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NUMERICAL SMOOTHING AND DIFFERENTIATION

BY FINITE DIFFERENCES

Henry E. Fleming and Lawrence J. Crone

Office of Research
National Earth Satellite Service, NOAA
Washington, D.C. 20233

ABSTRACT. General formulae are derived for digital polynomial
smoothing and digital polynomial differentiation of data observed at
equal abscissa spacings. The operations are performed by a moving fit
of polynomials to small overlapping subsets of the data. Results are
also derived for the special situation in which the moving fit approaches
the boundary of the data set. Brief discussions iIndicate how the
Fformulae are applied in practical situations and include a description
of an error detection and correction technique which is very closely

related to smoothing.
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1. introduction. The purpose of this paper is to present the
theoretical results arising in the solution to the problems of digital
polynomial smoothing and digital polynomial differentiation of observed
(hence, noisy) data with equally spaced argument values. The method of
smoothing is a simple moving fit of polynomials of a fixed, but arbi-
trary, degree to the data. At each step, the polynomial is fitted to
a limited subset of consecutive data points, whose size is related to
the degree of the polynomial. Furthermore, the moving Ffit is used to
evaluate the polynomial at only the central point of the subset at each
step. Smoothing is accomplished by replacing the original datum at the
current central position by the polynomial value.

The results for polynomial smoothing extend in a natural way to the
derivatives of the fitted polynomials, thereby yielding a method for the
numerical differentiation of the data. Differentiation is accomplished
in the same manner as smoothing in that again a moving fit is applied
to subsets of consecutive data points and the fit is used to evaluate
the derivative of the polynomial at the central point of the subset of
data at each step. The polynomial derivative is then taken to be the
derivative of the subset of data points at the central point of the sub-
set. Again, the size of the subsets and the degree of the fitted
polynomials are related.

There is an exception to the use of only the central point of each
subset of data. When points near the boundaries of the full data set
are encountered, results for both smoothing and differentiation must be
extended to additional points at and near the boundaries in those subsets.

The advantages of digital polynomial smoothing and differentiation
for data having equidistant arguments are that the formulae are independent

of the specific data set to which they are applied, and the formulae use



only finite differences of the data and, hence, are computationally
efficient. In fact the coefficients of the finite differences are strictly
rational numbers and so only integer arithmetic is involved.

Whille 1t is clear that the smoothing and differentiation operators
are both linear filters, this paper will not develop that approach.
Furthermore, this paper is limited to the derivation of the basic formulae
and brief discussions of their application. Background and details on
the smoothing and differentiation procedures and their practical imple-
mentation will be given iIn a series of three papers by Fleming and Hill,
[1], [2], and [3].- Specific examples and extensions to higher dimensions
also will be reserved for those papers.

2. Preliminaries. In practice, the numerical smoothing and differentiation
procedures are applied to the entire data set by a moving fit, but for
our purposes it is sufficient to restrict our results to a typical subset
S of data referred to in Section 1. We require S to contain 2n+l data
points y» and we may assume without loss of generality that the equally
spaced abscissae have unit spacing at integer values. In fact, there is
also no loss in generality if for simplicity we choose the integer values

to be fixed and centered on zero, that is,

()] S={yt =y(i): i = -n, ..., 0, ..., n}

At the heart of this paper is the following problem.

PROBLEM 1. Fit the polynomial

* . 2 2n-2
O 1L 2 2n-2

by least squares to the set S, that is, minimize the sum



E [P() - yL]2

to find explicit expressions for and in terms of the elements of S.
Since P(0) = cQ and P~(0) = c”~, the basic devices for smoothing and
differentiating in terms of S will have been established by the solution
to this problem.

