
that in most regions the BA is inversely associated with SPI
(negative correlation). Given that negative SPI values correspond
to dry conditions, this suggests that, as expected, drier conditions
lead to larger BA values. In a changing climate, several possible
pathways of fire response can be identified – depending on the
expected changes in precipitation, temperature, vegetation and
human activities43–45. With respect to the direct impact of cli-
mate change in regulating fuel moisture (i.e. prolonged droughts
and warmer climate leading to larger fires), fire risk is expected to
increase where the climate is projected to become warmer and
drier46,47. Despite long cohabitation of humans and fires48, our
fire management abilities and response still remain limited in
most part of the world49,50. We hope that the proposed BA
forecasting model evolves into a long-term predictive system that
can be used in decision-making and operational applications.

Methods
Climate and fire data. We consider three climate indices/variables: SPI17,18,
SPEI19 and air temperature (T). SPI is a transformation of the accumulated pre-
cipitation values over a specific period (here over 3, 6 and 12 months) into a
standard Gaussian distribution with mean 0 and standard deviation 1. Positive
values indicate surplus of rainfall, whereas negative values identify dry conditions
relative to the long-term climatology. The SPEI is mathematically similar to SPI. It
estimates the monthly water balance as precipitation minus potential evapo-
transpiration (e.g. estimated using the Thortnthwaite equation as in this study),
and it is obtained through a standardisation of the multi-month (3, 6 or
12 months) water balance values. For SPI and SPEI the standardisation step is
based on a nonparametric approach in which the probability distributions of the
data samples are empirically estimated51,52. We calculate the T indicator as multi-
month averages (over 3, 6 and 12 months) of monthly temperature data and then
we obtain standardized series by (a) defining an anomaly by subtracting the long-
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term mean from the original series and (b) dividing the anomaly by its long-term
standard deviation.

We used two long-term and continuously-updated databases: ERA-Interim53

for 2 m air temperature, with a resolution of 0.75° and GPCP54 Version 2.3 for
precipitation data, with a spatial resolution of 2.5°.

Seven seasonal models are used to provide temperature and precipitation
forecasts (Table 1) including two from the European Seasonal to Interannual
Prediction Project (EUROSIP55) and five from the North American Multimodel
Ensemble (NMME56). These predictions are bias corrected by means of simple
linear scaling performed by using a leave-one-out cross-validation, i.e. excluding
the forecasted year when computing the scaling parameters. Specifically, we bias
corrected the model ensemble mean at each grid-point considering, for
precipitation, a scaling factor based on the ratio of long-term monthly means (over
the period 1981-2016) of the observed and simulated data, while for temperature,
we consider the difference of long-term monthly means of the observed and
simulated data to correct the raw data (see Turco et al.34 for more details). This
scaling factor is lead-time and starting-date dependent, thus varying for each
forecasted month and for each issued forecast. This bias correction aims at
avoiding possible inconsistencies between simulated and observed data when both
are merged to construct the predictors.

Monthly BA data were obtained from the GFED413 dataset for the period 1995/
06–2016/05 with a spatial resolution of 0.25°.

To ensure consistency among the spatial resolution of the different datasets, and
account for missing data in the BA time series, all the datasets are remapped from
their original resolution onto the coarsest grid, defined by GPCP (2.5° × 2.5°). BA
remapping involves summing up all the grid-points at 0.25° that fall in a 2.5° grid-
point. Also, following Chen et al.15, we consider only those 2.5° grid-points where
seasonal BA was non-zero in more than half of the available period (i.e. for each
season we select those pixels where BA > 0 in at least 11 of the 21 seasons). The
climate data are also remapped from their original resolution onto a 2.5° × 2.5°
grid, with a bilinear interpolation for temperature and a first-order conservative
remapping procedure for precipitation (using Climate Data Operators; https://
code.mpimet.mpg.de/projects/cdo).

