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a b s t r a c t 

The diurnal cycle of tropical cyclones (TCs) is a daily cycle in clouds that appears in satellite images and 

may have implications for TC structure and intensity. The diurnal pattern can be seen in infrared (IR) 

satellite imagery as cyclical pulses in the cloud field that propagate radially outward from the center of 

nearly all Atlantic-basin TCs. These diurnal pulses, a distinguishing characteristic of this diurnal cycle, be- 

gin forming in the storm’s inner core near sunset each day, appearing as a region of cooling cloud-top 

temperatures. The area of cooling takes on a ring-like appearance as cloud-top warming occurs on its 

inside edge and the cooling moves away from the storm overnight, reaching several hundred kilometers 

from the circulation center by the following afternoon. The state-of-the-art TC diurnal cycle measure- 

ment in IR satellite imagery has a limited ability to analyze the behavior beyond qualitative observations. 

We present a method for quantifying the TC diurnal cycle using one-dimensional persistent homology, 

a tool from Topological Data Analysis, by tracking maximum persistence and quantifying the cycle using 

the discrete Fourier transform. Using Geostationary Operational Environmental Satellite IR imagery from 

Hurricanes Felix and Ivan, our method is able to detect an approximate daily cycle. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The field of atmospheric science has numerous observation

latforms that provide high space and time resolution data, but

as yet to find methods which can quantify the intuitive patterns

xplicitly. Meanwhile, the young field of Topological Data Analy-

is (TDA) encompasses methods for quantifying exactly these sorts

f structural intuitions seen by atmospheric scientists. This paper

erges these two fields by using persistent homology, a now well-

stablished tool in TDA, to quantify a diurnal cycle observed in a

urricane using Geostationary Operational Environmental Satellite

GOES) infrared (IR) satellite data. 

Persistent homology, and more generally TDA methods, has

ound significant success in rather disparate applications by find-

ng structure in data and using this insight to answer questions

rom the domain of interest. For instance, Giusti et al. used the ho-

ology of random simplicial complexes to investigate the geomet-
� Handled by Associate Editor: Ricardo Torres, PhD. 
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ic organization of neurons in rat brains [1] . Persistent homology

as also been used to understand periodicity in time series arising

rom biological [2,3] and engineering applications [4] , as well as

or image analysis [5–8] . 

This paper presents an application of the use of both time series

nd image analysis using TDA to study a daily cycle in hurricanes

hat is of interest in the field of atmospheric science. The diur-

al cycle of tropical cyclones (TCs) has been described in previous

tudies [9–18] that provide evidence of the regularity of this cycle

s well as its potential impacts. This diurnal pattern can be seen in

OES IR imagery as cyclical pulses in the cloud field that propagate

adially outward from TCs at speeds of 5–10 m s −1 [9–11] . These

iurnal pulses, a distinguishing characteristic of the TC diurnal cy-

le, begin forming in the TC’s core near the time of sunset each day

nd appear as a region of cooling cloud-top temperatures. The area

f cooling then takes on a ring-like appearance as marked cloud-

op warming occurs on its inside edge and it moves away from

he storm overnight, reaching several hundred kilometers from the

C center by the following afternoon. Observations and numeri-

al model simulations indicate that TC diurnal pulses propagate
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1 Normally a group, however, we are working with field coefficients. 
2 Again, notice that because we are working with Z 2 coefficients, the book- 

keeping normally needed for orientation is unnecessary. 
through a deep layer of the TC environment, suggesting that they

may have implications for TC structure and intensity [9–12,14] . 

The current state of the art TC diurnal cycle measurement has a

limited ability to analyze the behavior beyond qualitative observa-

tions. This paper presents a more advanced mathematical method

for quantifying the TC diurnal cycle using tools from TDA, namely

one-dimensional persistent homology to analyze the holes in a

space. This research aims to detect the presence of the diurnal cy-

cle in GOES IR satellite imagery and to track the changes through

a time series. 

In this paper, we present a method of automatically detecting

and quantifying periodic circular structure in satellite imagery as

well as the results of our method applied to GOES IR hurricane

imagery for Hurricane Felix in 2007 and Hurricane Ivan in 2004.