Before going into the solution, we state some definitions and
two well-known properties from combinatorial analysis that are needed iIn the
sequel. The notation for the binomial coefficients is given the following

expanded definition for non-negative integers i and n:

_'(nl_)l for o A~ i S n
i! (n-i
©) ]
0 otherwise
It also will be useful to remember that Forward differences

for the set S of (1) are defined as follows:

@) et 2 (-1
and

2n-1 n-1
“ D" A 2 (-1

are the differences of order 2n-1 for the points yQ and y», respectively,

of S, while

©) - "A%"y 2 (-D

is the 2nth difference of y It follows from these three definitions that



2n .2n 2n-1

-1 .
(6) A7 y0 - A yo —A Vo
For non-negative integers i, k, m, and n, the two combinatorial
properties are
7 m+n
™ i k-i
for kK £ m+tn, and
i .
(8) (-1 (x+1) 0
for m < 2n and arbitrary x. Identity (7) follows from a comparison of

the coefficients of the term xk on both sides of the i1dentity (l+x)m

a+H>on = (+x)m+n, while (8) is just an expression of the well-known

fact that the finite difference of order n of a polynomial of degree less

than n is zero.
For a proof to follow, we also will need to know explicitly the

first two rows of the inverse of the square matrix JBr which is of the

form

(©) B i = -nr n; j=0, 1, 2n].

The details are given in the following lemma.

LEMMA 1. Given the unit basis vectors of dimension 2n+l, =

[if 0, O, OoO]T and e = [0, 1, O, 0]T, and the matrix g of (9),

there exist unique vectors and ™ Qf dimension 2n+l with the property

(10) B z=1 o



In fact, v~ and are given by
(11) =n0if 1 ° I
v li o, i=xl, +n,/
and
, i D). (k-
(12) ni- it € e daBl
k=]1]
Proof. The validity of (10) for £=1 is established by iInspection.
The proof for £=2 is by induction. For n=1, (9 and (12) applied to (10)
beecane
Ev b.="[-C¢D-l + (D3] = §,,r j=0, 1, 2,
i=1 21 13
where 5.. is the Kronecker delta.
1D
Now assume that the Lemma holds for nr that isr
% g Y+ £ k-Drk-DL
B — k-1) 1 (k+i)!
. =K1 (DIGD
“ [k-DI112 Kk
k+i
=1 - M (
k=1 2Kk): ek
Hence, to prove the Lemma for n+l, we must show that
4  kFi k2172 R TRy, j+i_ N\
Notice Tfirst that the sum over i in (14) is zero whenever j+1 < 2k by
virtue of property (8). Therefore, the term with k = n+l in the Tfirst
sum in (14) is zero for j = 0, 1, -, 2n, and so (14) reduces to (13)
and is satisfied by the induction hypothesis. This leaves only the cases



j = 2n+l and 2n+2 to be proved, but

for any even value of j because the

Thus, there remains only the case j

the sum over i in (14) vanishes
terms having indices i and -i cancel.

= 2n+l, that is, we must show that

ntl[(k-DI1]2  * i+1/2k\ 2n+2 _
(15) M (2M! =V N1 _o-

Let

.2
6 e e ORI 8

i=-k

for k = n+tl. We verify that

an C = k2C, - (k-D2C,

k,n+i k,n
Definition (16) yields

k2c - (k-D2C
k,n k-1,n

LCk-i):12 |

Ai+l‘ \12n

k-1,n

_ k
Z i+1 . 2N
. (-1) i (k) (2k-1) E
G i=—k i=—k
= e 32 k
. (k+ti) (k-1) ] E (D
@l i=—-k
= ek,n+l r

where the second half of definition (2)

line

was used in the second sum of the first

Applying (16) and (17) to (15), we have

2n



n+1
k-1) C.
K. n+1 E kC (k-1) K-1.n
(n+1H2C + E K¢ 2
n+l,n ’ 0c
(n+1)2C
n+1,n.
However, C 1 is zero because the sum iIn (16) is the finite difference
n+1,n

of order 2n+2 of a polynomial whose degree is less than 2n+2. Therefore,
the double sum in (15) 1is indeed zero.

Finally, the uniqueness of vectors Zl and v2 follows from the
existence of the inverse of the matrix 15. (.

