Sediment Contamination, Toxicity, and Macroinvertebrate Infaunal Community in Galveston Bay

Silver Spring, Maryland
December 2003

US Department of Commerce

noaa National Oceanic and Atmospheric Administration

Center for Coastal Monitoring and Assessment
National Centers for Coastal Ocean Science
National Ocean Service
National Oceanic and Atmospheric Administration
U.S. Department of Commerce
NSC1, SSMC4
1305 East/West Highway
Silver Spring, MD 20910

Notice

This report has been reviewed by the National Ocean Service of the National Oceanic and Atmospheric Administration (NOAA) and approved for publication. Such approval does not signify that the contents of this report necessarily represent the official position of NOAA or of the Government of the United States, nor does the mention of trade names or commercial products constitute endorsement or recommendation for their use.

Sediment Contamination, Toxicity, and Macroinvertebrate Infaunal Community in Galveston Bay

Michelle Harmon, Anthony S. Pait, and M. Jawed Hameedi

Silver Spring, Maryland
December 2003

United States
Department of Commerce
Donald L. Evans
Secretary

National Oceanic and Atmospheric Administration

Conrad C. Lautenbacher, Jr. Richard W. Spinrad
Vice Admiral (Ret.), Administrator

National Ocean Service

Assistant Administrator

This report should be cited as: Harmon, M., A.S. Pait, and M.J. Hameedi. 2003. Sediment Contamination, Toxicity, and Macroinvertebrate Infaunal Community in Galveston Bay. NOAA Tech. Memo. NOS NCCOS CCMA 122. Silver Spring, MD: NOAA, NOS, Center for Coastal Monitoring and Assessment. 66pp + appendices.

Table of Contents

List of Tables iii
List of Figures iv
Executive Summary v
I. Introduction 1
II. Methods 4
III. Results 21
IV. Discussion 55
Acknowledgments 61
References 62
Appendices 67

List of Tables

1. Galveston Bay sampling strata 5
2. Sampling site locations in Galveston Bay 6
3. Trace and major element detection limits, 1996 and analytical methods 10
4. Organic compounds measured in Galveston Bay sediments and method detection limits, 1996 11
5. Summary of selected chemical contaminants in Galveston Bay sediments 22
6. Spatial extent of contaminants exceeding NOAA's Sediment Quality Guidelines (SQGs) in Galveston Bay 23
7. Amphipod (Ampelisca abdita) toxicity test results 36
8. Sea urchin (Arbacia punctulata) fertilization test results 38
9. Sea urchin (Arbacia punctulata) embryonic development test results 40
10. Microtox ${ }^{\circledR}$ test results 42
11. Cytochrome P450 RGS results 44
12. Spearman rank coefficients of correlation between toxicity tests 45
13. Estimates of the spatial extent of sediment toxicity in Galveston Bay 47
14. Spearman-rank correlation coefficients and probable significance levels between sediment toxicity tests and trace/major elements and pesticides 49
15. Spearman-rank correlation coefficients and probable significance levels between sediment toxicity tests and PAHs and PCBs 50
16. Spearman-rank correlation coefficients generated from ER-M quotients 51
17. Benthic macroinvertebrate community analysis 52

List of Figures

1. Galveston Bay study area, including site locations and strata delineations 3
2. Elements of the sediment quality triad 9
3. Mercury in sediments at sites in Galveston Bay 24
4. Arsenic in sediments at sites in Galveston Bay 25
5. Cadmium in sediments at sites in Galveston Bay 26
6. Chromium in sediments at sites in Galveston Bay 27
7. Nickel in sediments at sites in Galveston Bay 28
8. Zinc in sediments at sites in Galveston Bay 29
9. Hexachlorobenzene in sediments at sites in Galveston Bay 30
10. Total chlordane in sediments at sites in Galveston Bay 31
11. Total DDT in sediments at sites in Galveston Bay 32
12. Total PCBs in sediments at sites in Galveston Bay 33
13. Total PAHs in sediments at sites in Galveston Bay 35
14. Summary of sediment toxicity results for each sampling site in Galveston Bay 46
15. Dominant taxa in the benthic community 54

EXECUTIVE SUMMARY

This report summarizes the results of NOAA's study of Galveston Bay to assess sediment contamination, toxicity, and the benthic community, and was done as a component of the National Status and Trends (NS\&T) Program for marine environmental quality. To date, sediment toxicity studies have been completed in over 20 estuaries as part of the program.

Sediment contamination in U.S coastal waters is a major concern, posing both ecological and, indirectly, human health risks. Contaminated sediments pose a long-term threat as a reservoir for recalcitrant pollutants, which through biological and physical processes can be redistributed to the ecosystem long after inputs from land-based sources of pollution have ceased. Habitats impacted by sediment contamination frequently exhibit lower density and diversity of benthic organisms, as well as impaired health of individual animals. Human health concerns arise as a result of consumption of fish and wildlife from these contaminated areas.

Galveston Bay is the largest estuary on the Texas coast, and is composed of four major sub-bays including Galveston, Trinity, East, and West bays. It is a relatively shallow system, with an average natural depth of approximately 2 m . The
major freshwater sources for the bay include the Trinity and San Jacinto rivers; the major tidal inlet is Bolivar Roads, between Galveston Island and Bolivar Peninsula. The bay is home to the world's largest industrial complex, with an estimated annual sea trade value of over $\$ 50$ billion, and a population approaching 5 million. At the same time, the bay has a variety of habitats including wetlands, submerged vegetation, mud and sand flats, and oyster reefs, and is home to a number of commercially and recreationally important species of finfish and shellfish.

The Galveston Bay study area covered 1,351 sq. km, and included the Houston Ship Channel, the four sub-bays, and approaches to the bay from the Gulf of Mexico. The study area was divided into 22 irregular shaped strata, and sites within each stratum were selected on a random basis in consultation with state and local officials. Seventy-five sites were sampled in July and August 1996.

Sediments were analyzed for a large suite of contaminants including metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, and polychlorinated biphenyls (PCBs).

A battery of sediment toxicity tests, including amphipod survival, sea urchin fertilization and development, Microtox ${ }^{\circledR}$, and P450 Reporter Gene System (RGS) were carried out. Benthic community analysis was completed as well.

Sediment contaminant levels were compared with the Effects Range-Low (ER-L), and Effects Range-Medium (ER-M) guideline values. ER-L values are those sediment contaminant concentrations below which adverse biological effects are not likely to occur; contaminant levels above the ER-M are likely to cause adverse effects.

In general, trace elements were distributed relatively uniformly throughout the study area, with the exception of mercury, which was concentrated in the Houston Ship Channel. None of the trace element concentrations exceeded the ER-M values at any of the 75 sites, although numerous sites exceeded the ER-L values for arsenic, chromium, mercury, nickel and zinc. Arsenic concentrations exceeded the ER-L value in 29% of the study area, nickel in 25% of the study area, while chromium, mercury and zinc ER-L exceedences together totalled less than 1% of the study area.

The highest total PAH concentration was found in the middle of Galveston Bay, and exceeded the ERL value. Individual ER-L values were exceeded in the middle of the bay and in the upper bay for compounds such as acenapthene, anthracene, and fluorene. The calculated spatial extent of ER-L exceedences for each PAH as well as for total PAH was 2% or less. In general, measured pesticides and PCBs were uniformly low. However, the ER-M guideline for total DDT was exceeded at two sites on the Houston Ship Channel. Total ER-L exceedences for DDT included 6% of the study area.

Results from the sediment toxicity tests were highly variable. No samples were found to be significantly toxic in the amphipod survival test. Sea urchin fertilization as a percent of the control was significantly reduced at 53% of the sites (100% porewater test). Samples from the Houston Ship Channel, upper bay, Clear Lake and east of the approach jetties to Galveston Bay showed the lowest fertilization success. Sea urchin embryonic development results followed a pattern similar to fertilization. The lowest mean Microtox ${ }^{\circledR} \mathrm{EC}_{50}$ values were widely spread throughout the study area.

Approximately 79% of the samples produced a value that was significantly lower than the control in the Microtox ${ }^{\circledR}$ test. Results from the

P450 RGS indicated that only 9% of the sites exceeded a threshold toxicity value, while only one site exceeded a value indicative of toxicological significance.

Estimates of the spatial extent of sediment toxicity were also made. Using a criteria of less than 80% of the control values, none of the area was deemed toxic in terms of amphipod survival, 45% of the study area was toxic using sea urchin fertilization, 25% of the area was toxic to sea urchin development using this criteria, and 87% of the Galveston Bay study area was toxic in terms of the Microtox ${ }^{\circledR}$ test. However, an alternative nonparametric analysis indicated that all Microtox ${ }^{\circledR}$ values were below levels that would be considered moderately toxic. For P450 RGS, approximately 5% of the study area exceeded a moderate value of enzyme induction.

An analysis of the relationships between sediment contamination and the sediment toxicity tests revealed no correlations between sediment contaminants and either the amphipod mortality or Microtox ${ }^{\circledR}$ tests. The sea urchin fertilization test correlated with several PAHs, and the sea urchin development test correlated with total PAHs, a number of low molecular weight PAHs, and two PCBs. As expected, the P450

RGS assay correlated highly with PAHs.

A total of 5,089 organisms, representing 211 taxa, were identified in the 22 strata. The total number of taxa varied from a low of four in Clear Lake, to a high of 90 in West Bay. The majority of organisms counted were polychaetes (71%), followed distantly by bivalves (8.3%), gastropods (6.6%), and amphipods (3.6%). The mean density of organisms was lowest in upper Galveston Bay, and highest in West Bay. Similarly, faunal diversity (H^{\prime}) was lowest in Clear Lake and highest in lower Galveston Bay.

In summary, there was no toxicity observed when amphipods were exposed to bulk sediment. For other tests, based on more sensitive life stages and metabolic response, the toxicity pattern was similar to those found in other large estuaries in the United States. Although the toxicological endpoints of exposure to sediment porewater or organic extracts are easily understood, their ecological significance can only be described as tenuous. The infaunal benthic community in the bay appears reflective of the substratum type, i.e., sandy or muddy bottom. The study results should be viewed in light of its principal objective, i.e., estimate the spatial extent and patterns of sediment contamination, sediment toxicity and infaunal benthic communities.

The study results do not preclude continued monitoring and periodic assessments of sediment
contamination and toxicity in areas of concern. This study also does not address other major environmental issues in Galveston Bay, such as loss of wetland acreage, freshwater inflow, and shellfish harvest restrictions.

Sediment Contamination, Toxicity, and Macroinvertebrate Infaunal Community in Galveston Bay

INTRODUCTION

As part of the National Status and Trends (NS\&T) Program, NOAA conducts studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States. Results from previous NS\&T sediment toxicity studies in over 20 coastal waters and estuaries have been published (Long et al., 1996; Turgeon et al., 1998; Long, 2000).

Galveston Bay is located along the northeastern Texas coastline and harbors the world's largest industrial complex. Houston, connected to the bay by the Houston Ship Channel (HSC), is the fourth largest port in the United States in terms of waterborne trade. The city of Galveston, located on the Gulf of Mexico, occupies nearly the entire 32 mile long island and is also a major port. These two ports, together with the Port of Texas City, account for sea trade of over $\$ 50$ billion each year (US ACOE, 2001). The Houston-Galveston-Brazoria metropolitan area is inhabited by nearly 5 million people, nearly doubling its population during the past two decades (USCB, 2001). The bay, separated from
the Gulf of Mexico by barrier islands, is a highly productive estuary with many species of finfish, shellfish and wildlife. A variety of habitats including wetlands, submerged aquatic vegetation, mud and sand flats, and oyster reefs provide extensive shallow water habitats important for the continued survival of regional populations, and for biodiversity. One-third of the commercial fishing income and over one-half of the expenditures related to recreational fishing in Texas are derived from Galveston Bay (GBEP, 2002). Eastern oysters, blue crabs and shrimp (white and brown) comprise the commercial shellfish catch in the bay with an economic impact of nearly one-half billion dollars.

Over the past couple of decades, significant anthropogenic changes in Galveston Bay have become a matter of concern. The Galveston Bay National Estuary Program identified 17 environmental issues that required an improved scientific understanding as well as management action by public agencies. Loss of habitat (some of it from land subsidence), water and sediment contamination, declining population trends in some wildlife species, and shellfish harvest restrictions due to coliform bacteria and other
pathogens, were identified among the higher priority issues for the bay (GBNEP, 1994).

Coastal contamination emerged as an important environmental issue in Galveston Bay beginning in the 1930's when oil and petrochemical industries began to proliferate along Buffalo Bayou. By the late 1960's, the EPA had listed this area, including the HSC extending to Morgan's Point, as one of the top 10 most polluted bodies of water in the United States. At that time, some locations rarely had measurable dissolved oxygen concentrations, however, since then all industrial effluents have become subject to secondary treatment or better, and municipal wastewater and sewage treatment plants have been upgraded and expanded. (Gardinali, 1996; GBNEP, 1994; GBNEP, 1992).

STUDY AREA

Galveston Bay has a surface area of $1,360 \mathrm{sq} . \mathrm{km}$, and includes several major embayments: Trinity Bay, Galveston Bay, East Bay, and West Bay (Figure 1). The drainage area of the bay is approximately $63,300 \mathrm{sq} . \mathrm{km}$. The estuary receives most of its freshwater from the Trinity River, with much smaller contributions from the San Jacinto River (measured as spillover from Lake Houston Reservoir), HSC drainage (Buffalo Bayou and tributaries) and Chocolate Bayou. The average natural depth of the
estuary is 2 m , with oyster reefs creating numerous shoal areas that alter the flow regime. Wind is the primary driving force for currents with tides having a relatively minor, modifying influence. Relatively deep navigation channels, e.g., the 12 m deep HSC, and waterways that traverse the bay have created areas of higher salinity, altered flows and restricted water exchange. In addition, dredged material disposal sites, notably those in the vicinity of HSC, restrict water exchange and circulation across the channel.

The average near-surface salinity of Galveston Bay is approximately 15 parts per thousand (ppt) (Criner and Johnican, 2001), although there is considerable spatial and temporal variability. Surface salinity generally varies from nearly 30 ppt near the entrance to the Gulf of Mexico to 3 ppt near major points of freshwater inflow, such as the Trinity River. Due to shallowness of the bay, vertical stratification in salinity is either slight or nonexistent. Large fluctuations in salinity ranging from 6 to 28 ppt also occur, due to the influence of wind and tide.

Given the shallowness of the estuary, sediments are easily redistributed by currents and tides (GBNEP, 1994; GBNEP, 1992). Surficial sediment in Trinity Bay is composed primarily of mud; sandy sediment predominates in West Bay; coarse-grained sand and shell material dominate the bay's entrance to the Gulf

Figure 1. Galveston Bay study area, including site locations and strata delineations.

of Mexico and in isolated reef areas throughout the bay.

The overall purpose of this study was to describe the environmental conditions in Galveston Bay in terms of sediment contamination and associated adverse biological effects. The objectives were to determine the incidence and degree of surficial sediment toxicity; determine the spatial patterns or gradients in chemical contamination and toxicity, if any; and determine the association among measures of sediment contamination, toxicity and benthic macroinvertebrate community.

The project study area extended from the upper reaches of HSC in the north to beyond the jetties at the entrance to Galveston Bay, including West, East and Trinity bays, and Clear Lake (Figure 1). The area of study as well as the dimensions of the sampling strata were selected in consultation with state and local resource management officials.

METHODS

SAMPLING DESIGN

A stratified-random sampling design similar to those used in previous NOAA surveys (Long et al., 1996) was applied in Galveston Bay. The study area was
subdivided into 22 irregular shaped strata (Table 1 and Figure 1). Sampling sites within each substratum were selected on a random basis. Large strata were established in the open waters of the bay where topographic features and oceanographic conditions were relatively uniform and toxicant concentrations expected to be low. In contrast, relatively small strata were established in the upper and mid bay near suspected sources of contamination or where environmental conditions were expected to be heterogeneous or transitional. The boundaries of the strata were also established to coincide with the dimensions of major basins, bayous, waterways etc., in which hydrographic, bathymetric and sedimentological conditions were expected to be relatively homogeneous. This approach combines the strengths of a stratified design with the random-probabilistic selection of sampling locations, allowing the data generated within each stratum to be attributed to the dimensions of that stratum. Therefore, these data can be used to estimate the spatial extent of toxicity with a quantifiable degree of confidence (Heimbuch et al., 1995).

Seventy-five sites were sampled between 29 July and 16 August 1996 (Table 2). The locations of individual sampling sites within each stratum were chosen randomly using a computer-based program applied to digitized nautical charts produced by

Table 1. Galveston Bay sampling strata.

Zone	Stratum Number	Stratum Name	Area $\left(1,351 \mathrm{~km}^{2}\right)$	Percent of Total Area
A	1	Upper Houston Ship Channel	1.55	0.11
	2	Scott Bay	6.13	0.45
	3	Upper San Jacinto Bay	3.38	0.25
B	4	Lower San Jacinto Bay	2.96	0.22
	5	Tabbs Bay	3.64	0.27
C	6	Upper Galveston Bay - East	29.56	2.19
	7	Upper Galveston Bay - West	31.44	2.33
D	8	Central Galveston Bay -West	101.65	7.52
	8 A	Clear Lake	5.59	0.41
	9	Central Galveston Bay - East	124.01	9.18
	10	Lower Galveston Bay	248.89	18.42
E	11	Trinity Bay - Offshore	183.54	13.58
	12	Trinity Bay - Nearshore	125.36	9.28
F	13	East Bay	156.61	11.59
G	14	Texas City	38.67	2.86
H	15	West Bay	156.55	11.59
I	16	Bolivar Roads	18.60	1.38
	17	Galveston Bay - Entrance	25.16	1.86
J	18	Galveston Island - Nearshore	17.96	1.33
	19	Bolivar Peninsula - Nearshore	23.09	1.71
	20	Galveston Island - Offshore	22.28	1.65
	21	Bolivar Peninsula - Offshore	24.47	1.81

NOAA's National Ocean Service. The program was used to select a primary and three alternate sites. At least three sites were sampled within each stratum; four or five sites were sampled in larger strata. In instances where the primary site could not be sampled due to non-accessibility or an unsuitable substratum, the next sequential alternate site was sampled. In all cases, the primary or first alternate site was acceptable and sampled.

The elements of the sediment quality triad used in this study are shown in Figure 2. NS\&T's standard suite of chemical analyses, multiple toxicity tests, and benthic community assessments were performed on sediment samples from all 75 sites. Samples were collected on board the NOAA ship FERREL or from its launch. Toxicity and chemistry samples were collected with a Kynar-coated $0.1 \mathrm{~m}^{2}$ Young modified Van Veen grab sampler deployed with a hydraulic or electric winch. The grab sampler

Table 2. Sampling site locations in Galveston Bay.

Stratum	Site Number	Alternate	Site Location	Latitude (\mathbf{N})	Longitude (W)
1	1	1	Houston ship channel-40ft North of R 120 outside of channel, SW of Brownwood, oil industries there and to the south	$29^{\circ} 44.429$	$95^{\circ} 3.437$
1	2	2	Houston ship channel-NE of San Jacinto State Park, SE of Lynchburg Landing, South of high tension power lines	$29^{\circ} 45.703$	$95^{\circ} 4.022$
1	3	1	Houston ship channel - near ferry crossing, Lynchburg Range, south of Lynchburg landing, north of San Jacinto obelisk, nearby restaurant and Monument Inn, industries	$29^{\circ} 45.688$	$95^{\circ} 4.705$
2	4	1	Houston ship channel - SW of tank farm and numerous smoke stacks, East of San Jacinto monument, 20ft north of R 116	$29^{\circ} 44.101$	$95^{\circ} 3.201$
2	5	1	Houston ship channel-west of channel, 100 m east of Alexander Island, 50 m off G111	$29^{\circ} 43.333$	$95^{\circ} 1.363$
2	6	1	Scott Bay, 200 mW of Petrochemical facility and residential homes	$29^{\circ} 44.744$	$95^{\circ} 2.124$
3	7	1	Upper San Jacinto Bay - between Alexander Island and Brinson Pt. (Dupont Petrochemical facility), appr. 100 m North of R10 (100 m north of channel)	$29^{\circ} 42.405$	$95^{\circ} 1.948$
3	8	1	Upper San Jacinto Bay - 100m North of Brinson Pt. Petro chemical (Dupont) facility, 200 m east of G11	$29^{\circ} 42.228$	$95^{\circ} 1.914$
3	9	2	Upper San Jacinto Bay - 10m from G5 marker from channel in the bay, 200 mNW of Spilmans Island, 500 m west of suspension bridge over Houston ship channel, on Spilmans Island there is a Dupont Petrochemical facility	$29^{\circ} 42.149$	$95^{\circ} 1.55$
4	10	1	Houston ship channel-NE of entrance to Barbours Cut	$29^{\circ} 41.283$	$94^{\circ} 59.312$
4	11	1	Houston ship channel, entrance to Barbours Cut	$29^{\circ} 41.204$	$94^{\circ} 59.187$
4	12	1	Houston Ship Channel- 50 m south of Hog Island NW edge seawall, 300 m north of tall power cables, 100 m SE of cable warning sign	$29^{\circ} 41.714$	$94^{\circ} 59.402$
5	13	1	Tabbs Bay - Appr. 300m east of low abandoned railroad bridge pilings, North of Hog Island	$29^{\circ} 42.288$	$94^{\circ} 58.798$
5	14	1	Tabbs Bay-Midway between Hog Is land and mainland. Appr. 400 m south of mainland, Appr. 300 m west of old railroad bridge pilings	$29^{\circ} 42.293$	$94^{\circ} 59.237$
5	15	1	Tabbs Bay -100 m south of mainland, 300 m east of abandoned railroad bridge pilings	$29^{\circ} 42.527$	$94^{\circ} 58.822$
6	16	1	Upper Galveston Bay eastern area-east of R80 of Houston Ship Channel	$29^{\circ} 37.901$	$94^{\circ} 56.19$
6	17	2	Upper Galveston Bay eastern area- 1 mi ESE R80 Houston ship channel	$29^{\circ} 37.48$	$94^{\circ} 56.194$
6	18	1	Upper Galveston Eastern side - East of Atkinson Island, west of Mesquite Knoll	$29^{\circ} 39.492$	$94^{\circ} 56.968$
7	19	1	Upper Galveston Bay western side-east of Little Cedar Bayou appr. 1 mi	$29^{\circ} 38.492$	$95^{\circ} 0.196$
7	20	1	Upper Galveston Bay western side-east of Bayside Terrace(appr. $2 \mathrm{mi})$	$29^{\circ} 37.324$	$94^{\circ} 58.941$
7	21	1	Upper Galveston Bay western side-SE of Sylvan Beach	$29^{\circ} 38.328$	$94^{\circ} 59.801$
8A	22	1	Clear Lake-south of Apt/condos w/boat slips in western Clear Lake	$29^{\circ} 33.81$	$95^{\circ} 3.587$
8A	23	1	Clear Lake - southern edge of channel 100 m SE of G19, 200 mN of Lakeside shore	$29^{\circ} 33.299$	$95^{\circ} 3.634$
8A	24	1	Clear Lake - northern shore on the eastern end, 200 m SW of apt complex with flags, 500 m NW of R N14	$29^{\circ} 33.411$	$95^{\circ} 2.302$

Table 2. Sampling site locations in Galveston Bay (continued).

Stratum	Site Number	Alternate	Site Location	Latitude (N)	Longitude (W)
8	25	1	Upper Galveston Bay western side, 2.5 mi east of water tower, appr. 0.75 mi NE of beginning of channel into Clear Creek/Lake	$29^{\circ} 33.647$	$94^{\circ} 58.835$
8	26	1	Upper Galveston Bay western area-east of bridge over Clear creek, NE of radio antennae	$29^{\circ} 32.174$	$94^{\circ} 57.21$
8	27	1	Upper Galveston Bay western area-west of Bulkhead Reef, east of Red Bluff, appr. 0.5 mi west of Houston Ship channel	$29^{\circ} 35.985$	$94^{\circ} 57.408$
8	28	1	Upper Galveston Bay western area- appr 2.5 mi west of Houston Ship channel, 2.25 mi east of Todville	$29^{\circ} 34.101$	$94^{\circ} 58.309$
9	29	1	Upper Galveston Bay - NE of R70 marking Houston Ship Channel	$29^{\circ} 34.833$	$94^{\circ} 54.714$
9	30	1	Eastern side of Upper Galveston Bay and mouth of Trinity Bay, 3 mi south of Beach City	$29^{\circ} 37.209$	$94^{\circ} 53.42$
9	31	1	Eastern side of Upper Galveston Bay- 0.5 mi ESE of Rear(after) range marker for the Bayport ship channel G180 6sec light, 60ft high	$29^{\circ} 36.783$	$94^{\circ} 55.786$
9	32	1	North of Trinity River Channel, just south of "L" shaped oil platform, two smaller oil obstructions close by	$29^{\circ} 32.009$	$94^{\circ} 50.296$
10	33	1	Central Galveston Bay, off east edge of Houston Ship Channel, NE of R 36	$29^{\circ} 25.328$	$94^{\circ} 49.213$
10	34	1	Central Galveston Bay, NW of Sievers Cove, South of Hanna Reef, 5 mi south of mainland	$29^{\circ} 27.019$	$94^{\circ} 44.695$
10	35	1	Central Galveston Bay, SE of Smith Pt., 2000yds from shore, North of Hanna Reef, sparse, residential area	$29^{\circ} 31.233$	$94^{\circ} 46.287$
10	36	1	Central Galveston Bay, East of Houston Ship Channel, NE of R $40,1.5$ mi east if R 42	$29^{\circ} 26.544$	$94^{\circ} 48.093$
10	37	1	Central Galveston Bay, appr. 1 mile east of Texas City, west of G47 marking Houston Ship Channel	$29^{\circ} 24.864$	$94^{\circ} 51.964$
11	38	1	Trinity Bay-deep, Central-west bay almost 3 mi off shore, residential	$29^{\circ} 41.7$	$94^{\circ} 48.906$
11	39	1	Trinity Bay-deep, SE area, near Galveston Bay, appr. 2.5 mi north of Smith Pt.	$29^{\circ} 35.49$	$94^{\circ} 47.897$
11	40	1	Trinity Bay-deep, 2 mi west of spoil bank near Black Pt, 1 mi due west of site \#41, near some oil construction (platforms)	$29^{\circ} 40.088$	$94^{\circ} 45.172$
11	41	1	Trinity Bay - deep, east-central Bay, about 1 mi west of spoil bank near Black Pt	$29^{\circ} 40.092$	$94^{\circ} 43.87$
12	42	1	Trinity Bay-shallow, north central Bay, south of private marker \#2	$29^{\circ} 43.451$	$94^{\circ} 45.942$
12	43	1	Trinity Bay-shallow, about 1 mi SE of Pt Barrow, residential	$29^{\circ} 43.198$	$94^{\circ} 49.984$
12	44	1	Trinity Bay - shallow, SE of mouth of Cooling System Discharge Canal (NW area of Bay)	$29^{\circ} 44.543$	$94^{\circ} 48.453$
13	45	1	East Bay, west of Goat Island, Long Pt or Big Pasture Bayou, North of ICW, marshy areas surrounding	$29^{\circ} 30.218$	$94^{\circ} 36.703$
13	46	1	East Bay, NW of Sievers Cove near the mouth of East Bay, north of ICW	$29^{\circ} 26.516$	$94^{\circ} 42.807$
13	47	1	East Bay SW of Lake Surprise and Stephenson Pt. near shore appr. 1000 yds away	$29^{\circ} 31.98$	$94^{\circ} 42.31$
13	48	1	East Bay, north of the ICW, east of Frozen Pt. and NW of Mussel Pt., surrounded by marshy area	$29^{\circ} 32.197$	$94^{\circ} 30.35$
13	49	1	East Bay, SE of Lake Surprise, NW of Big Pasture Bayou by 2.5 mi	$29^{\circ} 31.645$	$94^{\circ} 38.591$
14	50	1	Industrial area in Gal Bay, west of Pelican Island, north of mouth of Gal Channel, NW of Bascule Bridge along the beach	$29^{\circ} 18.97$	$94^{\circ} 49.489$
14	51	1	Industrial area north of ICW, south of Texas City Channel, west of spoil area/marsh	$29^{\circ} 20.802$	$94^{\circ} 50.681$
14	52	1	Industrial, north of bridge separating lower Gal Bay and West Bay, East of ICW	$29^{\circ} 18.228$	$94^{\circ} 52.763$

Table 2. Sampling site locations in Galveston Bay (continued).

| Stratum | Site Number | Alternate | Site Location | Latitude (N) |
| :---: | :---: | :---: | :--- | :--- | Longitude (W)

and sampling utensils were acid washed with 10% HCl and then rinsed with deionized, ultra-filtered water at the start of sampling each day, and thoroughly cleaned with acetone and site water before collection of samples at each site. At least three or four deployments of the sampler were required to provide sufficient surficial sediment for the toxicity tests and chemical analyses. Only the
upper 2-3 cm of the sediment was used in order to assure collection of recently deposited materials. A sediment sample was discarded if the jaws of the grab were open, the sample was partly washed out, or if the sediment sample in the grab was less than 5 cm deep. Sediments were removed with a scoop made of high-impact styrene; sediment was composited in an acetone rinsed, high-density
polyethylene (HDPE) bucket. Between each deployment of the sampler, the bucket was covered with an HDPE lid to minimize sample oxidation and exposure to atmospheric contamination. The material was carefully homogenized in the field with an acetone-rinsed, HDPE paddle before being distributed to prepared sample containers. Samples were immediately placed on ice. Samples for contaminant analyses and P450 RGS testing were frozen as soon as possible.

Samples for the benthic community analyses were collected at each site with a small ($413 \mathrm{~cm}^{2}$), Youngmodified Van Veen grab. The entire contents of an acceptable grab (at least 5 cm deep at the center of the grab) was retained and sieved in the field with a 0.5 mm screen. Material retained on the sieve was preserved in 10% buffered formalin with Rose bengal stain.

Samples for chemical analyses were kept frozen until thawed for analyses. All samples were accompanied by chain of custody forms which included the date and time of sample collection and site number.

CONTAMINANTANALYSES

Chemical analyses on all 75 samples were performed under contract by the Texas A\&M

University/Geochemical and Environmental

Research Group
(TAMU/GERG), located in College Station, Texas.