The naive combination of persistent homology with the IR imagery

did not show a recurring pattern due to drastically variable val-

ues in IR brightness temperature data. Despite this, looking at the

data, there is a clear circular feature that is visible in the imagery.

Thus we develop a more sophisticated method using tools includ-

ing the distance transform and one-dimensional persistent homol-

ogy to detect the TC diurnal cycle quantitatively using maximum

persistence. Using our method, we are able to detect this 24-h cy-

cle in both hurricanes automatically, improving upon the existing

qualitative methods. 

2. Tropical cyclone background 

Previous research has documented a clear diurnal cycle of

cloudiness and rainfall in TCs: enhanced convection (i.e., thun-

derstorms) occurs overnight, precipitation peaks near sunrise, and

upper-level cloudiness (i.e., the cirrus canopy) expands radially

outward throughout the day, reaching its maximum areal coverage

in the early evening hours [9–18] . To quantify the expansion and

contraction of the cirrus canopy, Dunion et al. used GOES satellite

IR imagery to examine the six-hour cloud-top temperature differ-

ences of major hurricanes in the Atlantic basin from 2001 to 2010

[9] . They found that an area of colder cloud tops propagated out-

ward around 5–10 m s −1 over the course of the day, with warm-

ing temperatures on its inner edge. More recently, in [11] , Ditchek

et al. expanded Dunion et al.’s work to include all tropical cyclones

in the Atlantic basin from 1982 to 2017 and found that the diurnal

pulse is nearly ubiquitous, with 88% of TC days featuring an out-

wardly propagating pulse. 

Despite the consistent signature and documentation of this di-

urnal cloud signature, open questions remain as to how the diurnal

cycle is linked to inner-core convective processes and whether it is

a column-deep phenomenon or mainly tied to upper-level TC cloud

dynamics related to incoming solar radiation [11,15,16,18] . Investi-

gating these questions is relevant to TC forecasting as the diurnal

cycle of clouds and rainfall has implications for forecasting storm

structure and intensity, as evidenced by the diurnal cycle in objec-

tive measures of TC intensity and the extent of the 50-kt wind ra-

dius documented by Dunion et al. Additionally, and especially rel-

evant to the current work, most of the papers above have identi-

fied the pulse using subjective measures of cloud-top temperature

change and timing [9,11] . The current work seeks to quantify the

pulse to determine its true periodicity using persistent homology,

a topological tool that is particularly effective at capturing the type

of patterns visible in the pulse. 

3. Math background 

Persistent homology is a tool from the field of TDA which mea-

sures structure in data. This data can start in many forms, includ-

ing as point clouds or, as in the case of this work, as a function
n a domain. In this section, we will briefly review the neces-

ary background to understand cubical complexes and persistent

omology, and refer the interested reader to [19–22] for a more

omplete introduction. 

.1. Cubical complexes 

In this section, we largely follow Chapter 2 of [21] with the

aveat for the informed reader that because we use homology with

 2 coefficients, we can be lazy about orientations of cubes. In addi-

ion, our data consists of 2D images, so we need only define cubes

p to dimension 2. 

An elementary interval is a closed interval I ⊂ R of the form

 �, � + 1] or [ � ] for � ∈ Z , which are called nondegenerate and de-

enerate respectively. An elementary cube Q ∈ R 

2 is a product

f elementary intervals Q = I 1 × I 2 . The dimension of Q , dim (Q ) ,

s the number of nondegenerate components of Q . Note that 0-

imensional cubes are just vertices at the points on the lattice

 × Z in R 

2 , 1-dimensional cubes are edges connecting these ver-

ices, and 2-dimensional cubes are squares. Let K denote the set of

ll elementary cubes in R 

2 and K d ⊂ K the set of d -dimensional

ubes. A set X ⊂ R 

2 is cubical if it can be written as a finite

nion of elementary cubes. Then we denote the associated cubical

omplex as K(X ) = { Q ∈ K | Q ⊂ X} , with the d -dimensional sub-

et denoted K d (X ) = { Q ∈ K(X ) | dim (Q ) = d} . If Q ⊆P , then we say

 is a face of P , denoted Q ≤ P . If Q �P , then Q is a proper face

f P , denoted Q < P , and is additionally a primary face of P if

im (Q ) = dim (P ) − 1 . 