3. Principal Results. We now derive the solutions to Problem 1.

THEOREM 1. IT a polynomial of degree 2n-2 is fitted to the data

set S of (1) by least squares, then there exists a rational number On

such that the constant term cn of the polynomial has the form

(18) 9 (k1) A vy
where

n

n Qi-1)
19)

J (@2n+2i-D)

Furthermore, the second term in the polynomial is given by

(20) (—1) /2k 2k—1 .2n_2 (_1) 2A2n_l

k=1 Kk



where
Un-aVl n 2n  /2k\ 1/2n+2k-2
az2n-2 7 \2n-1J
k(n+k) V"ky vy n+k-1
Proof. Define the matrix A = [a_ = $ i=-n, _...f n; j =0, 1,
., 2n-2], the vector of coefficients of the polynomial by ¢ = [c.:
j =0, 1, ..., 2n-2], and the vector of data points of the set S in (1)
by v = [y-: i=-n, ..., n]. Then the coefficients are determined by
/u i

the solution to the system of normal equations

T T
A'Ac = Ay.
(22) s = 5%

Since we wish to determine only the pair of coefficients cQ and c™,

we need only to find vectors Hl and Auz of dimension 2n-1 satisfying

22) T Te = #h
— — T T
for Zz = 1, 2, where S*‘j_ = [1, 0, O, ..., 0] and ’e’~2~—[0, 1, 0, ..., 0]
are the unit basis vectors of dimension 2n-1I. It follows from (21) that
T T
(23 i1 = MOAY

for & = 1, 2.

Finding the unique vectors u”™ is by (22) tantamount to finding the
first two rows of the inverse of ATA for general n. How to do this by
direct mean is not at all obvious. Instead, we seek any pair of vectors

v and ,\(2 of dimension 2n+1 for which

24 AV = eO.
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for Z =1, 2. Lemma 1 provides us with just such a pair of vectors.
Now if Vn were Au,, we could use 7, to find cn , via (23). This is not

the case, but we can use V. to find \421 It has the form

z

(25) Up = (ATA)-laV .

since by (24)

ATAun = ATA(ATA) 1A\

thereby satisfying (22). Thus, all we need to know to calculate c0 by
X—L

(23) is the vector Au®, which by (25) is

(26) Au,, = A(ATA) 1ATVO.

asa’X, ro rv Al rJ  /wX,

Fortunately, the inverse matrix in (26) can be avoided because
A(ATA) _1A is the projection operator on the linear manifold of a (@n+l)-
dimensional Euclidean space R2n+1 sPannec® the 2n-1 linearly independ-
ent columns of A. Hence, the orthogonal complement of this linear
manifold is a linear manifold of R2n+l sPanne(™ ky two linearly independ-
ent vectors orthogonal to each of the columns of A. Convenient choices

for this pair of vectors are the vector of coefficients of the finite

difference operator of order 2n, namely
@7 i = -n ... I c

and a linear combination of vectors of coefficients of the Ffinite

difference operator of order 2n-1, that is,

2n-1 i+1
(28) 22 = w2 - (1 " S e T
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These vectors are orthogonal to the columns of A because the inner

products of w~ and with the columns of A yield, respectively, the

2nth and 2n-Ist differences of §\ which are zero for j = 0, 1,

2n-2 by (8) . In addition, the elements of w® possess the symmetry

property wnN = w/ while the elements of w® were specifically chosen

to have the anti-symmetry property W2 . = —-w_. so that %q and WZ are
,—1

guaranteed to be orthogonal to each other as well.
Since and w2 span the orthogonal complement of the space spanned
by the columns of A, we can write the projection operator in terms of

the projection on the orthogonal complement, namely

m m w_, wh w wh
@ - - T T A2 e
ivE2 sz

where 1 is the identity matrix.