Trace and Major

Elements

Trace and major element analyses (Table 3) were based on homogenized samples that underwent complete dissolution, typically using concentrated nitric and hydrofluoric acids at high temperature in Teflon® ${ }^{\circledR}$

Samples for toxicity testing and chemistry analyses were shipped in ice chests packed with water ice or blue ice to the testing laboratories by overnight courier. Samples for toxicity tests were kept chilled on ice until extractions or tests were initiated.
containers. For mercury, samples were digested using concentrated sulfuric and nitric acid. Table 3 also provides the methods used to determine trace element concentrations and method detection limits (MDLs). Sediment samples were digested for final
analysis by procedures specific to the instrument method used (e.g., flame, graphite furnace, or cold vapor atomic absorption). Concentrations of trace and major elements were calculated by comparing the analytical signals of the unknowns with those of the calibration standards, and then multiplying by the instrumental and digestion dilution factors.

Organic Contaminants

The organic contaminants determined in the analyses are listed in Table 4, along with their representative MDLs. Quantification was performed using the internal standards method. PAHs were analyzed by
gas chromatography/mass spectrometry in the selected ion mode. Sediment samples analyzed for butyltins were extracted with DCM containing 2\% tropolone, hexylated, purified by silica gel chromatography, and concentrated. Butyltins were analyzed by gas chromatography using a flame photometric detector equipped with a tin-selective filter. PCBs and chlorinated pesticides were determined by gas chromatography/electron capture detection. Concentrations of sediment organic compounds are reported on a dry weight basis.

Table 3. Trace and major element detection limits, 1996 (Lauenstein and Cantillo, 1998) and analytical methods.

Element	Method Detection Limit $(\mathrm{ppm}$, dry weight)	Analytical Method *
Aluminum	106	FAA
Iron	290	FAA
Manganese	2.5	FAA
Arsenic	0.31	GFAA
Cadmium	0.003	GFAA
Chromium	0.64	GFAA
Copper	0.30	GFAA
Lead	0.35	GFAA
Mercury	0.005	CVAA
Nickel	0.19	GFAA
Selenium	0.02	GFAA
Silver	0.011	GFAA
Tin	0.11	GFAA
Zinc	0.78	FAA

[^0]Table 4. Organic compounds measured in Galveston Bay sediments and method detection limits, 1996 (Lauenstein and Cantillo, 1998).

Polycyclic Aromatic Hydrocarbons	Method Detection Limit (ppb, dry weight)	Polychlorinated Biphenyls	Method Detection Limit (ppb, dry weight)
Naphthalene	2.2	PCB8/5	0.12
C1-Naphthalenes		PCB18/17	0.82
C2-Naphthalenes		PCB28	0.09
C3-Naphthalenes		PCB44	0.1
C4-Naphthalenes		PCB52	0.42
Biphenyl	0.3	PCB66	0.07
Acenaphthylene	0.3	PCB101/90	0.15
Acenaphthalene	0.5	PCB105	0.06
Fluorene	0.5	PCB118	0.07
C1-Fluorenes		PCB128	0.14
C2-Fluorenes		PCB138/160	0.07
C3-Fluorenes		PCB153/132	0.08
Phenanthrene	0.8	PCB170/190	0.17
Anthracene	0.5	PCB180	0.05
C1-Phenanthrenes/Anthracenes		PCB187	0.08
C2-Phenanthrenes/Anthracenes		PCB195/208	0.09
C3-Phenanthrenes/Anthracenes		PCB206	0.05
C4-Phenanthrenes/Anthracenes		PCB209	0.1
Dibenzothiophene	0.3		
C1-Dibenzothiophenes		Pesticides	Method Detection Limit (ppb, dry weight)
C2-Dibenzothiophenes		Endosulfan II	0.06
C3-Dibenzothiophenes		Hexachlorobenzene	0.07
Fluoranthene	1	Alpha HCH	0.37
Pyrene	1.1	Beta HCH	0.17
C1-Fluoranthenes/Pyrenes		Gamma HCH (Lindane)	0.08
Benzo(a)anthracene	0.2	Delta HCH	0.05
Chrysene	0.7	Heptachlor	0.05
C1-Chrysenes		Heptachlor Epoxide	0.04
C2-Chrysenes		Oxychlordane	0.07
C3-Chrysenes		Gamma Chlordane	0.15
C4-Chrysenes		Alpha Chlordane	0.23
Benzo(b)fluoranthene	1.3	Trans-Nonachlor	0.1
Benzo(k)fluoranthene	0.5	Cis-Nonachlor	0.04
Benzo(e)pyrene	0.6	Aldrin	0.13
Benzo(a)pyrene	0.6	Dieldrin	0.04
Perylene	0.6	Endrin	
Indeno(1,2,3-c,d)pyrene	0.3	Mirex	0.11
Dibenzo(a,h)anthracene	0.5	2,4' DDE	0.08
Benzo(g,h,i)perylene	1.3	4,4' DDE	0.06
		2,4' DDD	0.18
1-Methylnaphthalene	1	4,4' DDD	0.07
2-Methylnaphthalene	1.7	2,4' DDT	0.05
2,6-Dimethylnaphthalene	2.4	4,4' DDT	0.09
1,6,7-Trimethylnaphthalene	0.4		
1-Methylphenanthrene	0.2		

Quality Assurance/Quality Control

All analytical methods conformed to performancebased protocols and employed the quality-assurance steps of the NS\&T Program (Lauenstein and Cantillo eds, 1998). Quality assurance procedures included analyses of duplicates, standard reference materials, and spiked internal standards. For trace elements, analyses included a full suite of quality assurance samples with an emphasis on certified reference materials. In the organic analyses, internal standards were added at the start of the procedure and carried through the extraction, cleanup, and instrumental analysis steps. The organic recovery rate data was used to correct analytical data before reporting. The following specific quality assurance steps were used to insure measurement accuracy and precision. For pesticides, PCBs and PAHs, one procedural blank, one matrix spike, one duplicate spike and one standard reference material were run with each batch of no more than 20 samples. Surrogate recoveries were tracked.

Grain Size and Total Organic Carbon

Grain size was determined by the standard pipette method following sieving for the sand and gravel fractions. Total organic carbon was determined using a Leco Carbon Analyzer. Grain size duplicates were run every 20 samples. For TOC, one method blank, one duplicate, and one standard reference material were run every 20 samples.

SEDIMENT TOXICITY TESTS

Amphipod mortality, sea urchin fertilization and development impairment, Microtox ${ }^{\circledR}$, and cytochrome P450 Reporter Gene System (RGS) tests were carried out on the sediment samples.

Amphipod Survival Test

The testing of amphipod survival in sediments is the most widely and frequently used assay in sediment toxicity evaluations in North America, in part because the test integrates effects of complex contaminant mixtures in relatively unaltered sediment, and also because amphipods are a fairly common and ecologically important species in coastal bays and estuaries. The species Ampelisca abdita has most commonly been used in NOAAsponsored studies, as well as studies sponsored by other agencies, such as the Environmental Protection Agency. This euryhaline species occurs in fine sediments from the intertidal zone to a depth of 60 m , with a distribution that extends from Newfoundland to south-central Florida, including the eastern Gulf of Mexico, and more recently, portions of the California coast. A. abdita builds soft, membranous tubes and feeds on surface deposited particles as well as particles in suspension. In previous studies, this species has shown relatively little sensitivity to nuisance factors such as grain size, ammonia, and organic carbon. The tests are
performed using juveniles exposed to relatively unaltered, bulk sediments.

TRAC Laboratories, Inc. in Pensacola, FL conducted the amphipod toxicity tests. All tests were initiated within 8 days of sample collection with the exception of sites $26,27,28$ and 22,23 , 24 , and 25 whose samples were held 11 and 12 days, respectively. Test animals were purchased by TRAC Laboratories from Brezina and Associates, Inc. of Dillon Beach, CA (lots AA-96-A and AA-96-B). A. abdita were collected by Brezina in northern San Francisco Bay, and shipped to TRAC Laboratories within 48 hours. Amphipods were packed in native sediment with 8-10 liters of seawater in doubled plastic bags. Oxygen was injected into the bags and shipped via overnight courier to the testing lab. Upon arrival, amphipods were acclimated and maintained at $20^{\circ} \mathrm{C}$ for at least one day prior to the initiation of the test.

The testing followed procedures detailed in the Standard Guide for Conducting 10 day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods (ASTM, 1992). Each test had five replicates of 20 healthy animals (good color, full guts, and 2-4 mm in size) under static conditions using natural seawater. An aliquot of 200 ml of test or negative control sediment was placed in the
bottom of 11 test chambers, and covered with approximately 750 ml of natural seawater from the Gulf of Mexico, diluted to 30 ppt . Temperature was maintained at $20^{\circ} \mathrm{C}$. Lighting was continuous during the 10 day exposure period to encourage amphipods to burrow and to inhibit swimming. Data on temperature, salinity, dissolved oxygen, pH and ammonia in the test chambers were obtained during tests of each batch of samples. A sixth replicate was run for daily dissolved oxygen, pH , and temperature measurements. Salinity was measured four times during the 10 day testing period. The jars were checked daily and the number of dead animals, animals on the water or sediment surface, and those in the water column were recorded. Amphipods on the water surface were gently pushed down into the water to enable them to burrow; dead amphipods were removed.

Amphipods were also exposed to negative and positive control sediments. Negative control sediments were collected by TRAC Laboratories at site C-17 in Perdido Bay, located near Pensacola, Florida. These sediments have been tested by TRAC and found to be consistently nontoxic in amphipod tests, and are also uncontaminated. A positive control (reference toxicant) test was used to document the sensitivity of each batch of test organisms. The positive control consisted of 96 hr water-only
exposures to sodium dodecyl sulfate (SDS). LC50 values were calculated for each test run. Control charts maintained by TRAC Laboratories showed consistent results in tests of both the positive and negative controls.

Statistical Analysis. Analysis of variance (ANOVA), or a one-tailed test was used to determine whether any of the observed differences between the control and experimental data were statistically significant. If the observed differences were found to be significant, Dunnett's procedure for multiple comparisons was used to test the difference between the mean of the reference and experimental populations.

Sea Urchin Fertilization and Embryological

Development Tests

Sediment porewater toxicity was tested using the sea urchin Arbacia punctulata. The tests were performed by the Marine Ecotoxicology

Research Station of the Biological Resources Division, U.S. Geological Survey, located in Corpus Christi, Texas. Sediment porewater was extracted as soon as possible after receipt of samples, however, no sediments were held longer than 8 days from the time of collection or 48 hours after their receipt by the laboratory. Sediment samples were held refrigerated $\left(4^{\circ} \mathrm{C}\right)$ until the porewater was
extracted with a pressurized pneumatic extraction device made of polyvinyl chloride with a $5 \mu \mathrm{~m}$ polyester filter (Carr, 1998). After extraction, porewater samples were centrifuged in polycarbonate bottles at $1,200 \mathrm{xg}$ for 20 minutes to remove any particulate matter and then frozen at $-20^{\circ} \mathrm{C}$ until the start of the tests. Two days before the start of a toxicity test, samples were transferred from the freezer to a refrigerator at $4^{\circ} \mathrm{C}$. One day prior to testing, the samples were thawed in a tepid water bath. Experiments performed previously at the laboratory have demonstrated no effects upon toxicity attributable to freezing of the porewater samples.

Sample temperatures during the tests were maintained at $20 \pm 1^{\circ} \mathrm{C}$. Sample salinity was measured and adjusted to $30 \pm 1 \mathrm{ppt}$, if necessary, using purified deionized water or concentrated brine. Other water quality measurements included dissolved oxygen, temperature, pH , sulfide and ammonia. Samples with less than 80% dissolved oxygen saturation were gently aerated by stirring the sample on a magnetic stir plate. After these measurements and any necessary adjustments were made, the samples were refrigerated at $4^{\circ} \mathrm{C}$ overnight. The samples were returned to $20 \pm 1^{\circ} \mathrm{C}$ before testing started. The tests were performed with 100% porewater, or with 50% and 25% dilutions of each sample. Samples
were diluted with 30 ppt filtered ($0.45 \mu \mathrm{~m}$) seawater, and five replicates were tested for each sample.

The tests were conducted with gametes of the sea urchin A. punctulata following the procedures outlined in Carr et al. (1996). Adult male and female urchins were stimulated to spawn with a mild electric shock and the gametes were collected separately. The tests involved exposing the sperm to 5 ml of the test solution for 30 minutes followed by the addition of 2,000 eggs. After an additional 30 minutes of incubation, the test was terminated by the addition of formalin. An aliquot of the egg suspension was examined under a microscope to determine the presence or absence of a fertilization membrane surrounding the egg, and percent fertilization was recorded for each replicate.

The embryological development test followed the same basic procedures as the fertilization test. A suitable (predetermined) concentration of sperm was incubated with eggs for 10 minutes to allow fertilization to take place. After this time, eggs were viewed under a microscope to ensure that 70-90\% of the eggs were fertilized. Additional sperm was added if needed to achieve at least 70% fertilization. The embryos were then pipetted into the test vials containing porewater, and incubated for 48 hours at
$20^{\circ} \mathrm{C}$. The test was terminated by the addition of formalin. An aliquot of the embryos was then examined under a compound microscope to determine the percentage of embryos developing to the echinopluteus stage and having normal features. Reference toxicity (positive control) tests with SDS were run with each series of tests to assess the sensitivity of the gametes.

Porewater from a reference area in Redfish Bay, Texas located near the testing facility was used as a negative control. Sediment porewater from this site has been used successfully in the past. A positive control consisting of a dilution series of SDS and a dilution blank of filtered seawater and one of reconstituted brine were also conducted as part of the testing procedure.

Statistical Analysis. Transformed (arcsine

 square root) data sets were screened for outliers by comparing the studentized residuals to a critical value from a t-distribution using a Bonferroni-type adjustment (SAS, 1992). The adjustment is based on the number of observations (n) so that the overall probability of a Type 1 error is at most 5%. After the outliers were removed, the transformed data sets were tested for normality and homogeneity of variance. Additional statistical comparisons among sea urchin fertilization and embryo development treatments were made using anANOVA and Dunnett's one-tailed t-test, which controls for the experiment-wise error rate, on the transformed data (SAS, 1989). The trimmed Spearman-Karber method (Hamilton et al., 1977) with Abbott's correction (Morgan, 1992) was used to calculate EC_{50} (50% effective concentration) values for the dilution series tests.

Microtox ${ }^{\circledR}$ Test

This test is based on the premise that in a particular strain of the bacterium Vibrio fischeri, bioluminescence is closely tied to cellular respiration, and any inhibition of cellular activity would result in a decreased rate of respiration and a corresponding decrease in luminescence. A decrease in respiration could result from exposure to toxicants. The test is relatively simple and inexpensive; there are published data on the Microtox ${ }^{\circledR}$ response to hundreds of chemicals and environmental samples from harbors, industrial waste streams, waste dump sites, etc. (Johnson and Long, 1998). Since the test in this study is based on the relative toxicity of organic extracts of sediments, the effects of nuisance environmental factors such as grain size, ammonia, and organic carbon are avoided. However, organic extracts would tend to include contaminants that may or may not be readily bioavailable in the actual sediment. Therefore, this test is generally considered a test of the potential toxicity of environmental samples. However, a
strong linear relationship has been documented between Microtox ${ }^{\circledR}$ response (effective concentration), and the lethal concentration in a variety of aquatic fauna, particularly for contaminants with a relatively simple chemical structure (Kaiser, 1998).

The equipment and supplies, including the freeze dried bacteria necessary to perform the Microtox ${ }^{\circledR}$ Basic assay, were obtained from AZUR Environmental in Carlsbad, CA. All sediment samples and extracts were stored in the dark (<10 days) at $4^{\circ} \mathrm{C}$ until processing or testing was initiated.

Prior to the initial homogenization, surface water and large debris (shells and pebbles) were removed. Samples were then centrifuged at $1,000 \mathrm{xg}$ for five minutes. The water was decanted and moisture content determined and recorded for each sample. A 10 g sediment sample from each site was weighed, recorded, and placed into a dichloromethane (DCM) rinsed 50 ml centrifuge tube. A 15 g portion of sodium sulfate was added to each sample and mixed. Spectral grade $\operatorname{DCM}(30 \mathrm{ml})$ was added and mixed. The mixture was shaken for 10 seconds, vented and tumbled overnight.

The next day samples were centrifuged again at $1,000 \mathrm{xg}$ for 5 min . The sediment extracts were then transferred to a Kuderna-Danish flask. Five ml of acetone were added and the volume reduced to approximately 2 ml . The extract was then transferred to a DCM rinsed flask. Acetone was used to completely rinse the KudernaDanish flask. A stream of nitrogen gas reduced the extract volume to approximately 1 ml . To make the final extract volume 10 ml , dimethylsulfoxide (DMSO) was added. DMSO is compatible with the Microtox ${ }^{\circledR}$ system, having a relatively low toxicity and good solubility with a broad array of apolar chemicals (Johnson and Long, 1998).

A suspension of V. fischeri was thawed and hydrated with toxicant-free distilled water, covered and stored in a $4^{\circ} \mathrm{C}$ well on the Microtox ${ }^{\circledR}$ analyzer. To determine toxicity, each sample was diluted into four test concentrations. Percent decrease in luminescence of each cuvette relative to the reagent blank was calculated. Based upon these data, the sediment concentrations that caused a 50% decrease in light production $\left(\mathrm{EC}_{50}\right)$ over a 5 minute period were reported as mg equivalent sediment wet weight with 95% confidence intervals for the replicates.

The sediment extracts were prepared by ABC Laboratories, Inc. according to the basic liquid phase test protocols and QA/QC performance standards described by Microbics Corporation (1992). In addition to an extraction blank prepared with DMSO, the toxicity of the samples was determined using the Redfish Bay reference site value $\left(\mathrm{EC}_{50}\right.$ value $=35.97 \mathrm{mg}$ eq. $\left./ \mathrm{ml}\right)$ and a phenol spiked control $\left(\mathrm{EC}_{50}\right.$ value $=12.17 \mathrm{mg}$ eq. /ml). A Control Sediment Index (CSI) value was calculated for each sample by taking the EC_{50} value of the reference site and dividing it by the EC_{50} value of the test sample. If the resulting number was greater than one, the sample was deemed toxic, if the resulting number was lower than one, the sample was considered nontoxic relative to the control. The Phenol Spiked Index (PSI) was calculated by dividing the reference phenol spiked control EC_{50} value by the test sample EC_{50}. If the resulting number was greater than one, then the test sample was considered more toxic than the spiked (phenol) control.

StatisticalAnalysis. The results were analyzed using the software package Microtox® Data Reduction developed by Microbics Corporation (1992), to determine the concentration of the extract that inhibited luminescence by 50% after a 5 minute exposure period. The EC_{50} values were reported as the mean of three replicates. An ANOVA and

Dunnett's one tailed t -test were used to compare the test sample results.

Cytochrome P450 Reporter Gene System (RGS)

 AssayThe RGS assay (now known as the Human Reporter Gene System assay, or HRGS) was used to determine the presence of organic chemicals that bind to the aryl hydrocarbon receptor and induce the cytochrome P450 1A1 locus on the vertebrate chromosome. Several classes of chemicals are also known to cause direct chemical toxicity or genotoxicity in a variety of species. They include planar polychlorinated biphenyls (PCBs), higher molecular weight polycyclic aromatic hydrocarbons (PAHs), dioxins and furans.

The test uses a transgenic cell line (101L), derived from the human hepatoma cell line (HepG2), in which the flanking sequences of the CYP1A gene, containing the xenobiotic response elements (XREs), have been stably linked to the firefly luciferase gene (Postlind et al. 1993). As a result, the enzyme luciferase is produced in the presence of compounds that bind to the XREs. Induction at the CYP1A site in this cell line results in the production of luciferase, the amount of which is readily estimated as emitted light when the cell extracts are injected with the light-producing
pigment luciferin. Details of the testing methods have been published as a standard method or analytical protocol by a number of organizations (ASTM, 1997; APHA, 1996; US EPA, 2000). For quality assurance purposes, all sample analysis batches were accompanied by testing method blanks, spiked samples, and reference toxicants.

In the assay, 40 g of sediment from each site were extracted using EPA Method 3540 to produce 1 ml of DCM/extract mixture. A $2 \mu \mathrm{l}$ portion of the extract was applied to approximately 1 million human livercells contained in three replicate wells with 2 ml of culture medium. After 16 hours of incubation, the cells were washed, lysed, and centrifuged. The enzyme reaction was then initiated by addition of luciferin. Small portions $(50 \mu \mathrm{l})$ were used in measuring luminescence.

Solvent blanks and the reference toxicant ($2,3,7,8$ - dioxin) were tested with each batch of samples. Tests performed on extracts from Redfish Bay were used as a negative control.

Benzo[a]pyrene equivalents ($\mathrm{B}[\mathrm{a}] \mathrm{PEq}$) were calculated for sample extracts and any duplicate samples. $\mathrm{B}[\mathrm{a}] \mathrm{PEq}$ is a response measure relative to benzo[a]pyrene, for all CYP1A-inducing chemicals present in the sample and is calculated as follows: $\mathrm{B}[\mathrm{a}] \mathrm{PEq}(\mu \mathrm{g} / \mathrm{g})=($ fold induction/60 $)$ x (volume factor/dry weight) x d.f. Fold
induction was calculated as mean relative light units (RLU) produced by the sample divided by mean RLU produced by the solvent blank. The factor 60 represents the approximate fold induction produced by $1 \mu \mathrm{~g}$ of benzo[a]pyrene $/ \mathrm{ml}$. The volume factor represents the total extract volume divided by the volume of extract applied to the cells. Dividing by the dry weight of each sample yields $\mathrm{B}[\mathrm{a}] \mathrm{PEq}$ in $\mu \mathrm{g} /$ g. For samples that were diluted, the $\mathrm{B}[\mathrm{a}] \mathrm{PEq}$ value is multiplied by the dilution factor.

Statistical Analysis. Since the RGS assay lacks an assessment endpoint, statistical analyses of accumulated data from NOAA's previous studies have been used to derive threshold or critical values. A recent analysis of these data indicated that the 90% upper prediction limit of observations ($\mathrm{n}=530$) was 37 . Eliminating the $90^{\text {th }}$ percentile of the data set (values greater than 37.4), the upper prediction limit is reduced further, i.e. to 11.1. This new data set could be construed to mean that it excludes outliers, i.e., heavily contaminated sites. So, if a future value exceeds this limit, one would assume that the observation was from a different distribution. Earlier, Anderson et al. (1999) showed the upper confidence limit of the mean response value to be 32.8 , and the lower confidence limit to be 12.8. These authors noted that a value greater than 32.8 would indicate toxicological
significance. It has been shown that RGS assay responses higher than 60 are usually associated with degraded infaunal communities (Fairey et al., 1998). Based on these results and testing of sediments from apparently uncontaminated sites, an RGS assay response value of approximately 10 is considered a background level for estuarine sediment. For environmental assessment purposes, values of 10 (background level), 35 (toxicological significance), and 60 (impaired benthic habitat conditions) could be useful.

BENTHIC COMMUNITY ANALYSIS

The density and diversity of benthic infauna can be used as an indicator of benthic community health. The methods used by Barry A. Vittor and Associates are based on Holmes and McIntyre (1984). For this study, the samples were preserved in a 10% formalin and Rose bengal solution, and delivered to the laboratory via overnight courier. In the laboratory, the samples were rinsed through a 0.5 mm sieve and re-stained, if necessary. Samples were stored in the dark in 70% isopropanol in a temperature controlled room before and after sorting. Sample containers were continually monitored for evaporation, leakage and spills.

Using a Wild M-5A dissecting microscope, all macroinvertebrates or fragments thereof were then
sorted and placed in vials of 70\% isopropanol. Samples were sorted into major taxa, i.e. Annelida, Crustacea, Mollusca, Echinodermata, and miscellaneous. The remaining samples were saved in the original container. All macroinvertebrates were identified to the lowest possible level and only heads of animals collected alive were counted. Each identification was subject to an in house verification and a number of samples were sent out to taxonomic experts for verification. In addition, 10% of the samples were resorted to ensure consistency.

As NOAA's sediment toxicity studies cover different salinity zones, Barry A. Vittor and Associates treated the marine and the brackish/ freshwater samples differently. The freshwater samples, likely to contain large numbers of oligochaetes and chironomids were sorted using a quadrant petri dish with vials distributed evenly in the dish. The sample was considered complete when 200 chironomids and 100 oligochaetes had been mounted and the quadrant filled. The formula developed by Klemm et al. (1990) was used to calculate the number of a species in a sample. In addition, a reference collection was assembled and archived. It included representative individuals for each species stored in covered vials, preserved and labeled. The macroinfauna was characterized by standard community structure parameters such as species
abundance, species composition, and diversity indices. These initial analyses were followed by pattern and classification analysis.

In this study, infaunal abundance is reported as the total number of individuals per site and/or stratum, and the density is reported as the number of individuals per square meter. Species richness is the total number of taxa in the sample for each site and/or strata. The Shannon-Wiener function H', was used to calculate species richness for each sample as follows:

$$
\mathrm{H}^{\prime}=\underset{\substack{\mathrm{i}=1}}{\mathrm{~s}} \mathrm{p}_{\mathrm{i}}\left(\ln \mathrm{p}_{\mathrm{i}}\right)
$$

where,
$\mathrm{s}=$ the number of taxa in the sample
$\mathrm{i}=$ the ith taxa in the sample
$p_{i}=$ the number of individuals of the ith taxa divided by the total number of individuals in the sample.

Pielou's Index J', also based on the ShannonWiener function, was used to describe evenness (or equitability) of abundance among species:

$$
\mathrm{J}^{\prime}=\mathrm{H}^{\prime} / \operatorname{lnS}
$$

thus, $\mathrm{J}^{\prime}=\mathrm{H}^{\prime} / \mathrm{H}^{\prime}{ }_{\text {max }}$.

The maximum possible diversity occurs when all taxa have the same number of individuals, or

$$
\ln \mathrm{S}=\mathrm{H}_{\max }^{\prime} .
$$

Statistical Analysis. Once the initial
characterizations had been completed, some components of the data were analyzed further. Total density values were tested for normality using Shapiro-Wilk (SAS Institute, 1995). Nonparametric methods such as the Wilcoxon test or the Kruskal-Wallis test were used to test for differences between means (SAS Institute, 1995). In addition to the community analyses described above, normal and inverse classification analyses were performed using the faunal data to determine the within and between strata differences and to compare the composition from one stratum to another. These analyses were carried out using the Community Analysis System 5.0 software package (Bloom, 1994).

RESULTS

The characteristics of the sediments at the sampling sites in Galveston Bay are shown in Appendix A. The field logs are contained in Appendix B.

SEDIMENT CONTAMINANTS

Table 5 lists the mean and range of contaminant concentrations measured in the Galveston Bay study area. Also listed are the elements and organic contaminants for which NOAA has developed a sediment quality guideline, along with their
associated values. Appendices C-F provide a complete listing of contaminant concentrations measured at each site in the study area.

Table 6 provides the spatial extent of ER-L and ERM (Long et al., 1995) contaminant guideline exceedences. The extent of ER-L and ER-M exceedences were recalculated to account for the three alternate sites, and the extent of exceedences changed minimally.

Trace Elements

In general, concentrations were distributed relatively uniformly throughout the study area. An exception to this was mercury. There were clearly higher concentrations found in the upper portions of the study area as can be seen in Figure 3 and in Appendix C. NOAA's ER-M sediment quality guidelines were not exceeded at any of the 75 sites, although numerous sites exceeded ER-L values for As, $\mathrm{Cr}, \mathrm{Hg}, \mathrm{Ni}$, and Zn (Table 6 and Figures 3-8). Arsenic concentrations in excess of the ER-L guideline include 29% of the study area. Similarly, nickel exceedences totaled 25% of the study area. Chromium, mercury, and zinc exceedences were minimal; between the three the spatial extent of ERLexceedences totaled less than 1% of the study area. Two sites in the upper portion of the study area (Sites 6 and 3, Figure 1) had multiple ER-L

Table 5. Summary of selected chemical contaminants in Galveston Bay sediments.

Trace/major elements	Range of concentrations	Mean concentration \pm SD	ER-L (ppm, dry wt.)	$\begin{gathered} \text { ER-M } \\ (\mathrm{ppm}, \text { dry wt.) } \end{gathered}$
Arsenic	ND - 13.35	5.91 ± 3.40	8.2	70
Cadmium	0.01-0.21	0.09 ± 0.056	1.2	9.6
Chromium	3.44-84.13	41.03 ± 18.55	81	370
Copper	1.61-33.22	10.72 ± 6.32	34	270
Lead	5.72-37.7	16.85 ± 6.41	46.7	218
Mercury	ND - 0.17	0.05 ± 0.032	0.15	0.71
Nickel	ND - 28.95	15.09 ± 7.4	20.9	51.6
Silver	0.04-0.52	0.12 ± 0.06	1.0	3.7
Zinc	6.77-167.57	65.8 ± 31.92	150	410
Organic compounds	Range of concentrations	Mean concentration \pm SD	$\begin{gathered} \text { ER-L } \\ \text { (ppb, dry wt.) } \end{gathered}$	$\begin{gathered} \text { ER-M } \\ (\mathrm{ppb}, \text { dry wt.) } \end{gathered}$
Acenapthene	0.2-34.9	1.8 ± 4.54	16	500
Acenapthylene	ND - 26.6	3.1 ± 4.24	44	640
Anthracene	0.1-228.3	8.8 ± 28.38	85.3	1,100
Fluorene	0.2-34.5	2.4 ± 5.15	19	540
2-Methyl napthalene	0.2-11.0	2.4 ± 2.12	70	670
Napthalene	0.5-18.4	4.2 ± 2.72	160	2,100
Phenanthrene	0.2-501.5	13.6 ± 59.10	240	1,500
Low mol. wt. PAHs	4.3-1,944.5	138.4 ± 254.71	552	3,160
Benzo(a)anthracene	0.1-676.4	19.1 ± 78.79	261	1,600
Benzo(a)pyrene	0.1-335.3	16.0 ± 41.46	430	1,600
Chrysene	0.1-711.6	22.8 ± 83.85	384	2,800
Dibenz(a,h)anthracene	ND - 66.1	3.5 ± 8.29	63.4	260
Fluoranthene	0.1-1,473.0	38.6 ± 170.85	600	5,100
Pyrene	0.2-1,502.7	43.8 ± 175.03	665	2,600
High mol. wt. PAHs	1.5-8,393.3	317.6 ± 993.01	1,700	9,600
Total PAHs	5.4-10,586.7	$468.4 \pm 1,262.78$	4,022	44,792
p,p'-DDE	ND - 2.16	0.13 ± 0.30	2.2	27
Total DDT	ND - 451.54	7.37 ± 52.32	1.58	46.1
Total PCBs	2.27-60.79	7.61 ± 8.60	22.7	180

SD, standard deviation; ER-L, effects range low; ER-M, effects range medium
exceedences for these elements. Site 6 located in Scott Bay exceeded ER-L concentrations for Cr , Hg, Ni, and Zn . Site 3 located in the uppermost reach of NOAA's study area exceeded ER-L values for As, Hg, and Ni .