A greyscale image, or more generally an m × n matrix, can be

iewed as a function M : D → R where D = { (i, j) | 0 ≤ i < m, 0 ≤
j < n } . We will model this as a function defined on a particu-

arly simple cubical set K = K([0 , m ] × [0 , n ]) . For simplicity, we

enote by s i,j the square [ i, i + 1] × [ j, j + 1] . So, given a matrix

 , we equivalently think of this data as a function M : K → R

here we set M ( s i,j ) equal to the matrix entry M i,j and set M(P ) =
in s i, j >P M(s i, j ) for all lower dimensional cubes P . Note that we

ill abuse notation and use M to denote both the original matrix

nd representation as a function with domain K . 

.2. Homology 

Homology [20] is a standard tool in algebraic topology which

rovides a vector space 1 H k ( X ) for each dimension k = 0 , 1 , 2 , . . . 

or a given topological space X . The different dimensions measure

ifferent properties of the space. In particular, for this work we

re interested in 1-dimensional homology; i.e. when k = 1 . The 1-

imensional homology group measures the number of loops in the

pace; equivalently, we can think of this as the number of holes in

he space. In particular, if we look at the black region in each of

he examples in Fig. 1 , the rank of the first homology for each is

1,2,1). 

The exact definition of homology is as follows. For any cubi-

al set L (which for the purposes of this discussion will always be

 subset of K ), we have sets giving the cubes of different dimen-

ions: K i (L ) for i = 0 , 1 , 2 . An i -chain is a formal linear combination

f i -simplices in L , c = 

∑ 

Q j ∈K i (L ) a j Q j , with coefficients a j ∈ Z 2 . We

an of course add these objects by setting 
(∑ 

a j Q j 

)
+ 

(∑ 

b j Q j 

)
=

 

(a j + b j ) Q j and multiply by a constant. Thus, the collection of all

 -chains forms a vector space C i ( L ). 

We define a linear transformation δi : C i (L ) → C i −1 (L ) called the

oundary map, by setting δ (Q ) = 

∑ 

P where the sum 

2 is over the
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Fig. 1. An example matrix, M (top left) and corresponding persistence diagram (top 

right). Second row: The black portions are sublevel sets, M r , where r = 0 . 25 , 0 . 35 , 

and 0.7. The existence of a point far from the diagonal in the persistence dia- 

gram shows that there is a prominent circular structure; while the other points 

are caused by the smaller circles. 
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Fig. 2. Original satellite imagery from Felix GOES-12 data set (left) and Felix 

GridSat-GOES data set (right) at approximately the same time. 
rimary faces P < Q . The kernel of δ1 , Ker( δi ), (that is, the set of

lements of C 1 ( L ) which map to 0) is generated by closed loops in

 . The image of δ2 , Im ( δ2 ), is generated by boundaries of 2-cells.

hen the 1-dimensional homology group is defined to be H 1 (K) =
er( δ1 )/ Im ( δ2 ). An element of this group γ ∈ H 1 ( L ), represents an

quivalence class of loops which can differ by collections of 2-cells.

.3. Persistent homology 

For a static space L, H 1 ( L ) measures information about the num-

er of loops. Persistent homology takes as input a changing topo-

ogical space, and summarizes the information about how the ho-

ology changes. 

Let an m × n R -valued matrix M be given. Fix a function value

 ∈ R and let M r = f −1 (−∞ , r] . That is, M r is the subset of squares

n K which have value at most r in the matrix, along with all edges

nd vertices which are faces of any included square. M r is often

alled a sublevel set of M . See Fig. 1 for M r regions corresponding

o an example image. 