Climate-fire model development. The procedure to develop the empirical
climate–BA model of Eq. (1) includes the following steps. First, the time series of
BA and SPI (and similarly, SPEI and T) are linearly detrended to minimise the
influence of slowly changing factors such as gradual increase in fire management
and land-use changes. This ensures isolating the effects of climate anomalies on the
year-to-year BA variability. It is worth noting that similar results have been

obtained with the original (i.e. without detrending) data (see Supplementary
Figure 6). The SPI and BA anomalies are then normalised by subtracting the time-
series mean and dividing by the standard deviation. This standardisation makes the
regression results for the grid-points comparable with each other (i.e. we can
compare across the domain the regression weights as they indicate how many
standard deviations of BA anomalies change for every standard deviation unit
change of the predictors). Then, to identify the best model we (i) fit all the possible
versions of Eq. (1) considering all the potential predictors SPIt(M–m), with t=
(3,6,12), m= (0,1,…, 5),M is the last month of the season considered, i.e. same and
previous fire-seasons months in agreement with previous studies (see e.g. Turco
et al.21) through a leave-one-out-cross-validation; (ii) calculate the significance of
the individual (Pearson) correlations of these models through a one-tailed
hypothesis test; (iii) we seek the maximum correlation values among all the sig-
nificant (p-value < 0.05) correlations calculated in the previous steps.

All the forecasts are done by using cross-validation in order to evaluate the
predictions as if they were done operationally, including the steps of the bias
correction of the seasonal climate data and of the calibration of the BA-climate
models. Moreover, to avoid artificial skill, the observed series are de-trended and
standardized in each step of the cross-validation, avoiding using observation of the
predicted year. Both the linear trends and the regression coefficient of Eq. (1) are
estimated using a robust regression procedure57 that adopt iteratively reweighted
least squares with a bisquare weighting function. Such an approach is less sensitive
to outliers than the classic least-squares estimators.

Code availability. On behalf of reproducibility and applicability, the codes used in
this work are available for research purposes by contacting the corresponding
author. In any case the codes used for the data processing are mainly based on open
source software: the Climate Data Operators (CDO version 1.7.2; functions:
remapbil, remapcon) available from https://code.mpimet.mpg.de/projects/cdo, the
netCDF Operator (NCO version 4.5.4; functions: ncwa -a ensemble) available from
http://nco.sourceforge.net/, the R “Language and Environment for Statistical
Computing” (R version 3.4.3, functions: thornthwaite from the R package SPEI,
version 1.7) available from https://www.r-project.org/. The climate–fire model
development and assessment is mainly based on Matlab codes written by M.T. that
are available for research purposes from the corresponding author upon request.

Data availability. GFED4 data can be retrieved from the Global Fire Emissions
Database (http://www.globalfiredata.org/data.html); GPCP Precipitation can be
obtained from the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (https://www.
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esrl.noaa.gov/psd/data/gridded/data.gpcp.html); ERA-Interim, ecmwf-s4, ecmwf-s5
data can be retrieved from the European Center for Medium Range Weather Forecast
(https://www.ecmwf.int). The models cfs-v2, cancm4, cm2p5-flor-a06, cm2p5-flor-
b01, rsmas-ccsm4 can be retrieved from the North American Multi-Model Ensemble
website (http://www.cpc.ncep.noaa.gov/products/NMME/). In order to facilitate
reproducibility and applicability of the proposal model, the authors will provide the
data (observed and predicted) used in this study for research purposes to interested
readers.

Received: 20 November 2017 Accepted: 22 June 2018

References
1. Doblas-Reyes, F. J. et al. Seasonal climate predictability and forecasting: status

and prospects. Wiley Interdiscip. Rev. Clim. Change 4, 245–268 (2013).
2. Lemos, M. C., Kirchhoff, C. J. & Ramprasad, V. Narrowing the climate

information usability gap. Nat. Clim. Change 2, 789–794 (2012).
3. Iizumi, T. et al. Prediction of seasonal climate-induced variations in global

food production. Nat. Clim. Change 3, 904–908 (2013).
4. Fernandes, K. et al. North Tropical Atlantic influence on western Amazon fire

season variability. Geophys. Res. Lett. 38, 1–5 (2011).
5. Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan, Indonesia.

Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).
6. Marcos, R. et al. Seasonal predictability of summer fires in a Mediterranean

environment. Int. J. Wildland Fire 24, 1076–1084 (2015).
7. Bedia, J. et al. Seasonal predictions of Fire Weather Index: paving the way for

their operational applicability in Mediterranean Europe. Clim. Serv. 9,
101–110 (2018).

8. Shawki, D. et al. Long-lead prediction of the 2015 fire and haze episode in
Indonesia. Geophys. Res. Lett. 44, 1–10 (2017).

9. Chen, Y. et al. Forecasting fire season severity in South America using sea
surface temperature anomalies. Science 334, 787–791 (2011).

10. Gudmundsson, L. et al. Predicting above normal wildfire activity in southern
Europe as a function of meteorological drought. Environ. Res. Lett. 9, 084008
(2014).

11. Lima, C. H., AghaKouchak, A. & Randerson, J. T. Unraveling the role of
temperature and rainfall on active fires in the Brazilian Amazon using a
nonlinear Poisson model. J. Geophys. Res. Biogeosci. 123, 117–128 (2018).

12. Williams, A. P. & Abatzoglou, J. T. Recent advances and remaining
uncertainties in resolving past and future climate effects on global fire activity.
Curr. Clim. Change Rep. 2, 1–14 (2014).

13. Giglio, L. et al. Analysis of daily, monthly, and annual burned area using the
fourth-generation global fire emissions database (GFED4). J. Geophys. Res.
Biogeosci. 118, 317–328 (2013).

14. Di Giuseppe, F. et al. The potential predictability of fire danger provided by
numerical weather prediction. J. Appl. Meteorol. Climatol. 55, 2469–2491
(2016).

15. Chen, Y. et al. How much global burned area can be forecast on seasonal time
scales using sea surface temperatures? Environ. Res. Lett. 11, 045001 (2016).

16. Andela, N. et al. A human-driven decline in global burned area. Science 356,
1356–1362 (2017).

17. McKee, T. B., Doeskin, N. J. & Kleist, J. The relationship of drought frequency
and duration to time scales. In Proc. 8th Conference on Applied Climatology,
179–184 (American Meteorological Society, 1993).

18. Hao, Z., Singh, V. P. & Xia, Y. Seasonal drought prediction: advances,
challenges, and future prospects. Rev. Geophys. 56, 108–141 (2018).

19. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar
drought index sensitive to global warming: the standardized precipitation
evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

20. Meyn, A. et al. Environmental drivers of large, infrequent wildfires: the
emerging conceptual model. Prog. Phys. Geogr. 31, 287–312 (2007).

21. Turco, M. et al. On the key role of droughts in the dynamics of summer fires
in Mediterranean Europe. Sci. Rep. 7, 81 (2017).

No 
da

ta

No 
m

od
el

<–
0.

75

–0
.7

5|–
0.

50

–0
.5

0|–
0.

25

–0
.2

5|0
0|0

.2
5

0.
25

|0.
50

0.
50

|0.
75

>0
.7

5

No 
da

ta

No 
m

od
el

No 
da

ta

No 
m

od
el5 01234 3 6 12

D
JF

M
A

M
JJ

A
S

O
N

� m t
a b c

d e f

g h i

j k l

Fig. 8 Spatial distribution of the parameters involved in the burned area prediction model. Spatial distribution of the optimal values of coefficient β (a, d, g,
j), of the lag (m) with reference to the last monthM of the season considered (b, e, h, k) and of the accumulation time scale (t: 3, 6 and 12 months; c, f, i, l)
of the burned area-SPI model defined in Eq. (1) for the four seasons. Grey colour shadows the grid points with non-significant correlation values. White
indicates areas where fires do not occur (e.g. sea) or have not been recorded

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05250-0

8 NATURE COMMUNICATIONS |  (2018) 9:2718 | DOI: 10.1038/s41467-018-05250-0 | www.nature.com/naturecommunications

https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
https://www.ecmwf.int
http://www.cpc.ncep.noaa.gov/products/NMME/
www.nature.com/naturecommunications


22. Turco, M. et al. Climate change impacts on wildfires in a Mediterranean
environment. Clim. Change 125, 369–380 (2014).