The formal solution to our problem is now in hand. Apply (29) to
(26), and in turn apply that result to (23) to obtain the following

representations for coefficients cQ and c”:

(20) C&) (& ) (%) (£ Z)

for 1 =1, 2.
To make (30) explicit, we Ffirst evaluate the normed quantities
the denominators. By (27), (28), and repeated use of (2) and (7),

2n 4n\
2n]"

m 3
1

31
D Wy wq n+i

1
|
=]
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and
T 2n-1 2n-1 2n-1
G2) -2-2 n+i-1 n-i-1
2n-1 2n-1 2n-1 2£n 2n-1
-1- 2n-k
2n-1-k k=0 n
2n-2  2n-I\7/ 2n-1 2n-1 -1 on-1
k y\2n-2-k 2n-1-k
4n-2

/4n-2 /4n-2 /4n-2
2n-1 I 2n Vwon-2  * \’\2n—l)

An-2 1 4n-2\
n \2n-1J.
In addition, we will need the scalar T For this we write

v . of (12) in the equivalent form

72K\ 1 /2k-I\ _ (2k-1 \

W Lvk+i/  \k-141/.

so that again by the repeated use of (2) and (7),

/2n-I\ _ /2n-1~ 7 1/2k\ 1 /2k-1\ (2k-1\

34 \n+i / " \n+i-1/3k=]i] kKWW L\k+i/ " \k-1+\V

*m2*2

() (£F£) - (K)

i=-k
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1 4T <<(—.XT)-? £s)Cr

2 1tT™N\/1 /2n+2k-2) /2n+2k-2" /2n+2k-2\  /2n+2k-2"
k-1 ks y ntk-2 )+ | n+k-1 |

/2n+2k-2 /2n+2k-2

" * |/ k-1 I n+k
T

n /2k\ 1/2n+2k-2"\
Z
k=1 k \K 5 \ ntk=1 jl.

Next, we note that since the elements of -~ and v* are arranged

symmetrically about the center element and those of v_ and w_ are arranged anti-

symmetrically, it follows that T =0and ¢ = 0. Also, by (11) and (27),
-1~ Finallyr by (1), (11), (33), (37, (28), (31), (34), and the
foregoing/ we may write (30) as follows:
which by (5) yields (18) and (19), and
(35)
-1 -
an-2 Y n on 1/2n+2k-2N n DL 21> on—IA
E s (
2n-1 _k(n+k) \ n+k-1 . _ n+1i n+i-1j
k=1 i=-n
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s iMNM""1 "Il (-Di"2k-1V k-1 iIN-Ay
+ Z (- _ ,
- kW _ Wy* N yk+iy i+l
An_ B on fad T feneak-2\ TN N, . )
211 _ Vn+i/ Ui AN+L T
’ =1 \ /7 \ *J i=-n \ !
which by (@), @), and (6) is (20). The identity in (19) follows from
the relationship
/2n\/4n\ 1 = (@2n) \ (2n) 1 (2n) |
\"*ny\2n/ ninl (4n) !
2nnf2n-DH(2n-3)... 11y [2n@n-1) ... (+1)]nl
ni ne
e
2n[2n(2n-1) (n+1)1L[(4n-1)(4n-3) (2n+1)]1(2n):

The machinery developed in the proof of Theorem 1 can be used to

advantage iIn developing results analogous to those iIn Theorem 1 for

polynomials of degree 2n-1I.

COROLLARY 1. If the degree of the polynomial iIn Theorem 1 is_
raised from 2n-2 to 2n-1, all the results of that theorem remain valid,

with the exception that a N E ° rePlaces a2n-2 ™n 1 that i1s'

2k-1

Proof. Use the proof of Theorem 1, but with the range of the
index j increased from 2n-2 to 2n-1, that is, j =0, 1, ..., 2n-1 in

the definition of A, c, e. and un The proof goes through as before,
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except that now A_(A_a) A. is the projection operator on the linear
manifold of ~n+1 sPanne<* by 2n linearly independent columns of A.
Consequently, the orthogonal complement of this linear manifold is

spanned by a single vector orthogonal to each of the columns of A. That

vector is of (27). In other words, (29) becomes
AATA) -1 T Yot T
(38) A

W!

