

QC
879.5
.U45
no.91
c.2

NOAA Technical Report NESS 91

Numerical Smoothing and Differentiation by Finite Differences

Washington, D.C.

May 1982

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Earth Satellite Service

NOAA TECHNICAL REPORTS

National Earth Satellite Service Series

The National Earth Satellite Service (NESS) is responsible for the establishment and operation of the environmental satellite systems of NOAA.

Publication of a report in NOAA Technical Report NESS series will not preclude later publication in an expanded or modified form in scientific journals. NESS series of NOAA Technical Reports is a continuation of, and retains the consecutive numbering sequence of, the former series, ESSA Technical Report National Environmental Satellite Center (NESC), and of the earlier series, Weather Bureau Meteorological Satellite Laboratory (MSL) Report. Reports 1 through 39 are listed in publication NESC 56 of this series.

Reports in the series are available from the National Technical Information Service (NTIS), U.S. Department of Commerce, Sills Bldg., 5285 Port Royal Road, Springfield, VA 22161, in paper copy or microfiche form. Order by accession number, when given, in parentheses. Beginning with 64, printed copies of the reports, if available, can be ordered through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Prices given on request from the Superintendent of Documents or NTIS.

ESSA Technical Reports

NESC 46 Monthly and Seasonal Mean Global Charts of Brightness From ESSA 3 and ESSA 5 Digitized Pictures, February 1967-February 1968. V. Ray Taylor and Jay S. Winston, November 1968, 9 pp. plus 17 charts. (PB-180-717)

NESC 47 A Polynomial Representation of Carbon Dioxide and Water Vapor Transmission. William L. Smith, February 1969 (reprinted April 1971), 20 pp. (PB-183-296)

NESC 48 Statistical Estimation of the Atmosphere's Geopotential Height Distribution From Satellite Radiation Measurements. William L. Smith, February 1969, 29 pp. (PB-183-297)

NESC 49 Synoptic/Dynamic Diagnosis of a Developing Low-Level Cyclone and Its Satellite-Viewed Cloud Patterns. Harold J. Brodrick and E. Paul McClain, May 1969, 26 pp. (PB-184-612)

NESC 50 Estimating Maximum Wind Speed of Tropical Storms From High Resolution Infrared Data. L. F. Hubert, A. Timchalk, and S. Fritz, May 1969, 33 pp. (PB-184-611)

NESC 51 Application of Meteorological Satellite Data in Analysis and Forecasting. Ralph K. Anderson, Jerome P. Ashman, Fred Bittner, Golden R. Farr, Edward W. Ferguson, Vincent J. Oliver, Arthur H. Smith, James F. W. Purdom, and Rance W. Skidmore, March 1974 (reprint and revision of NESC 51, September 1969, and inclusion of Supplement, November 1971, and Supplement 2, March 1973), pp. 1-6C-18 plus references.

NESC 52 Data Reduction Processes for Spinning Flat-Plate Satellite-Borne Radiometers. Torrence H. MacDonald, July 1970, 37 pp. (COM-71-00132)

NESC 53 Archiving and Climatological Applications of Meteorological Satellite Data. John A. Leese, Arthur L. Booth, and Frederick A. Godshall, July 1970, pp. 1-1-5-8 plus references and appendices A through D. (COM-71-00076)

NESC 54 Estimating Cloud Amount and Height From Satellite Infrared Radiation Data. P. Krishna Rao, July 1970, 11 pp. (PB-194-685)

NESC 56 Time-Longitude Sections of Tropical Cloudiness (December 1966-November 1967). J. M. Wallace, July 1970, 37 pp. (COM-71-00131)

NOAA Technical Reports

NESS 55 The Use of Satellite-Observed Cloud Patterns in Northern Hemisphere 500-mb Numerical Analysis. Roland E. Nagle and Christopher M. Hayden, April 1971, 25 pp. plus appendixes A, B, and C. (COM-73-50262)