23. Turco, M. et al. Decreasing fires in Mediterranean Europe. PLoS One 11,
e0150663 (2016).

24. Robertson, A. W. et al. Improved combination of multiple atmospheric GCM
ensembles for seasonal prediction. Mon. Weather Rev. 132, 2732–2744
(2004).

25. Doblas-Reyes, F. J., Hagedorn, R. & Palmer, T. N. The rationale behind the
success of multi-model ensembles in seasonal forecasting—II. Calibration and
combination. Tellus A 57, 234–252 (2005).

26. Hagedorn, R., Doblas-Reyes, F. J. & Palmer, T. N. The rationale behind the
success of multi-model ensembles in seasonal forecasting—I. Basic concept.
Tellus A 57, 219–233 (2005).

27. Cheng, L. & AghaKouchak, A. A methodology for deriving ensemble response
from multimodel simulations. J. Hydrol. 522, 49–57 (2015).

28. Rodrigues, L. R., Doblas-Reyes, F. J. & Coelho, C. A. Calibration and
combination of monthly near-surface temperature and precipitation predictions
over Europe. Clim. Dyn. https://doi.org/10.1007/s00382-018-4140-4 (2018).

29. Kryjov, V. N. Seasonal climate prediction for North Eurasia. Environ. Res.
Lett. 7, 015203 (2012).

30. Madadgar, S. et al. A hybrid statistical–dynamical framework for
meteorological drought prediction: application to the southwestern United
States. Water Resour. Res. 52, 5095–5110 (2016).

31. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change
on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 113,
11770–11775 (2016).

32. Krawchuk, M. A. & Moritz, M. A. Constraints on global fire activity vary
across a resource gradient. Ecology 92, 121–132 (2011).

33. Pausas, J. G. & Ribeiro, E. The global fire–productivity relationship. Glob. Ecol.
Biogeogr. 22, 728–736 (2013).

34. Turco, M. et al. Summer drought predictability over Europe: empirical versus
dynamical forecasts. Environ. Res. Lett. 12, 084006 (2017).

35. Frías, M. D. et al. Assessing the skill of precipitation and temperature seasonal
forecasts in Spain: windows of opportunity related to ENSO events. J. Clim.
23, 209–220 (2010).

36. Ceglar, A. et al. Land-surface initialisation improves seasonal climate
prediction skill for maize yield forecast. Sci. Rep. 8, 1322 (2018).

37. AghaKouchak, A. & Nakhjiri, N. A near real-time satellite-based global
drought climate data record. Environ. Res. Lett. 7, 044037 (2012).

38. Mo, K. C. & Lyon, B. Global meteorological drought prediction using the North
American multi-model ensemble. J. Hydrometeorol. 16, 1409–1424 (2015).

39. Janowiak, J. E. & Xie, P. CAMS–OPI: a global satellite–rain gauge merged
product for real-time precipitation monitoring applications. J. Clim. 12,
3335–3342 (1999).

40. Chen, M. et al. Global land precipitation: a 50-yr monthly analysis based on
gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

41. Williams, A. P. et al. Correlations between components of the water balance
and burned area reveal new insights for predicting forest fire area in the
southwest United States. Int. J. Wildland Fire 24, 14–26 (2015).

42. Turco, M. et al. Recent changes and relations among drought, vegetation and
wildfires in the Eastern Mediterranean: the case of Israel. Glob. Planet. Change
151, 28–35 (2017).

43. Hessl, A. E. Pathways for climate change effects on fire: models, data, and
uncertainties. Prog. Phys. Geogr. 35, 393–407 (2011).

44. Aldersley, A., Murray, S. J. & Cornell, S. E. Global and regional analysis of
climate and human drivers of wildfire. Sci. Total Environ. 409, 3472–3481
(2001).