These spaces have the property that M r ⊆M s for r ≤ s , thus

e can consider the sequence M r 1 ⊆ M r 2 ⊆ · · · ⊆ M r k 
for any set

f numbers r 1 < r 2 < ���r k . This sequence of spaces is called

 filtration. For each of the spaces, we can compute the homol-

gy group H p (M r i ) . The inclusion maps give rise to linear maps

 p (M r 1 ) → H p (M r 2 ) → · · · → H p (M r k 
) . 

It is these maps that we study to understand how the space

hanges. In particular, when we are focused on 1-dimensional ho-

ology ( k = 1 ) as in this study, a loop is represented by an ele-

ent γ ∈ H 1 (M r i ) . We say that this loop is born at r i if it is not

n the image from the previous space; that is, γ / ∈ Im (H 1 (M i −1 ) →
 1 (M i )) . This same loop dies at r j if it merges with this image in

 r j ; that is, γ ∈ Im (H 1 (M i −1 ) → H 1 (M j )) where we abuse notation

y using γ to both refer to the class in H 1 (M r i ) and the image

f this class under the sequence of maps in H 1 (M r j ) . We refer to

 j − r i as the lifetime of the class. 

A persistence diagram, as seen in the right of Fig. 1 , is a col-

ection of points where for each class which is born at r i and dies

t r j is represented by a point at ( r i , r j ). The intuition is that a

lass which has a long lifetime is far from the diagonal while a

lass with a short lifetime is close. In many cases, a long lifetime

oop implies that there is some sort of inherent topological fea-

ure being found, and thus that this point far from the diagonal

s important, while short lifetime loops are likely caused by topo-

ogical noise due to sampling or other errors in the system. In the

xample of Fig. 1 , there is a prominent off-diagonal point which
hows that the function defined by the matrix has a circular fea-

ure. Thus, a common measure for looking at the persistence di-

gram when investigating a single, circular structure is the maxi-

um persistence, defined as 

axPers (D ) = max 
(r i ,r j ) ∈ D 

r j − r i (1) 

or a given persistence diagram, D . 

. Methods 

.1. Data preparation 

The data was given in the form of storm-centered GOES IR

10.7- μm) satellite imagery. The 10.7- μm long channel detects IR

nergy emitted from the Earth and is not strongly affected by at-

ospheric water vapor. Thus, this particular channel is useful for

etecting clouds at all times of the day and night and is ideal for

racing the diurnal evolution of the TC cloud fields. For our analy-

is, we used two different types of data sets. These two data sets

ave the same native spatial resolution, but differ in temporal res-

lution. The first type (hereafter the GOES-12 data sets), utilizes

rightness temperatures derived directly from GOES-12 4-km IR

atellite imagery and consists of data in hourly increments, with

he exception of 0415 and 0515 UTC each day in Hurricane Felix,

nd 0445 and 0545 UTC each day in Hurricane Ivan (due to the

OES-12 satellite eclipse period). Imagery was remapped such that

ach pixel has a spatial resolution of 2 km 

2 and each image covers

 total area of approximately 1500 km × 1500 km, represented as

 752 × 752 matrix. This remapping was performed using the Man

omputer Interactive Data Access System (McIDAS; [23] ) in order

o generate storm-centered satellite images that were focused on

he relevant TC environment. The McIDAS 4 km to 2 km remap-

ing procedure replicates the original 8-bit grayscale values such

hat none of the original pixel information is lost. The second type

s the GridSat-GOES [24] data set and consists of data in 3-h in-

rements with the exception of 0600 UTC each day. Each pixel has

 resolution of approximately 8 km and each image covers a to-

al area of approximately 2400 km × 2400 km, represented by

 301 × 301 matrix. This data is cropped to a 191 × 191

atrix to approximately match the area covered by the first set

f data. The cropped version covers a total area of approximately

530 km × 1530 km. For an example of the GOES-12 and cropped

ridSat-GOES satellite imagery for Hurricane Felix, see Fig. 2 . 