and so (30) reduces to

T ~1 Viz
39 -
(39 el =
Y |
for £ =1, 2.
the case £-1, (39) and (30) are identical because vw = 0 in
-1~2
(30). Hence, the remainder of the proof is identical to that given for

Theorem 1. On the other hand, for the case £= 2, vjw» = 0 in (39), so
that cl = vEy, which is the first double sum in (35) in the proof of
Theorem 1, which in turn is (37).D

COROLLARY 2. IT the degree of the polynomial in Theorem 1 is

raised from 2n—-2 to 2n, then the constant term of the polynomial has
the trivial relationship c® = y», but the second coefficient c. is
identical to (37) of Corollary 1.

Proof. In this case the matrix A in the proof of Theorem 1 is B of

(9), and so by Lemma 1 we have that

"£-1 =*11
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for H = Ir 2. The results follow from (11), (33), and the Tfirst double
sum in (35 . ™
4. Additional Results. Two known results are presented for
completeness and for consistency with our previous results and notation.
THEOREM 2. IT a polynomial P(x) of degree 2n-1 is fitted exactly
to the data set S of (1) with the point yQ deleted (i.e., the set

S - {y»}), then the constant term of the polynomial is

(2n\ 1, . xnA2n
(40) co=Yom\n) (1) A Yo

Proof. By hypothesis y» = P(i) for

= -n, — Y1* 1# eeef nN-

Since it is not necessarily true that yQ

P(0), let 6 = P(0) - yQ =

cQ - yQ. Then by (6) and (8)

which yields (40), since 6 = c0 - yQ- ™
Theorem 2 states that the distance between the point yQ of S and

the polynomial of degree 2n-1 that interpolates the 2n neighbors of y(

"2n -1 (-DnA2nyO0.
is

. n
Theorem 3. IT each point of the extended set of data points
t=*Ffy =vfi)t 1 = -2n, _ , 2n} lies on a polynomial P(x) of degree”

2n-1, except the point yQ which lies a distance 6 away from the polynomial,

then the sum
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(41) E A2\/ =0,
=-n k

where Azny - defined by
K

<—1)VV - r (-D)inz2n"
(42) > D n+ijyi+k *

is the 2nth forward difference of the point in S of (1). Furthermore,
the maximum of the absolute values of these 2n+l differences of the
_§,%t S in T is Azny,,-

Proof. By hypothesis y» = P(i) for i = -2n, ..., -1, 1, __ , 2n

and yQ = P(0) -5_. Therefore, by (42) and (8)

—ulL( k/2n 5 m (-i)k+I(,H+t)s'
\

n,2n n 2n _
(43) DAY = T CD e IPGHO - DT

and so the Siam

n A2n .n n+k+1/ 2n
tE A = svz (-1 0
k=-n k=-n
by (8). In addition, for K = -n, _ _ -1, 1, n,

fe)*l <(2"") Id - [A2nyOl-

by (43) and (40). D

5. Results Near Boundaries. When the moving polynomial-fit procedure
for both smoothing and differentiation approaches a boundary of the full
data set, the procedure breaks down because the central point of the

subset S of (1) no longer has its full complement of 2n neighboring
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points. The solution to this difficulty is to start and stop the
moving fit n+l points away from the boundary, and then simply use the
resulting values P(i) ofthe fitted polynomial for i =-n, —, -1,
at the beginning of the data stream and for i = 1, n at the end.
The necessary details are now provided.

THEOREM 4. IT the polynomial P(x) of degree 2n-2 is fitted to
the data set S of (1) by least squares, the polynomial values for

i=-n, _____ n are given by

n+i(2n  F4n\ 1.2n /4n-2 -l r _
¢ 2, A *0 2AR?N-1yq _ A2N

s .