Pesticides and PCBs

Measured pesticides and PCBs were uniformly low (Figures 9-12 and Appendices D-E). Although concentrations in the upper reaches were higher, they were still below the ER-M sediment quality

Table 6. Spatial extent of contaminants exceeding NOAA's Sediment Quality Guidelines (SQGs) in Galveston Bay.

Trace and major elements	>ER-L		>ER-M	
	Toxic area (km ${ }^{2}$)	\% of Total area ($1,351 \mathrm{~km}^{2}$)	Toxic area $\left(\mathrm{km}^{2}\right)$	\% of Total area ($1,351 \mathrm{~km}^{2}$)
Arsenic	386	29	0	0
Cadmium	0	0	0	0
Chromium	2	0.1	0	0
Copper	0	0	0	0
Lead	0	0	0	0
Mercury	3	0.2	0	0
Nickel	336	25	0	0
Silver	0	0	0	0
Zinc	2	0.1	0	0
Organic compounds	>ER-L		>ER-M	
	\% of Total area$\left(1,351 \mathrm{~km}^{2}\right)$		$\begin{gathered} \text { Toxic Area } \\ \left(\mathrm{km}^{2}\right) \\ \hline \hline \end{gathered}$	\% of Total area (1,351 km ${ }^{2}$)
Acenaphthene Acenaphthylene Anthracene Fluorene 2-Methyl naphthalene naphthalene phenanthrene Low-molecular wt. PAH Benzo(a)anthracene Benzo(a)pyrene chrysene dibenz(a,h)anthracene Fluoranthene pyrene high molecular wt. PAH total PAH p,p'-DDE total DDT total PCBs	32	2	0	0
	0	0	0	0
	31	2	0	0
	32	2	0	0
	0	0	0	0
	0	0	0	0
	31	2	0	0
	0	0	0	0
	31	2	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	31	2	0	0
	0	0	0	0
	75	6	2	0.1
		0	0	0
	Toxic area $\left(\mathrm{km}^{2}\right)$	\% of Total area (1,351 km ${ }^{2}$)		
Mean ER-M quotient >0.1	64	4.7		

Figure 3. Mercury in sediments at sites in Galveston Bay.

Figure 4. Arsenic in sediments at sites in Galveston Bay.

Figure 5. Cadmium in sediments at sites in Galveston Bay.

Figure 6. Chromium in sediments at sites in Galveston Bay.

Figure 7. Nickel in sediments at sites in Galveston Bay.

Figure 8. Zinc in sediments at site in Galveston Bay.

Figure 9. Hexachlorobenzene in sediments at sites in Galveston Bay.

Figure 10. Total chlordane in sediments at sites in Galveston Bay.

Figure 11. Total DDT in sediments at sites in Galveston Bay.

Figure 12. Total PCBs in sediments at sites in Galveston Bay.

guidelines with the exception of total DDT. Sites 2 $(50 \mathrm{ppb})$ and $8(450 \mathrm{ppb})$ were higher than the ERM guideline of 46.1 ppb for DDT. The ER-L guideline for DDT was exceeded at nine additional sites, all in the upper reaches of the study area.

Although the total DDT value at Site 8 is almost an order of magnitude higher than the ER-M guideline, the spatial extent is less than 1% of the study area. Total DDTER-Lexceedences include 6% of the study area (Table 6).

PAHs

Concentrations were low throughout most of Galveston Bay as well as Trinity, West, and East bays, and the approaches to Galveston Bay (Figure 13). The highest concentration (>10,000 ppb tPAH) was found in the middle of the bay at Site 32 and exceeded the ER-L of 4,022 ppb. Site 32 also exceeded the ER-L value for acenaphthene, anthracene, fluorene, phenanthrene and benzo[a]anthracene. The upper most site in the study area (Site 3) exceeded the ER-L concentration for acenaphthene and fluorene. Slightly higher concentrations of tPAHs were found in the HSC, Clear Lake, and south of the Texas City Dike, although all were below the ER-L concentration. The calculated spatial extent of ER-L exceedences was 2% or less of the study area for each PAH as well as for tPAH. The
concentrations of PAHs were distributed somewhat differently than the other organic contaminants, with some high concentrations in the middle of Galveston Bay (Site 32).

SEDIMENT TOXICITY TESTS

Amphipod Toxicity Test
Amphipod toxicity testing was carried out between 6 and 30 August 1996 using A. abdita. Sediment samples from all 75 sampling sites were tested. Mean amphipod survival, as a percent of the control, ranged from 88% to 120% (Table 7). No samples were found to be significantly toxic.

Sea Urchin Fertilization and Embryonic

Development Tests

The sea urchin fertilization and embryonic development tests were conducted in August 1996 using A. punctulata. Fertilization success was significantly reduced at $53 \%, 13 \%$, and 4% of the sites for $100 \%, 50 \%$, and 25% porewater concentrations, respectively (Table 8). Fertilization as a percent of the control in 100% porewater ranged from 3% to 102%. Samples from the HSC, upper bay area, Clear Lake, and to the east of the approach jetties to Galveston Bay showed the lowest fertilization successes. The

Figure 13. Total PAHs in sediments at sites in Galveston Bay.

Table 7. Amphipod (Ampelisca abdita) toxicity test results.

| Strata | Site number | Mean amphipod
 survival (\%) | Mean survival in
 control | Mean amphipod
 survivalas $\%$
 of control |
| :---: | :---: | :---: | :---: | :---: | Significance

Table 7. Amphipod (Ampelisca abdita) toxicity test results (continued).

Strata	Site number	Mean amphipod survival (\%)	Mean survival in control	Mean amphipod survival as \% of control
13	45	94	100	Significance
13	46	97	100	94
13	47	98	100	98
13	48	98	100	98
13	49	100	99	101
14	50	95	99	96
14	51	97	99	98
14	52	96	99	97
15	53	97	99	98
15	54	98	99	99
15	55	96	99	97
15	56	99	100	99
15	57	94	100	94
16	58	94	100	94
16	59	99	100	99
16	60	100	100	100
17	61	100	100	100
17	62	97	100	97
17	63	96	100	96
18	64	88	100	88
18	65	99	96	103
18	66	100	100	100
19	67	99	100	99
19	68	100	96	104
19	69	100	96	104
20	70	98	96	102
20	71	92	96	96
20	72	99	96	103
21	73	100	96	104
21	75	99	96	101
		96	103	
	94			

greatest fertilization success occurred in Trinity Bay and the area to the west of the approach jetties.

Sea urchin embryonic development (Table 9) was significantly inhibited at $45 \%, 13 \%$, and 5% of the

75 sites at $100 \%, 50 \%$, and 25% porewater concentrations, respectively. As a percent of the controls at 100% porewater concentration, mean normal development ranged from 0% to 107%. The percent normal development followed a pattern

Table 8. Sea urchin (Arbacia punctulata) fertilization test results.

Strata	Site Number	100\% Porewater			50\% Porewater			25\% Porewater		
		Mean \% Fertilization	\% of Control	Statistical Significance ${ }^{\dagger}$	Mean \% Fertilization	$\%$ of Control	Statistical Significance ${ }^{\dagger}$	Mean \% Fertilization	\% of Control	Statistical Significance ${ }^{\dagger}$
1	1	89.0	90		96.4	98		99.4	101	
1	2	80.6	82	**	97.0	99		98.6	101	
1	3	68.6	70	**	96.2	98		97.2	99	
2	4	97.6	99		98.0	100			101	
2	5	98.2	100		99.0	101		98.4	100	
2	6	53.0	54	**	94.8	97		97.8	100	
3	7	75.8	77	**	97.0	99		98.4	100	
3	8	68.4	70	**	96.6	99		98.6	101	
3	9	86.4	88		97.6	100		98.6	101	
4	10	88.6	90		97.8	100		99.2	101	
4	11	85.6	87		98.2	100		99.0	101	
4	12	98.6	100		99.0	101		99.2	101	
5	13	81.2	83	**	95.8	98		98.6	101	
5	14	95.2	97		97.8	100		99.2	101	
5	15	64.4	65	**	94.4	96		98.6	101	
6	16	94.2	96		97.6	100		98.8	101	
6	17	84.8	86	*	97.8	100		98.6	101	
6	18	78.4	80	**	96.8	99		97.8	100	
7	19	67.0	68	**	95.4	97		98.8	101	
7	20	53.2	54	**	79.4	81	**	96.2	98	
7	21	60.2	61	**	94.0	96		97.0	99	
8A	22	43.0	44	**	89.4	91		97.2	99	
8A	23	29.2	30	**	76.0	78	**	96.6	98	
8A	24	45.0	46	**	87.2	89		97.0	99	
8	25	80.6	82	**	96.2	98		98.6	101	
8	26	64.4	65	**	90.2	92		96.0	98	
8	27	57.8	59	**	93.0	95		99.0	101	
8	28	35.4	36	**	93.2	95		96.6	98	
9	29	66.4	67	**	89.0	91		96.8	99	
9	30	61.6	63	**	88.0	90		96.2	98	
9	31	87.6	89		89.4	91		95.6	97	
9	32	95.2	97		96.6	99		97.4	99	
10	33	76.4	78	**	96.8	99		96.4	98	
10	34	95.0	97		95.6	98		98.0	100	
10	35	78.6	80	**	93.4	95		96.2	98	
10	36	98.0	100		99.0	101		98.6	101	
10	37	84.8	86	*	97.6	100		98.4	100	
11	38	99.8	102		99.4	101		98.6	100	
11	39	99.2	101		98.8	101		98.4	100	
11	40	100.0	102		99.2	101		99.8	101	
11	41	98.8	101		99.4	101		98.2	100	
12	42	99.4	101		99.3	101		99.4	101	
12	43	69.6	71	**	85.2	87	*	93.8	95	
12	44	90.0	92		93.8	96		96.8	98	
13	45	72.6	74	**	88.4	90		94.6	96	
13	46	98.2	100		98.8	101		99.6	101	
13	47	97.0	99		98.4	100		99.4	101	
13	48	97.4	99		98.2	100		99.2	101	
13	49	87.2	89		96.6	98		99.0	100	

[^1]Table 8. Sea urchin (Arbacia punctulata) fertilization test results (continued).

Strata	Site Number	100\% Porewater			50\% Porewater			25\% Porewater		
		Mean \% Fertilization	\% of Control	Statistical Significance ${ }^{\dagger}$	Mean \% Fertilization	\% of Control	Statistical Significance ${ }^{\dagger}$	Mean \% Fertilization	\% of Control	Statistical Significance ${ }^{\dagger}$
14	50	62.2	63	**	92.2	94		95.4	97	
14	51	88.0	90		95.4	97		98.0	99	
14	52	98.0	100		99.0	101		99.6	101	
15	53	96.0	98		99.2	101		99.6	101	
15	54	21.0	21	**	84.0	86	*	97.0	98	
15	55	78.2	80	**	93.6	95		99.0	100	
15	56	99.4	101		99.4	101		99.4	101	
15	57	86.8	88		96.2	98		99.2	101	
16	58	5.8	6	**	68.4	70	**	94.6	96	
16	59	49.2	50	**	84.4	86	*	94.6	96	
16	60	6.8	7	**	67.8	69	**	93.8	95	
17	61	11.5	12	**	38.8	40	**	74.6	76	**
17	62	31.6	32	**	53.2	54	**	76.4	77	**
17	63	24.0	24	**	64.0	65	**	84.2	85	*
18	64	97.6	99		95.8	98		96.2	98	
18	65	95.2	97		93.0	95		91.8	93	
18	66	97.4	99		94.8	97		93.0	94	
19	67	33.2	34	**	98.4	100		97.8	99	
19	68	99.3	101		97.6	99		97.2	99	
19	69	37.8	39	**	97.8	100		98.0	99	
20	70	99.0	101		98.6	100		97.4	99	
20	71	97.8	100		99.4	101		98.8	100	
20	72	97.4	99		97.6	99		96.8	98	
21	73	3.6	4	**	98.6	100		99.2	101	
21	74	40.8	42	**	99.8	102		98.8	100	
21	75	2.8	3	**	98.6	100		98.4	100	

${ }^{\dagger}$ Dunnett's t-test: *p $<0.05 ; * * \mathrm{p}<0.01$
similar to the fertilization success results. The lowest percent normal development occurred in the HSC, upper bay area, Clear Lake, and east of the jetties at the mouth of Galveston Bay, while portions of Trinity Bay (stratum 12), East Bay and the area to the west of the approach jetties had the highest percentage of normal embryo development.

Microtox ${ }^{\circledR}$ Test

The Microtox ${ }^{\circledR}$ test was conducted by the USGS in Columbia, MO in August, 1996. The mean EC_{50}
values ranged from 0.99 to 105.33 mg eq. $/ \mathrm{ml}$ (Table 10). The lowest mean $\mathrm{EC}_{50} \mathrm{~s}$ were widely spread throughout the study area. With the exception of Stratum 18, Galveston Bay - Nearshore, each stratum had at least one site in which the CSI (Control Sediment Index) was significantly higher than that of the Redfish Bay reference site. Some of the most highly significant CSIs occurred in Strata 16, 17, and 21 - approaches to Galveston Bay, Stratum 3 - Upper San Jacinto Bay, and Stratum 8A

Table 9. Sea urchin (Arbacia punctulata) embryonic development test results.

Strata	Site Number	100\% Porewater			50\% Porewater			25\% Porewater		
		Mean \% Normal Development	$\%$ of Control	Statistical Significance ${ }^{\dagger}$	Mean \% Normal Development	\% of Control	Statistical Significance ${ }^{\dagger}$	Mean \% Normal Development	$\%$ of Control	Statistical Significance ${ }^{\dagger}$
1	1	77	81	**	95.8	99		98.4	104	
1	2	42.4	44	**	93.6	96		97	102	
1	3	0	0	**	0.2	0	**	69.2	73	**
2	4	88.2	92		97.6	101		98.2	104	
2	5	10.2	11	**	98	101		99.4	105	
2	6	53.2	56	**	96.4	99		95	100	
3	7	59	62	**	93.8	97		96.6	102	
3	8	0	0	**	95	98		96	101	
3	9	0	0	**	95.4	98		98.6	104	
4	10	78	82	**	94.2	97		98.8	104	
4	11	75.2	79	*	96.6	99		95.2	100	
4	12	95.2	100		95.4	98		97.8	103	
5	13	0	0	**	93.4	96		98	103	
5	14	0	0	**	90.6	93		97.2	103	
5	15	91	95		93.8	97		97.8	103	
6	16	81	85	*	95.8	99		98.4	104	
6	17	0	0	**	0	0	**	0	0	**
6	18	84.2	88		95.8	99		95.8	101	
7	19	89.6	94		95.8	99		91.4	96	
7	20	84.4	88		97	100		95.8	101	
7	21	78.4	82		94.8	98		98.6	104	
8A	22	45	47	**	94.8	98		95.8	101	
8A	23	0	0	**	92.6	95		95.4	101	
8A	24	0	0	**	85.6	88		95	100	
8	25	87.2	91		97	100		97.2	103	
8	26	92.6	97		97	100		94	99	
8	27	90.2	94		96.8	100		97.4	103	
8	28	80.6	84	*	96.4	99		96.6	102	
9	29	88.8	93		96.2	99		94	99	
9	30	87	91		94.8	98		96.8	102	
9	31	95	99		93	96		94.6	100	
9	32	94.8	99		94.8	98		96	101	
10	33	85.6	90		94.8	98		93.6	99	
10	34	92.25	96		91.6	94		97	102	
10	35	90.2	94		92.8	96		95	100	
10	36	95.2	100		93.8	97		96.4	102	
10	37	75.6	79		97.25	100		96.8	102	
11	38	84.2	96		89.6	99		86.2	98	
11	39	0	0	**	84.8	94		90.4	103	
11	40	50.8	58	**	93.8	104		92.4	105	
11	41	66.2	76	**	91.4	101		90.4	103	
12	42	85.8	98		88	97		91.8	104	
12	43	87.2	100		92.4	102		91.2	104	
12	44	93.4	107		91.8	101		93.4	106	
13	45	91.2	104		92.4	102		89.2	101	
13	46	85.8	98		89	98		86.6	98	
13	47	86.4	99		85.4	94		89.6	102	
13	48	87.4	100		91	101		90.2	102	
13	49	68.6	78	**	92.8	103		93.2	106	

\dagger Dunnett's t -test: *p <0.05; ** p <0.01

Table 9. Sea urchin (Arbacia punctulata) embryonic development test results (continued).

Strata	Site Number	100\% Porewater			50\% Porewater			25\% Porewater		
		Mean \% Normal Development	\% of Control	Statistical Significance ${ }^{\dagger}$	Mean \% Normal Development	\% of Control	Statistical Significance ${ }^{\dagger}$	Mean \% Normal Development	$\%$ of Control	Statistical Significance ${ }^{\dagger}$
14	50	0.2	0	**	89.2	99		89.8	102	
14	51	90.4	103		90.6	100		90	102	
14	52	88.8	101		89.6	99		91.4	104	
15	53	88.8	101		92.8	103		91	103	
15	54	74.2	85		91.6	101		94	107	
15	55	84.8	97		88.8	98		90.6	103	
15	56	0.6	1	**	92	102		90.6	103	
15	57	77.2	88		92.6	102		90	102	
16	58	0	0	**	0	0	**	56.8	64	**
16	59	46.2	53	**	91.8	101		91	103	
16	60	0	0	**	0	0	**	27.2	31	**
17	61	0	0	**	0	0	**	87.2	99	
17	62	76.8	88		89	98		89.2	101	
17	63	0	0	**	39	43	**	91	103	
18	64	91.6	105		92.6	102		92	104	
18	65	88.8	101		89	98		91	103	
18	66	89	102		92.4	102		87.8	100	
19	67	0	0	**	46.6	51	**	89.6	102	
19	68	87	99		92.8	103		91.2	104	
19	69	4.6	5	**	92	102		89.6	102	
20	70	87.2	100		88	97		88.8	101	
20	71	78.75	90		87.2	96		91.2	104	
20	72	92.8	106		72.4	80		91	103	
21	73	0	0	**	0	0	**	91.2	104	
21	74	0.2	0	**	1.8	2	**	89	101	
21	75	0	0	**	4	4	**	90.8	103	

\dagger Dunnett's t -test: *p <0.05; ** p <0.01

- Clear Lake (Table 10). The highest CSI (36.24) recorded during the study was at Site 63 , in the Galveston Bay entrance stratum. Overall, the CSI was significantly different from the reference site at 59 sites (Table 10). Of these, 35 sites exhibited a significantly higher PSI (Phenol Spiked Index), indicating these sites produced a greater decrease in luminescence than the phenol-spiked (positive control) reference sediment.

P450 Reporter Gene System Assay
Results of the cytochrome P450 RGS assays are shown in Table 11. Responses reported as $\mathrm{B}[\mathrm{a}] \mathrm{PEq}$ $(\mu \mathrm{g} / \mathrm{g})$ ranged from 0.33 to 34.28 . Nine percent of the sites exceeded the threshold value of $11.1 \mu \mathrm{~g} / \mathrm{g}$, while only one site (Site 5, Stratum 2) exceeded the upper confidence limit of the mean response value (Table 11). The distribution of the highest responses did not follow any apparent spatial pattern. Site numbers $2,5,16$, and 32 induced the highest responses. In addition there were a number of sites that had responses as low as the control test. These

Table 10. Microtox ${ }^{\circledR}$ test results.

Strata	Site Number	Mean EC 50 (mg equivalent sediment weight)	Control Sediment Index	Phenol Spiked Index
1	1	12.03	2.99**	1.01
1	2	5.03	7.15**	2.42**
1	3	105.33	0.34	0.12
2	4	72.87	0.49	0.17
2	5	9.47	3.80**	1.29
2	6	19.60	1.84**	0.62
3	7	2.80	12.86**	4.36**
3	8	3.37	10.69**	3.62**
3	9	8.57	4.20**	1.42
4	10	8.57	4.20**	1.42
4	11	2.50	14.40**	4.88**
4	12	76.97	0.47	0.16
5	13	7.27	4.95**	1.68**
5	14	83.80	0.43	0.15
5	15	3.33	10.80**	3.66**
6	16	11.93	3.02**	1.02
6	17	20.33	1.77**	0.60
6	18	22.43	1.60*	0.54
7	19	3.97	9.08**	3.08**
7	20	10.20	3.53**	1.20
7	21	4.53	7.94**	2.69**
8A	22	3.20	$11.25^{* *}$	3.81 **
8A	23	5.53	6.51**	2.20**
8A	24	5.23	6.88**	2.33**
8	25	5.93	6.07**	2.06**
8	26	18.97	1.90**	0.64
8	27	3.43	10.49**	3.55**
8	28	15.90	2.26**	0.77
9	29	2.50	$14.40^{* *}$	4.88**
9	30	12.87	2.80**	0.95
9	31	10.93	3.29**	1.12
9	32	11.43	3.15**	1.07
10	33	12.47	2.89**	0.98
10	34	80.13	0.45	0.15
10	35	9.50	3.79**	1.28
10	36	66.83	0.54	0.18
10	37	7.60	4.74**	1.61*
11	38	16.13	2.23**	0.76
11	39	21.60	1.67*	0.56
11	40	6.40	5.63**	1.91**
11	41	6.80	5.29**	1.79**
12	42	28.30	1.27	0.43
12	43	5.33	6.75**	2.29**
12	44	4.77	7.55**	2.56**
13	45	4.97	7.25**	2.46**
13	46	12.70	2.83**	0.96
13	47	25.00	1.44	0.49
13	48	6.77	5.32**	1.80**
13	49	53.97	0.67	0.23

\dagger Dunnett's t-test: *p $<0.05 ; * * \mathrm{p}<0.01$

Table 10. Microtox ${ }^{\circledR}$ test results (continued).

Strata	Site Number	Mean EC 50 (mg equivalent sediment weight)	Control Sediment Index	Phenol Spiked Index
14	50	19.17	$1.88^{* *}$	0.64
14	51	3.17	$11.37^{* *}$	$3.85^{* *}$
14	52	9.23	$3.9^{* * *}$	1.32
15	53	16.17	$2.23^{* *}$	0.75
15	54	4.63	$7.77^{* *}$	$2.63^{* *}$
15	55	5.20	$6.2^{* *}$	$2.35^{* *}$
15	56	1.20	$30.00^{* *}$	$10.17^{* *}$
15	57	66.20	0.54	0.18
16	58	1.16	$30.95^{* *}$	$10.49^{* *}$
16	59	3.67	$9.82^{* *}$	$3.33^{* *}$
16	60	1.80	$20.00^{* *}$	$6.78^{* *}$
17	61	3.97	$9.08^{* *}$	$3.08^{* *}$
17	62	3.03	$11.87^{* *}$	$4.02^{* *}$
17	63	0.99	$36.24^{* *}$	$12.28^{* *}$
18	64	33.30	1.08	0.37
18	65	44.50	0.81	0.27
18	66	54.70	0.66	0.22
19	67	11.27	$3.20^{* *}$	1.08
19	68	39.00	0.92	0.31
19	69	1.63	$22.04^{* *}$	$7.47^{* *}$
20	70	44.13	0.82	0.28
20	71	16.67	$2.16^{* * *}$	0.73
20	72	31.53	1.14	0.39
21	73	2.30	$15.65^{* *}$	$5.30^{* *}$
21	74	4.23	$8.50^{* *}$	$2.88^{* *}$
21	75	2.40	$15.00^{* *}$	$5.08^{* *}$

\dagger Dunnett's t-test: *p $<0.05 ; * * \mathrm{p}<0.01$
sites were located to the southwest of the approach jetties to Galveston Bay.

Concordance of Sediment Toxicity Tests

The toxicity tests conducted as part of NOAA's study in Galveston Bay were chosen to provide complementary, not duplicative, information. Each test utilized in this study has a different endpoint and sensitivity. In all tests, a positive correlation would indicate agreement between tests, with the exception of the RGS test. In that test, the fold induction
increases numerically as the potential toxicity response increases, thus a negative correlation would indicate agreement between tests. However, given the nature of toxicity endpoints and different modes of response (bulk sediment, porewater, and organic extract), a strong correlation among the test results should not be expected.

Table 12 provides the correlation coefficients for each of the toxicity tests. The porewater fertilization (100\%) test covaried with the embryological

Table 11. Cytochrome P450 RGS results.

Strata	Site Number	Benzo[a]pyrene Equivalents $(\mu \mathrm{g} / \mathrm{g})$	Toxicological Significance ${ }^{\dagger}$
1	1	2.23	
1	2	22.99	
1	3	13.78	
2	4	2.04	
2	5	34.28	*
2	6	10.60	
3	7	11.05	
3	8	8.16	
3	9	10.49	
4	10	4.95	
4	11	3.28	
4	12	1.16	
5	13	5.65	
5	14	11.02	
5	15	6.82	
6	16	24.49	
6	17	6.29	
6	18	4.94	
7	19	5.36	
7	20	5.19	
7	21	6.99	
8A	22	11.21	
8A	23	9.64	
8A	24	5.86	
8	25	3.80	
8	26	1.94	
8	27	4.91	
8	28	2.70	
9	29	6.63	
9	30	4.11	
9	31	4.91	
9	32	22.53	
10	33	1.51	
10	34	3.83	
10	35	1.98	
10	36	3.00	
10	37	1.87	

\dagger Value greater than upper confidence limit (32.8)

Strata	Site Number	Benzo[a]pyrene Equivalents $(\mu \mathrm{g} / \mathrm{g})$	Toxicological Significance
11	38	1.66	
11	39	4.19	
11	40	3.19	
11	41	2.30	
12	42	3.82	
12	43	2.43	
12	44	2.03	
13	45	1.47	
13	46	1.38	
13	47	1.64	
13	48	3.44	
13	49	2.32	
14	50	6.66	
14	51	2.43	
14	52	12.68	
15	53	1.58	
15	54	1.78	
15	55	1.44	
15	56	0.44	
15	57	3.46	
16	58	1.70	
16	59	2.15	
16	60	2.06	
17	61	5.76	
17	62	1.09	
17	63	3.32	
18	64	0.34	
18	65	0.36	
18	66	0.33	
19	67	1.89	
19	68	0.61	
19	69	3.19	
20	70	0.47	
20	71	1.38	
20	72	1.21	
21	73	6.74	
21	74	3.42	
21	75	2.67	

Table 12. Spearman rank coefficients of correlation between toxicity tests.

	Fertilization (100%)	Amphipod Survival	Microtox $^{\circledR}$	Development (100%)
Amphipod Survival	-0.049			
Microtox ${ }^{\circledR}$	$0.572^{* *}$	0.012		
Development (100\%)	0.427^{*}	-0.115	0.301	
Cytochrome P450	-0.26	-0.035	-0.168	-0.333

* $=$ p < 0.05
** $=\mathrm{p}<0.01$
development (100%) test and the Microtox ${ }^{\circledR}$ test, while the amphipod test as expected (no evidence of significant toxicity), did not correlate with any of the other tests.

Figure 14 illustrates the locations of significant toxicity for sea urchin fertilization and embryonic development, Microtox ${ }^{\circledR}$, and RGS. The regional patterns suggested by the correlations between the Microtox \circledR, fertilization, and embryological development test results are easily discernible. Sites with significant toxicity in the three tests are concentrated in the upper portion of the study area, in Clear Lake, and at the mouth and approaches to Galveston Bay.

Spatial Extent of Sediment Toxicity

The spatial extent of toxicity was determined by weighting the toxic samples to the size of the sampling strata and then summing these toxic areas to get a cumulative value for the entire location.

Table 13 provides the criterion used to determine the toxicity of a sample, the total area determined toxic, and the percent of the total area that was determined to be toxic for each test. The last two columns in Table 13 represent a recalculation of the spatial extent and the percent of the area that was toxic based on alternate site locations. On three occasions alternate locations were sampled. The first instance was due to the inability to anchor or dredge at the primary location, the second primary site was too shallow to access with a launch, while the third was due to the primary location being in a dredge spoil marsh (Appendix B). In a stratum where an alternate site was sampled, the toxic results are weighted as though the stratum had an additional site for each alternate sampled within that stratum. Thus, in effect each site is weighted less for each stratum with alternate site locations. The resulting change in spatial extent of sediment toxicity, if any, was minor.

Figure 14. Summary of sediment toxicity results for each sampling site in Galveston Bay.

Table 13. Estimates of the spatial extent of sediment toxicity in Galveston Bay.

Toxicity Test	Criterion	Toxic Area $\left(\mathrm{Km}^{2}\right)$	$\begin{gathered} \text { \% of Total Area } \\ \left(1351 \mathrm{~km}^{2}\right) \end{gathered}$	Toxic Area $\left(\mathrm{Km}^{2}\right)^{\text {a }}$	$\begin{gathered} \% \text { of Total Area }{ }^{\mathrm{a}} \\ \quad\left(1351 \mathrm{~km}^{2}\right) \end{gathered}$
Percent amphipod survival	< 80% of control	0	0	$N C^{\text {b }}$	NC
Percent urchin fertilization	< 80% of control in 100% pore water	610	45	607	45
	< 80% of control in 50% pore water	129	10	NC	NC
	< 80% of control in 25% pore water	25	2	NC	NC
Percent normal urchin development	< 80% of control in 100% pore water	340	25	337	25
	<80\% of control in 50% pore water	72	5	70	5
	<80\% of control in 25% pore water	23	2	21	1.5
Microtox bioluminescence EC50	<80\% of control	1,178	87	1,175	87
Cytochrome p-450 induction	$>10 \mu \mathrm{~g} / \mathrm{g}$	64	5	NC	NC
	$>32 \mu \mathrm{~g} / \mathrm{g}$	2	0.15	NC	NC

${ }^{a}$ recalculated to account for stations that were sampled as alternates
${ }^{\mathrm{o}} \mathrm{NC}$ - no change
As Table 13 indicates, significant toxicity in the

Microtox ${ }^{\circledR}$ test was the most pervasive of all the toxicity tests, encompassing 87% of the study area when using the criterion of less than 80% of the control. Alternatively, none of the Microtox ${ }^{\circledR}$ test results were lower than the $0.06 \mathrm{mg} / \mathrm{ml}$ or $0.51 \mathrm{mg} /$ ml Lower Prediction Limits (LPL) resulting from a nonparametric analyses of NOAA data (Long et al., 1999). The first value denotes the 90% LPL using the entire data set; the second value denotes the 80% confidence limit for the LPL when the lowest values i.e., most toxic, were removed from the data
set. Samples with EC_{50} values between these two values would be considered moderately toxic.