NESS 57 Table of Scattering Function of Infrared Radiation for Water Clouds. Giichi Yamamoto, Masayuki Tanaka, and Shoji Asano, April 1971, 8 pp. plus tables. (COM-71-50312)

NESS 58 The Airborne ITPR Brassboard Experiment. W. L. Smith, D. T. Hilleary, E. C. Baldwin, W. Jacob, H. Jacobowitz, G. Nelson, S. Soules, and D. Q. Wark, March 1972, 74 pp. (COM-72-10557)

NESS 59 Temperature Sounding From Satellites. S. Fritz, D. Q. Wark, H. E. Fleming, W. L. Smith, H. Jacobowitz, D. T. Hilleary, and J. C. Alishouse, July 1972, 49 pp. (COM-72-50963)

NESS 60 Satellite Measurements of Aerosol Backscattered Radiation From the Nimbus F Earth Radiation Budget Experiment. H. Jacobowitz, W. L. Smith, and A. J. Drummond, August 1972, 9 pp. (COM-72-51031)

(Continued on inside back cover)

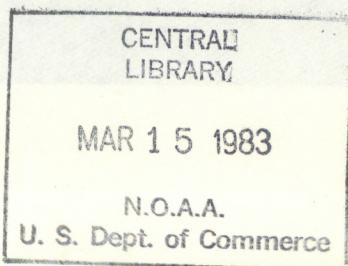
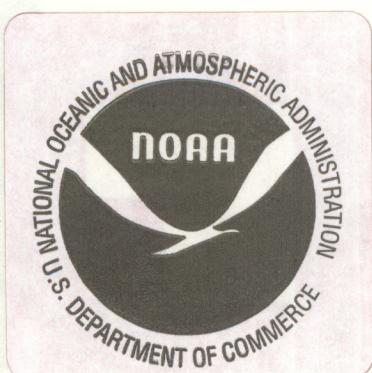
H
QC
8795
U45
no. 91
c. 2

NOAA Technical Report NESS 91

Numerical Smoothing and Differentiation by Finite Differences

Henry E. Fleming and Lawrence J. Crone

Washington, D.C.
May 1982



U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Oceanic and Atmospheric Administration
John V. Byrne, Administrator

National Earth Satellite Service
John H. McElroy, Assistant Administrator

CONTENTS

	PAGE
Abstract	1
1. Introduction	2
2. Preliminaries	3
3. Principal Results	8
4. Additional Results	16
5. Results Near Boundaries	17
6. The Smoothing Procedure	21
7. The Differentiation Procedure	23
8. Conclusions	24

NUMERICAL SMOOTHING AND DIFFERENTIATION

BY FINITE DIFFERENCES

Henry E. Fleming and Lawrence J. Crone

Office of Research
National Earth Satellite Service, NOAA
Washington, D.C. 20233

ABSTRACT. General formulae are derived for digital polynomial smoothing and digital polynomial differentiation of data observed at equal abscissa spacings. The operations are performed by a moving fit of polynomials to small overlapping subsets of the data. Results are also derived for the special situation in which the moving fit approaches the boundary of the data set. Brief discussions indicate how the formulae are applied in practical situations and include a description of an error detection and correction technique which is very closely related to smoothing.

1. Introduction. The purpose of this paper is to present the theoretical results arising in the solution to the problems of digital polynomial smoothing and digital polynomial differentiation of observed (hence, noisy) data with equally spaced argument values. The method of smoothing is a simple moving fit of polynomials of a fixed, but arbitrary, degree to the data. At each step, the polynomial is fitted to a limited subset of consecutive data points, whose size is related to the degree of the polynomial. Furthermore, the moving fit is used to evaluate the polynomial at only the central point of the subset at each step. Smoothing is accomplished by replacing the original datum at the current central position by the polynomial value.

