Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Controls on Carbonate System Dynamics in a Coastal Plain Estuary: A Modeling Study

Filetype[PDF-3.38 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Biogeosciences
  • NOAA Program & Office:
  • Description:
    The study of acidification in Chesapeake Bay is challenged by the complex spatial and temporal patterns of estuarine carbonate chemistry driven by highly variable freshwater and nutrient inputs. A new module was developed within an existing coupled hydrodynamic-biogeochemical model to understand the underlying processes controlling variations in the carbonate system. We present a validation of the model against a diversity of field observations, which demonstrated the model's ability to reproduce large-scale carbonate chemistry dynamics of Chesapeake Bay. Analysis of model results revealed that hypoxia and acidification were observed to cooccur in midbay bottom waters and seasonal cycles in these metrics were regulated by aerobic respiration and vertical mixing. Calcium carbonate dissolution was an important buffering mechanism for pH changes in late summer, leading to stable or slightly higher pH values in this season despite persistent hypoxic conditions. Model results indicate a strong spatial gradient in air-sea CO2 fluxes, where the heterotrophic upper bay was a strong CO2 source to atmosphere, the mid bay was a net sink with much higher rates of net photosynthesis, and the lower bay was in a balanced condition. Scenario analysis revealed that reductions in riverine nutrient loading will decrease the acid water volume (pH < 7.5) as a consequence of reduced organic matter generation and subsequent respiration, while bay-wide dissolved inorganic carbon (DIC) increased and pH declined under scenarios of continuous anthropogenic CO2 emission. This analysis underscores the complexity of carbonate system dynamics in a productive coastal plain estuary with large salinity gradients.
  • Source:
    Journal of Geophysical Research-Biogeosciences, 124(1), 61-78.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26