Spatial extent of impaired fertilization (45\% of study area) at 100% porewater was approximately half that of the Microtox ${ }^{\circledR}$ results, and the extent of impaired embryonic development (25\%) was just over half that of the fertilization test, while the RGS exceeded a moderate value of enzyme induction in 5% of the study area.

Chemistry/Toxicity Relationships

The relationship between the contaminants data and the results of the five toxicity tests conducted at each site was analyzed utilizing the Spearman-rank correlation analysis (Table 14 and 15). Additional analyses (Spearman-rank) were then conducted with calculated ER-M quotients from each of the toxicity tests. The ER-M quotient is the contaminant concentration data normalized with the appropriate ER-M sediment quality values. This was done for each analyte for which an ER-M guideline was available, and also for each of the contaminant classes (Table 16). A negative correlation indicates agreement between the test results and the contaminant or analyte concentration, with the exception of the RGS assay, where a positive correlation indicates agreement.

As might be expected, the amphipod mortality test results did not correlate with any of the measured contaminant data (Table 14 and 15). In addition, the Microtox® test did not significantly covary with the contaminant data. The fertilization success test correlated ($\mathrm{p}<0.05$) with beta $\mathrm{HCH}, \mathrm{C} 2-$ phenanthrenes/anthracenes, and C3-phenanthrenes/ anthracenes, while the sea urchin development test correlated ($\mathrm{p}<0.05$) with Mn, Zn, tPAHs, perylene, a number of the low molecular weight PAHs, PCB 153/132, and PCB 138/160.

The RGS assay correlated highly ($\mathrm{p}<0.01$) with PAHs. The RGS assay also covaried with most PCBs and with most of the pesticides measured (Table 14 and 15), although this test does not respond to chlorinated pesticides. Thus, this observation is spurious, merely indicating cooccurrence of pesticides with PAHs and other CYP1A-inducing chemicals.

Analysis of the ER-M quotients (Table 16) followed a similar pattern, with no significant correlations being found between contaminants and the amphipod toxicity or Microtox ${ }^{\circledR}$, but strong correlations found between the RGS P450 ER-M quotients and a number of the contaminants/classes.

BENTHICMACROINVERTEBRATE COMMUNITY

Two hundred and eleven taxa, with a total of 5,089 individuals were identified from the 22 strata. The total number of taxa per stratum varied within the study area from a low of four in Clear Lake (8A), to a high of 90 in West Bay (15), while the mean number of taxa per stratum ranged from 2.5 to 28 in Clear Lake and West Bay, respectively (Table 17). Polychaetes comprised the most individuals (71\%) of any taxa identified, followed distantly by bivalves (8.3\%), gastropods (6.6\%), and amphipods (3.6\%) (Figure 15 and Appendix I).

Table 14. Spearman-rank correlation coefficients and probable signifiance levels between sediment toxicity tests and trace/major elements and pesticides.

Contaminant	Amphipod Toxicity	Fertilization Success (100\%)	Embryological Development (100\%)	Microtox Bioluminescence	RGS P450
Ag	-0.032	-0.092	-0.282	0.022	0.72 **
Al	0.009	-0.191	-0.256	-0.005	0.663 **
As	0.043	-0.43	-0.326	-0.117	0.49 **
Cd	0.005	-0.167	-0.308	-0.075	0.754 **
Cr	-0.016	-0.181	-0.245	0.046	0.667 **
Cu	-0.102	-0.262	-0.356	-0.077	0.79 **
Fe	0.004	-0.233	-0.286	-0.015	0.647 **
Hg	0.01	-0.239	-0.327	-0.052	0.795 **
Mn	-0.005	-0.341	-0.456*	0.007	0.364 *
Ni	-0.023	-0.172	-0.263	-0.009	0.634 **
Pb	-0.038	-0.161	-0.323	0.013	0.805 **
Sb	0	-0.207	-0.288	-0.129	0.772 **
Se	0	-0.242	-0.31	-0.109	0.742 **
Sn	-0.065	-0.241	-0.288	-0.024	0.725 **
Tl	-0.099	0.027	-0.074	0.048	0.416 *
Zn	0.017	-0.289	-0.363 *	-0.062	0.721 **
Total HCHs	-0.083	-0.3	-0.337	-0.148	0.775 **
Alpha HCH	-0.087	0.094	-0.027	0.105	0.346
Beta HCH	-0.014	-0.399 *	-0.349	-0.236	0.714 **
Gamma HCH	-0.199	0.289	-0.039	0.201	0.048
Delta HCH	0.026	-0.205	-0.259	-0.056	0.54
Total chlordanes	-0.068	0.115	-0.111	0.066	0.631 **
Heptachlor					
Heptachlor epoxide	0.024	0.246	0.086	0.161	0.041
Oxychlordane	0.081	0.035	-0.15	-0.09	0.415 *
Gamma Chlordane	-0.036	-0.002	-0.119	0.028	0.452 *
Alpha Chlordane	0.031	-0.031	-0.236	0.015	0.688 **
Trans-Nonachlor	-0.043	-0.183	-0.192	-0.111	0.641 **
Cis-Nonachlor	0.063	-0.043	-0.274	-0.03	0.629 **
Hexachlorobenzene	0.002	-0.188	-0.199	-0.063	0.793 **
Aldrin	0.177	-0.076	-0.12	-0.023	0.535 **
Dieldrin	-0.001	-0.176	-0.328	-0.06	0.701 **
Endrin	-0.046	-0.157	0.098	-0.103	0.021
Mirex	-0.017	-0.146	-0.116	-0.025	0.6 **
Endosulfan II	-0.187	0.23	0.252	0.261	-0.159
Total DDT's	0.036	-0.091	-0.229	-0.01	0.779 **
2,4' DDE	0	0.104	-0.14	0.215	0.251
4,4' DDE	0.026	-0.203	-0.291	-0.112	0.862 **
2,4' DDD	0.049	0.067	-0.189	0.085	0.559 **
4,4' DDD	0.033	-0.051	-0.161	0.056	0.771 **
2,4' DDT	-0.018	-0.043	-0.15	-0.117	0.257
4,4' DDT	0.001	0.099	-0.11	0.102	0.44 *

[^2]Table 15. Spearman-rank correlation coefficients and probable signifiance levels between sediment toxicity tests and PAHs and PCBs.

Contaminant	Amphipod Toxicity	Fertilization Success (100\%)	Embryological Development (100\%)	Microtox Bioluminescence	RGS P450
TPAHs	-0.017	-0.289	-0.363 *	-0.26	0.873 **
Naphthalene	0.065	-0.244	-0.375 *	-0.108	0.719 **
C1-Naphthalenes	0.054	-0.271	-0.408 *	-0.105	0.741 **
C2-Naphthalenes	-0.091	-0.135	-0.341	-0.041	0.623 **
C3-Naphthalenes	-0.047	-0.17	-0.299	-0.07	0.623 **
C4-Naphthalenes	-0.071	-0.208	-0.412 *	-0.148	0.631 **
Biphenyl	0.091	-0.252	-0.443 *	-0.18	0.752 **
Acenaphthylene	-0.034	-0.289	-0.335	-0.267	0.801 **
Acenaphthene	-0.032	-0.172	-0.359	-0.28	0.781 **
Fluorene	0.049	-0.168	-0.343	-0.171	0.802 **
C1-Fluorenes	-0.007	-0.244	-0.388 *	-0.219	0.759 **
C2-Fluorenes	0.026	-0.218	-0.338	-0.185	0.669 **
C3-Fluorenes	0.021	-0.237	-0.337	-0.192	0.66 **
Phenanthrene	-0.016	-0.234	-0.324	-0.248	0.834 **
Anthracene	0.011	-0.296	-0.347	-0.276	0.84 **
C1-Phenanthrene	0.006	-0.291	-0.382 *	-0.252	0.873 **
C2-Phenanthrene	0.013	-0.384 *	-0.372 *	-0.281	0.843 **
C3-Phenanthrene	0.042	-0.365 *	-0.325	-0.255	0.859 **
C4-Phenanthrene	0.02	-0.276	-0.272	-0.224	0.856 **
1-Methylnaphthalene	0.03	-0.272	-0.417 *	-0.099	0.729 **
1-Methylphenanthrene	0.017	-0.311	-0.381 *	-0.299	0.844 **
2-Methylnaphthalene	0.096	-0.261	-0.386 *	-0.122	$0.726^{* *}$
2,6-Dimethylnaphthalene	-0.015	-0.103	-0.401 *	-0.135	0.575 **
1,6,7-Trimethylnaphthalene	-0.058	-0.059	-0.295	-0.041	0.458 *
Dibenzothiophene	0.035	-0.224	-0.342	-0.198	0.87 **
C1-Dibenzothiophene	0.013	-0.203	-0.317	-0.194	0.729 **
C2-Dibenzothiophene	0.123	-0.213	-0.354	-0.189	0.741 **
C3-Dibenzothiophene	0.12	-0.345	-0.333	-0.225	0.758 **
Fluoranthene	-0.038	-0.25	-0.287	-0.233	0.793 **
C1-Fluoranthene/pyrene	-0.056	-0.218	-0.265	-0.246	0.829 **
Pyrene	-0.029	-0.209	-0.272	-0.211	0.817 **
Benzo(a) anthracene	-0.034	-0.264	-0.271	-0.246	0.795 **
Chrysene	-0.015	-0.259	-0.297	-0.27	0.807 **
C1-Chrysenes	0.013	-0.229	-0.312	-0.213	0.842 **
C2-Chrysenes	0.055	-0.229	-0.326	-0.224	0.851 **
C3-Chrysenes	0.091	-0.196	-0.284	-0.128	0.737 **
C4-Chrysenes	0.097	-0.172	-0.358	-0.167	0.686 **
$\operatorname{Benzo}(b)$ fluoranthene	-0.021	-0.249	-0.276	-0.246	$0.816^{* *}$
$\operatorname{Benzo}(k)$ fluoranthene	-0.008	-0.258	-0.31	-0.264	$0.786^{* *}$
Benzo(e)pyrene	-0.038	-0.201	-0.257	-0.209	0.793 **
Benzo (a)pyrene	-0.019	-0.224	-0.261	-0.237	0.808 **
Perylene	-0.01	-0.261	-0.399 *	-0.234	0.894 **
Indeno(1,2,3-cd) pyrene	-0.01	-0.254	-0.289	-0.228	0.804 **
Dibenzo (a, h) anthracene	0.007	-0.278	-0.278	-0.248	$0.786^{* *}$
Benzo (g, h, i) perylene	-0.007	-0.218	-0.288	-0.206	0.828 **
Total PCBs	-0.012	-0.234	-0.271	-0.108	0.832 **
PCB8/5	0.106	0.12	0.029	-0.049	0.123
PCB18/17	-0.046	0.034	-0.061	0.085	0.356
PCB28	-0.105	-0.14	-0.206	0.075	0.635 **
PCB52	0.032	-0.115	-0.265	-0.033	$0.811^{* *}$
PCB44	-0.014	-0.046	-0.17	0.054	0.745 **
PCB66	0.071	-0.132	-0.177	-0.052	0.588 **
PCB101/90	-0.013	-0.192	-0.289	-0.058	$0.787^{* *}$
PCB118	0.009	-0.338	-0.361	-0.137	$0.719^{* *}$
PCB153/132	-0.067	-0.303	-0.373 *	-0.125	0.737 **
PCB105	-0.053	-0.193	-0.26	-0.125	0.615 **
PCB138 /160	-0.052	-0.304	-0.416 *	-0.126	$0.707^{* *}$
PCB187	-0.016	-0.11	-0.242	-0.002	0.655 **
PCB128	0.063	-0.194	-0.322	-0.086	0.379 *
PCB180	-0.013	-0.249	-0.276	-0.084	0.855 **
PCB170/190	-0.077	-0.199	0.069	-0.24	0.125
PCB195/208	0.094	-0.17	-0.167	-0.054	0.697 **
PCB206	-0.055	-0.095	-0.198	0.07	0.608 **
PCB209	0.024	-0.18	-0.209	-0.04	$0.816^{* *}$

[^3]Table 16. Spearman-rank correlation coefficients generated from ER-M quotients.

Contaminant/Class	Spearman-rank Coefficients				
	Amphipod Toxicity	Microtox	Fertilization Success	Embryological Development	RGS P450
Ag	-0.01	0.013	-0.132	-0.317	0.697 **
As	0.032	-0.112	-0.427*	-0.318	0.487 **
Cd	0.066	-0.035	-0.056	-0.259	0.726 **
Cr	-0.009	0.047	-0.178	-0.25	0.674 **
Cu	-0.11	-0.078	-0.265	-0.366 *	0.775 **
Hg	0.011	-0.051	-0.232	-0.325	0.795 **
Ni	-0.023	-0.012	-0.177	-0.268	0.635 **
Pb	-0.034	-0.01	-0.165	-0.319	$0.811^{* *}$
Zn	0.017	-0.065	-0.299	-0.357	0.726 **
p,p'-DDE	0.026	-0.112	-0.203	-0.291	0.862 **
tDDT	0.035	-0.009	-0.09	-0.227	0.777 **
tPCB	-0.013	-0.109	-0.234	-0.272	0.833 **
tPAHs	-0.017	-0.261	-0.292	-0.364*	0.873 **
Acenaphthene	-0.029	-0.275	-0.165	-0.364*	0.773 **
Acenaphthylene	-0.03	-0.263	-0.286	-0.336	0.801 **
Anthracene	0.008	-0.275	-0.293	-0.344	0.84 **
Fluorene	0.036	-0.175	-0.18	-0.351	0.806 **
2-Methylnaphthalene	0.102	-0.126	-0.267	-0.391 *	0.728 **
Naphthalene	0.068	-0.107	-0.252	-0.377*	$0.719^{* *}$
phenanthrene	-0.015	-0.249	-0.235	-0.324	0.833 **
Benz(a)anthracene	-0.034	-0.247	-0.262	-0.272	0.794 **
Benzo(a)pyrene	-0.017	-0.235	-0.224	-0.261	0.809 **
Chrysene	-0.015	-0.269	-0.26	-0.296	0.808 **
Dibenzo(a,h)anthracene	0.006	-0.244	-0.271	-0.278	0.785 **
Fluoranthene	-0.045	-0.234	-0.251	-0.28	0.79 **
Pyrene	-0.027	-0.211	-0.21	-0.272	0.815 **
Low mol. wt. PAH	-0.042	-0.255	-0.328	-0.4 *	0.874 **
High mol. wt. PAH	-0.019	-0.238	-0.245	-0.297	0.84 **

* p < 0.05; ** $\mathrm{p}<0.01$

The single most dominant and widely distributed genus was Mediomastus (lowest possible identification level (LPIL), most likely Mediomastus ambiseta). Mediomastus represented 29.1% of the total individuals and was found in 77% of the sites. The polychaete, Paraprionospio pinnata, the ribbon worms Rhynchocoela and Tubulanus
(LPIL), and the polychaete Parandalia tricuspis were present in $61 \%, 55 \%, 46 \%$, and 41% of the sites, respectively (Appendix I).

The number of individuals, mean density of individuals m^{-2}, faunal diversity, and evenness are also provided in Table 17. The number of

Table 17. Benthic macroinvertebrate community analysis.

Strata	Site	Total taxa	Mean taxa per strata	Number of individuals	Mean density	Density standard deviation	Faunal diversity (H')	Evenness (J^{\prime})
1	Overall	12	6.3	149	1,242	1,168	1.16	0.47
	3	5		16	400			
	2	7		103	2,575			
	1	7		30	750			
2	Overall	12	7.0	93	775	331	1.73	0.70
	4	6		41	1,025			
	6	8		36	900			
	5	7		16	400			
3	Overall	16	7.3	152	1,267	903	1.20	0.43
	9	5		13	325			
	7	10		54	1,350			
	8	7		85	2,125			
4	Overall	17	7.7	55	458	356	2.41	0.85
	12	1		2	50			
	10	11		25	625			
	11	11		28	700			
5	Overall	9	5.3	60	500	282	1.55	0.71
	14	5		7	175			
	13	6		27	675			
	15	5		26	650			
6	Overall	14	5.7	41	342	350	2.16	0.82
	18	11		28	700			
	16	6		13	325			
	17	0		0	0			
7	Overall	19	9.3	84	700	229	2.33	0.79
	20	9		26	650			
	21	11		38	950			
	19	8		20	500			
8	Overall	17	8.5	116	725	396	2.16	0.76
	25	6		12	300			
	27	7		33	825			
	28	10		22	550			
	26	11		49	1,225			
8A	Overall	4	2.5	38	475	636	1.14	0.82
	22	4		37	925			
	23	1		1	25			
9	Overall	18	7.8	74	463	60	2.38	0.82
	32	11		21	525			
	29	6		20	500			
	30	8		16	400			
	31	6		17	425			
10	Overall	52	18.8	326	1,630	511	3.30	0.84
	34	13		68	1,700			
	35	12		44	1,100			
	36	20		62	1,550			
	33	30		98	2,450			
	37	19		54	1,350			
11	Overall	28	12.3	450	2,813	3,469	1.93	0.58
	38	14		65	1,625			
	41	21		317	7,925			
	40	11		60	1,500			
	39	3		8	200			
12	Overall	28	16.3	586	4,883	1,202	2.01	0.60
	42	15		219	5,475			
	44	12		140	3,500			
	43	22		227	5,675			

Table 17. Benthic macroinvertebrate community analysis (continued).

Strata	Site	Total taxa	Mean taxa per strata	Number of individuals	Mean density	Density standard deviation	Faunal diversity (H^{\prime})	Evenness (${ }^{\prime}$)
13	Overall	25	8.6	164	820	251	2.62	0.81
	48	3		28	700			
	45	9		33	825			
	49	7		22	550			
	47	10		32	800			
	46	14		49	1,225			
14	Overall	51	25.0	344	2,867	1,006	3.25	0.83
	50	23		145	3,625			
	51	22		69	1,725			
	52	30		130	3,250			
15	Overall	90	28.0	1229	6,145	7,546	2.96	0.66
	55	13		30	750			
	56	10		31	775			
	53	60		638	15,950			
	54	50		507	12,675			
	57	7		23	575			
16	Overall	39	17.0	226	1,883	813	2.51	0.69
	58	11		104	2,600			
	59	27		82	2,050			
	60	13		40	1,000			
17	Overall	51	21.3	238	1,983	1,439	3.04	0.77
	61	17		70	1,750			
	63	35		141	3,525			
	62	12		27	675			
18	Overall	40	19.7	215	1,792	772	2.86	0.78
	66	18		66	1,650			
	65	19		44	1,100			
	64	22		105	2,625			
19	Overall	36	16.3	172	1,433	592	2.83	0.79
	67	17		72	1,800			
	68	11		30	750			
	69	21		70	1,750			
20	Overall	38	15.0	135	1,125	1,040	2.91	0.80
	71	22		93	2,325			
	72	14		20	500			
	70	9		22	550			
21	Overall	22	10.0	142	1,183	747	2.08	0.67
	74	16		81	2,025			
	75	8		37	925			
	73	6		24	600			

individuals ranged from 38 in Clear Lake to 1,229 in
West Bay. The mean density of individuals m^{-2}
ranged from 342 in Upper Galveston Bay (Stratum
followed a similar pattern with the lowest diversity in Clear Lake (1.14), and the highest diversity in lower Galveston Bay (3.30).
6), east of the dredge spoil islands, to 6,145 in West

Bay (Stratum 15). The faunal diversity (H^{\prime})

Figure 15. Dominant taxa in the benthic community.

DISCUSSION

Widespread destruction of Galveston City and loss of human life due to a severe hurricane in 1900, coupled with discovery of a major oilfield near Beaumont, Texas and passage of the new federal Rivers and Harbors Act in the early 1900s, provided the needed impetus to develop Houston into a major port and hub of commerce. Much of the industrial development over the next few decades was based on the transport of petroleum and manufacturing of petroleum-related products. The HSC, designated as such in 1914, has been expanded and deepened over the years to accommodate large ocean-going freighters and tankers. The shores of the channel are also home to numerous refineries, petrochemical plants, dry goods container wharves, and related businesses. During the 70-year period, 1910 to 1980, the region's population grew nearly 15 -fold, to about 3 million people.

As a consequence of rapid industrial growth and concomitant increase in human population, many resource-use conflicts have emerged in Galveston Bay. Many of them concern habitat loss, seafood contamination, dwindling populations of certain wildlife species, and environmental quality in general. In the early 1970s, portions of the bay, notably those in the vicinity of the HSC, were
severely degraded with anoxic waters, high levels of contaminants, seafood consumption advisories, loss of coastal vegetation, discharge of produced waters, and nutrient loadings from municipal discharges.

Over the next 25 years, recognition of major environmental problems prompted a number of corrective actions and management schemes by public agencies individually or collectively, often with support from academic and environmental communities. This has included improved wastewater treatment, minimization of sewage overflows, produced water management, and control of point source discharges of contaminants, nutrients and other pollutants. These measures have resulted in a considerable reduction in pollutant loading and improved environmental conditions in the HSC and adjoining waters. The most remarkable improvement was a reduction in biochemical oxygen demand (BOD) values in the upper reaches of the channel from over $200,000 \mathrm{~kg}$ of BOD per day in 1968 to less than $9,000 \mathrm{~kg}$ per day in 1990 (GBNEP, 1995). BOD is a measure of the amount of dissolved oxygen consumed by microorganisms in degrading organic matter in a water sample over a 5 -day period, and is a commonly used parameter to describe the shortterm oxygen demand exerted by sewage and industrial effluents. Levels of other contaminants,
such as toxic trace elements in sediment, have either leveled off or declined since the 1970s (Carr, 1993).

Even though the protective measures were narrowly focused, most of them on permitting requirements under the National Pollution Discharge Elimination System (NPDES), they have apparently improved the sediment quality of the bay as well the water quality. The general strategy of those measures was to let the bay cleanse itself and renew its resources. Such a strategy would work if the bay were not being overwhelmed by stress. The results given by

Carr et al. (1996) and those provided in this report tend to support that strategy. Results of the amphipod survival tests in this study do not indicate any areas of significant toxicity in Galveston Bay. Typically, sediment toxicity in large bays and estuaries, i.e., larger than $250 \mathrm{sq} . \mathrm{km}$ in area, is spatially quite limited: about 6%, based on results of the amphipod survival test (Hameedi et al., 1999). The spatial extent of sediment toxicity in the EMAP provinces as inferred from the amphipod survival test, ranged from zero to 10% (Long, 2000).

Typically these provinces cover large areas, from $4,000 \mathrm{sq} . \mathrm{km}$ (areas studied in the California Province) to $25,000 \mathrm{sq} . \mathrm{km}$ (Louisiana Province).

The lack of bulk sediment toxicity, as indicated by the results of the amphipod A. abdita survival test, is
in the bay even though they used a different test species, Grandidierella japonica. G. japonica is a non-indigenous species of Japanese origin that has settled in estuaries and intertidal waters off central and southern California (Chapman and Dorman, 1975). It is a tube-building species found in fairly high numbers in habitats ranging from sandy to muddy substrata. Unlike A. abdita, this species constructs porous, U-shaped tubes; it has a much shorter generation time, and has successfully been raised under laboratory conditions (Nipper et al., 1989).

The use of a tube-building species raises questions about the mode of exposure to sediment and contaminated particles. Such species, notably A. abdita, maintain water circulation in their tubes by pleopods and antennae; as such, they are more likely to be exposed to overlying water, and possibly some porewater and particles in suspension. Depending on the contaminant and its affinity for association with the sediment, such species may not be fully exposed to sediment-associated contaminants. Previously obtained results as well as data from an ongoing NOAA study have shown significant differences in response between the tubebuilding (A. abdita) and burrowing (Eohaustorius estuarius) amphipod species (Anderson et al., 1999).
notable. Carr et al. (1966) obtained similar results

This study, as well as the one reported by Carr et al. (1996), showed significant sediment porewater toxicity in portions of the bay, based on both the fertilization success and larval development tests. In this study, all sites within Stratum 7 (HSC, Upper Galveston Bay-West), 8 (Central Galveston BayWest) and 8A (Clear Lake), showed significant reduction in fertilization success (100% porewater).

Based on the sea urchin fertilization test and the Microtox® test, 45 and 87% of Galveston Bay showed toxic conditions, respectively. These results compare fairly well with an overall average for these tests in U.S. estuaries nationwide whose area is larger than 250 sq. km: 43% for the sea urchin test and 63% for the Microtox ${ }^{\circledR}$ test
(Hameedi et al., 1999). It should be noted that a toxicity endpoint for tests like the Microtox ${ }^{\circledR}$ test or the HGS assay is not easily defined. Given the nature of the Microtox® test, comparison of samples from a study area with samples from a control site, in this case Redfish Bay, can result in a very high incidence of toxicity. In northern Puget Sound, for example, sediment samples from 97 out of 100 sites were significantly more toxic than the Redfish Bay control samples, suggesting widespread toxicity (in 98% of the area sampled). The unusually low Microtox ${ }^{\circledR}$ response to negative control samples from Redfish Bay, relative to results from the bay samples, impedes interpretation and
comparability of results. Attempts have been made to define toxicity thresholds of such tests by calculating a prediction interval (Long et al., 1999) or confidence interval (Anderson et al., 1999) based on NOAA's nationwide database for these two tests. Note that a prediction interval is used to estimate what a future value will be, based on existing data. A confidence interval defines a range of values that encompasses a population parameter of interest, such as the population mean, as derived from existing data. Based on the prediction interval approach, none of the Microtox ${ }^{\circledR}$ test results were lower than the critical lower prediction limit values derived using NOAA data (Long et al., 1999). Interpretation of these data remains a judgmental issue.

The results of the RGS assay in Galveston Bay showed unexpectedly low induction of the cytochrome P450 enzyme system. The assay responds to the presence of chemicals known to cause direct chemical toxicity or genotoxicity, including planar PCBs, higher molecular weight PAHs , dioxins and furans. The RGS response was generally very low, with a mean value of approximately $5 \mathrm{ug} / \mathrm{g}$ (B[a]PEq). A recent analysis of RGS response data from NOAA's sediment toxicity studies ($\mathrm{n}=530$) indicated an upper prediction limit of observations at the 90% confidence level to be 37.1. This means that
there is a 90% probability that one future observation from this distribution will be less than 37.1. Eliminating the $95^{\text {th }}$ or $90^{\text {th }}$ percentile of the data set, the upper prediction limit would be reduced since the "population" would not contain potentially highly impacted sites (Long et al., 2000). The upper prediction limit at the 80% confidence level was 11.1 when values greater than $37.4\left(90^{\text {th }}\right.$ percentile) were eliminated from the data set.

Earlier, Anderson et al. (1999) showed that the 99\% confidence level of the mean value (22.7) of RGS tests from nine sediment toxicity studies ($\mathrm{n}=527$) was between 12.6 and 32.8 . These results have been interpreted to mean that an RGS response value of approximately 10 indicates background levels for estuarine sediments. Sediments that elicit RGS responses of $60 \mathrm{mg} / \mathrm{kg}$ ($\mathrm{B}[\mathrm{a}] \mathrm{PEq}$) or larger usually contain degraded infaunal communities (Fairey et al., 1998). The highest value for Galveston Bay samples was $34 \mathrm{mg} / \mathrm{kg}$ ($\mathrm{B}[\mathrm{a}] \mathrm{PEq}$) at a site in Stratum 2 (HSC).

Concentrations of most metals and organic contaminants did not exceed NOAA's Sediment Quality Guidelines (ER-L and ER-M). Most of the analytes that did exceed the numeric ER-L guideline included only about 2% of the study area. The exceptions were arsenic and nickel, which extended to at least 25% of the study area. Metals concentrations have no discernible pattern in
distribution throughout the study area. Pesticides and PCBs decreased in concentrations from north to south, although with the exception of DDT, all concentrations were below their respective ER-L/ ER-M guidelines. PAH concentrations have a similar north to south decreasing concentration trend except that the higher concentrations extend further into the bay itself before concentrations began to decrease. The highest PAH concentrations were in the central portion of the bay.

Using scaled values of the triad results, Carr et al. (1996) noted that eight out of 24 sampling sites in Galveston Bay showed evidence of sediment contamination, toxicity, and impaired benthos. Most of the sites were located in the HSC or fairly close to the shoreline in Trinity Bay and East Bay; the middle part of the bay was not sampled. Carr et al. (1996) chose No Observed Effect Level (NOEL) or ERL values as benchmarks to classify a site having elevated levels of contaminants. In general, NOEL values are lower than the ERL (EffectsRange Low), TEL(Threshold Effects Level) or AET (Apparent Effects Threshold) values, and thus represent a more precautionary approach. As an example, the NOEL value for tPCBs is 24 ppb , whereas the ERL value for PCBs is 50, the TEL value is 34 , and the AET value based on the Microtox ${ }^{\circledR}$ test is 130 . It should be noted that AET values are usually specific for a particular
test or species in a particular geographical area and thus are quite variable. More recently, a group of experts derived a consensus-based "threshold effect concentration" for tPCBs in sediment of 40 ppb (MacDonald et al., 2000).

Macrobenthic community parameters, such as species richness and diversity, or derived values, such as a benthic index, have often been used to assess the ecological impacts of environmental degradation. Typically, estuarine infauna is taxonomically diverse and includes species that exhibit a wide range of feeding modes and trophic interactions and effectively exploit a wide range of habitats (clean sand to mud). However, many factors, not necessarily associated with chemical contamination, play a pivotal role in structuring infaunal benthic communities. They include depth, tidal cycles, salinity, sediment texture and organic carbon content, and temperature. It is therefore difficult to distinguish between contaminant-related changes in a benthic infaunal community from those caused by natural factors, except in cases of substantial impact.

The total number of infaunal benthos taxa identified in this study was 211 (BAV, 1997). As was shown in previous studies (e.g., Carr et al., 1996), deposit feeding annelids were numerically the most abundant taxonomic group in Galveston Bay. They comprised
71% of the total number of animals collected and represented 46% of species in the current study. Within this group Mediomastus sp., generally regarded as an opportunistic species, was widespread, particularly in fine, organically rich sediments. Bivalves, gastropods and amphipods were the other numerically abundant taxa.

Preliminary results of numerical classification analysis of the infaunal benthos data showed a remarkable separation of sampling strata into three groups. Strata 14-21, located in the West Bay and in the vicinity of Galveston Bay's opening to the Gulf of Mexico, were generally similar, except Stratum 18 where fauna was dominated by amphipods. Stratum 18 was identified as a separate "group" under the classification scheme. The remaining strata, 1-13, were grouped together and represented sampling sites dominated by fine-grained sediments, primarily mud. Additionally, more detailed analyses to discern the relationship between the site groupings, as well as species groupings, will be carried out in the future.