The results for polynomial smoothing extend in a natural way to the derivatives of the fitted polynomials, thereby yielding a method for the numerical differentiation of the data. Differentiation is accomplished in the same manner as smoothing in that again a moving fit is applied to subsets of consecutive data points and the fit is used to evaluate the derivative of the polynomial at the central point of the subset of data at each step. The polynomial derivative is then taken to be the derivative of the subset of data points at the central point of the subset. Again, the size of the subsets and the degree of the fitted polynomials are related.

There is an exception to the use of only the central point of each subset of data. When points near the boundaries of the full data set are encountered, results for both smoothing and differentiation must be extended to additional points at and near the boundaries in those subsets.

The advantages of digital polynomial smoothing and differentiation for data having equidistant arguments are that the formulae are independent of the specific data set to which they are applied, and the formulae use

only finite differences of the data and, hence, are computationally efficient. In fact the coefficients of the finite differences are strictly rational numbers and so only integer arithmetic is involved.

While it is clear that the smoothing and differentiation operators are both linear filters, this paper will not develop that approach. Furthermore, this paper is limited to the derivation of the basic formulae and brief discussions of their application. Background and details on the smoothing and differentiation procedures and their practical implementation will be given in a series of three papers by Fleming and Hill, [1], [2], and [3]. Specific examples and extensions to higher dimensions also will be reserved for those papers.

2. Preliminaries. In practice, the numerical smoothing and differentiation procedures are applied to the entire data set by a moving fit, but for our purposes it is sufficient to restrict our results to a typical subset S of data referred to in Section 1. We require S to contain $2n+1$ data points y_i and we may assume without loss of generality that the equally spaced abscissae have unit spacing at integer values. In fact, there is also no loss in generality if for simplicity we choose the integer values to be fixed and centered on zero, that is,

$$(1) \quad S = \{y_i = y(i) : i = -n, \dots, 0, \dots, n\}$$

At the heart of this paper is the following problem.

PROBLEM 1. Fit the polynomial

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{2n-2} x^{2n-2}$$

by least squares to the set S , that is, minimize the sum

$$\sum_{i=-n}^n [P(i) - y_i]^2$$

to find explicit expressions for c_0 and c_1 in terms of the elements of S .

Since $P(0) = c_0$ and $P'(0) = c_1$, the basic devices for smoothing and differentiating in terms of S will have been established by the solution to this problem.

Before going into the solution, we state some definitions and two well-known properties from combinatorial analysis that are needed in the sequel. The notation for the binomial coefficients is given the following expanded definition for non-negative integers i and n :

$$(2) \quad \binom{n}{i} = \begin{cases} \frac{n!}{i!(n-i)!} & \text{for } 0 \leq i \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

It also will be useful to remember that $\binom{n}{i} = \binom{n}{n-i}$. Forward differences for the set S of (1) are defined as follows:

$$(3) \quad (-1)^n \Delta^{2n-1} y_0 = \sum_{i=-n}^{n-1} (-1)^i \binom{2n-1}{n+i} y_i$$

and

$$(4) \quad (-1)^n \Delta^{2n-1} y_1 = \sum_{i=-n}^{n-1} (-1)^i \binom{2n-1}{n+i} y_{i+1}$$

are the differences of order $2n-1$ for the points y_0 and y_1 , respectively, of S , while

$$(5) \quad (-1)^n \Delta^{2n} y_0 = \sum_{i=-n}^n (-1)^i \binom{2n}{n+i} y_i$$

is the 2nth difference of y_0 . It follows from these three definitions that

$$(6) \quad \Delta^{2n} y_0 = \Delta^{2n-1} y_0 - \Delta^{2n-1} y_1.$$

For non-negative integers i, k, m , and n , the two combinatorial properties are

$$(7) \quad \sum_{i=0}^k \binom{m}{i} \binom{n}{k-i} = \binom{m+n}{k}$$

for $k \leq m+n$, and

$$(8) \quad \sum_{i=-n}^n (-1)^i \binom{2n}{n+i} (x+i)^m = 0$$

for $m < 2n$ and arbitrary x . Identity (7) follows from a comparison of the coefficients of the term x^k on both sides of the identity $(1+x)^m (1+x)^n = (1+x)^{m+n}$, while (8) is just an expression of the well-known fact that the finite difference of order n of a polynomial of degree less than n is zero.