(45) P(1) = Y. - (D

Proof. Define the matrix A and vectors c and i// as in the proof
————— -w r

of Theorem 1, then it follows that the vector of polynomial values

(46) p - [pi P : i -n, ++¢/ nj

can be written

“n p = Ac
Furthermore, the system of normal equations (21) can be written

c = ’(ATA) _1A-I)-/;

therefore,

(48) p-y = Ac-y

= fa@'™D AT - 1y

Now follow the proof of Theorem 1 from (21) through (29). Applying

(29) to (48), we have
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TRk W

By (27), (28)f ,(31) and (32), the elements of these vectors can be

written
2 (-1
k=-n
4n-2 k/2n-1I\ /2n-1\] ., 1+l 1/ 2n\
2 (-1) \n+k/ (n+k-1J Yk> X) n ~“n+ij,
2n-1
k=-n
from which (45) results after applying ), (), () and (6). tH

Note that for i1=0, (45) becomes (18).
COROLLARY 3. If a polynomial P(x) of degree 2n-1 is fitted to
the data set S by least squares, the polynomial values for i = -n, — n

are given by

n+i/ 2n

(50) PG) =yt - (D

Proof. Using the proof of Theorem 4 and the supporting arguments
of Corollary 1 related to the iIncrease iIn dimension, we can apply (38)

to (48) and obtain

K¥

The elements of these vectors are those given in the Ffirst line of (49),

from which one obtains (50). —
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Note that for i=0, (50) also becomes (18).
For the derivatives near boundaries, we need to determine the
derivative of the polynomials PMN(x) of degrees k = 2n-2, 2n-1 fitted

by least squares to the set S, and of the exact-fit polynomial of

degree k=2n, for x=i1 with i = -n, n. The problem can be formulated

as follows. Let p" be the required vector of derivatives of the

polynomial (xX), that 1is,

5Kk = ~ki =P 4= n nls

and let D | be a (k+l1)-dimensional superdiagonal matrix of the form
+

D = Fd . =i, i=l, k; d. . = 0, otherwise: i, j=I,
5k+1 i ' 1D

Then by the structure of the matrix A, and the vector of polynomial

coefficients o, it follows that the vector of polynomial derivatives

is precisely
(51 pk  ASk+1~*

for k = 2n-2, ..., 2n and where A and jc are dimensioned accordingly.

Now we do not know the full vector jc, but by (47) we do know-
<52> = pk »

where p is the vector (46) of polynomial values. For polynomials of
.c-k
degree k = 2n-2, 2n-1, 2n, these values are given explicitly by (45),

(50), and = Yrespectively. Since we know only Ac iwe Tfirst

must find a (2n+l1)-dimensional matrix E such that

k+1].-
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(53) EA = AD

The matrix JE obviously is not unique, but any E that satisfies (563) will
suffice. Unfortunately, we cannot give a general expression for a
choice of the elements of E as a function of n. All we can say is that

given the matrix E, one finds the vector p* from the relationship

G Ry = BAC = RRuk

obtained from (51), (562), and (53), where Ek is known as noted previously.
«Op*

Thus, the problem of finding the derivatives P~A(i) TfTor all indices i in
the set S reduces to that of finding an appropriate matrix E.

6. The Smoothing Procedure. For completeness we give a brief
description of how the results of this paper apply to numerical smooth-
ing. For complete details, see [1] and [2]. One begins by choosing

values n and k for the number of points in the moving fit and the degree

of polynomial, respectively. Let the complete data set be Y = {y. = y():
j=1, ..., n}, where usually n is picked so that n«N. Form consecutive,
overlapping subsets S. = {y i=-n, ..., n}y for j = n+l, __ _ N-n.
Then the smoothed data set Y = {y.: j=l, ..., n} is obtained in the

following manner.