The GridSat-GOES data set requires some additional process-

ng. The data is stored using a different format, using short

umbers rather than floats, so the following equation is applied

o the GridSat-GOES brightness temperatures to do the num-

er type conversion: [( Original · 0 . 01 + 200 . 0) − 22 . 858] / 0 . 919565 .

ome images in the GridSat-GOES data set also contain missing

alues where the brightness temperature for certain pixels was not

ecorded and is instead assigned a fill value. In order to prevent

hese values from impacting our results, we interpolate values for

hese pixels. For a given pixel with a missing value, we compute
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Fig. 3. Top left: Example of 6 h difference, M ( t ), from the Felix GOES-12 data set; 

Top right: thresholded subset, M ( t ) μ where μ = 80 ; Bottom left: distance transform 

function; Bottom right: corresponding persistence diagram. 
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the average value of a 5 × 5 grid centered at the pixel, not includ-

ing the pixels in this range that also have missing values. 

For Hurricane Felix, we studied both types of data sets to test

the flexibility of the method across spatial and temporal resolution.

The Felix GOES-12 data set spans 2 to 4 September 2007, while the

Felix GridSat-GOES dataset spans spanning 31 August to 6 Septem-

ber 2007. For Hurricane Ivan, we used the GOES-12 data set, which

spans 30 August to 1 September 2004. 

4.2. Method of detection & quantification 

We present a method of detecting and quantifying periodic cir-

cular structure representing the TC diurnal cycle in IR satellite im-

agery. Our method combines existing methods from the fields of

image processing, topological data analysis, and signal processing. 

Initially, we have a time series of IR satellite images, repre-

sented as a matrix of pixel values S ( t ) for time t . The TC di-

urnal pulse is propagating outward through the day; thus, in

order to see the movement and changes in the GOES satellite

brightness temperature, we consider the difference in matrices

six hours apart [9,11] . For all times t , given the original bright-

ness temperature image S ( t ), we compute the six-hour differences,

M(t) = S(t + 6) − S(t) . While circular features are visually promi-

nent in the data, simply using persistence on the difference data

did not show any relevant features. This discrepancy is due to the

extreme differences in the function values between the circular

sections which prevents the sublevel sets from containing the full

circular structure until very late in the filtration. Thus, we are un-

able to detect the circular structure from M ( t ) and we define a

new function on the difference matrix using the following method.

Fix a threshold μ and let M ( t ) μ be the subset of M ( t ) which has

function value less than μ. This method results in a binary ma-

trix defined entry-wise, with M(t) μ[ i, j] = 1 if M ( t )[ i, j ] < μ, and

M(t) μ[ i, j] = 0 otherwise. We will address this choice of threshold

in Section 5.2 ; however, we will focus on the case μ = 80 degrees

for most of our analysis. Note that because M ( t ) is a difference of

two images, the threshold is not isolating all pixels above a certain

temperature, but rather those pixels that increase in value by at

least 80 degrees over the six hours. 

After thresholding, we now have binary images; however, the

persistent homology is uninteresting, as there are only two possi-

ble sublevel sets. In order to create a greyscale image that main-

tains the visually apparent topological structure of the image, we

apply the distance transform, a method from the field of image

processing [25,26] , which gives a new matrix D ( t ). The distance

transform is calculated as follows: given any pixel s i,j in an im-

age M ( t ) represented as a matrix of pixels, D (t) i, j = min d(s i, j , x )

where x is a 0-valued pixel and d is any distance metric. In this

application, we specifically use the L ∞ 

distance, also known as

the chessboard distance; however, the distance transform is de-

fined for any distance metric, the Euclidean distance transform be-

ing the most commonly used. Given two pixels, s i 1 , j 1 
, s i 2 , j 2 

the L ∞ 

distance between them is calculated as d(s i 1 , j 1 
, s i 2 , j 2 

) = max {| i 2 −
i 1 | , | j 2 − j 1 |} . This defines a distance on the pixels, which are the

2-cells in the cubical complex. The distance can be extended to

the lower dimensional cells in the same manor as described in

Section 3.1 . 