In some studies where the sediment quality triad approach is used and concurrent data are available, it has been shown that benthic infaunal changes occurred at contaminant concentrations lower than those associated with acute toxicity tests (Hyland et al., 1999; Long, 2000; Long et al., 2002). Further,
sediment samples that generated P450 induction greater than a certain threshold value have been found to be highly correlated with degraded benthos, i.e., low species diversity, abundance of opportunistic and generally pollution-tolerant species
(Anderson et al., 1999; McCoy et al., 2002).
Additional recent efforts, using different analytical approaches, have further elucidated the relationship between sediment contamination and degradation of infaunal benthos. These approaches have utilized aspects of multivariate analyses such as principal component analysis (Long et al., 2002), nodal analysis (Hameedi et al., 2001), or a two-step procedure involving ordination based upon principal coordinate analysis and calculating an abundanceweighted average of pollution tolerant species in a sample (Smith et al., 2001). Such analyses have not yet been performed on the Galveston Bay benthos data.

ACKNOWLEDGMIENTS

Field logistics and operational support for sampling were provided by the Captain and crew of the NOAA ship FERREL. Scot Frew and Karly Allen provided invaluable assistance during field collections and preparation of samples. Helen Drummond, currently with the Galveston Bay National Estuary Program, provided consultation and background information about the bay and its resources during the initial, planning phase of this study.

Chemical analyses and toxicity tests were carried out either under contract or through an interagency agreement. Samples were analyzed for chemical contaminants by Texas A\&M University's Geochemical and Environmental Research Group. TRAC Laboratories carried out the amphipod toxicity tests. The RGS assays were conducted by Columbia Analytical Services, Inc. The sea urchin and Microtox ${ }^{\circledR}$ tests were carried out by USGS, BRD, Columbia Environmental Research Center. Benthic faunal sorting and taxonomy determinations were made by Barry A. Vittor and Associates, Inc. Finally, the authors wish to thank Edward Long for assisting in the development of the sampling scheme and preliminary analysis of chemistry and toxicity data.

REFERENCES

American Public Health Association. 1996. P450 reporter gene response to dioxin-like organics (Method 8070). In: Standard methods for the examination of water and wastewater (19th ed., Suppl., pp-24-25). Washington DC: American Public Health Association.

Anderson, B.S., J.W. Hunt, B.M. Phillips, R. Tjeerdema, M. Stoeling, and R. Fairey. 1999. History of a hot-spot - Moss Landing Harbor, California. Proceedings: Society of Environmental Toxicology and Chemistry, Annual Meeting, Philadelphia, PA.

ASTM. 1992. Standard guide for conducting 10day static toxicity tests with marine and estuarine amphipods. Designation E 1367-92. Annual book of standards. 11.04. American Society for Testing and Materials. Philadelphia, PA.

ASTM. 1996. Standard guide for measuring the presence of planar organic compounds which induce CYP1A, using reporter gene test systems. E 185396. American Society for Testing and Materials. Philadelphia, PA. 1392-1397.

ASTM. 1997. E 1853 Standard guide for measuring the presence of planar organic compounds which induce CYP1A, reporter gene test systems. Vol.
1.05. American Society for Testing and Materials. Philadelphia, PA.

BAV (Barry A. Vittor and Associates, Inc.). 1997. Galveston Bay, Texas: Benthic community assessment. Contract report to NOAA, National Ocean Service, Office of Ocean Resources Conservation and Assessment, Silver Spring, MD (no pagination).

Bloom, S.A. 1994. The community analysis system.
Version 5.0. Ecological Data Consultants. Archer, Florida.

Carr, R. S. 1993. Sediment quality assessment survey of the Galveston Bay system. Final report submitted to the Galveston Bay National Estuary Program. GBNEP-30.

Carr, R.S., D.C. Chapman, C.L. Howard, and J. Biedenbach. 1996. Sediment quality triad assessment survey in the Galveston Bay Texas system. Ecotoxicology 5: 1-25.

Carr, R.S. 1998. Marine and estuarine porewater toxicity testing, pp. 523-538. In: Microscale testing in aquatic toxicology (P.G. Wells, K. Lee, and C. Blaise, eds). CRC Press. Boca Raton, FL.

Chapman, J.W. and J.A. Dorman. 1975. Diagnosis, systematics, and notes on Grandidierella japonica (Amphipoda: Gammaridae) and its introduction to
the Pacific coast of the United States. Bulletin of the Southern California Academy of Sciences. 74:104108.

Criner, O., and M.D. Johnican. 2001. Update 2000: Current status and historical trends of the environmental health of Galveston Bay. Galveston Bay Estuary Program. Webster, Texas. 112 pp.

Fairey, R., C. Roberts, M. Jacobi, S. Lamerdin, R. Clark, J. Downing, E. Long, J. Hunt, B. Anderson, J. Newman, M. Stephenson, and C.J. Wilson. 1998. Assessment of sediment toxicity and chemical concentrations in the San Diego region, California. Environmental Toxicology and Chemistry. 17: 15701581.

Galveston Bay National Estuary Program. 1992. Ambient water and sediment quality of Galveston Bay: present status and historical trends. Galveston Bay National Estuary

Program Publication GBNEP-22. 181 pp.

Galveston Bay National Estuary Program. 1994. The state of the bay: a characterization of the Galveston Bay ecosystem. Galveston Bay National Estuary Program Publication GBNEP-44. 232 pp.

Galveston Bay National Estuary Program. 1995.
The Galveston Bay plan: the comprehensive management plan for the Galveston Bay ecosystem.

Galveston Bay National Estuary Program.
GBNEP-49. 457pp.

Galveston Bay Estuary Program. 2002. The state of the bay: a characterization of the Galveston Bay ecosystem. Second Edition. Galveston Bay Estuary Program, GBEPT-7. 162pp.

Gardinali, P.R. 1996. Assessment of halogenated aromatic compounds contamination in the Galveston Bay ecosystem. Ph.D. Dissertation, Texas A\&M University, College Station, TX. 272 pp.

Hameedi, M.J., E.R. Long, and M.R. Harmon. 1999 (on-line). Sediment toxicity: In: NOAA's state of the coast report (URL: http://state-ofcoast.noaa.gov/bulletins/html/sed 15/sed.html), National Oceanic and Atmospheric Administration, Silver Spring, MD.

Hameedi, M.J., S.I. Hartwell, and L.W. Claflin. 2001. Environmental indicators in a coastal resource management context. $16^{\text {th }}$ Biennial Conference of the Estuarine Research Federation [Abstracts]. St. Pete Beach, FL.

Hamilton, M.A., R.C. Russo, and R.V. Thurston. 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science and Technology. 11:714-719.

Heimbuch, D.H., H. Wilson, J. Seibel, and S.
Weisberg. 1995. R-EMAP Data analysis approach for estimating the portion of area that is subnominal. Report prepared for USEPA, Research Triangle Park, NC. 22 p.

Holmes, N.A., and A.D. McIntyre (eds.) 1984. Methods for the study of marine benthos. Blackwell Scientific, Odford. 387 pp.

Hyland, J.L., R.F. van Dolah, and T.R. Snoots. 1999. Predicting stress in benthic communities of southeastern U.S. estuaries in relation to chemical contamination of sediments. Environmental Toxicology and Chemistry 18: 2557-2564.

Johnson, B.T., and E.R. Long. 1998. Rapid assessment of sediments in estuarine ecosystems: a new tandem in vitro testing approach.

Environmental Toxicology and Chemistry, 17: 10991106.

Kaiser, K.L.E. 1998. Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms. Environmental Health Perspectives, 106 (Supplement 2): 583-591.

Klemm, D.J., P.A. Lewis, F. Fulk, and J.M.
Lazorchak. 1990. Macroinvertebrate field and laboratory methods for evaluating the biological integrity of surface waters (Report EPA/600/4-909030). U.S. Environmental Protection Agency, Office
of Research and Development, Environmental Monitoring Systems Laboratory, Cincinnati, OH. 256 pp.

Lauenstein, G.G. and A.Y. Cantillo, editors. 1998. Sampling and analytical methods of the National Status and Trends Program Mussel Watch Project: 1993-1998 Update. NOAA Technical Memorandum NOS ORCA 130. National Oceanic and Atmospheric Administration. Silver Spring, MD. 233 pp.

Long, E.R. 2000. Spatial extent of sediment toxicity in U.S. estuaries and marine bays. Environmental Monitoring and Assessment 64: 391-407.

Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within the ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19(1): 81-97.

Long, E.R., A. Robertson, D.A. Wolfe, J. Hameedi, and G.M. Sloane. 1996. Estimates of the spatial extent of sediment toxicity in major U.S. estuaries. Environmental Science \& Technology 30(12): 3585-3592.

Long, E.R., J. Hameedi, A. Robertson, M. Dutch, S. Aasen, C. Ricci, K. Welch, W. Kammin, R.S. Carr, T. Johnson, J. Biendenbach, K.J. Scott, C. Mueller, and J.W. Anderson. 1999. Sediment quality
in Puget Sound: Year 1 - Northern Puget Sound.
NOAA Technical Memorandum NOS NCCOS CCMA 139. Silver Spring, MD. 320 pp.

Long, E.R., J. Hameedi, A. Robertson, M. Dutch, S. Aasen, K. Welch, S. Magoon, R.S. Carr, T. Johnson, J. Biendenbach, K.J. Scott, C. Mueller, and J.W. Anderson. 2000. Sediment quality in Puget Sound: Year 2 - Central Puget Sound. NOAA Technical Memorandum NOS NCCOS CCMA 147. Silver Spring, MD. 343 pp.

Long, E.R., M.J. Hameedi, G.M. Sloane, and L.B. Read. 2002. Chemical contamination, toxicity, and benthic community indices in sediments of the lower Miami River and adjoining portions of Biscayne Bay, Florida. Estuaries. 25(4A): 622-637.

MacDonald, D.D., L.M. Dipinto, J. Field, C.G.
Ingersoll, E.R. Long, and R.C. Swartz. 2000. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls. Environmental Toxicology and Chemistry. 19(5): 1403-1413.

McCoy, D.L., J.M. Jones, J.W. Anderson, M.R. Harmon, I. Hartwell, and J. Hameedi. 2002. Distribution of cytochrome P4501A1-inducing chemicals in sediments of the Delaware River-Bay system, USA. Environmental Toxicology and Chemistry, 21: 1618-1627.

Microbics Corporation. 1992. Microtox ${ }^{\circledR}$ Manual, Vol. III, condensed protocols. Microbics Corporation, Carlsbad, CA. 232p.

Morgan, B.J.T. 1992. Analysis of quantal response data. Chapman and Hall, London, England, 511 pp.

Nipper, M.G., D.J. Greenstein, and S.M. Bay. 1989. Short- and long-term sediment toxicity test methods with the amphipod Grandidierella japonica. Environmental Toxicology and Chemistry. 8: 1191-1200.

Postlind, H., T.P. Vu, R.H. Tukey, and L.C. Quattrochi. 1993. Response of human CYP1luciferase plasmids to $2,3,7,8$,-tetrachlorodibenzo-p-dioxin and polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology. 118: 255262.

SAS Institute Inc. 1989. SAS/STAT ${ }^{\circledR}$ User's guide version 6 , fourth edition, volume 2. SAS Institute Inc., Cary, NC. 846 pp.

SAS Institute Inc. 1992. SAS/LAB ${ }^{\circledR}$ Software: User's guide version 6, first edition, SAS Institute Inc. Cary, NC. 291 pp.

SAS Institute. 1995. JMP version 3.1 for the Macintosh. SAS Institute. Cary, NC. 593 pp.

Smith, R.W., M. Bergen. S.B. Weisberg, D. Cadien, A. Dalkey, D. Montagne, J.K. Stull, and
R.G. Velarde. 2001. Benthic response index for assessing infaunal communities on the southern California mainland shelf.Ecological Applications, 11: 1073-1087.

Turgeon, D.D., J. Hameedi, M.R. Harmon, E.R.
Long, K.D. McMahon, and H.H. White. 1998.
Sediment toxicity in U.S. coastal waters. Special report, NOAA, National Status and Trends Program. Silver Spring, Maryland. 20 pp.
U.S. Environmental Protection Agency. 2000.

Method 4425: Screening extracts of environmental samples for planar organic compounds (PAHs, PCBs, PCDDs/PCDFs) by a reporter gene on a human cell line. EPA Office of Solid Waste, SW 84, Revision 0. 37pp.
U.S. Census Bureau. 2001. Statistical abstract of the United States 2001: the national data book. (URL: http://www.census.gov/prod/2002pubs/

01 statab/pop.pdf).
U.S. Army Corps of Engineers. 2001. Navigation data center. U.S. port rankings 2000 - cargo value.
(URL: www.wrsc.usace.army.mil/ndc/
wcporton00.htm.

List of Appendices

Appendix A	Sediment characteristics at sampling sites
Appendix B	Galveston Bay field logs
Appendix C	Sediment trace and major element concentrations
Appendix D	Sediment pesticide concentrations
Appendix E	Sediment PCB concentrations
Appendix F	Sediment PAH concentrations
Appendix G	Ancillary amphipod toxicity measurements
Appendix H	Ancillary porewater toxicity measurements
Appendix I	Taxa abundance and occurence by strata and stations

Appendix A Sediment Characteristics

Appendix A. Sediment characteristics at sampling sites.

Appendix A. Sediment characteristics (continued).

Appendix B
Field Logs
Appendix B. Galveston Bay field logs.

STReta	${ }_{\text {sing }}^{\text {sinker }}$			${ }_{\text {dime }}^{\text {(loal) }}$	stre locaton	Lattude (N)	Longrive (w)	${ }_{\text {sebment }}^{\substack{\text { Stur }}}$	sebiment texture	odors shens		ретти(T)	стD	отнев сомments
1	1	1	${ }_{8596}$	${ }^{2.50}$		${ }^{29} 94.429$	${ }^{95} 3.437$	brown over gry	smod over send w/hy	none	none	8	yes	tumater now woking.
,	2	2	${ }_{85196}$	$2: 18$	ensison power ines	${ }^{29} 945703$	$95{ }^{5} 4022$	${ }_{\text {comp }}^{\text {biom }}$	it over lay	none	none	7	yes	transducer not working- estimated depth, Alt because signs for no dredging anchoring at Alt 1
1	3	'	${ }_{85996}$	${ }^{1.36}$	Houston ship channel - near ferry crossing, Lynchburg Range, south of Lynchburg landing and Monument Inn, industries	688	${ }_{95}{ }^{4} 4705$	bown overgay	sit oere clyy	none	diaum sem	15	ys	Unel
2	4	1	${ }_{85996}$	3.27	Houston ship channel - SW of tank farm and numerous smoke stacks, East of San Jacinto monument, 20 ft north, R 16	$29^{9} 4.101$	${ }_{99} 3201$		t sand wits some clay	none	none	7	yss	Unex
=	s	1	88696	$9: 10$		$29^{9} 43,33$	1.36				none	4.5	ys	
2	6	1	88696	${ }^{8.25}$		$29^{\circ} 4.744$	${ }_{95}{ }^{5} 2124$		St	none	none	${ }^{4.5}$	yes	(tasdicer no wooking.
3	7	1	${ }_{86969}$	10.30	Upper San Jacinto Bay - between Alexander Island and Brinsom PP (Dupont Petrochemical facility), appr. 100 m North of R10, 100 m north of channel	29^{982405}	$95{ }^{5} 1948$			none	mussils (smalt on	4	yse	Unel
3	8	,	${ }_{86969}$	${ }^{12,50}$		${ }^{29} 9^{9} 2228$	914		Sill		${ }^{\text {opssers, strimp }}$	4.5	yes	
3	,	2	${ }_{86196}$	9.55		${ }^{29} 9{ }^{9} 2.149$	${ }^{95}{ }^{1.55}$		sitt oere clay			5	yss	con
4	${ }^{10}$	1	87796	3.20		$29^{9} 41283$	94959312	${ }^{\text {bown overe may }}$		none	wom ubehole	5	yes	
4	11	'	${ }_{87}$	${ }^{3} 45$	Housens stip chamel, entrance ob Butburs cut	$29^{\circ} 41204$	99.187	$\underbrace{}_{\substack{\text { bonuy over med } \\ \text { gray }}}$		none	none	6	yes	
4	12	1	88696	3,43	cables, 100 m SE of cable warning sign Houston Ship Channel- 50 m south of Hog Island NW edge seawall, 300 m north of tall power	${ }^{29} 4.1714$	94 99.402	light bown	sand	none	none	2	yes	
5	${ }^{13}$	1	${ }_{86196}$	$2: 15$		${ }^{29} 9^{9} 2288$	94988.78		silt wint some clay	none	none	4	yes	transducer not working- estimated depth,surrounded by oil wells-pumps, electric lines
5	${ }^{14}$	1	88696	$1^{1: 40}$	Tabbs Bay-Midway between Hog Island and mainland. Appr. 400 m south of mainland, Appr 300 m west of old railroad bridge pilings	$29^{9} 92938$	94959.37	$\begin{aligned} & \text { bown surfiee } \\ & \text { bucker } \end{aligned}$	sit	none	none	${ }^{4.5}$	yes	$\begin{aligned} & \text { transducer not working- } \\ & \text { estimated depth,surrounded } \\ & \text { by oil wells-pumps } \end{aligned}$
5	15	1	88696	2.50		$29^{\circ} 24227$	29688.82	boun nurfac	silt ove clay	none	none	3	yes	tor
${ }^{6}$	16	1	87796	$11: 7$		$2{ }^{29} 37.9011$	${ }^{24} 56519$	brownover may		none	none	7	yes	
6	${ }^{17}$	2	87796	12.46		2939748	9456.194			none	none	6	yes	transducer not working- estimated depth, Alt one not used because it was located in a marsh
6	18	1	87796	1035	Unpe	29039,492	94569968	bownover gay		none	none	6	yes	$\xrightarrow{\text { rumstuecer no wooking- }}$

Appendix B. Galveston Bay field logs (continued).

STRATA	$\begin{gathered} \text { SITE } \\ \text { NUMBER } \end{gathered}$	$\begin{gathered} \text { ALTER- } \\ \text { NATE } \\ \hline \end{gathered}$	$\begin{gathered} \text { DATE } \\ (\mathrm{mm} / \mathrm{dd} / \mathrm{yy}) \end{gathered}$	$\begin{gathered} \text { TIME } \\ \text { (local) } \end{gathered}$	SITE LOCATION	Latitude (N)	Longitude (W)	$\begin{gathered} \text { SEDIMENT } \\ \text { COLOR } \\ \hline \end{gathered}$	SEDIMENT TEXTURE	ODOR/ SHEENS	$\begin{gathered} \text { BENTHIC } \\ \text { ORGANISMS } \\ \hline \end{gathered}$	DEPTH(FT)	CTD	OTHER COMMENTS
7	19	1	8/7/96	2:43	Upper Galveston Bay western side-east of Little Cedar Bayou appr 1 mi	$29^{\circ} 38.492$	$95^{\circ} 0.196$	brown over med gray	silt over silty clay	ne	none	8	yes	transducer not working estimated depth, dredging nearby
7	20	1	8/7/96	1:45	Upper Galveston Bay western side-east of Bayside Terrace(appr 2mi)	$29^{\circ} 37.324$	$94^{\circ} 58.941$	brown over gray	silty and over silty clay	none	flatfish	8	yes	transducer not workingestimated depth
7	21	1	8/7/96	2:15	Beach Upper Galveston Bay western side-SE of Sylvan Beach	$29^{\circ} 38.328$	$94^{\circ} 59.801$	lt. brown over med gray	sandy silt over silty clay	none	annelids	6	yes	transducer not working estimated depth, dredging nearby
8	25	1	8/8/96	4:25	Upper Galveston Bay western side	$29^{\circ} 33.647$	$94^{\circ} 58.835$	thin brown layer over gray	silt over silty clay	none	none	10	yes	transducer not workingestimated depth
8	26	1	8/9/96	9:03	Upper Galveston Bay western area-east of bridge over Clear creek, NE of radio antennae	$29^{\circ} 32.174$	$94^{\circ} 57.21$	brown over gray	silt over clayey silt	ne	diatom scum	9	yes	transducer not workingestimated depth
8	27	1	8/9/96	7:50	Upper Galveston Bay western area-west of Bulkhead Reef, east of Red Bluff, appr. . 5 mi west of Houston Ship channe	$29^{\circ} 35.985$	$94^{\circ} 57.408$	brown over gray	silt over silty clay	none	diatom scum, Goby	9	yes	transducer not workingestimated depth
8	28	1	8/9/96	8:30	Upper Galveston Bay western area- appr 2.5 mi west of Houston Ship channel, 2.25 east of Todville	$29^{\circ} 34.101$	$94^{\circ} 58.309$	brown over gray	silt with shell hash	none	none	10	yes	transducer not workingestimated depth
8A	22	1	8/8/96	10:35	Clear Lake-south of Apt/condos w/boat slips in western Clear Lake	$29^{\circ} 33.81$	$95^{\circ} 3.587$	Brown over gray	silty clay	none	none	6	yes	transducer not workingestimated depth
8A	23	1	8/8/96	2:15	Clear Lake - southern edge of channel 100 m SE of G19, 200m of Lakeside shore	$29^{\circ} 33.299$	$95^{\circ} 3.634$	thick light brown gray layer over dark	thick silt surface over silty clay	slight sulfur	none	6.5	yes	transducer not workingestimated depth
8A	24	1	8/8/96	3:05	Clear Lake - northern shore on the eastern end 200 m SW of apt complex with flags, 500 m NW OF RED N14	$29^{\circ} 33.411$	$95^{\circ} 2.302$	thick brown layer over gray	silt over silty clay, light shell hash	none	none	6	yes	transducer not workingestimated depth
9	29	1	8/7/96	9:07	Upper Galveston Bay - NE of R70 marking Houston Ship Channel	$29^{\circ} 34.833$	$94^{\circ} 54.714$	brown over gray	thick silt layer over silty clay	none	none	7	yes	transducer not workingestimated depth
9	30	1	8/7/96	9:50	Eastern side of Upper Galveston Bay and mouth of Trinity Bay 3 mi south of Beach City	$29^{\circ} 37.209$	$94^{\circ} 53.42$	brown over gray	thick silt layer over silty clay	none	none	7	yes	transducer not workingestimated depth
9	31	1	8/7/96	1:11	Eastern side of Upper Galveston Bay-. 5 mi ESE of Rear(after) range marker for the Bayport ship channel G180 6 sec light, 60 ft high	$29^{\circ} 36.783$	$94^{\circ} 55.786$	brown over gray	silt w/sand over siltyclay	none	none	6	yes	transducer not workingestimated depth
9	32	1	7/31/96	4:10	North of Trinity River Channel, just south of "L" shaped oil platform, two smaller oil obstructions close by	$29^{\circ} 32.009$	$94^{\circ} 50.296$	brown with gray	shell (oyster) hash, silty sand	none	diatom scum	10	yes	
10	33	1	8/1/96	9:10	Central Galveston Bay, off east edge of Houston Ship Channel, NE of R 36	$29^{\circ} 25.328$	$94^{\circ} 49.213$	brown surface over gray	sandy clay w/shell hash	none	diatom surface	10	yes	
10	34	1	7/31/96	2:40	Central Galveston Bay, NW of Sievers Cove, South of Hanna Reef, 5 miles south of mainland	29 27.019	$94^{\circ} 44.695$	brown over gray, no distinct layers	clayey silt	none	worm tubes, eels	7	yes	
10	35	1	7/31/96	3:25	Central Galveston Bay, SE of Smith Pt., 2000yds from shore, North of Hanna Reef, sparse, residential area	$29^{\circ} 31.233$	$94^{\circ} 46.287$	gray with med brown at top	silt with some clay and sand	none	worm tubes, diatom scum	5	yes	
10	36	1	8/1/96	8:25	Central Galveston Bay, East of Houston Ship Channel, NE of R 40, 1.5 m east if R 42	$29^{\circ} 26.544$	$94^{\circ} 48.093$	dark brown	silty clay, soft	none	diatom scum, worm tubes	9	yes	
10	37	1	8/1/96	10:05	Central Galveston Bay, appr. one mile east of Texas City, west of G47 marking Houston Ship Channel	29 ${ }^{\circ} 24.864$	$94^{\circ} 51.964$	brown over gray with some spots of rust	silt over sand with some shell hash	none	worm tubes, detritus below surface	7	yes	

Appendix B. Galveston Bay field logs (continued).

StReta	${ }_{\text {STE }}^{\text {STER }}$	Nitar.	(matis)	${ }_{\text {cosem }}^{\text {TIME }}$	stre locatow	Lainide ((N)	Longiuse ($\mathbf{(1)}$	stimmer	semment textree	E ooors shens		овттн(т)	cto	отнer comments
"	${ }^{38}$	1	88296	10.40		290417	9448896		sill ove sily day	none	bilurases	1	ys	Al gats ad many dims
"	${ }^{39}$,	88296	12.2		2993549	9444.857	limay		nome	now	,	ys	ction
"	${ }^{40}$	'	82796	1235		${ }^{29} 40.088$	9444.512			${ }_{\text {none }}$	sone bivares	1	ys	
"	4	1	88296	11.50		29.40 .092	${ }_{98} 94.387$, sily oere fily diy	nome	clams	6	ys	All grabs had nany dmas
12	42	,	82296	825	Thitiol	${ }^{29} 93.451$	94\% 4.592	Oince over gay		nome	now	'	ys	
12	${ }^{43}$,	8296	9.58		${ }^{29} 93.158$	${ }^{29} 49.984$	bounove gay	allyy ore samys sily	${ }^{\text {nome }}$	bival $^{\text {a }}$	5	ys	Al stabs had many dimm
12	4	,	${ }_{82296}$	$9: 10$	Tind	${ }^{29} 944.43$	4.43	bomno ove gay		nome		6	ys	clms
${ }^{13}$	${ }^{45}$	1	${ }^{731196}$	10.10	East Bay, west of Goat Island, Long Pt or Big Pasture Bayou, North of ICW, marshy areas surrounding	${ }^{29} 392.18$	94836703		sily chy	stigh sulter	now	5	ys	
${ }^{13}$	46	,	77196	2.03		2922.516	${ }_{98} 828.807$		" maly chy	nome	now	5	ys	
${ }^{13}$	${ }^{47}$,	73196	1133		1.98	1231		chayes sit	none	now	4	ys	
${ }^{13}$	48	,	771196	9.05		2932.197	943935		sily clay	noe	nowe	3	yes	
${ }^{13}$	49	,	73196	10.55		${ }^{29} 31.165$	94 38.891	brownour gay	sil	nome	nowe	6	ys	
${ }^{14}$	50	,	${ }_{78096}$	9.35		${ }^{29} 1897$	99494.489		sily clyy	nome	diaiom sum, strinp	${ }^{8}$	no	
${ }^{14}$	5	,	73096	1034		29920.0.02	9950.8081		clay	noe	womm wel	8	no	
${ }^{14}$	52	,	73096	1130	Ind	2918.228	9452763	gav	clay whatel hash	noe	woms	7.5	no	
${ }^{15}$	${ }^{33}$	'	73096	4.55		${ }^{29} 13.101$	$9^{551.588}$		maty day wist shen	${ }^{\text {none }}$		${ }^{3}$	ves	
15	${ }_{4}$	1	78096	535	Weer By, 2ni iss of Greas Late	${ }^{29} 15$ [5, ${ }^{3}$	94579.97			${ }_{\text {nome }}$	wom mbe	5.s	ys	
${ }^{15}$	${ }_{5}$,	78008	230		2909907	9597.8 .48	$\underbrace{\substack{\text { may bown ouer }}}_{\text {may }}$	cill	none	ssum	6	ys	
${ }^{15}$	${ }_{6}$,	78096	3.50		${ }^{2911.301}$	$9^{59} 43,38$				polycheces	4	ys	
15	57	1	77096	${ }_{6} 63$		${ }^{29} 17.4 .44$	94966		sito ove sily dey	nome	mone is	25	ys	
${ }^{16}$	${ }_{88}$,	${ }^{81296}$	${ }^{1226}$	Southern edge of Bolivar Roads channel where it turns to the NE to enter Galveston Bay, ENE of Galveston Coast Guard Bay appr 0.5 mi	2922.583	94.45976				none	${ }^{6}$	yos	неRrel
${ }^{16}$	${ }^{59}$,	$81 / 496$	520	Bolivar Roads-100m east of outer bar channel 	29221.381	${ }^{94} 4.4 .37$	coma		${ }^{\text {nome }}$	now	8	ys	
16	${ }^{60}$	'	${ }^{815996}$	10.12		${ }^{29} 20.991$	94832421			sultir	cemen	${ }^{40}$	yes	Ferrel

Appendix B. Galveston Bay field logs (continued).