45. Fernandes, K. et al. Heightened fire probability in Indonesia in non-drought
conditions: the effect of increasing temperatures. Environ. Res. Lett.
12, 054002 (2017).

46. Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past
millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107,
19167–19170 (2010).

47. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from
1979 to 2013. Nat. Commun. 6, 7537 (2015).

48. Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484
(2009).

49. Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).
50. Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme

wildfire events. Nat. Ecol. Evol. 1, 58–63 (2017).
51. Hao, Z. et al. Global integrated drought monitoring and prediction system. Sci.

Data 1, 1–10 (2014).
52. Farahmand, A. & AghaKouchak, A. A generalized framework for deriving

nonparametric standardized drought indicators. Adv. Water Resour. 76,
140–145 (2015).

53. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance
of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

54. Adler, R. F. et al. The version-2 global precipitation climatology project
(GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4,
1147–1167 (2003).

55. Vitart, F. et al. Dynamically-based seasonal forecasts of Atlantic tropical storm
activity issued in June by EUROSIP. Geophys. Res. Lett. 34, 1–5 (2007).

56. Kirtman, B. P. et al. The North American multimodel ensemble: phase-1
seasonal-to-interannual prediction; phase-2 toward developing intraseasonal
prediction. Bull. Am. Meteorol. Soc. 95, 585–601 (2014).

57. Street, J. O., Carroll, R. J. & Ruppert, D. A note on computing robust
regression estimates via iteratively reweighted least squares. Am. Stat. 42,
152–154 (1988).

58. Molteni, F. et al. The new ECMWF seasonal forecast system (System 4).
ECMWF Technical Memoranda no. 656 (ECMWF, Reading, 2011).

59. Saha, S. et al. The NCEP climate forecast system version 2. J. Clim. 27,
2185–2208 (2014).

60. Merryfield, W. J. et al. The Canadian seasonal to interannual prediction
system. Part I: Models and initialization. Mon. Weather Rev. 141, 2910–2945
(2013).

61. Delworth, T. L. et al. Simulated climate and climate change in the GFDL
CM2.5 high-resolution coupled climate model. J. Clim. 25, 2755–2781 (2012).

62. Vecchi, G. A. et al. On the seasonal forecasting of regional tropical cyclone
activity. J. Clim. 27, 7994–8016 (2014).

63. Gent, P. R. et al. The community climate system model version 4. J. Clim. 24,
4973–4991 (2011).

Acknowledgements
This work was partially funded by the EU H2020 Project 641762 “ECOPOTENTIAL:
Improving Future Ecosystem Benefits through Earth Observations” and the SERV-
FORFIRE project of the ERA-NET for Climate Services, ERA4CS. M. Turco was sup-
ported by the Spanish Juan de la Cierva Programme (IJCI-2015-26953). F.J. Doblas-
Reyes was supported by the H2020 IMPREX (GA 641811) and EUCP (GA 776613)
projects. A.A. was partially supported by the National Oceanic and Atmospheric
Administration (NOAA) award NA14OAR4310222, National Aeronautics and Space
Administration (NASA) award NNX15AC27G, and National Science Foundation (NSF)
INFEWS grant EAR 1639318. Special thanks to Esteve Canyameras and Xavier Castro for
helpful discussions on the study.

Author contributions
M.T. conceived the study. M.T. and S.J. designed and carried out the data analysis and
wrote the paper. F.J.D.-R., A.A., M.C.L., and A.P. participated in defining the analysis
and methodology, contributed to interpretation of the results, and to writing the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-05250-0.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05250-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2718 | DOI: 10.1038/s41467-018-05250-0 | www.nature.com/naturecommunications 9

https://doi.org/10.1007/s00382-018-4140-4
https://doi.org/10.1038/s41467-018-05250-0
https://doi.org/10.1038/s41467-018-05250-0
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Skilful forecasting of global fire activity using seasonal climate predictions
	Results
	Defining the climate–nobreakfire model with observations
	Feeding the climate–nobreakfire model with seasonal forecasts

	Discussion
	Methods
	Climate and fire data
	Climate-fire model development
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