To calculate the distance transform, we use the python

submodule scipy.ndimage , specifically the function

distance_transform_cdt with the chessboard metric. There-

fore, each entry in D ( t ) corresponds to the minimal distance to

an entry where M ( t )[ i, j ] ≥ μ. The distance transform D ( t ) is then

scaled by the resolution for each data set in order to convert the

distance units to kilometers instead of pixels. For the GridSat-GOES

data set, we scale by a factor of 8 km/pixel while for the GOES-12

data sets, we scale by a factor of 2 km/pixel. We then compute
ublevel set persistence on the function D ( t ) using the cubtop
ethod in Perseus [27,28] , which calculates persistent homology

or cubical complexes using concepts from discrete Morse theory.

ote that Perseus requires an integer value filtration function on

he cubical complex; thus, we chose to use the chessboard metric

or the distance transform. Fig. 3 shows an example of each step

escribed so far. 

For each six-hour difference in each data set, we apply the steps

escribed above, then calculate maximum persistence as defined in

q. 1 . By plotting maximum persistence over time, we can see how

he most prominent circular feature changes through the progres-

ion of the day and life of the TC. This plot should show an oscilla-

ory pattern, detecting the change in the diurnal cycle throughout

he day. In order to quantify this oscillatory pattern, we use the

ourier transform. In general, the Fourier transform is a commonly

sed method for investigating periodicity of time series [29] by

ecomposing a wave into a sum of sinusoids with different fre-

uencies. Since we are working with discrete data, we will work

ith the discrete Fourier transform (DFT). Let T be the time be-

ween discrete samples, then let t k = kT where k = 1 , . . . , N − 1 .

hen, the discrete Fourier transform is F n = 

∑ N−1 
k =0 

f (t k ) e 
−2 π ink/N .

his converts a function from the time domain to the frequency

omain. The power spectrum of F n can be estimated by calculating

he square of the absolute value of the discrete Fourier transform,

 F n | 
2 . 

Using the DFT, we calculate the most prominent frequency in

he data in order to determine how often the cyclic behavior re-

eats. Note, to use the discrete Fourier transform the time steps

ust be equal; however, because of the missing times in our data,

his is not the case. Therefore, we approximate the maximum per-

istence at these values by adding a point along the line between

he times immediately before and after the missing time. Addi-

ionally, we must truncate the maximum persistence to only in-

lude the days where we have the data for the entire day. This

eans truncating the Felix GridSat-GOES data set to include only

-4 September 2007, the Felix GOES-12 data set to include only 1-

 September 2007, and the Ivan GOES-12 data set to include only

0-31 August 2004. The discrete Fourier transform was calculated

sing the python submodule numpy.fft . 
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Fig. 5. Power spectrum for each data set. The highest peak on the Felix GridSat- 

GOES power spectrum occurs at a frequency of approximately 0.976 cycles/day, the 

peak on the Felix GOES-12 power spectrum occurs at a frequency of approximately 

0.979 cycles/day, and the peak on the the Ivan GOES-12 power spectrum occurs at 

a frequency of 1.0 cycles/day. 
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We first calculate the Fourier transform using the function fft ,
hen calculate the frequency bins using fftfreq . Using this infor-

ation, we plot the approximate power spectrum for each data set.

ote, if working with real data as we are in this application, the

ower spectrum will be symmetric for positive and negative fre-

uencies; therefore, we only need to look at the positive frequen-

ies. Picking the frequencies corresponding to the highest peaks in

ach power spectrum gives us the frequency of the most promi-

ent periodic signal in the data. Using this frequency, we can cal-

ulate the period of the oscillatory pattern and quantify the signal

e are detecting. To verify the detected signal matches the visual

scillatory pattern we see, we can reconstruct the sinusoid corre-

ponding to the most prominent periodic signal using the inverse

iscrete Fourier transform, using ifft . Then plotting this recon-

tructed sinusoid over the original data, we can see how closely

his signal matches the patterns in the data. 

. Results 

.1. Experimental results 

After the data is prepared, we apply the steps described in

ection 4.2 to each data set. For the two Hurricane Felix data sets,

s they are from the same hurricane, we would expect the results

o be similar despite the temporal and spatial resolution differ-

nces. Plotting the calculated maximum persistence over time, we

et the time series plotted as solid lines in Fig. 4 . The plots show

n oscillatory pattern for all three data sets which appears to re-

eat approximately daily. 