For a proof to follow, we also will need to know explicitly the first two rows of the inverse of the square matrix \mathbf{B} , which is of the form

$$(9) \quad \mathbf{B} = [b_{ij} = i^j : i = -n, \dots, n; j=0, 1, \dots, 2n].$$

The details are given in the following lemma.

LEMMA 1. Given the unit basis vectors of dimension $2n+1$, $\mathbf{e}_1 = \underline{[1, 0, 0, \dots, 0]}^T$ and $\mathbf{e}_2 = \underline{[0, 1, 0, \dots, 0]}^T$, and the matrix \mathbf{B} of (9), there exist unique vectors \mathbf{v}_1 and \mathbf{v}_2 of dimension $2n+1$ with the property

$$(10) \quad \mathbf{B}^T \mathbf{v}_\ell = \mathbf{e}_\ell, \quad \ell = 1, 2.$$

In fact, \mathbf{v}_1 and \mathbf{v}_2 are given by

$$(11) \quad \mathbf{v}_{1i} = \begin{cases} 1, & i=0, \\ 0, & i=\pm 1, \dots, \pm n, \end{cases}$$

and

$$(12) \quad \mathbf{v}_{2i} = (-1)^{i+1} i \sum_{k=|i|}^n \frac{(k-1)!(k-1)!}{(k-i)!(k+i)!}$$

Proof. The validity of (10) for $l=1$ is established by inspection.

The proof for $l=2$ is by induction. For $n=1$, (9) and (12) applied to (10) become

$$\sum_{i=-1}^1 v_{2i} b_{ij} = \frac{1}{2} [-(-1)^j + (1)^j] = \delta_{1j}, \quad j=0, 1, 2,$$

where δ_{ij} is the Kronecker delta.

Now assume that the Lemma holds for n , that is,

$$(13) \quad \delta_{1j} = \sum_{i=-n}^n (-1)^{i+1} i \sum_{k=|i|}^n \frac{(k-1)!(k-1)!}{(k-i)!(k+i)!} i^j$$

$$= \sum_{k=1}^n \frac{[(k-1)!]^2}{(2k)!} \sum_{i=-k}^k (-1)^{i+1} \binom{2k}{k+i} i^{j+1}$$

Hence, to prove the Lemma for $n+1$, we must show that

$$(14) \quad \sum_{k=1}^{n+1} \frac{[(k-1)!]^2}{(2k)!} \sum_{i=-k}^k (-1)^{i+1} \binom{2k}{k+i} i^{j+1} = \delta_{1j}.$$

Notice first that the sum over i in (14) is zero whenever $j+1 < 2k$ by virtue of property (8). Therefore, the term with $k = n+1$ in the first sum in (14) is zero for $j = 0, 1, \dots, 2n$, and so (14) reduces to (13) and is satisfied by the induction hypothesis. This leaves only the cases

$j = 2n+1$ and $2n+2$ to be proved, but the sum over i in (14) vanishes for any even value of j because the terms having indices i and $-i$ cancel. Thus, there remains only the case $j = 2n+1$, that is, we must show that

$$(15) \quad \sum_{k=1}^{n+1} \frac{[(k-1)!]^2}{(2k)!} \sum_{i=-k}^k (-1)^{i+1} \binom{2k}{k+i} i^{2n+2} = 0.$$