STRATA	$\begin{gathered} \text { SITE } \\ \text { NUMBER } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ALTER- } \\ & \text { NATE } \\ & \hline \end{aligned}$	$\begin{gathered} \text { DATE } \\ (\mathrm{mm} / \mathrm{dd} / \mathrm{y}) \end{gathered}$	$\begin{gathered} \text { TIME } \\ \text { (local) } \end{gathered}$	Site location	Latitude (N)	Longitude (W)	COLOR SEDIMENT COLOR	SEDIMENT TEXTURE	ODOR/SHEENS	$\begin{aligned} & \text { BENTHIC } \\ & \text { ORGANISMS } \\ & \hline \end{aligned}$	DEPTH(FT)	CTD	OTHER COMMENTS
17	61	1	8/12/96	9:21	Located in a discontinued dumping ground according to the chart, appr. 1.75 miles ESE from the north jetty and marker	$29^{\circ} 20.139$	$94^{\circ} 39.193$	brown over gray	clay	none	worm tubes, blue crab-juv	30.5	yes	FERREL
17	62	1	8/15/96	9:13	Entrance to Galveston Bay-South of Outer Bar Channel, appr 200 m south of G "7" marker of channel	29 ${ }^{\circ} 20.079$	$94^{\circ} 41.764$	It. gray, spots of black clay	shell hash, rocks, coral, clay	none	crabs, shrimp, worm tubes, hermit crabs	39	yes	FERREL
17	63	1	8/14/96	4:30	Entrance to Galveston Bay-20m off north jetty, 300 m north of yellow buoy "A"(YA), 200 m east of Galveston Bay entrance channel range A front	$29^{\circ} 21.224$	$94^{\circ} 42.839$	brown over gray over black over black	silt surface over clay w/shell hash	sulfur	annelids	25	yes	transducer not workingestimated depth, moved appr 100^{\prime} closer to south jetty because the water deeper winch, despite the chart indicating that it was a spoil area
18	64	1	8/14/96	1:40	Offshore shallow- 1.5 miles south of south jetty, .5 mi east of Galveston Island shore(last hotel building)	$29^{\circ} 18.941$	$94^{\circ} 44.121$	lt. brown, 4thbrown over gray	sand w/shell hash	none	gastropods, one shrimp	15	yes	transducer not workingestimated depth
18	65	1	8/13/96	12:54	Offshore shallow - appr 1mi from shore, south of jetty	$29^{\circ} 18.829$	$94^{\circ} 43.385$	brown	sand with shell hash	none	none	20	yes	FERREL
18	66	1	8/13/96	12:15	Offshore shallow - appr. 1 mi offshore, appr. 2 mi SW of south jetty marker	29 ${ }^{\circ} 18.488$	$94^{\circ} 43.401$	brown	sand	none	shrimp,worm tubes, annelids, gastropod	22	yes	FERREL
19	67	1	8/14/96	9:20	Offshore shallow - 300 m east of Bolivar penninsula, 300 m north of charted wreck	29 ${ }^{\circ} 24.951$	$94^{\circ} 41.186$	light brown over gray	silty sand $\operatorname{layer}(1 \mathrm{~cm})$ over clay	none	none	8	yes	transducer not workingestimated depth
19	68	1	8/14/96	10:20	Offshore shallow - 200 m east of Bolivar penninsula	29 ${ }^{\circ} 23.875$	$94^{\circ} 42.599$	light brown, 3rdlin. It brown over orav	fine sand, shell hash 3rd-fine sand over sand with clav	none	crustaceans, hermit crabs(lots)	5	yes	transducer not workingestimated depth
19	69	1	8/14/96	11:20	Offshore shallow- 1mi east of Bolivar penninsula shore @ radio tower appr .25 mi south of charted wreck above surface	29 ${ }^{\circ} 23.229$	$94^{\circ} 42.594$	brown over gray	silty fine sand surface over silty/clay sand	none	none	8	yes	transducer not workingestimated depth
20	70	1	8/13/96	11:16	offshore deep - SSW of south jetty marker, appr 2 mi	$29^{\circ} 17.472$	$94^{\circ} 42.978$	lt. brown	sand w/shell hash	none	worm tube	26	yes	FERREL
20	71	1	8/13/96	9:29	Offshore deep-appr. 2 mi due south of south jetty end marker	$29^{\circ} 18.215$	$94^{\circ} 41.642$	lt. brown over gray	sandy silty clay w/shell hash, 3rd - sandier, 5th sand no clay, 6th-very ciltv	none	worm tubes	30	yes	FERREL
20	72	1	8/13/96	10:29	offshore deep- south of jetties, south of East Beach appr. 2 mi	$29^{\circ} 18.07$	$94^{\circ} 42.685$	brown over lt. gray	sand w/shell hash	none	gastropods, worms, a shrimp, worm tubes	24	yes	FERREL
${ }^{21}$	73	1	8/12/96	11:11	Just ENE of north jetty marker	$29^{\circ} 20.912$	$94^{\circ} 40.687$	gray with brown, no distinct laver	silt over clay with sand denosits shells	none	none	40	yes	FERREL
21	74	1	8/12/96	10:01	NE of jetty marker by appr. 1.75 miles, SE by appr. 0.5 miles of marker near ship wrecks	$29^{\circ} 21.425$	$94^{\circ} 38.831$	brown over gray, no distinct layers	silt, silty clay	none	none	31.5	yes	FERREL
21	75	1	8/12/96	10:33	just SE of marker near ship wrecks, north of jettys	$29^{\circ} 21.643$	$94^{\circ} 39.138$	$\begin{aligned} & \begin{array}{l} \text { brown over gray } \\ \text { layers } \end{array} \\ & \hline \end{aligned}$	silt over clay	none	worm tubes	39	yes	FERREL

Appendix C
 Sediment Trace and Major Elements

Appendix C. Sediment trace and major element concentrations.

ND (not detected); J (below method detection limit)
Appendix C. Sediment trace and major element concentrations (continued).

Stratum Number	Site Number	Ag	Al	As	Cd	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sb	Se	Sn	Tl	Zn
11	38	0.14	53,627	0.6	0.16	47	10.9	23,289	0.047	230	18.4	17.5	0.87	0.25	1.1	0.52	65
11	39	0.13	77,086	9.8	0.12	64	15.2	37,707	0.052	748	25.9	23.4	1.05	0.37	2.0	0.74	103
11	40	0.14	67,529	10.9	0.18	56	14.0	32,144	0.059	349	23.0	21.7	1.18	0.39	1.6	0.68	85
11	41	0.14	55,793	4.4	0.12	46	11.2	24,332	0.041	226	19.4	17.3	0.89	0.31	1.5	0.60	68
12	42	0.15	64,852	1.0	0.16	52	13.2	28,915	0.052	479	21.8	20.2	1.20	0.33	1.5	0.70	75
12	43	0.13	50,215	-0.2(ND)	0.09	43	9.9	21,329	0.047	262	15.5	14.7	0.90	0.23	1.2	0.48	60
12	44	0.13	40,258	-0.2(ND)	0.07	39	8.4	15,790	0.036	264	12.0	13.0	0.84	0.23	0.8	0.51	44
13	45	0.08	43,828	4.7	0.05	39	6.6	18,476	0.024	222	13.0	14.5	0.60	0.15	0.8	0.47	52
13	46	0.08	40,598	4.5	0.05	33	5.4	16,624	0.019	361	11.0	12.5	0.46	0.12	0.8	0.43	46
13	47	0.09	48,053	7.4	0.07	48	8.2	20,914	0.038	245	15.1	14.8	0.71	0.19	0.9	0.43	54
13	48	0.09	49,514	6.3	0.09	46	8.2	22,471	0.028	208	14.4	19.0	0.61	0.20	1.3	0.56	72
13	49	0.15	60,220	8.0	0.08	48	8.9	26,893	0.043	354	19.8	18.5	0.67	0.22	1.2	0.74	73
14	50	0.11	60,315	7.6	0.08	54	13.3	28,770	0.055	461	22.6	19.3	0.59	0.24	2.0	0.79	83
14	51	0.10	38,793	3.9	0.04	30	7.0	17,414	0.033	203	12.1	14.2	0.50	0.15	1.3	0.26	59
14	52	0.13	51,116	5.3	0.06	51	14.8	25,273	0.038	308	18.3	19.7	0.76	0.17	3.3	0.57	69
15	53	0.09	28,571	2.4	0.02	28	5.6	10,889	0.021	223	7.7	12.3	0.56	0.08	1.1	0.57	31
15	54	0.10	32,990	3.1	0.03	34	7.4	14,373	0.024	214	11.6	15.2	0.49	0.14	1.6	0.42	45
15	55	0.07	34,931	3.5	0.03	31	6.1	16,348	0.024	304	12.2	13.4	0.57	0.11	1.7	0.40	50
15	56	0.05	11,728	0.4	0.02	4	2.4	2,197	$0.000(\mathrm{ND})$	41	2.6	5.7	0.26	0.06	0.2	0.35	7
15	57	0.22	46,586	5.3	0.05	48	11.9	22,369	0.038	432	15.3	21.7	0.69	0.13	3.0	0.49	63
16	58	0.08	35,642	7.2	0.04	31	6.5	15,566	0.023	469	11.8	10.7	0.36	0.14	0.8	0.23	50
16	59	0.08	24,058	3.2	0.02	10	3.1	8,460	0.014	299	7.7	7.9	0.45	0.06	0.4	0.18	30
16	60	0.10	44,920	6.6	0.05	38	6.1	20,343	0.032	539	16.8	14.5	0.63	0.17	1.3	0.43	65
17	61	0.10	47,777	7.5	0.06	44	10.8	25,083	0.037	661	0.0(ND)	16.5	0.71	0.22	1.2	0.44	72
17	62	0.08	36,527	6.8	0.04	29	7.0	16,742	0.028	438	13.0	11.1	0.51	0.12	0.7	0.26	45
17	63	0.10	53,376	7.9	0.06	38	9.7	23,662	0.037	587	16.1	16.3	0.64	0.23	1.1	0.36	70
18	64	0.07	17,204	2.5	0.01	9	2.2	5,200	0.013	229	3.3	7.4	0.40	0.01(J)	0.2	0.17	21
18	65	0.06	16,061	2.3	0.01	7	1.8	4,654	0.004(J)	223	4.8	6.2	0.17	0.01(J)	0.2	0.10	20
18	66	0.07	14,378	2.7	0.01	9	1.8	4,518	-0.006(ND)	238	2.8	6.8	0.30	0.03	0.3	0.08	19
19	67	0.09	37,792	5.9	0.05	32	5.6	14,309	0.033	467	9.8	13.3	0.61	0.11	0.9	0.35	43
19	68	0.07	24,848	4.3	0.01	22	3.1	8,741	0.013	377	5.1	9.3	0.38	0.02(J)	0.6	0.16	26
19	69	0.12	61,571	10.8	0.07	45	10.8	27,150	0.061	710	17.0	17.8	0.75	0.21	1.3	0.42	74
20	70	0.05	15,790	2.5	0.01	9	2.0	5,136	-0.006(ND)	271	4.1	7.0	0.21	0.03	0.3	0.08	21
20	71	0.08	25,241	5.8	0.03	23	4.5	10,962	0.018	366	8.2	9.0	0.49	0.07	0.6	0.25	37
20	72	0.04	12,845	2.8	0.01	5	1.9	4,308	0.009	230	2.7	5.8	0.32	0.02(J)	0.3	0.10	18
21	73	0.09	66,993	12.0	0.09	68	15.4	36,172	0.051	1008	26.1	21.0	1.05	0.34	1.9	0.59	102
21	74	0.12	64,585	10.2	0.09	58	13.2	33,517	0.049	876	24.6	18.4	0.94	0.28	1.7	0.55	93
21	75	0.11	65,468	10.8	0.08	57	13.5	33,458	0.052	832	20.7	19.9	0.99	0.31	1.7	0.50	97

ND (not detected); J (below method detection limit)

C-2

> Appendix D
> Sediment Pesticides
Appendix D. Sediment pesticide concentrations.

Stratum Number	Site Number	Total HCH	Alpha HCH	Beta HCH	Gamma HCH	Delta HCH	Total Chlordane	Heptachlor	Heptachlor Epoxide	Oxychlordane	Gamma Chlordane	AlphaChlordane	TransNonachlor	Cis- Nonachlor
1	1	0.09	0.02 (J)	0.04 (J)	0.02 (J)	0.01 (J)	0.69	0.00 (ND)	0.54	0.00 (ND)	0.04 (J)	0.04 (J)	0.04 (J)	0.03 (J)
1	2	0.66	0.13 (J)	0.36	0.00 (ND)	0.17	5.81	0.00 (ND)	3.96	0.00 (ND)	0.97	0.37	0.29	0.22
1	3	1.08	0.34 (J)	0.46 (J)	0.16 (J)	0.12	12.20	0.00 (ND)	10.40	0.00 (ND)	0.55	0.45	0.39	0.41
2	4	0.09	0.00 (ND)	0.07 (J)	0.01 (J)	0.01 (J)	0.43	0.00 (ND)	0.29	0.00 (ND)	0.04 (J)	0.03 (J)	0.03 (J)	0.04 (J)
2	5	0.29	0.04 (J)	0.16 (J)	0.00 (ND)	0.08	0.46	0.00 (ND)	0.00 (ND)	0.02 (J)	0.15 (J)	0.11	0.12 (J)	0.06
2	6	0.70	0.08 (J)	0.41 (J)	0.16 (J)	0.05 (J)	4.06	0.00 (ND)	2.74	0.00 (ND)	0.44	0.32	0.26 (J)	0.29
3	7	0.31	0.13 (J)	0.18 (J)	0.00 (ND)	0.00 (ND)	0.68	0.00 (ND)	0.00 (ND)	0.04 (J)	0.30	0.11 (J)	0.15 (J)	0.08
3	8	0.94	0.26 (J)	0.50	0.10 (J)	0.08 (J)	0.88	0.00 (ND)	0.00 (ND)	0.10 (J)	0.32 (J)	0.22	0.11 (J)	0.13
3	9	0.39	0.11 (J)	0.25 (J)	0.00 (ND)	0.04 (J)	1.10	0.00 (ND)	0.00 (ND)	0.44	0.25 (J)	0.15 (J)	0.17 (J)	0.09 (J)
4	10	0.22	0.04 (J)	0.12 (J)	0.02 (J)	0.03 (J)	0.17	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.02 (J)	0.10 (J)	0.02 (J)
4	11	0.12	0.04 (J)	0.08 (J)	0.00 (ND)	0.00 (ND)	0.08	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.03 (J)	0.01 (J)	0.01 (J)
4	12	0.05	0.00 (ND)	0.05 (J)	0.00 (J)	0.00 (ND)	0.00	0.00 (ND)						
5	13	0.25	0.08 (J)	0.15 (J)	0.00 (ND)	0.02 (J)	0.39	0.00 (ND)	0.00 (ND)	0.02 (J)	0.14 (J)	0.10 (J)	0.07 (J)	0.06 (J)
5	14	0.26	0.00 (ND)	0.21 (J)	0.00 (ND)	0.05 (J)	0.39	0.00 (ND)	0.00 (ND)	0.04 (J)	0.14 (J)	0.10 (J)	0.05 (J)	0.07 (J)
5	15	0.14	0.00 (ND)	0.14 (J)	0.00 (ND)	0.00 (ND)	0.39	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.15 (J)	0.10 (J)	0.07 (J)	0.06
6	16	0.70	0.00 (ND)	0.57	0.14 (J)	0.00 (ND)	0.09	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.03 (J)	0.04 (J)
6	17	0.54	0.00 (ND)	0.39 (J)	0.09 (J)	0.07 (J)	0.07	0.00 (ND)	0.03 (J)	0.04 (J)				
6	18	0.18	0.04 (J)	0.14 (J)	0.00 (ND)	0.00 (ND)	0.17	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.10 (J)	0.05 (J)	0.00 (ND)	0.02 (J)
7	19	0.50	0.18 (J)	0.32 (J)	0.00 (ND)	0.00 (ND)	0.82	0.00 (ND)	0.50	0.00 (ND)	0.11 (J)	0.08 (J)	0.07 (J)	0.06 (J)
7	20	0.51	0.06 (J)	0.42	0.02 (J)	0.00 (ND)	0.25	0.00 (ND)	0.00 (ND)	0.03 (J)	0.08 (J)	0.06 (J)	0.04 (J)	0.04 (J)
7	21	0.77	0.05 (J)	0.67	0.00 (ND)	0.05 (J)	0.35	0.00 (ND)	0.00 (ND)	0.02 (J)	0.12 (J)	0.09 (J)	0.06 (J)	0.06 (J)
8A	22	0.73	0.00 (ND)	0.63	0.04 (J)	0.06 (J)	0.36	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.06 (J)	0.12 (J)	0.10 (J)	0.07
8A	23	0.54	0.00 (ND)	0.47	0.00 (ND)	0.07 (J)	0.51	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.08 (J)	0.17	0.14 (J)	0.12
8A	24	0.67	0.00 (ND)	0.62	0.00 (ND)	0.05 (J)	0.32	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.11 (J)	0.10 (J)	0.07
8	25	0.89	0.00 (ND)	0.84	0.00 (ND)	0.05 (J)	0.09	0.00 (ND)	0.04 (J)	0.05 (J)				
8	26	0.53	0.00 (ND)	0.48	0.00 (ND)	0.05 (J)	0.02	0.00 (ND)	0.02 (J)	0.00 (ND)				
8	27	0.51	0.00 (ND)	0.48	0.00 (ND)	0.03 (J)	0.17	0.00 (ND)	0.00 (ND)	0.02 (J)	0.06 (J)	0.03 (J)	0.03 (J)	0.03 (J)
8	28	0.52	0.00 (ND)	0.48	0.00 (ND)	0.04 (J)	0.05	0.00 (ND)	0.02 (J)	0.02 (J)				
9	29	0.15	0.01 (J)	0.09 (J)	0.02 (J)	0.02 (J)	0.02	0.00 (ND)	0.01 (J)	0.02 (J)				
9	30	0.15	0.00 (ND)	0.13 (J)	0.00 (ND)	0.02 (J)	0.03	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)
9	31	0.19	0.00 (ND)	0.12 (J)	0.00 (ND)	0.07 (J)	0.07	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.04 (J)	0.00 (ND)
9	32	0.26	0.00 (ND)	0.26 (J)	0.00 (ND)	0.00 (ND)	0.28	0.00 (ND)	0.00 (ND)	0.11 (J)	0.00 (ND)	0.17 (J)	0.00 (ND)	0.00 (ND)
10	33	0.04	0.02 (J)	0.01 (J)	0.02 (J)	0.00 (ND)	0.08	0.00 (ND)	0.07	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.02 (J)
10	34	0.30	0.12 (J)	0.13 (J)	0.06 (J)	0.00 (ND)	0.23	0.00 (ND)	0.07 (J)	0.00 (ND)	0.13 (J)	0.03 (J)	0.00 (ND)	0.00 (ND)
10	35	0.10	0.00 (ND)	0.07 (J)	0.03 (J)	0.00 (ND)	0.18	0.00 (ND)	0.05 (J)	0.00 (ND)	0.08 (J)	0.04 (J)	0.00 (ND)	0.00 (ND)
10	36	0.28	0.05 (J)	0.14 (J)	0.07 (J)	0.02 (J)	0.10	0.00 (ND)	0.07	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.01 (J)
10	37	0.07	0.02 (J)	0.03 (J)	0.02 (J)	0.00 (ND)	0.01	0.00 (ND)	0.01 (J)					

ND (not detected); J (below method detection limit); EC (estimated concentration)
Appendix D. Sediment pesticide concentrations (continued).

Stratum Number	Site Number	Total HCH	Alpha HCH	Beta HCH	Gamma HCH	Delta HCH	Total Chlordane	Heptachlor	Heptachlor Epoxide	Oxychlordane	Gamma Chlordane	AlphaChlordane	Trans- Nonachlor	Cis- Nonachlor
11	38	0.08	0.00 (ND)	0.03 (J)	0.05 (J)	0.00 (ND)	0.19	0.00 (ND)	0.09	0.00 (ND)	0.00 (ND)	0.05 (J)	0.00 (ND)	0.05 (J)
11	39	0.53	0.07 (J)	0.30 (J)	0.17 (J)	0.00 (ND)	0.23	0.00 (ND)	0.15	0.00 (ND)	0.00 (ND)	0.05 (J)	0.00 (ND)	0.02 (J)
11	40	0.43	0.00 (ND)	0.23 (J)	0.18 (J)	0.02 (J)	0.21	0.00 (ND)	0.14	0.00 (ND)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.02 (J)
11	41	0.14	0.04 (J)	0.05 (J)	0.04 (J)	0.01 (J)	0.22	0.00 (ND)	0.10	0.04 (J)	0.00 (ND)	0.05 (J)	0.00 (ND)	0.02 (J)
12	42	0.09	0.05 (J)	0.01 (J)	0.03 (J)	0.00 (ND)	0.11	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.02 (J)
12	43	0.10	0.04 (J)	0.02 (J)	0.03 (J)	0.01 (J)	0.11	0.00 (ND)	0.08	0.00 (ND)	0.00 (ND)	0.01 (J)	0.00 (ND)	0.02 (J)
12	44	0.09	0.02 (J)	0.03 (J)	0.03 (J)	0.01 (J)	0.20	0.00 (ND)	0.07	0.00 (ND)	0.00 (ND)	0.02 (J)	0.09 (J)	0.01 (J)
13	45	0.24	0.09 (J)	0.10 (J)	0.04 (J)	0.01 (J)	0.12	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.10 (J)	0.02 (J)	0.00 (ND)	0.00 (ND)
13	46	0.11	0.00 (ND)	0.06 (J)	0.05 (J)	0.00 (ND)	0.12	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.12 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
13	47	0.15	0.07 (J)	0.05 (J)	0.02 (J)	0.00 (ND)	0.10	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.10 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
13	48	0.26	0.11 (J)	0.09 (J)	0.04 (J)	0.02 (J)	0.16	0.00 (ND)	0.04 (J)	0.00 (ND)	0.11 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
13	49	0.22	0.10 (J)	0.05 (J)	0.05 (J)	0.01 (J)	0.19	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.15 (J)	0.04 (J)	0.00 (ND)	0.00 (ND)
14	50	0.28	0.15 (J)	0.07 (J)	0.06 (J)	0.00 (ND)	0.13	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.08 (J)	0.04 (J)	0.00 (ND)	0.00 (ND)
14	51	0.13	0.06 (J)	0.05 (J)	0.02 (J)	0.00 (ND)	0.11	0.00 (ND)	0.03 (J)	0.00 (ND)	0.08 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
14	52	0.17	0.07 (J)	0.07 (J)	0.02 (J)	0.00 (ND)	0.16	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.16 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
15	53	0.12	0.05 (J)	0.03 (J)	0.04 (J)	0.00 (ND)	0.07	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
15	54	0.09	0.06 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.07	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
15	55	0.06	0.00 (ND)	0.04 (J)	0.03 (J)	0.00 (ND)	0.13	0.00 (ND)	0.04 (J)	0.00 (ND)	0.09 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
15	56	0.14	0.00 (ND)	0.08 (J)	0.06 (J)	0.00 (ND)	0.06	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
15	57	0.26	0.13 (J)	0.10 (J)	0.04 (J)	0.00 (ND)	0.12	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.12 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
16	58	0.20	0.00 (ND)	0.20 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
16	59	0.03	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
16	60	0.10	0.00 (ND)	0.10 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
17	61	0.42	0.00 (ND)	0.38	0.00 (ND)	0.04 (J)	0.05	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)
17	62	0.02	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
17	63	0.15	0.00 (ND)	0.15 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
18	64	0.07	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
18	65	0.00	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
18	66	0.03	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
19	67	0.07	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
19	68	0.05	0.00 (ND)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
19	69	0.13	0.00 (ND)	0.13 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
20	70	0.00	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
20	71	0.04	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
20	72	0.03	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						
21	73	1.11	0.00 (ND)	1.04	0.00 (ND)	0.06 (J)	0.00	0.00 (ND)						
21	74	0.72	0.00 (ND)	0.60 (J)	0.06 (J)	0.05 (J)	0.04	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)
21	75	0.13	0.00 (ND)	0.13 (J)	0.00 (ND)	0.00 (ND)	0.00	0.00 (ND)						

ND (not detected); J (below method detection limit); EC (estimated concentration)
Appendix D. Sediment pesticide concentrations (continued).

Stratum Number	Site Number	Total DDT	2,4' DDE	4,4' DDE	2,4' DDD	4,4' DDD	2,4' DDT	4,4' DDT	Hexachlorobenzene	Aldrin	Dieldrin	Endrin	Mirex	Endosulfan II
1	1	0.46	0.04 (J)	0.10	0.10 (J)	0.19	0.00 (ND)	0.03 (J)	0.61	0.00 (ND)	0.04 (J)	0.00 (ND)	0.01 (J)	0.00 (ND)
1	2	50.75	0.18	0.91	2.66	40.32 (EC)	0.00 (ND)	6.68	3.86	0.25	0.40	0.00 (ND)	0.10 (J)	0.00 (ND)
1	3	6.08	0.21(J)	1.15	1.93	2.79	0.00 (ND)	0.00 (ND)	15.22	0.21 (J)	0.63	0.00 (ND)	0.12 (J)	0.00 (ND)
2	4	0.43	0.02 (J)	0.07	0.10 (J)	0.17	0.00 (ND)	0.07 (J)	0.50	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.02 (J)
2	5	1.14	0.00 (ND)	0.17	0.35	0.52	0.00 (ND)	0.09 (J)	1.11	0.03 (J)	0.12	0.00 (ND)	0.01 (J)	0.00 (ND)
2	6	3.94	0.09 (J)	0.68	0.88	1.50	0.00 (ND)	0.78	4.17	0.00 (ND)	0.38	0.00 (ND)	0.05 (J)	0.15(J)
3	7	1.67	0.00 (ND)	0.33	0.27 (J)	0.98	0.00 (ND)	0.09 (J)	1.75	0.17 (J)	0.10	0.00 (ND)	0.02 (J)	0.00 (ND)
3	8	451.54	0.05(J)	2.16	0.57	5.40	3.03	367.27 (D)	3.60	0.32	0.43	0.00 (ND)	0.03 (J)	0.00 (ND)
3	9	2.30	0.00 (ND)	0.34	0.51	1.03	0.00 (ND)	0.42	2.22	0.15 (J)	0.21	0.00 (ND)	0.02 (J)	0.00 (ND)
4	10	0.41	0.00 (ND)	0.08	0.10 (J)	0.23	0.00 (ND)	0.00 (ND)	0.46	0.04 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.00 (ND)
4	11	0.35	0.00 (ND)	0.07 (J)	0.08 (J)	0.20	0.00 (ND)	0.00 (ND)	0.37	0.03 (J)	0.02 (J)	0.00 (ND)	0.01 (J)	0.00 (ND)
4	12	0.01	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)
5	13	1.28	0.00 (ND)	0.18	0.28 (J)	0.79	0.00 (ND)	0.03 (J)	5.84	0.10 (J)	0.11	0.00 (ND)	0.01 (J)	0.00 (ND)
5	14	8.75	0.00 (ND)	0.23	0.34 (J)	1.11	0.00 (ND)	7.07	2.87	0.12 (J)	0.11	0.00 (ND)	0.02 (J)	0.00 (ND)
5	15	2.60	0.00 (ND)	0.12	0.13 (J)	0.37	0.00 (ND)	1.98	4.71	0.05 (J)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
6	16	1.45	0.00 (ND)	0.26	0.14 (J)	0.44	0.55	0.08 (J)	0.91	0.00 (ND)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)
6	17	4.01	0.00 (ND)	0.15 (J)	0.19 (J)	0.52	0.00 (ND)	3.25	0.71	0.05 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.05 (J)
6	18	3.71	0.00 (ND)	0.13 (J)	0.20 (J)	0.64	0.00 (ND)	2.74	0.89	0.15 (J)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.00 (ND)
7	19	0.87	0.00 (ND)	0.19	0.21 (J)	0.48	0.00 (ND)	0.00 (ND)	1.14	0.00 (ND)	0.08 (J)	0.00 (ND)	0.01 (J)	0.00 (ND)
7	20	0.84	0.02 (J)	0.12	0.19 (J)	0.51	0.00 (ND)	0.00 (ND)	0.80	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.06 (J)
7	21	0.76	0.00 (ND)	0.14	0.14 (J)	0.46	0.02 (J)	0.00 (ND)	1.24	0.00 (ND)	0.10	0.04 (J)	0.01 (J)	0.00 (ND)
8A	22	0.29	0.00 (ND)	0.11	0.06 (J)	0.12	0.00 (ND)	0.00 (ND)	0.11	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)
8A	23	0.44	0.00 (ND)	0.22	0.00 (ND)	0.17	0.05 (J)	0.00 (ND)	0.44	0.04 (J)	0.05 (J)	0.11 (J)	0.04 (J)	0.00 (ND)
8A	24	0.34	0.00 (ND)	0.11	0.08 (J)	0.15	0.00 (ND)	0.00 (ND)	0.33	0.00 (ND)	0.14	0.00 (ND)	0.00 (ND)	0.00 (ND)
8	25	0.51	0.00 (ND)	0.11 (J)	0.12 (J)	0.28	0.00 (ND)	0.00 (ND)	0.95	0.04 (J)	0.05 (J)	0.00 (ND)	0.02 (J)	0.02 (J)
8	26	0.11	0.00 (ND)	0.05 (J)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.51	0.02 (J)	0.02 (J)	0.00 (ND)	0.03 (J)	0.01 (J)
8	27	0.55	0.00 (ND)	0.08 (J)	0.10 (J)	0.32	0.00 (ND)	0.04 (J)	0.66	0.08 (J)	0.03 (J)	0.00 (ND)	0.03 (J)	0.01 (J)
8	28	0.63	0.00 (ND)	0.06 (J)	0.08 (J)	0.14	0.00 (ND)	0.35	0.63	0.13 (J)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)
9	29	0.17	0.00 (ND)	0.06 (J)	0.00 (ND)	0.11 (J)	0.00 (ND)	0.00 (ND)	0.15	0.04 (J)	0.01 (J)	0.00 (ND)	0.01 (J)	0.00 (ND)
9	30	0.27	0.00 (ND)	0.06 (J)	0.00 (ND)	0.22	0.00 (ND)	0.00 (ND)	0.63	0.05 (J)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.00 (ND)
9	31	0.47	0.00 (ND)	0.09 (J)	0.09 (J)	0.23	0.00 (ND)	0.07 (J)	0.46	0.06 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.00 (ND)
9	32	0.42	0.00 (ND)	0.14 (J)	0.00 (ND)	0.28	0.00 (ND)	0.00 (ND)	0.42	0.35 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)
10	33	0.57	0.11	0.01 (J)	0.43	0.02 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)
10	34	0.12	0.00 (ND)	0.07 (J)	0.00 (ND)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.12 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.11 (J)
10	35	0.03	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.16	0.01 (J)	0.07 (J)
10	36	0.24	0.04 (J)	0.03 (J)	0.13 (J)	0.02 (J)	0.00 (ND)	0.02 (J)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)
10	37	0.06	0.00 (ND)	0.01 (J)	0.04 (J)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.01 (J)

ND (not detected); J (below method detection limit); EC (estimated concentration)
Appendix D. Sediment pesticide concentrations (continued).