To verify the periodicity of the oscillatory pattern, we apply

he discrete Fourier transform and calculate the power spectrum

or each data set. Each power spectrum is shown in Fig. 5 . Pick-

ng the frequencies corresponding to the highest peaks in each

ower spectrum gives us the frequency corresponding to the most

rominent sinusoidal signal in the data. The maximum peaks in

ig. 5 give a frequency of 0.976 cycles per day for the Felix GridSat-

OES data set, 0.979 cycles per day for the Felix GOES-12 data set,
ig. 4. Maximum persistence plotted over time for all data sets using threshold 

= 80 in addition to the reconstructed versions, created using inverse Fourier 

ransform. Gray vertical lines separate days according to UTC. 
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nd 1.0 cycles per day for the Ivan GOES-12 data set. We use this

requency, f , to calculate the periodicity of the cycle by calculating

sing 1/ f , giving the period of the sinusoid in days per cycle, then

ultiply by 24 to rescale to hours per cycle. Doing so gives the re-

ult that the cycle is repeating every 24.6 h for the Felix GridSat-

OES data set, every 24.5 h for the Felix GOES-12 data set, and

4.0 h for the Ivan GOES-12 data set. 

Using the most prominent frequency for each data set, we cal-

ulate the inverse Fourier transform, and plot these reconstructed

inusoids over the original data. These sinusoids, plotted as the

ighter dashed lines in Fig. 4 , closely resemble the patterns exhib-

ted by the original maximum persistence versus time plots; there-

ore, these approximately 24 h patterns visible in the plots are also

etected mathematically, which verifies the claim that our method

s detecting a daily cycle in each data set. Additionally, since for

oth Hurricane Felix data sets, the plots of maximum persistence

gainst time seem to match and both have similar detected period-

city from the DFT, our method seems robust to the temporal and

patial resolution differences in these two data sets. 

.2. Choice of threshold 

The method described involves a choice of threshold, so we

sed a variety of thresholds, μ ∈ { 25 , 30 , . . . , 100 } , to test the sen-

itivity of our method to the parameter choice. For both data sets

f Hurricane Felix, our method is very robust to the choice of

hreshold. In Fig. 6 , the top row are plots that represent maximum

ersistence versus time for the Hurricane Felix data sets using a

ariety of thresholds. There is a clear periodic pattern for both

ata sets across all the thresholds shown. In fact, for all thresholds

ested μ ∈ { 35 , 40 . . . , 90 } , the period is consistent at 24.6 h for the

elix GridSat-GOES data set and 24.5 h for the Felix GOES-12 data

et. For μ < 35 and μ > 90 the Fourier transform is unable to pick

p the daily pattern in the Felix GridSat-GOES data set. 

For Hurricane Ivan, the plot is shown on the bottom row of

ig. 6 for thresholds μ ∈ { 80 , 85 , . . . , 100 } . For all of the thresh-

ld value shown, our method consistently detects a 24.0 h period.

his is a smaller range of threshold values than those that detect a

aily cycle in Hurricane Felix, but for thresholds μ ∈ {80, 85, 90},

ur method detects a daily cycle in all three data sets. Thus, the

ethod may require some parameter tuning, but our analysis of

hese three data sets gives a range of values to start with when

esting new data sets. 
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Fig. 6. Maximum persistence vs time plot for Hurricane Felix (top row) and Hur- 

ricane Ivan (bottom row). Hurricane Felix results are shown for all thresholds μ ∈ 
{ 35 , 40 , . . . , 90 } while Hurricane Ivan results are shown for μ ∈ { 80 , 85 , . . . , 100 } . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Maximum persistence plotted over time for all data sets using threshold 

μ = 80 in addition to the versions using opening to remove noise. Gray vertical 

lines separate days according to UTC. 
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5.3. Removal of noise 

While the above method detects a daily cycle, there are some

instances where the six-hour differencing introduces noise because

of varying behavior in the center of the hurricane. The left im-

age of in Fig. 7 shows an example of how this noise can appear

in the distance transform for the Felix GOES-12 data set. A small

area of pixels above the threshold cause the distance transform to

fill in the center of the circular region, thus potentially changing

the value of maximum persistence. Therefore, before applying the

distance transform, we use a method from mathematical morphol-

ogy [30] called opening to de-noise the image and see how this

impacts the detected periodicity. 