Let

$$(16) \quad c_{k,n} = \frac{[(k-1)!]^2}{(2k)!} \sum_{i=-k}^k (-1)^{i+1} \binom{2k}{k+i} i^{2n}$$

for $k \leq n+1$. We verify that

$$(17) \quad c_{k,n+1} = k^2 c_{k,n} - (k-1)^2 c_{k-1,n}.$$

Definition (16) yields

$$\begin{aligned} & k^2 c_{k,n} - (k-1)^2 c_{k-1,n} \\ &= \frac{[(k-1)!]^2}{(2k)!} \left\{ k^2 \sum_{i=-k}^k (-1)^{i+1} \binom{2k}{k+i} i^{2n} - (2k)(2k-1) \sum_{i=-k}^k (-1)^{i+1} \binom{2k-2}{k+i-1} i^{2n} \right\} \\ &= \frac{[(k-1)!]^2}{(2k)!} \left\{ [k^2 - (k+i)(k-i)] \sum_{i=-k}^k (-1)^{i+1} \binom{2k}{k+i} i^{2n} \right\} \\ &= c_{k,n+1} \end{aligned}$$

where the second half of definition (2) was used in the second sum of the first line.

Applying (16) and (17) to (15), we have

$$\begin{aligned}
 \sum_{k=1}^{n+1} c_{k,n+1} &= \sum_{k=1}^{n+1} \left[k^2 c_{k,n} - (k-1)^2 c_{k-1,n} \right] \\
 &= (n+1)^2 c_{n+1,n} + \sum_{k=1}^n k^2 c_{k,n} - \sum_{k=1}^n k^2 c_{k,n} - 0^2 c_{0,n} \\
 &= (n+1)^2 c_{n+1,n}.
 \end{aligned}$$

However, $c_{n+1,n}$ is zero because the sum in (16) is the finite difference of order $2n+2$ of a polynomial whose degree is less than $2n+2$. Therefore, the double sum in (15) is indeed zero.

Finally, the uniqueness of vectors \mathbf{v}_1 and \mathbf{v}_2 follows from the existence of the inverse of the matrix \mathbf{B} . \square

3. Principal Results. We now derive the solutions to Problem 1.

THEOREM 1. If a polynomial of degree $2n-2$ is fitted to the data set S of (1) by least squares, then there exists a rational number θ_n such that the constant term c_0 of the polynomial has the form

$$(18) \quad c_0 = y_0 - \theta_n (-1)^n \Delta^{2n} y_0,$$

where

$$(19) \quad \theta_n = \binom{2n}{n} / \binom{4n}{2n} = \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2n+2i-1)}.$$

Furthermore, the second term in the polynomial is given by

$$(20) \quad c_1 = \sum_{k=1}^n \frac{(-1)^k}{k} \binom{2k}{k}^{-1} \left[2\Delta^{2k-1} y_0 - \Delta^{2k} y_0 \right] - \alpha_{2n-2} (-1)^n \left[2\Delta^{2n-1} y_0 - \Delta^{2n} y_0 \right],$$

where

$$\alpha_{2n-2} = \binom{4n-2}{2n-1}^{-1} \sum_{k=1}^n \frac{2n}{k(n+k)} \binom{2k}{k}^{-1} \binom{2n+2k-2}{n+k-1}.$$

Proof. Define the matrix $\mathbf{A} = [\mathbf{a}_{ij}]$ where $\mathbf{a}_{ij} = i^j$ for $i = -n, \dots, n$ and $j = 0, 1, \dots, 2n-2$, the vector of coefficients of the polynomial by $\mathbf{c} = [c_j]$ for $j = 0, 1, \dots, 2n-2$, and the vector of data points of the set S in (1) by $\mathbf{y} = [y_i]$ for $i = -n, \dots, n$. Then the coefficients are determined by the solution to the system of normal equations

$$(21) \quad \mathbf{A}^T \mathbf{A} \mathbf{c} = \mathbf{A}^T \mathbf{y}.$$

Since we wish to determine only the pair of coefficients c_0 and c_1 , we need only to find vectors \mathbf{u}_1 and \mathbf{u}_2 of dimension $2n-1$ satisfying

$$(22) \quad \mathbf{u}_\ell^T \mathbf{A}^T \mathbf{A} = \mathbf{e}_\ell^T$$

for $\ell = 1, 2$, where $\mathbf{e}_1 = [1, 0, 0, \dots, 0]^T$ and $\mathbf{e}_2 = [0, 1, 0, \dots, 0]^T$ are the unit basis vectors of dimension $2n-1$. It follows from (21) that

$$(23) \quad c_{\ell-1} = \mathbf{u}_\ell^T \mathbf{A}^T \mathbf{y}$$

for $\ell = 1, 2$.