Stratum Number	Site Number	Total DDT	2,4' DDE	4,4' DDE	2,4' DDD	4,4' DDD	2,4' DDT	4,4' DDT	Hexachlorobenzene	Aldrin	Dieldrin	Endrin	Mirex	Endosulfan II
11	38	0.29	0.00 (ND)	0.04 (J)	0.10 (J)	0.15	0.00 (ND)	0.00 (ND)	0.11 (J)	0.00 (ND)				
11	39	0.31	0.09 (J)	0.03 (J)	0.13 (J)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.13 (J)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)
11	40	1.59	0.15 (J)	0.06 (J)	1.34	0.05 (J)	0.00 (ND)	0.00 (ND)	0.10 (J)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.09 (J)
11	41	0.13	0.00 (ND)	0.04 (J)	0.00 (ND)	0.03 (J)	0.01 (J)	0.05 (J)	0.05 (J)	0.00 (ND)				
12	42	0.27	0.00 (ND)	0.09 (J)	0.10 (J)	0.05 (J)	0.00 (ND)	0.04 (J)	0.09 (J)	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)
12	43	0.09	0.00 (ND)	0.03 (J)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.12	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.05 (J)
12	44	0.27	0.00 (ND)	0.03 (J)	0.18 (J)	0.03 (J)	0.00 (ND)	0.03 (J)	0.22	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)
13	45	0.00	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.20	0.00 (ND)	0.03 (J)					
13	46	0.02	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.07 (J)
13	47	0.01	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)
13	48	0.02	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.08 (J)
13	49	0.00	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.05 (J)					
14	50	0.65	0.25	0.07 (J)	0.27 (J)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.29	0.00 (ND)	0.00 (ND)	0.11(J)
14	51	0.01	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.07 (J)
14	52	0.13	0.06 (J)	0.03 (J)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.20	0.00 (ND)	0.06 (J)	0.14
15	53	0.00	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)					
15	54	0.00	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.05 (J)					
15	55	0.02	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.07 (J)
15	56	0.00	0.00 (ND)	0.03 (J)										
15	57	0.00	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.16					
16	58	0.02	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)				
16	59	0.00	0.00 (ND)	0.01 (J)	0.00 (ND)									
16	60	0.00	0.00 (ND)	0.02 (J)	0.00 (ND)									
17	61	0.10	0.00 (ND)	0.05 (J)	0.00 (ND)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.11 (J)	0.04 (J)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)
17	62	0.00	0.00 (ND)	0.00 (J)	0.00 (ND)									
17	63	0.04	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.00 (ND)				
18	64	0.00	0.00 (ND)	0.00 (J)	0.00 (ND)									
18	65	0.00	0.00 (ND)	0.00 (J)	0.00 (ND)									
18	66	0.00	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.02 (J)					
19	67	0.01	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.00 (ND)				
19	68	0.00	0.00 (ND)	0.01 (J)	0.00 (ND)									
19	69	0.07	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)				
20	70	0.00	0.00 (ND)	0.00 (J)	0.00 (ND)									
20	71	0.00	0.00 (ND)	0.03 (J)	0.00 (ND)									
20	72	0.00	0.00 (ND)	0.02 (J)										
21	73	0.08	0.00 (ND)	0.08 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.31	0.00 (ND)	0.04 (J)	0.00 (ND)	0.02 (J)	0.00 (ND)
21	74	0.10	0.00 (ND)	0.06 (J)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.19	0.00 (ND)	0.04 (J)	0.00 (ND)	0.01 (J)	0.00 (J)
21	75	0.03	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)				

Appendix E Sediment PCBs

Appendix E. Sediment PCB concentrations.

Stratum Number	Site Number	Total PCB	PCB8/5	PCB 18/17	PCB28	PCB52	PCB44	PCB66	$\begin{gathered} \text { PCB } 101 / 9 \\ 0 \end{gathered}$	PCB118	$\begin{gathered} \text { PCB 153/ } \\ 132 \end{gathered}$	PCB105	$\begin{gathered} \text { PCB138 } \\ / 160 \end{gathered}$	PCB 187	PCB128	PCB 180	$\begin{gathered} \text { PCB170/ } \\ 190 \end{gathered}$	$\begin{gathered} \text { PCB 195/ } \\ 208 \end{gathered}$	PCB206	PCB209
1	1	5.82	0.08 (J)	0.02 (J)	0.04 (J)	0.16 (J)	0.11	0.07	0.11 (J)	0.09	0.14	0.03 (J)	0.1	0.04 (J)	0.01 (J)	0.0	0.00 (ND)	0.00 (J)	0.07	0.49
1	2	27.16	0.36	0.60 (J)	0.35	0.92	0.61	0.48	0.89	0.91	1.09	0.18	0.83	0.40	0.13 (J)	0.47	0.00 (ND)	0.05 (J)	0.15	2.99
1	3	60.79	0.00 (ND)	0.53 (J)	0.46	2.78	1.14	1.02	1.51	1.51	2.03	0.55	1.69	0.90	0.23 (J)	1.01	0.00 (ND)	0.13 (J)	0.35	10.92
2	4	4.91	0.00 (ND)	0.01 (J)	0.03 (J)	0.17 (J)	0.08 (J)	0.00 (ND)	0.09 (J)	0.08	0.15	0.02 (J)	0.12	0.08	0.02 (J)	0.11	0.00 (ND)	0.01 (J)	0.03 (J)	0.27
2	5	11.20	0.00 (ND)	0.00 (ND)	0.31	0.48 (J)	0.15	0.13	0.21	0.19	0.08 (J)	0.11	0.29	0.11	0.05 (J)	0.12	0.91 (I)	0.02 (J)	0.05 (J)	0.91
2	6	25.45	0.00 (ND)	0.18 (J)	0.19 (J)	1.10 (J)	0.38	0.26	0.67	0.59	1.19	0.17	0.94	0.44	0.13 (J)	0.57	0.00 (ND)	0.12 (J)	0.27	3.42
3	7	18.25	0.00 (ND)	0.00 (ND)	0.10 (J)	0.59 (J)	0.25	0.26	0.42	0.32	0.60	0.06 (J)	0.42	0.24	0.00 (ND)	0.32	2.01 (I)	0.14 (J)	0.14	1.46
3	8	27.63	0.72	0.29 (J)	0.38	1.13	0.52	0.54	0.87	0.64	1.30	0.25	0.94	0.51	0.13 (J)	0.71	0.00 (ND)	0.23	0.21	2.23
3	9	29.40	0.84	0.03 (J)	0.62	0.86 (J)	0.63	0.53	0.58	0.46	0.92	0.10 (J)	0.56	0.42	0.13 (J)	0.57	3.00 (I)	0.16 (J)	0.18	1.82
4	10	6.75	0.00 (ND)	0.00 (ND)	0.05 (J)	0.19 (J)	0.03 (J)	0.10	0.09 (J)	0.09	0.16	0.02 (J)	0.11	0.04 (J)	0.00 (ND)	0.10	0.64 (I)	0.04 (J)	0.04 (J)	0.39
4	11	6.57	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.17 (J)	0.09 (J)	0.11 (J)	0.08 (J)	0.06 (J)	0.05 (J)	0.01 (J)	0.09 (J)	0.04 (J)	0.00 (ND)	0.06 (J)	0.87 (I)	0.04 (J)	0.04 (J)	0.29
4	12	3.05	0.06 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.06 (J)	0.06 (J)	0.00 (ND)	0.01 (J)	0.15 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)						
5	13	12.01	0.18 (J)	0.00 (ND)	0.07 (J)	0.54 (J)	0.12 (J)	0.24	0.34	0.28	0.43	0.07 (J)	0.30	0.10 (J)	0.04 (J)	0.20	0.00 (ND)	0.13 (J)	0.12	1.33
5	14	14.80	0.00 (ND)	0.00 (ND)	0.08 (J)	0.59 (J)	0.23	0.26	0.59	0.50	0.68	0.10 (J)	0.53	0.12 (J)	0.00 (ND)	0.23	0.00 (ND)	0.11 (J)	0.11	1.61
5	15	11.04	0.00 (ND)	0.00 (ND)	0.06 (J)	0.33 (J)	0.08 (J)	0.15	0.26	0.22	0.35	0.05 (J)	0.25	0.06 (J)	0.05 (J)	0.13	1.39 (I)	0.08 (J)	0.08	0.50
6	16	11.36	0.32	0.00 (ND)	0.23	0.29 (J)	0.23 (J)	0.00 (ND)	0.17 (J)	0.21	0.42	0.00 (ND)	0.26	0.07 (J)	0.02 (J)	0.20	0.63 (I)	0.05 (J)	0.10 (J)	0.98
6	17	10.29	0.45	0.00 (ND)	0.16 (J)	0.21 (J)	0.19 (J)	0.00 (ND)	0.12 (J)	0.18 (J)	0.41	0.00 (ND)	0.31	0.08 (J)	0.03 (J)	0.19	0.72 (I)	0.06 (J)	0.09 (J)	0.50
6	18	9.54	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.31 (J)	0.04 (J)	0.15 (J)	0.18 (J)	0.14 (J)	0.28	0.03 (J)	0.20	0.08 (J)	0.00 (ND)	0.16	0.93 (I)	0.05 (J)	0.11	0.70
7	19	11.97	0.38	0.00 (ND)	0.00 (ND)	0.26 (J)	0.13 (J)	0.00 (ND)	0.23 (J)	0.20	0.44	0.07 (J)	. 36	0.13 (J)	0.00 (ND)	. 21	0.52 (I)	0.07 (J)	0.00 (ND)	1.46
7	20	8.68	0.12 (J)	0.00 (ND)	0.13 (J)	0.26 (J)	0.15	0.00 (ND)	0.18 (J)	0.20	0.06 (J)	0.05 (J)	0.21	0.06 (J)	0.02 (J)	0.15	0.50 (I)	0.04 (J)	0.08	0.78
7	21	11.97	0.12 (J)	0.00 (ND)	0.11 (J)	0.41 (J)	0.22	0.17	0.19 (J)	0.20	0.46	0.04 (J)	0.30	0.08 (J)	0.02 (J)	0.22	0.52 (I)	0.09 (J)	0.11	1.22
8A	22	6.04	0.00 (ND)	0.05 (J)	0.08 (J)	0.25 (J)	0.08 (J)	0.12	0.15 (J)	0.20	. 30	0.04 (J)	0.19	0.03 (J)	0.03 (J)	0.14	0.00 (ND)	0.03 (J)	0.00 (ND)	0.07 (J)
8A	23	8.98	0.00 (ND)	0.00 (ND)	0.17 (J)	0.44 (J)	0.12 (J)	0.10 (J)	0.26 (J)	0.33	0.54	0.06 (J)	0.42	0.06 (J)	0.08 (J)	0.27	0.00 (ND)	0.10 (J)	0.01 (J)	0.15 (J)
8A	24	6.78	0.00 (ND)	0.00 (ND)	0.10 (J)	0.35 (J)	0.09 (J)	0.14	0.13 (J)	0.17	0.26	0.03 (J)	0.19	0.03 (J)	0.03 (J)	0.16	0.00 (ND)	0.03 (J)	0.06 (J)	0.33
8	25	9.75	0.33	0.00 (ND)	0.12 (J)	0.31 (J)	0.13 (J)	0.00 (ND)	0.11 (J)	0.16 (J)	0.10 (J)	0.00 (ND)	0.25	0.08 (J)	0.00 (ND)	0.14	0.77 (I)	0.10 (J)	0.13	0.73
8	26	5.34	0.00 (ND)	0.00 (ND)	0.10 (J)	0.15 (J)	0.08 (J)	0.08 (J)	0.06 (J)	0.09 (J)	0.08 (J)	0.00 (ND)	0.12 (J)	0.01 (J)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.05 (J)	0.13	0.41
8	27	7.85	0.00 (ND)	0.00 (ND)	0.04 (J)	0.19 (J)	0.12 (J)	0.12	0.09 (J)	0.11	0.21	0.02 (J)	0.17	0.04 (J)	0.01 (J)	0.09	0.72(I)	0.04 (J)	0.04 (J)	0.58
8	28	7.76	0.00 (ND)	0.00 (ND)	0.05 (J)	0.21 (J)	0.11 (J)	0.00 (ND)	0.10 (J)	0.11 (J)	0.08 (J)	0.00 (ND)	0.20	0.07 (J)	0.00 (ND)	0.16	0.62 (I)	0.07 (J)	0.06 (J)	0.71
9	29	5.72	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.11 (J)	0.00 (ND)	0.18	0.06 (J)	0.04 (J)	0.05 (J)	0.02 (J)	0.07 (J)	0.03 (J)	0.00 (ND)	0.06 (J)	0.64 (I)	0.00 (ND)	0.02 (J)	0.33
9	30	6.83	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.16 (J)	0.00 (ND)	0.23	0.07 (J)	0.05 (J)	0.05 (J)	0.00 (ND)	0.08 (J)	0.03 (J)	0.00 (ND)	0.08 (J)	0.94 (I)	0.00 (ND)	0.07 (J)	0.36
9	31	7.95	0.20 (J)	0.00 (ND)	0.00 (ND)	0.19 (J)	0.13 (J)	0.13 (J)	0.11 (J)	0.09 (J)	0.06 (J)	0.04 (J)	0.14	0.05 (J)	0.00 (ND)	0.11	0.79 (I)	0.00 (ND)	0.06 (J)	0.54
9	32	10.80	0.61	0.09 (J)	0.48	0.29 (J)	0.18 (J)	0.87	0.32 (J)	0.00 (ND)	0.27	0.00 (ND)	0.14 (J)	0.00 (ND)	0.69					
10	33	3.57	0.11 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.43 (I)	0.00 (ND)	0.00 (ND)	0.00 (J)				
10	34	4.98	0.00 (ND)	0.00 (ND)	0.13 (J)	0.07 (J)	0.05 (J)	0.14	0.06 (J)	0.00 (ND)	0.08 (J)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.11 (J)	0.04 (J)	0.22 (J)	0.00 (ND)	0.05 (J)	0.26
10	35	3.86	0.32	0.00 (ND)	0.04 (J)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.02 (J)	0.00 (ND)	0.19 (J)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.05 (J)
10	36	3.04	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.12 (J)	0.05 (J)	0.00 (ND)	0.04 (J)	0.02 (J)	0.03 (J)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.02 (J)
10	37	2.84	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.05 (J)	0.05 (J)	0.04 (J)	0.02 (J)	0.01 (J)	0.04 (J)	0.01 (J)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.01 (J)
11	38	3.60	0.17 (J)	0.00 (ND)	0.00 (ND)	0.11 (J)	0.00 (ND)	0.00 (ND)	0.05 (J)	0.02 (J)	0.05 (J)	0.00 (ND)	0.08 (J)	0.01 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.06 (J)	0.06 (J)
11	39	4.03	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.19 (J)	0.18 (J)	0.00 (ND)	0.06 (J)	0.02 (J)	0.00 (ND)	0.02 (J)	0.11 (J)	0.01 (J)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.08 (J)	0.09 (J)
11	40	3.75	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.17 (J)	0.06 (J)	0.00 (ND)	0.13 (J)	0.00 (ND)	0.08 (J)	0.00 (ND)	0.12 (J)	0.01 (J)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.07 (J)
11	41	3.06	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.10 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.01 (J)	0.05 (J)	0.00 (ND)	0.08 (J)	0.01 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.04 (J)
12	42	3.48	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.12 (J)	0.07 (J)	0.00 (ND)	0.04 (J)	0.03 (J)	0.11 (J)	0.00 (ND)	0.10 (J)	0.03 (J)	0.00(J)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)
12	43	3.10	0.17 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.01 (J)	0.03 (J)	0.05 (J)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)
12	44	3.09	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.10 (J)	0.03 (J)	0.00 (ND)	0.04 (J)	0.02 (J)	0.05 (J)	0.01 (J)	0.06 (J)	0.01 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.03 (J)

ND (not detected); J (below method detection limit); I (interference)
Appendix E. Sediment PCB concentrations (continued).

Stratum Number	Site Number	Total PCB	PCB8/5	PCB18/17	PCB28	PCB52	PCB44	PCB66	$\begin{gathered} \text { PCB } 101 / 9 \\ 0 \end{gathered}$	PCB118	$\begin{gathered} \text { PCB } 153 / \\ 132 \end{gathered}$	PCB 105	$\begin{gathered} \text { PCB138 } \\ / 160 \end{gathered}$	PCB187	PCB128	PCB 180	$\begin{gathered} \text { PCB170/ } \\ 190 \end{gathered}$	$\begin{gathered} \text { PCB 195/ } \\ 208 \end{gathered}$	PCB206	PCB209
13	45	2.84	0.00 (ND)	0.0	0.)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)			0.00 (ND)	0.00 (ND)	J)	J)	0.00 (ND)	0.00 (ND)	(J)
13	46	4.09	0.36	0.00 (ND)	0.09 (J)	0.00 (ND)	0.03 (J)	0.14	0.00 (ND)	0.00 (ND)	0.02 (J)	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.12 (J)	0.00 (ND)	0.00 (ND)	0.07 (J)
13	47	2.87	0.00 (ND)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.09 (J)	0.00 (ND)	0.03 (J)	0.02 (J)
13	48	3.07	0.00 (ND)	0.00 (ND)	0.12 (J)	0.10 (J)	0.08 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.01 (J)	0.00 (ND)	0.00 (ND)
13	49	3.44	0.00 (ND)	0.00 (ND)	0.10 (J)	0.03 (J)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.15 (J)	0.02 (J)	0.17 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)
14	50	6.57	0.00 (ND)	0.19 (J)	0.21	0.11 (J)	0.07 (J)	0.34	0.27 (J)	0.06 (J)	0.21	0.04 (J)	0.14	0.05 (J)	0.00 (ND)	0.09 (J)	0.00 (ND)	0.03 (J)	0.09 (J)	0.10 (J)
14	51	4.03	0.00 (ND)	0.03 (J)	0.05 (J)	0.06 (J)	0.04 (J)	0.00 (ND)	0.06 (J)	0.05 (J)	0.09 (J)	0.02 (J)	0.07 (J)	0.02 (J)	0.00 (ND)	0.04 (J)	0.23 (I)	0.01 (J)	0.04 (J)	0.03 (J)
14	52	8.15	0.00 (ND)	0.8 (J)	0.05 (J)	0.06 (J)	0.05 (J)	0.00 (ND)	0.12 (J)	0.00 (ND)	0.12	0.04 (J)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.10	1.10 (I)	0.05 (J)	0.10	0.07 (J)
15	53	3.81	0.00 (ND)	0.00 (ND)	0.02 (J)	0.05 (J)	0.02 (J)	0.00 (ND)	0.06 (J)	0.03 (J)	0.12	0.02 (J)	0.08	0.06 (J)	0.00 (ND)	0.09	0.14 (J)	0.02 (J)	0.02 (J)	0.00 (ND)
15	54	3.24	0.00 (ND)	0.00 (ND)	0.03 (J)	0.10 (J)	0.03 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.04 (J)	0.01 (J)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.16 (J)	0.00 (ND)	0.01 (J)	0.01 (J)
15	55	4.10	0.24	0.00 (ND)	0.05 (J)	0.06 (J)	0.05 (J)	0.00 (ND)	0.08 (J)	0.06 (J)	0.08 (J)	0.03 (J)	0.07 (J)	0.01 (J)	0.05 (J)	0.04 (J)	0.00 (ND)	0.00 (J)	0.02 (J)	0.02 (J)
15	56	3.53	0.31	0.00 (ND)	0.00 (ND)	0.06 (J)	0.02 (J)	0.13	0.00 (ND)	0.04 (J)	0.00 (ND)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)					
15	57	6.21	0.00 (ND)	0.00 (ND)	0.08 (J)	0.15 (J)	0.08 (J)	0.00 (ND)	0.30	0.23	0.38	0.11 (J)	0.32	0.04 (J)	0.00 (ND)	0.09 (J)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.02 (J)
16	58	86	0.00 (ND	0.00 (ND)	0.02 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.24 (I)	0.00 (J)	0.00 (ND)	0.01 (J)						
16	59	2.75	0.00 (ND)	0.24 (I)	0.00 (ND)	0.00 (ND)	0.02 (J)													
16	60	5.17	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.08 (J)	0.02 (J)	0.00 (ND)	0.18 (J)	0.14	0.08 (J)	0.00 (ND)	0.32	0.03 (J)	0.06 (J)	0.09	0.32 (I)	0.01 (J)	0.00 (ND)	0.02 (J)
17	61	44	0.12 (J)	0.00 (ND)	0.05 (J)	0.04 (J)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.05 (J)	0.05 (J)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.05 (J)	0.00 (ND)	0.00 (ND)	0.06 (J)	0.04 (J)
17	62	2.34	0.00 (ND	0.00 (ND	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)											
17	63	3.90	0.00 (ND)	0.03 (J)	0.00 (ND)	0.12	0.00 (ND)	0.14	0.00 (ND)	0.00 (ND)	0.06 (J)	0.41 (I)	0.00 (J)	0.00 (ND)	0.03 (J)					
18	64	2.45	0.00 (ND)	0.04 (J)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)					
18	65	2.38	0.00 (ND)	0.09 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)													
18	66	2.28	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)													
19	67	3.27	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.04 (J)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.07 (J)	0.00 (ND)	0.00 (ND)	0.01 (J)	0.28 (I)	0.00 (ND)	0.00 (ND)	0.01 (J)
19	68	2.73	0.18	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)												
19	69	4.80	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.11 (J)	0.10	0.06 (J)	0.04 (J)	0.25	0.02 (J)	0.05 (J)	0.09	0.33 (J)	0.00 (J)	0.09	0.02 (J)
20	70	2.27	0.00 (ND)	0.04 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)													
20	71	2.54	0.00 (ND)	0.16 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)													
20	72	2.37	0.00 (ND)	0.02 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)									
21	73	3.22	0.00 (ND)	0.00 (ND)	0.05 (J)	0.12 (J)	0.07 (J)	0.05 (J)	0.00 (ND)	0.05 (J)	0.06 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.03 (J)	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.04 (J)
21	74	6.19	0.00 (ND)	0.00 (ND)	0.07 (J)	0.07 (J)	0.06 (J)	0.13 (J)	0.05 (J)	0.08 (J)	0.08 (J)	0.00 (ND)	0.20	0.00 (ND)	0.03 (J)	0.05 (J)	0.84 (I)	0.00 (ND)	0.00 (ND)	0.18 (J)
21	75	4.88	0.00 (ND)	0.00 (ND)	0.00 (ND)	0.11 (J)	0.00 (ND)	0.00 (ND)	0.08 (J)	0.10 (J)	0.16 (J)	0.04 (J)	0.16	0.00 (ND)	0.00 (ND)	0.05 (J)	0.51 (I)	0.00 (ND)	0.00 (ND)	0.02 (J)

ND (not detected); J (below method detection limit); I (interference)

Appendix F
 Sediment PAHs

Appendix F. Sediment PAH concentrations.

Stratum Number	Site Number	Total PAHs with Perylene	Total PAHs without Perylene	Naphthalene	C1-Naph	C2-Naph	C3-Naph	C4-Naph	Biphenyl	Acenaphthylene	Acenaphthene
1	1	90.50	88.10	1.9 (J)	1.2 (J)	1.7	5.3	0.0 (ND)	0.6	1.6	0.5
1	2	1,509.10	1,468.70	10.6	15.5	12.4	29.6	36.1	1.7	11.5	3.8
1	3	2,487.10	2,434.70	18.4	18.8	27.3	67.0	41.7	4.0	26.6	20.3
2	4	84.50	82.10	1.9 (J)	1.7 (J)	2.6	8.7	2.5	0.4	1.0	0.5
2	5	1,199.90	1,181.50	5.3	8.2	10.8	20.4	52.3	1.3	2.5	1.4
2	6	654.10	633.70	8.9	9.4	6.4	30.4	11.6	1.5	6.9	2.0
3	7	441.20	424.90	5.1	5.8	8.5	7.5	9.6	1.9	5.0	1.4
3	8	1,226.10	1,189.30	6.4	7.0	11.7	18.7	14.8	2.2	12.4	2.6
3	9	858.40	825.60	8.3	8.7	9.3	25.4	12.5	2.6	7.9	2.4
4	10	177.90	171.10	2.9	3.4	4.6	10.1	2.0	0.8	1.8	0.8
4	11	200.30	190.20	3.3 (J)	3.0 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.2	1.9	1.1
4	12	7.90	7.60	1.1 (J)	0.6 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.4	0.2(J)	0.3 (J)
5	13	661.20	634.80	5.8	7.2	12.2	18.6	20.1	2.1	4.3	2.4
5	14	589.00	555.00	5.9	5.5	5.4	11.3	6.9	1.2	4.8	2.6
5	15	358.70	347.30	3.7	3.6 (J)	3.8	10.3	15.0	0.8	2.1	1.0
6	16	460.40	427.50	6.2	7.3	14.7	17.2	23.2	2.1	4.7	2.0
6	17	536.80	489.40	10.2	12.6	14.0	28.3	21.4	3.2	3.4	1.4 (J)
6	18	317.50	298.50	5.6	5.8	5.6	12.4	6.9	1.7	3.2	1.3
7	19	360.00	347.00	5.0	5.2 (J)	7.5	13.0	11.7	1.4	3.9	1.4
7	20	781.20	770.30	4.0	6.0	10.9	18.8	13.9	1.4	4.3	0.8
7	21	290.70	285.00	4.3	6.0	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.0	4.9	1.1
8A	22	975.80	948.60	0.5 (J)	0.5 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.0	6.1	1.0
8A	23	893.90	846.70	3.2 (J)	3.2 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.9	4.3	1.8
8A	24	604.60	588.40	3.9	3.8 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.8	8.2	2.5
8	25	405.70	394.30	6.7	5.5 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.1	4.6	0.9 (J)
8	26	238.50	233.30	3.8 (J)	4.8	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.6	4.0	0.8 (J)
8	27	324.10	315.70	9.3	5.4	3.4	8.7	0.0 (ND)	0.8	3.0	0.5 (J)
8	28	225.50	220.40	4.8	4.6	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.7	3.3	0.7 (J)
9	29	223.00	203.80	4.4	3.2 (J)	7.1	16.9	6.6	1.8	2.2	1.1
9	30	210.10	197.70	4.3 (J)	3.0 (J)	6.9	13.8	5.8	1.5	2.1	0.9 (J)
9	31	248.60	236.20	4.1 (J)	3.7 (J)	5.5	10.3	9.6	1.2	2.6	1.1
9	32	10,586.73	10,399.60	7.3 (J)	4.6 (J)	10.8	19.7	31.2	2.9	3.8	34.9
10	33	173.40	170.40	2.6	1.8 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.6	0.5	0.6
10	34	161.50	152.00	5.2	6.2	9.6	0.0 (ND)	0.0 (ND)	1.4	2.3	0.4 (J)
10	35	71.50	68.40	2.7 (J)	1.7 (J)	2.4	5.7	0.0 (ND)	0.5	0.7	0.3 (J)
10	36	124.60	119.60	3.8	4.0 (J)	5.5	10.7	0.0 (ND)	0.6	1.8	0.4 (J)
10	37	38.40	37.20	2.1 (J)	1.6 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.5	0.8	0.4 (J)

ND (not detected); J (below method detection limit)
Appendix F. Sediment PAH concentrations (continued).

ND (not detected); J (below method detection limit)
Appendix F. Sediment PAH concentrations (continued).

Stratum Number	Site Number	Fluorene	C1- Fluorenes	C2- Fluorenes	C3- Fluorenes	Phenanthrene	Anthracene	C1- Phenanthrenes /Anthracenes	C2- Phenanthrenes /Anthracenes	C3- Phenanthrenes /Anthracenes	C4- Phenanthrenes /Anthracenes
1	1	0.6	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.7	1.1	2.0	3.0	5.4	2.6
1	2	5.1	14.1	46.2	111.4	21.7	15.1	20.8	20.0	73.8	64.7
1	3	28.5	20.1	45.4	55.7	126.6	57.9	55.6	49.4	94.1	61.9
2	4	0.4 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.4	0.8	2.2	2.2	4.1	2.8
2	5	1.9	6.9	42.4	104.5	9.1	13.6	27.7	65.3	90.0	91.4
2	6	3.0	4.1	9.8	16.7	11.3	6.2	12.9	12.6	23.7	14.6
3	7	2.0	2.8	15.0	23.9	7.6	5.3	10.5	19.0	22.0	19.7
3	8	4.7	3.3	16.7	33.1	21.9	19.5	17.8	27.5	36.5	29.4
3	9	4.5	5.5	20.5	26.5	14.2	12.8	18.5	26.5	32.0	35.3
4	10	1.3	2.1	2.9	5.4	5.0	2.6	4.7	5.1	7.5	8.1
4	11	1.1	2.9	5.8	11.7	3.2	2.0	5.9	10.1	10.6	8.4
4	12	0.6	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.2 (J)	0.2 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
5	13	3.9	7.1	16.3	27.7	10.7	9.7	15.1	25.8	31.1	28.2
5	14	3.3	2.1	9.5	18.0	11.8	8.3	11.8	21.4	25.3	15.6
5	15	1.8	2.9	8.6	16.2	5.9	3.6	6.5	7.9	21.8	23.1
6	16	2.7	5.2	0.0 (ND)	0.0 (ND)	8.0	4.5	10.4	13.5	20.6	17.5
6	17	2.5	3.7	14.3	38.7	8.9	6.4	12.8	21.6	37.8	20.0
6	18	2.0	2.2	4.4	7.3	6.4	3.7	7.6	9.5	14.6	14.5
7	19	1.4	3.0	7.9	17.4	6.4	4.7	7.1	13.0	15.1	6.9
7	20	1.8	1.9	11.1	28.4	6.0	6.0	10.2	35.8	87.1	63.4
7	21	2.2	0.0 (ND)	0.0 (ND)	0.0 (ND)	6.5	6.2	10.1	14.5	18.1	14.7
8A	22	1.8	2.3	0.0 (ND)	0.0 (ND)	15.9	12.9	11.1	9.2	18.0	18.5
8A	23	0.7 (J)	2.8	0.0 (ND)	0.0 (ND)	12.8	9.2	10.5	15.5	15.7	17.7
8A	24	2.4	0.0 (ND)	0.0 (ND)	0.0 (ND)	10.7	13.5	10.1	16.2	19.5	11.8
8	25	1.6	0.0 (ND)	0.0 (ND)	0.0 (ND)	6.8	7.0	8.7	21.0	31.8	20.1
8	26	0.5 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	5.0	3.1	8.2	14.5	19.3	13.6
8	27	1.1	0.7 (J)	3.3	11.6	4.9	3.4	7.6	16.6	28.9	16.4
8	28	1.2	0.0 (ND)	0.0 (ND)	0.0 (ND)	4.2	4.0	6.7	13.0	16.8	13.9
9	29	1.6	2.1	5.3	11.7	3.5	3.2	4.8	10.1	10.2	6.1
9	30	1.3	1.1 (J)	4.6	7.7	3.7	2.3	4.3	6.3	6.3	6.9
9	31	1.6	1.7 (J)	6.4	9.5	4.0	3.7	5.7	5.7	12.3	6.0
9	32	34.5	22.6	47.2	67.7	501.5	228.3	228.5	235.1	240.3	156.2
10	33	0.5 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	2.8	2.0	4.0	5.4	3.7	1.5
10	34	2.0	0.0 (ND)	0.0 (ND)	0.0 (ND)	4.6	1.9	6.7	9.8	9.3	8.9
10	35	0.7 (J)	1.3 (J)	2.8	2.7	1.7	0.8	2.3	4.2	3.6	2.2
10	36	1.3	0.0 (ND)	0.0 (ND)	0.0 (ND)	2.5	1.5	3.0	3.3	6.5	3.0
10	37	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.1	0.6	1.1	1.8	2.4	2.8

ND (not detected); J (below method detection limit)
Appendix F. Sediment PAH concentrations (continued).