Opening is the combination of two tools from mathematical

morphology, erosion and dilation. Both involve a kernel moving

through a binary image. In erosion, a pixel in the original image

will remain a 1 only if all pixels under the kernel are 1’s, other-

wise it becomes a 0. Dilation is the opposite of erosion, A kernel

moves through the binary image and a pixel is assigned a 1 if at

least one pixel under the kernel is a 1, otherwise it is assigned a 0.

Opening is erosion followed by dilation, which will remove noise

and rebuild the area around the boundary. 

We apply opening to the binary thresholded image using a

8 × 8 pixel kernel for the GOES-12 data sets and a 2 × 2 pixel

kernel for the GridSat-GOES data set to remove noise such as these

center pixels. Note, the difference in size of the kernel is due to

the differences in spatial resolution between the two data sets. We

use the python module cv2 for these computations. Opening is

specifically implemented using the function cv2.morphologyEx
using cv2.MORPH_OPEN as the second input. The right image in

Fig. 7 show the result when opening is used on the thresholded
Fig. 7. A example comparison of distance transform images with and without open- 

ing for the Felix GOES-12 data set. At left, the noise in the center of the hurricane 

causes the distance transform to fill in. At right, performing opening gets rid of the 

small noisy point, and the distance transform does not get filled in. 
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s  
atrix and then the distance transform is applied. Since the dis-

ance transform is no longer filled in, the opening process has re-

oved the noisy pixels causing the issue. 

Using this extra step in the method, we recalculate maximum

ersistence for all times and compute the estimated period of the

ew maximum persistence values using Fourier transforms. 

Fig. 8 shows maximum persistence plotted versus time for us-

ng our original method, and the method including the additional

pening step. While the new maximum persistence values vary

 little from the originals, the general oscillatory behavior seems

imilar. For both the Felix and Ivan GOES-12 data sets, the Fourier

ransform still detects a 24.5 and 24.0 h cycle respectively. Thus

he presence of noise in these data sets is not impacting the re-

ults. However, for the Felix GridSat-GOES data set, the Fourier

ransform now detects a 15.375 h cycle, likely due to the differ-

nce in spatial resolution. The GOES-12 data has higher spatial res-

lution, so applying opening to remove noise does not impact the

lobal circular structure. The GridSat-GOES data has lower spatial

esolution, and is therefore more sensitive to noise in the image.

hus, our method is more reliable when applied to higher spatial

esolution data, and should be used with caution on lower quality

ata. 

. Discussion 

This paper presents a novel method for detecting and analyz-

ng the diurnal cycle of tropical cyclones using methods from TDA.

urrent state of the art TC diurnal cycle measurement in the satel-

ite imagery is mostly qualitative; our method provides a mathe-

atically advanced method for automatic detection and measure-

ent. While our method involves a choice of a parameter for the

hreshold, we present evidence that a range of threshold values

ield the same results. 

Here, we show that using two sets of GOES satellite data for

urricane Felix and one set of data for Hurricane Ivan, our method

s able to detect almost identical patterns across all three data sets.

ur method performs more consistently and robustly on higher

patial resolution data sets, represented by the GOES-12 data for
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oth Hurricanes Felix and Ivan. While the method does detect a

aily cycle in the lower resolution Felix GridSat-GOES data, when

he images are blurred to remove noise, the cycle is no longer de-

ected by the Fourier transform. 

This is a novel application of methods from TDA and image pro-

essing to the TC diurnal cycle. We believe this method could be

sed to study additional atmospheric phenomena exhibiting circu-

ar structure. A future direction of this project is to apply this anal-

sis to more TCs, other satellite channels and other atmospheric

ata to further test our method. 
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