Finding the unique vectors \mathbf{u}_ℓ is by (22) tantamount to finding the first two rows of the inverse of $\mathbf{A}^T \mathbf{A}$ for general n . How to do this by direct mean is not at all obvious. Instead, we seek any pair of vectors \mathbf{v}_1 and \mathbf{v}_2 of dimension $2n+1$ for which

$$(24) \quad \mathbf{A}^T \mathbf{v}_\ell = \mathbf{e}_\ell,$$

for $\ell = 1, 2$. Lemma 1 provides us with just such a pair of vectors.

Now if \mathbf{y}_ℓ were $\mathbf{A}\mathbf{u}_\ell$, we could use \mathbf{y}_ℓ to find $\mathbf{c}_{\ell-1}$ via (23). This is not the case, but we can use \mathbf{y}_ℓ to find \mathbf{u}_ℓ . It has the form

$$(25) \quad \mathbf{u}_\ell = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}_\ell,$$

since by (24)

$$\mathbf{A}^T \mathbf{A} \mathbf{u}_\ell = \mathbf{A}^T \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}_\ell = \mathbf{e}_\ell,$$

thereby satisfying (22). Thus, all we need to know to calculate $\mathbf{c}_{\ell-1}$ by (23) is the vector $\mathbf{A}\mathbf{u}_\ell$, which by (25) is

$$(26) \quad \mathbf{A}\mathbf{u}_\ell = \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}_\ell.$$

Fortunately, the inverse matrix in (26) can be avoided because $\mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}$ is the projection operator on the linear manifold of a $(2n+1)$ -dimensional Euclidean space \mathbb{R}_{2n+1} spanned by the $2n+1$ linearly independent columns of \mathbf{A} . Hence, the orthogonal complement of this linear manifold is a linear manifold of \mathbb{R}_{2n+1} spanned by two linearly independent vectors orthogonal to each of the columns of \mathbf{A} . Convenient choices for this pair of vectors are the vector of coefficients of the finite difference operator of order $2n$, namely

$$(27) \quad \mathbf{w}_1 = \left[\mathbf{w}_{1i} = (-1)^i \binom{2n}{n+i} : i = -n, \dots, n \right],$$

and a linear combination of vectors of coefficients of the finite difference operator of order $2n-1$, that is,

$$(28) \quad \mathbf{w}_2 = \left[\mathbf{w}_{2i} = (-1)^i \left\{ \binom{2n-1}{n+i} - \binom{2n-1}{n+i-1} \right\} = (-1)^{i+1} \frac{i}{n} \binom{2n}{n+i} : i = -n, \dots, n \right].$$

These vectors are orthogonal to the columns of \tilde{A} because the inner products of \tilde{w}_1 and \tilde{w}_2 with the columns of \tilde{A} yield, respectively, the $2n$ th and $2n-1$ st differences of i^j , which are zero for $j = 0, 1, \dots, 2n-2$ by (8). In addition, the elements of \tilde{w}_1 possess the symmetry property $w_{li} = w_{1,-i}$, while the elements of \tilde{w}_2 were specifically chosen to have the anti-symmetry property $w_{2,-i} = -w_{2i}$ so that \tilde{w}_1 and \tilde{w}_2 are guaranteed to be orthogonal to each other as well.