If k = 2n-1 and an exact polynomial fit to §. - {yjJ} is desired,

use (40), that is,

- n)<-i>n,,,

(40) _
i 7%

For k = 2n-1 (or 2n-2) and a least squares polynomial fit to S., use (18),

that is,
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(18) y = Yji - 6n(-1) A2"Yj

with 9 qgiven by (19). Recall that (40) and (18) provide elements
n

for Y only for the indices j = n+l1, . N-n. For the remaining

points at and near the boundary of Y we use

- Vil

where P (j) 1is given by (50) if k = 2n-1, and by (45) if k - 2n-2.
K

Note that in both (50) and (45), A2nyQ must be replaced by A nyn+l if
j < n+l and by A YN-n if j > N-n. This entire cycle can be repeated
any number of times, depending upon the amount of smoothing that is
required.

A procedure closely related to smoothing, but much more selective,
is an error detection and correction procedure based in part on the
work of Guerra and Tapia [4]. It takes advantage of the properties
developed in Theorems?2 and 3. ffirror detection and correction differs
from smoothing iIn that smoothing adjusts all points in Y, whereas the
error detection and correction procedure corrects only those points in
Y that are bad, that is, in error by an amount greater than the back-
ground noise level of the data, which we denote by e.

Briefly, the error detection and correction procedure works as
follows. Errors are detected by generating the difference Azny for

each set S and by searching their absolute values for the maximum
J
value, denoted |A le’ as a result of (44) and Theorem 3. IT by (40),

the difference

(55) A > e,
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(i.e., "the difference is larger than the background noise level) the

point y is assumed to be in error. Furthermore, if in analogy to (41)
i

2n

(56) Ay < (@n+D) e,

J+i

(see [1]) the error in yJ is an isolated one relative to the set SJ and
hence, can be corrected to the value yJ using (40) with c0 and y0 replaced
by 93 and yJ, respectively.

On the other hand, if the test (56) fails, two or more points in
the set So are in error. In this case, yJ is corrected to yJ by the
least squares polynomial using (18).

After yJ has been replaced by yJ in Y, the entire set is searched
again for the maximum of the absolute values of its differences of order
2n. The point corresponding to this new maximum value also is corrected
by the foregoing procedures. This process is continued until all the
absolute difference quantities in (55) are less than or equal to e.

This means that in the final set Y some of the points will remain
unaltered from their original value in Y, while other points may have
been changed several times. In [4], Guerra and Tapia prove that this
process is guaranteed to be a finite process.

Finally, we have not discussed the treatment of points at and near
the boundaries of Y that may be in error. This procedure is too involved
to discuss here, but can be found in [1].

7. The Differentiation Procedure. To numerically differentiate the

set Y, one simply does a moving fit of the polynomial P (x) of degree k
JC

to the subsets S.D one at a time and evaluates the derivative of the

polynomial v=(x) for x=j. Specifically, the differentiated set Y =
K

{y*: j=1,..., N} is obtained in the following manner.
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For a polynomial of degree k=2n (or 2n-1), one obtains y" by

setting y" = in (20) and replacing yQ by y. everywhere. IT a
polynomial of degree 2n-2 is desired, set yN = in (37) and replace
both of the yQ by y.. Note that this procedure provides elements

for the set only for the indices j = n+l, ..., N-n. For the remain-

ing points at and near the boundary of Y, we obtain the derivatives by
finding an appropriate matrix E from (563), which is then applied to (54)
to obtain the elements of p~.

8. Conclusions. We have developed theoretical results for
numerically smoothing noisy data sets using polynomials of degree 2n-2
and 2n-1, and for numerically differentiating data sets using polynomials
of degree 2n-2, 2n-1, and 2n, where n is related to the size of the
subsets S of V. In addition, we established an interesting result for
Ffitting a polynomial of degree 2n-1 to the set S - {y"}r which has
application to error detection and correction. Also, brief descriptions
were given on the practical application of smoothing and differentiation
to noisy data sets. It should be pointed out that all results and
procedures in this paper hold as well for central and backward differences.

Finally, we note that the three operations, error correction,
smoothing and differentiation, taken together give one a set of very
versatile tools. For example, smoothing is usually more effective if
error detection is done first. Also, differentiation is usually more
meaningful if the data are smoothed first. In fact, some of the best

results can be obtained for differentiation if all three operations are

performed iIn order.
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