Stratum Number	Site Number	Fluorene	C1- Fluorenes	C2- Fluorenes	C3- Fluorenes	Phenanthrene	Anthracene	$\mathrm{C} 1-$ Phenanthrenes /Anthracenes	C2- Phenanthrenes /Anthracenes	C3- Phenanthrenes /Anthracenes	C4- Phenanthrenes /Anthracenes
11	38	0.8 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	2.4	1.0	3.0	3.6	4.2	0.0 (ND)
11	39	1.7	5.6	14.3	17.8	2.7	1.1 (J)	4.4	5.7	5.6	6.4
11	40	2.3	0.0 (ND)	0.0 (ND)	0.0 (ND)	12.5	8.6	9.0	8.6	7.2	7.5
11	41	0.4 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.4	0.9	2.9	2.2	2.6	0.0 (ND)
12	42	0.7 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	2.1	1.0	2.8	3.0	4.8	2.8
12	43	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.1 (J)	0.6 (J)	2.1	2.5	0.0 (ND)	0.0 (ND)
12	44	1.1	0.0 (ND)	0.0 (ND)	0.0 (ND)	3.4	1.7	2.0	2.8	2.6	2.1
13	45	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	2.0	1.3	2.9	3.9	4.5	2.7
13	46	0.4 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.5	1.0	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
13	47	0.4 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.4	0.8	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
13	48	0.8	0.0 (ND)	0.0 (ND)	0.0 (ND)	2.8	1.8	4.1	4.4	9.9	5.2
13	49	0.7 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.5	1.1	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
14	50	9.1	2.6	7.0	15.4	15.5	76.5	12.4	17.0	14.9	6.1
14	51	1.3	0.0 (ND)	0.0 (ND)	0.0 (ND)	3.6	2.5	4.0	4.6	4.2	3.8
14	52	8.2	5.1	9.1	8.5	38.0	44.7	27.1	18.8	14.1	15.0
15	53	0.5 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.8	0.9	1.8	2.0	3.5	3.7
15	54	0.7	0.0 (ND)	0.0 (ND)	0.0 (ND)	2.7	1.3	2.8	3.8	5.4	4.1
15	55	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.3	0.5 (J)	1.4	2.3	2.2	1.9
15	56	1.5	0.0 (ND)	0.0 (ND)	0.0 (ND)	6.8	3.0	5.2	3.2	4.1	4.8
15	57	0.2 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.5 (J)	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
16	58	0.8	1.5	3.8	6.2	1.9	1.5	3.0	3.7	4.6	2.6
16	59	4.7	1.7	3.2	6.0	2.3	3.0	2.3	3.3	5.7	2.5
16	60	1.0	0.0 (ND)	0.0 (ND)	0.0 (ND)	2.4	2.2	4.0	4.9	7.3	3.6
17	61	1.3	0.0 (ND)	0.0 (ND)	0.0 (ND)	3.2	3.5	6.0	13.1	11.8	5.7
17	62	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.9	0.9	1.6	2.8	3.1	0.0 (ND)
17	63	1.0	2.2	4.6	7.6	2.2	1.7	4.6	7.8	9.3	2.7
18	64	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.2 (J)	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
18	65	0.2 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.4 (J)	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
18	66	0.4 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.5 (J)	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
19	67	0.5 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	1.2	0.4 (J)	2.3	3.3	3.0	1.9
19	68	0.4 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.6 (J)	0.5	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
19	69	0.6 (J)	1.7	4.8	6.7	2.4	1.0	3.5	5.4	6.8	3.2
20	70	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.6 (J)	0.2 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
20	71	0.4 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.8 (J)	0.5 (J)	1.2	2.5	0.0 (ND)	0.0 (ND)
20	72	0.3 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.3 (J)	0.1 (J)	0.0 (ND)	0.0 (ND)	0.0 (ND)	0.0 (ND)
21	73	1.1	4.2	8.7	16.6	4.4	2.7	10.0	20.9	14.9	10.8
21	74	2.4	4.6	6.5	22.1	3.9	3.4	6.8	12.7	14.3	6.4
21	75	1.4	2.7	6.8	13.2	3.3	1.9	5.4	7.5	7.6	5.3

[^4]Appendix F．Sediment PAH concentrations（continued）．

	$\mid \underset{\sim}{n} \underset{\sim}{i}$	$\left\lvert\, \begin{array}{lll} 1 & 0 & 0 \\ \hdashline & 0 & = \end{array}\right.$			0	$\left\|\begin{array}{lll} \underset{O}{0} & 0 & N \\ - & 0 & 0 \end{array}\right\|$	$\stackrel{+}{\infty} \stackrel{\square}{\circ}$	的	$\underbrace{\infty}_{\infty}$	$\left\|\begin{array}{cccc} \sim & \infty & 9 \\ i n & \underset{\sim}{\gamma} & \text { in } & \stackrel{y}{6} \end{array}\right\|$	－n m M－	
		$\left\|\begin{array}{lll} 0 & 0 \\ - & n \\ -1 & n \\ m \end{array}\right\|$		$\left\|\begin{array}{ccc} 0 & & \hat{a} \\ 0 & \ddots & \ddots \\ \infty & \infty & 0 \\ & & 0 \end{array}\right\|$		$\left\|\right\|$	$\left\|\begin{array}{ccc} \underset{\sim}{\mathrm{M}} & \underset{i}{i} & \underset{i}{i} \end{array}\right\|$			$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ = & \dot{i} & 0 \\ 0 \end{array}\right\|$		
苞								$\left\|\begin{array}{lll} \infty & a & N \\ \infty & \hat{o} & \stackrel{r}{7} \end{array}\right\|$		$\left\|\begin{array}{ccc} \hat{r} & 0 & 0 \\ \dot{\alpha} & \dot{i} & \dot{0} \\ - \end{array}\right\|$		
	$\left\|\begin{array}{ccc} \circ & \underset{\sim}{\infty} & \cdots \\ \rightarrow+\infty \end{array}\right\|$		$\left\lvert\, \begin{array}{lll} \infty \\ \underset{\sim}{\infty} & - \\ \end{array}\right.$	$\left\|\begin{array}{ccc} \infty & \cdots & 6 \\ \infty & \infty & 6 \\ 0 \end{array}\right\|$	$\left.\begin{array}{ccc} 0 & 0 & 0 \\ m & \underset{m}{m} & \underset{\sim}{n} \end{array} \right\rvert\,$	$\left\|\begin{array}{lll} n & n & n \\ \infty & \ddots & n \\ - & n \end{array}\right\|$	$\left\|\begin{array}{ccc} \infty & \underset{\sim}{\infty} & n \\ \infty & \underset{\sim}{\infty} & = \end{array}\right\|$	$\left\|\begin{array}{lll} \infty & 0 & n \\ \alpha & n & n \\ & i \end{array}\right\|$		$\left\|\begin{array}{lll} n & n & n \\ & 0 & 0 \\ \varrho & \underset{J}{j} \end{array}\right\|$	$\begin{array}{lll} \infty & 0 & 0 \\ \cdots & \cdots & -i \end{array}$	
	$\cdots \cdots$	$\left\|\begin{array}{ccc} \underset{\sim}{\infty} & -\underset{\sim}{c} \\ \dot{\sim} \end{array}\right\|$	$\left[\begin{array}{lll} -1 & \infty \\ & 0 & n \\ \hline \end{array}\right.$	$\left\|\begin{array}{ccc} 1 & & \hat{2} \\ 0 & 0 & z \\ & 0 & 0 \\ & & 0 \end{array}\right\|$	$\left\|\begin{array}{ccc} 1 & n & n \\ 0 & 0 & \infty \\ -1 & 0 \end{array}\right\|$	is	$\left\|\begin{array}{cc} -0 & n \\ 0 & y \end{array}\right\|$			$\left\|\begin{array}{cccc} 0 & N & 0 \\ i n & i & 0 \\ i & 0 \end{array}\right\|$		
	$\left\|\begin{array}{ccc} \bullet & \cdots & 0 \\ i & \underset{子}{子} & \dot{m} \end{array}\right\|$	$\left\lvert\, \underset{i}{N} \frac{0}{m} \underset{\infty}{\infty}\right.$	$\left\|\begin{array}{ccc} m & \underset{\sim}{\infty} & \underset{\sim}{n} \\ \sim \end{array}\right\|$	$\left\|\begin{array}{ccc} & & \hat{\theta} \\ 0 & \sim & z \\ & \underset{\sim}{z} & 0 \\ & & 0 \end{array}\right\|$	$\begin{array}{lll} \infty & 0 \\ \alpha_{0} & \dot{\infty} & \underset{\sim}{r} \end{array}$	$\left\lvert\,\right.$	$\left\|\begin{array}{lll} \infty & \dot{\sim} \\ \dot{n} & \underset{j}{j} \end{array}\right\|$			\cdots		
	－$-\stackrel{3}{\infty}$	$\left\|\right\|$	$\left\|\begin{array}{lll} 0 & n & n \\ -\dot{\gamma} & n \\ i \end{array}\right\|$	$\left\|\begin{array}{ccc} & & 0 \\ n & n & z \\ n & - & 0 \\ & & 0 \end{array}\right\|$	$\left\lvert\, \begin{array}{ccc} \wedge & 0 & N \end{array}\right.$	$\left\|\begin{array}{lll} \infty & \sim & \ddots \\ \underset{\sim}{*} & \ddots \end{array}\right\|$	$\left\|\begin{array}{ccc} 0 & m & N \\ \dot{m} & \underset{F}{n} & \cdots \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{ll} \frac{1}{2} & \frac{1}{2} \\ 2 & - \\ 0 & 0 \\ 0 & 0 \end{array}\right.\right]$		nocccon		
	$\\| \stackrel{n}{\circ} \underset{i}{i}=$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \cdots & -1 \end{array}\right\|$	$\|\stackrel{n}{i} \vec{i}\|$	$\left\|\begin{array}{lll} 0 & 0 \\ 0 & -i & 3 \\ 0 \end{array}\right\|$		$\mid \underset{\sim}{\sim}$	$\left\lvert\, \begin{gathered} n \\ \\ \end{gathered}\right.$		$\left\lvert\,\right.$	$\left\|\begin{array}{cccc} \underset{0}{\infty} & \cdots & \infty & 0 \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{array}{llll} E & E & E & E \\ m & 0 & 0 \\ m & 0 & m & \vdots \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right.$	
	－ Nm	\checkmark in 0	－\times		$\because \cong \pm \backsim$	$\underline{-} \therefore \infty$	\bigcirc 근	ボ	$\cdots \stackrel{\sim}{\sim}$ へ－	へેশ	いল゙がmen	
	－	$\sim \sim \sim$	mmm	ナ＋+	fon in	$\bigcirc 6$			$\infty \infty \infty$	のaのの	으으응	

ND（not detected）； J （below method detection limit）
Appendix F. Sediment PAH concentrations (continued).

ND (not detected); J (below method detection limit)
Appendix F. Sediment PAH concentrations (continued).

ND (not detected); J (below method detection limit)
Appendix F. Sediment PAH concentrations (continued).

ND (not detected); J (below method detection limit)
Appendix F. Sediment PAH concentrations (continued)

ND (not detected); J (below method detection limit)
Appendix F. Sediment PAH concentrations (continued).

ND (not detected); J (below method detection limit)

Appendix G
 Ancillary Amphipod Toxicity Measurements

Appendix G．Ancillary amphipod toxicity measurements．

률	
嗎会家	
E\％	
気	
$\begin{aligned} & \stackrel{2}{i n} \\ & 0 \\ & 0 \end{aligned}$	
为	
	育
	－小¢

Appendix G．Ancillary amphipod toxicity measurements（continued）．

졸	
考京	
言	
为	
道	
	$\infty \times \infty$

Appendix H
 Ancillary Porewater Toxicity Measurements

Appendix H．Ancillary porewater toxicity measurements．
Appendix H. Ancillary porewater toxicity measurements (continued).

Strata	Sample	Salinity	DO	$\%$ Sat	pH	TAN	UAN	Sulfide	$\%$ OUS
12	42	13	7.27	96.2	8.01	1	32.1	<0.1	79
12	43	17	6.45	85.9	7.97	1.52	44.6	<0.1	83
12	44	18	6.63	87.9	8.01	1.7	54.5	<0.1	85
13	45	24	6.89	91.2	7.73	0.78	13.3	<0.1	92
13	46	26	6.74	89.9	8.03	0.89	29.8	<0.1	94
13	47	24	7.38	98.7	7.79	1.23	24.1	<0.1	92
13	48	22	6.95	92	7.84	0.92	20.1	<0.1	89
13	49	24	6.9	90.8	7.96	1.22	35.0	<0.1	92
14	50	33	7.62	100.4	7.85	1.74	39.0	<0.1	91
14	51	32	7.45	99.3	8.03	0.73	24.5	<0.1	94
14	52	33	6.98	92	7.62	0.74	9.8	<0.1	91
15	53	34	7.07	92.8	8.12	1.13	46.2	<0.1	88
15	54	34	7.03	92.3	7.96	0.95	27.2	<0.1	88
15	55	36	7.41	97.8	7.8	0.69	13.8	<0.1	83
15	56	33	6.34	83.8	7.9	2.08	40.7	<0.1	91
15	57	32.5	7	92	7.65	1.07	15.2	<0.1	92
16	58	33.5	6.84	90.2	7.82	6.85	143.4	<0.1	90
16	59	34	6.88	90.7	7.81	1.96	40.1	<0.1	88
16	60	34	6.89	90.9	7.68	6.06	92.4	<0.1	88
17	61	34	6.92	91.1	7.78	4.97	95.1	<0.1	88
17	62	35	7.19	94.8	7.8	1.77	35.4	<0.1	86
17	63	34	6.88	91.6	7.68	3.39	51.7	<0.1	88
18	64	36	6.38	85.3	7.88	0.95	22.8	<0.1	83
18	65	36	6.86	91.6	8.01	0.55	17.6	<0.1	83
18	66	36	6.93	92.4	7.96	0.66	18.9	<0.1	83
19	67	34	6.57	87.3	7.93	3.29	88.2	<0.1	88
19	68	34.5	6.48	85.8	7.89	1.36	33.3	<0.1	87
19	69	34.5	7.18	94.9	7.83	2.24	48.0	<0.1	87
20	70	36	7.1	93.9	7.92	1.34	35.1	<0.1	83
20	71	36	6.9	91.2	7.93	1.64	44.0	<0.1	83
20	72	36	6.65	88.2	8.14	1.17	50.0	<0.1	83
21	73	34.5	7.2	95.9	7.7	5.38	85.9	<0.1	87
21	74	34	6.53	87.1	7.84	4.13	90.4	<0.1	88
21	75	34	6.43	85.4	7.87	4.49	105.2	<0.1	88

Appendix I

Taxonomic Abundance

Appendix I. Taxa abundance and occurrence by strata and stations.

Taxa	Phylum	Class	Number of Individuals	Percent of Total Individuals	Cumul. \%	Number of Strata Occurred	\% Strata Occurred	Station Occurred	\% Station Occurred	Comments
MEDIOMASTUS (LPIL)	A	Poly	1481	29.10	29.10	22	100	57	77.0	anteroir portions only, probably M ambiseta : pygidium necessary for positive ID.
PARAPRIONOSPIO PINNATA	A	Poly	259	5.09	34.19	18	81.8	45	60.8	
PARANDALIA TRICUSPIS	A	Poly	188	3.69	37.89	14	63.6	30	40.5	
SCOLETOMA VERRILLI	A	Poly	146	2.87	40.75	8	36.4	16	21.6	
MALDANIDAE (LPIL)	A	Poly	139	2.73	43.49	4	18.2	7	9.5	fragmented portion, pygidium necessary for positive identification
POLYDORA CORNUTA	A	Poly	122	2.40	45.88	3	13.6	5	6.8	
MAGELONA SP.H	A	Poly	106	2.08	47.97	7	31.8	12	16.2	
RHYNCHOCOELA (LPIL)	R		104	2.04	50.01	22	100	41	55.4	no identifible characters
STREBLOSPIO BENEDICTI	A	Poly	104	2.04	52.05	8	36.4	12	16.2	
ISCHADIUM RECURVUM	M	Pele	90	1.77	53.82	3	13.6	3	4.1	
CIRROPHORUS LYRA	A	Poly	88	1.73	55.55	2	9.1	7	9.5	
TUBULANUS (LPIL)	R		85	1.67	57.22	16	72.7	34	45.9	genus is lowest identification level
MULINIA LATERALIS	M	Pele	78	1.53	58.75	9	40.9	15	20.3	
SIGAMBRA GRUBII	A	Poly	80	1.57	60.33	11	50	24	32.4	
ACTEOCINA CANALICULATA	M	Gast	71	1.40	61.72	3	13.6	6	8.1	
PELECYPODA (LPIL)	M	Pele	66	1.30	63.02	14	63.6	21	28.4	crushed shell and/or juvenile specimen
PARAMPHINOME SP.B	A	Poly	61	1.20	64.22	6	27.3	8	10.8	
TEXADINA SPHINCTOSTOMA	M	Gast	59	1.16	65.38	3	13.6	5	6.8	
COSSURA SOYERI	A	Poly	50	0.98	66.36	5	22.7	8	10.8	
BALANOGLOSSUS (LPIL)	He		49	0.96	67.32	6	27.3	11	14.9	fragmented
FABRICIA SP.A	A	Poly	48	0.94	68.26	1	4.5	1	1.4	
HYDROBIIDAE (LPIL)	M	Gast	45	0.88	69.15	7	31.8	7	9.5	crushed shell and /or juvenile specimen
BATEA CATHARINENSIS	C	Amph	44	0.86	70.01	2	9.1	2	2.7	
PODARKEOPSIS LEVIFUSCINA	A	Poly	44	0.86	70.88	9	40.9	19	25.7	
CLYMENELLA TORQUATA	A	Poly	40	0.79	71.66	1	4.5	2	2.7	
GLYCINDE SOLITARIA	A	Poly	40	0.79	72.45	12	54.5	22	29.7	
PROTOHAUSTORIUS SP.B	C	Amph	40	0.79	73.24	1	4.5	3	4.1	
ARICIDEA PHILBINAE	A	Poly	36	0.71	73.94	1	4.5	3	4.1	
NASSARIUS ACUTUS	M	Gast	36	0.71	74.65	6	27.3	12	16.2	
RANGIA CUNEATA	M	Pele	35	0.69	75.34	2	9.1	4	5.4	
LINEIDAE (LPIL)	R		33	0.65	75.99	7	31.8	9	12.2	family is lowest identification level
PRIONOSPIO (LPIL)	A	Poly	33	0.65	76.64	2	9.1	3	4.1	missing identification characters
ONUPHIS EREMITA OCULATA	A	Poly	32	0.63	77.26	3	13.6	3	4.1	
OWENIA FUSIFORMIS	A	Poly	31	0.61	77.87	4	18.2	8	10.8	
SIGAMBRA TENTACULATA	A	Poly	31	0.61	78.48	5	22.7	10	13.5	
ACANTHOHAUSTORIUS SP.C	C	Amph	29	0.57	79.05	2	9.1	4	5.4	

Appendix I. Taxa abundance and occurrence by strata and stations (continued).

Taxa	Phylum	Class	Number of Individuals	Percent of Total Individuals	Cumul. \%	Number of Strata Occurred	\% Strata Occurred	Station Occurred	\% Station Occurred	Comments
LEITOSCOLOPLOS FRAGILIS	A	Poly	29	0.57	79.62	4	18.2	9	12.2	
SPIONIDAE (LPIL)	A	Poly	28	0.55	80.17	6	27.3	8	10.8	missing identification characters and/or immature specimen
MONTICELLINA DORSOBRANCHIALIS	A	Poly	26	0.51	80.68	2	9.1	3	4.1	
NEREIS MICROMMA	A	Poly	26	0.51	81.19	6	27.3	8	10.8	
OGYRIDES ALPHAEROSTRIS	C	Deca	25	0.49	81.69	12	54.5	17	23.0	
PERIPLOMATIDAE (LPIL)	M	Pele	25	0.49	82.18	2	9.1	3	4.1	juvenile specimen
BRANCHIOSTOMA (LPIL)	Ce		24	0.47	82.65	4	18.2	7	9.5	genus is lowest identification level
RICTAXIS PUNCTOSTRIATUS	M	Gast	24	0.47	83.12	1	4.5	2	2.7	
CARAZZIELLA HOBSONAE	A	Poly	23	0.45	83.57	2	9.1	3	4.1	
OLIGOCHAETA (LPIL)	A	Olig	23	0.45	84.02	9	40.9	10	13.5	marine specimens only identified to Class Oligochaeta
PERIPLOMA MARGARITACEUM	M	Pele	23	0.45	84.48	4	18.2	6	8.1	
MACOMA MITCHELLI	M	Pele	22	0.43	84.91	9	40.9	14	18.9	
MALMGRENIELLA SP.A	A	Poly	22	0.43	85.34	4	18.2	5	6.8	
PHORONIS (LPIL)	Ph		22	0.43	85.77	7	31.8	10	13.5	genus is lowest identification level
PINNIXA (LPIL)	C	Deca	22	0.43	86.21	9	40.9	11	14.9	appendages missing
SPIOCHAETOPTERUS OCULATUS	A	Poly	22	0.43	86.64	9	40.9	14	18.9	
LEITOSCOLOPLOS (LPIL)	A	Poly	20	0.39	87.03	6	27.3	8	10.8	anterior segments only, abdomenal segments necessary for species identification
CRASSOSTREA VIRGINICA	M	Pele	19	0.37	87.40	3	13.6	3	4.1	
OPHIUROIDEA (LPIL)	E	Ophi	19	0.37	87.78	5	22.7	6	8.1	central disk missing characters
AMPHIODIA ATRA	E	Ophi	18	0.35	88.13	2	9.1	2	2.7	
CIRRATULIDAE (LPIL)	A	Poly	16	0.31	88.45	3	13.6	5	6.8	
NEREIS SUCCINEA	A	Poly	16	0.31	88.76	6	27.3	7	9.5	
ANACHIS OBESA	M	Gast	15	0.29	89.05	1	4.5	2	2.7	
LEITOSCOLOPLOS ROBUSTUS	A	Poly	15	0.29	89.35	4	18.2	7	9.5	
HEMIPHOLIS ELONGATA	E	Ophi	14	0.28	89.62	2	9.1	3	4.1	
CAECUM JOHNSONI	M	Gast	13	0.26	89.88	2	9.1	2	2.7	
CALLIANASSIDAE (LPIL)	C	Deca	12	0.24	90.12	4	18.2	7	9.5	
PAGURUS (LPIL)	C	Deca	12	0.24	90.35	3	13.6	3	4.1	
CAPITELLIDAE (LPIL)	A	Poly	11	0.22	90.57	3	13.6	3	4.1	
GASTROPODA (LPIL)	M	Gast	11	0.22	90.78	8	36.4	9	12.2	
PINNIXA PEARSEI	C	Deca	11	0.22	91.00	4	18.2	5	6.8	
TURBONILLA (LPIL)	M	Gast	11	0.22	91.22	1	4.5	2	2.7	
CAPITELLA CAPITATA	A	Poly	10	0.20	91.41	4	18.2	7	9.5	
LISTRIELLA BARNARDI	C	Amph	10	0.20	91.61	4	18.2	5	6.8	
LYONSIA HYALINA FLORIDANA	M	Pele	10	0.20	91.81	1	4.5	2	2.7	
ODOSTOMIA WEBERI	M	Gast	10	0.20	92.00	2	9.1	4	5.4	
ASYCHIS ELONGATUS	A	Poly	9	0.18	92.18	2	9.1	4	5.4	
COROPHIUM (LPIL)	C	Amph	9	0.18	92.36	2	9.1	2	2.7	
DIOPATRA CUPREA	A	Poly	9	0.18	92.53	7	31.8	7	9.5	
DIPOLYDORA SOCIALIS	A	Poly	9	0.18	92.71	3	13.6	6	8.1	

Appendix I. Taxa abundance and occurrence by strata and stations (continued).

Appendix I. Taxa abundance and occurrence by strata and stations (continued).

Appendix I. Taxa abundance and occurrence by strata and stations (continued).

Appendix I. Taxa abundance and occurrence by strata and stations (continued).

Taxa	Phylum	Class	Number of Individuals	Percent of Total Individuals	Cumul. \%	Number of Strata Occurred	\% Strata Occurred	Station Occurred	\% Station Occurred	Comments
ODOSTOMIA IMPRESSA	M	Gast	1	0.02	99.49	1	4.5	1	1.4	
OXYUROSTYLIS (LPIL)	C	Cuma	1	0.02	99.51	1	4.5	1	1.4	
OXYUROSTYLIS SMITHI	C	Cuma	1	0.02	99.53	1	4.5	1	1.4	
PARACAPRELLA (LPIL)	C	Amph	1	0.02	99.55	1	4.5	1	1.4	
PARAONIDAE (LPIL)	A	Poly	1	0.02	99.57	1	4.5	1	1.4	
PECTINARIA GOULDII	A	Poly	1	0.02	99.59	1	4.5	1	1.4	
PECTINARIIDAE (LPIL)	A	Poly	1	0.02	99.61	1	4.5	1	1.4	
PHASCOLION STROMBI	S		1	0.02	99.63	1	4.5	1	1.4	
PHOXOCEPHALIDAE (LPIL)	C	Amph	1	0.02	99.65	1	4.5	1	1.4	
PHYLLODOCE MUCOSA	A	Poly	1	0.02	99.67	1	4.5	1	1.4	
PISTA CRISTATA	A	Poly	1	0.02	99.69	1	4.5	1	1.4	
PISTA QUADRILOBATA	A	Poly	1	0.02	99.71	1	4.5		1.4	
POLYGORDIUS (LPIL)	A	Poly	1	0.02	99.72	1	4.5	1	1.4	
POMATOCEROS AMERICANUS	A	Poly	1	0.02	99.74	1	4.5	1	1.4	
PROTOHAUSTORIUS (LPIL)	C	Amph	1	0.02	99.76	1	4.5	1	1.4	
PYRGOCYTHARA PLICOSA	M	Gast	1	0.02	99.78	1	4.5	1	1.4	
SABELLIDAE (LPIL)	A	Poly	1	0.02	99.80	1	4.5	1	1.4	
SCOLELEPIS (LPIL)	A	Poly	1	0.02	99.82	1	4.5	1	1.4	
SCOLETOMA (LPIL)	A	Poly	1	0.02	99.84	1	4.5	1	1.4	
SYLLIS GRACILIS	A	Poly	1	0.02	99.86	1	4.5	1	1.4	
TELLINA IRIS	M	Pele	1	0.02	99.88	1	4.5	1	1.4	
THARYX ACUTUS	A	Poly	1	0.02	99.90	1	4.5	1	1.4	
TRACHYPENAEUS (LPIL)	C	Deca	1	0.02	99.92	1	4.5	1	1.4	
TRACHYPENAEUS CONSTRICTUS	C	Deca	1	0.02	99.94	1	4.5	1	1.4	
TURBELLARIA (LPIL)	P	Turb	1	0.02	99.96	1	4.5	1	1.4	
UPOGEBIA AFFINIS	C	Deca	1	0.02	99.98	1	4.5	1	1.4	
VITRINELLIDAE (LPIL)	M	Gast	1	0.02	100.00	1	4.5	1	1.4	

[^5]
[^0]: * FAA = Flame atomic absorption

 GFAA = Graphite furnace atomic absorption
 CVAA $=$ Cold vapor atomic absorption

[^1]: ' Dunnett's t-test: *p<0.05; ** $\mathrm{p}<0.01$

[^2]: * $\mathrm{p}<0.05$; ** $\mathrm{p}<0.01$

[^3]: * p <0.05; ** p < 0.01

[^4]: ND (not detected); J (below method detection limit)

[^5]: $\begin{array}{lc}\text { TAXA KEY } \\ \text { Phylum } \\ \text { Class } \\ \text { A = Annelida } \\ \text { Olig }=\text { Oligochaeta } & \mathrm{Ce}=\text { Cephalochordata } \\ \text { Poly }=\text { Polychaeta } & \mathrm{Cn}=\text { Cnidaria } \\ \text { C = Arthropoda (Crustacea }) & \text { Acti }=\text { Actiniaria } \\ \text { Amph = Amphipoda } & \mathrm{E}=\text { Echinodermata } \\ \text { Cuma }=\text { Cumacea } & \text { Aste }=\text { Asteroidea } \\ \text { Deca }=\text { Decapoda } & \text { Echi }=\text { Echinoidea } \\ \text { Isop }=\text { Isopoda } & \text { Holo }=\text { Holothuroidea } \\ \text { Lept }=\text { Leptostraca } & \text { Ophi }=\text { Ophiuroidea } \\ \text { Mysi }=\text { Mysidacea } & \mathrm{He}=\text { Hemichordata } \\ \text { Ostr }=\text { Ostracoda } & \\ \text { Tana }=\text { Tanaidacea } & \end{array}$
 $\begin{array}{lc}\text { TAXA KEY } \\ \text { Phylum } \\ \text { Class } \\ \text { A = Annelida } \\ \text { Olig }=\text { Oligochaeta } & \mathrm{Ce}=\text { Cephalochordata } \\ \text { Poly }=\text { Polychaeta } & \mathrm{Cn}=\text { Cnidaria } \\ \text { C = Arthropoda (Crustacea }) & \text { Acti }=\text { Actiniaria } \\ \text { Amph = Amphipoda } & \mathrm{E}=\text { Echinodermata } \\ \text { Cuma }=\text { Cumacea } & \text { Aste }=\text { Asteroidea } \\ \text { Deca }=\text { Decapoda } & \text { Echi }=\text { Echinoidea } \\ \text { Isop }=\text { Isopoda } & \text { Holo }=\text { Holothuroidea } \\ \text { Lept }=\text { Leptostraca } & \text { Ophi }=\text { Ophiuroidea } \\ \text { Mysi }=\text { Mysidacea } & \mathrm{He}=\text { Hemichordata } \\ \text { Ostr }=\text { Ostracoda } & \\ \text { Tana }=\text { Tanaidacea } & \end{array}$
 M $=$ Mollusca
 \quad Gast $=$ Gastropoda
 Gast $=$ Gastropoda
 Pele $=$ Pelecypoda Polyp = Polyplacop
 Scap = Scaphopoda Scap $=$ Scaphopod
 $\mathrm{Ph}=$ Phoronida
 $\mathrm{P}=$ Platyhelminthes
 Turbellaria
 $\mathrm{R}=$ Rhynchocoela
 $\mathrm{S}=$ Sipuncula
 $\mathrm{U}=$ Urochordata
 Asci $=$ Ascidiacea