Since \tilde{w}_1 and \tilde{w}_2 span the orthogonal complement of the space spanned by the columns of \tilde{A} , we can write the projection operator in terms of the projection on the orthogonal complement, namely

$$(29) \quad \tilde{A}(\tilde{A}^T \tilde{A})^{-1} \tilde{A}^T = \tilde{I} - \frac{\tilde{w}_1 \tilde{w}_1^T}{\|\tilde{w}_1\|^2} - \frac{\tilde{w}_2 \tilde{w}_2^T}{\|\tilde{w}_2\|^2},$$

where \tilde{I} is the identity matrix.

The formal solution to our problem is now in hand. Apply (29) to (26), and in turn apply that result to (23) to obtain the following representations for coefficients c_0 and c_1 :

$$(30) \quad c_{\ell-1} = \tilde{w}_{\ell \tilde{Y}}^T - \frac{(\tilde{w}_{\ell \tilde{Y}}^T)(\tilde{w}_1^T \tilde{Y})}{\|\tilde{w}_1\|^2} - \frac{(\tilde{w}_{\ell \tilde{Y}}^T)(\tilde{w}_2^T \tilde{Y})}{\|\tilde{w}_2\|^2}$$

for $\ell = 1, 2$.

To make (30) explicit, we first evaluate the normed quantities the denominators. By (27), (28), and repeated use of (2) and (7),

$$(31) \quad \tilde{w}_1^T \tilde{w}_1 = \sum_{i=-n}^n \binom{2n}{n+i} \binom{2n}{n+i} = \sum_{j=0}^{2n} \binom{2n}{j} \binom{2n}{2n-j} = \binom{4n}{2n},$$

and

$$\begin{aligned}
 (32) \quad \mathbf{w}_2^T \mathbf{w}_2 &= \sum_{i=-n}^n \left[\binom{2n-1}{n+i} - \binom{2n-1}{n+i-1} \right] \left[\binom{2n-1}{n-i-1} - \binom{2n-1}{n-i} \right] \\
 &= \sum_{k=0}^{2n-1} \binom{2n-1}{k} \binom{2n-1}{2n-1-k} - \sum_{k=0}^{2n} \binom{2n-1}{2n-k} \binom{2n-1}{k} \\
 &\quad - \sum_{k=0}^{2n-2} \binom{2n-1}{k} \binom{2n-1}{2n-2-k} + \sum_{k=0}^{2n-1} \binom{2n-1}{2n-1-k} \binom{2n-1}{k} \\
 &= \binom{4n-2}{2n-1} - \binom{4n-2}{2n} - \binom{4n-2}{2n-2} + \binom{4n-2}{2n-1} \\
 &= 2 \left[\binom{4n-2}{2n-1} - \binom{4n-2}{2n} \right] = \frac{1}{n} \binom{4n-2}{2n-1}.
 \end{aligned}$$

In addition, we will need the scalar $\mathbf{y}_2^T \mathbf{w}_2$. For this we write v_{2i} of (12) in the equivalent form

$$(33) \quad v_{2i} = (-1)^i \sum_{k=|i|}^n \frac{1}{k} \binom{2k}{k}^{-1} \left[\binom{2k-1}{k+i} - \binom{2k-1}{k-1+i} \right],$$

so that again by the repeated use of (2) and (7),

$$\begin{aligned}
 (34) \quad \mathbf{y}_2^T \mathbf{w}_2 &= \sum_{i=-n}^n \left[\binom{2n-1}{n+i} - \binom{2n-1}{n+i-1} \right] \sum_{k=|i|}^n \frac{1}{k} \binom{2k}{k}^{-1} \left[\binom{2k-1}{k+i} - \binom{2k-1}{k-1+i} \right] \\
 &= \sum_{k=1}^n \frac{1}{k} \binom{2k}{k}^{-1} \sum_{i=-k}^k \left[\binom{2n-1}{n+i} - \binom{2n-1}{n-1+i} \right] \left[\binom{2k-1}{k-1-i} - \binom{2k-1}{k-i} \right]
 \end{aligned}$$

$$= \sum_{k=1}^n \frac{1}{k} \binom{2k}{k}^{-1} \left[\sum_{j=0}^{n+k-1} \binom{2n-1}{n+k-1-j} \binom{2k-1}{j} - \sum_{j=0}^{n+k} \binom{2n-1}{n+k-j} \binom{2k-1}{j} \right]$$

$$- \sum_{j=0}^{n+k-2} \binom{2n-1}{n+k-2-j} \binom{2k-1}{j} + \sum_{j=0}^{n+k-1} \binom{2n-1}{n+k-1-j} \binom{2k-1}{j} \right]$$

$$= \sum_{k=1}^n \frac{1}{k} \binom{2k}{k}^{-1} \left[\binom{2n+2k-2}{n+k-1} - \binom{2n+2k-2}{n+k} - \binom{2n+2k-2}{n+k-2} + \binom{2n+2k-2}{n+k-1} \right]$$

$$= \sum_{k=1}^n \frac{2}{k} \binom{2k}{k}^{-1} \left[\binom{2n+2k-2}{n+k-1} - \binom{2n+2k-2}{n+k} \right]$$

$$= \sum_{k=1}^n \frac{2}{k(n+k)} \binom{2k}{k}^{-1} \binom{2n+2k-2}{n+k-1}.$$

Next, we note that since the elements of \underline{y}_1 and \underline{w}_1 are arranged symmetrically about the center element and those of \underline{y}_2 and \underline{w}_2 are arranged anti-symmetrically, it follows that $\underline{y}_1^T \underline{w}_2 = 0$ and $\underline{y}_2^T \underline{w}_1 = 0$. Also, by (11) and (27), $\underline{y}_1^T \underline{w}_1 = \binom{2n}{n}$. Finally, by (1), (11), (33), (37), (28), (31), (34), and the foregoing, we may write (30) as follows:

$$c_0 = y_0 - \binom{2n}{n} \binom{4n}{2n}^{-1} \sum_{i=-n}^n (-1)^i \binom{2n}{n+i} y_i,$$

which by (5) yields (18) and (19), and

$$(35) \quad c_1 = \sum_{i=-n}^n (-1)^i \sum_{k=|i|}^n \frac{1}{k} \binom{2k}{k}^{-1} \left[\binom{2k-1}{k+i} - \binom{2k-1}{k-1+i} \right] y_i$$

$$- \binom{4n-2}{2n-1}^{-1} \left[\sum_{k=1}^n \frac{2n}{k(n+k)} \binom{2k}{k}^{-1} \binom{2n+2k-2}{n+k-1} \right] \sum_{i=-n}^n (-1)^i \left[\binom{2n-1}{n+i} - \binom{2n-1}{n+i-1} \right] y_i$$

$$\begin{aligned}
 &= \sum_{k=1}^n \frac{1}{k} \binom{2k}{k}^{-1} \left[\sum_{i=-k}^{k-1} (-1)^i \binom{2k-1}{k+i} y_i + \sum_{i=-k}^{k-1} (-1)^i \binom{2k-1}{k+i} y_{i+1} \right] \\
 &\quad - \binom{4n-2}{2n-1}^{-1} \left[\sum_{k=1}^n \frac{2n}{k(n+k)} \binom{2k}{k}^{-1} \binom{2n+2k-2}{n+k-1} \right] \left[\sum_{i=-n}^{n-1} (-1)^i \binom{2n-1}{n+i} (y_i + y_{i+1}) \right],
 \end{aligned}$$

which by (3), (4), and (6) is (20). The identity in (19) follows from the relationship

$$\begin{aligned}
 (36) \quad \binom{2n}{n} \binom{4n}{2n}^{-1} &= \frac{(2n)! (2n)! (2n)!}{n! n! (4n)!} \\
 &= \frac{2^n n! [(2n-1)(2n-3)\dots 1]}{n!} \times \frac{[2n(2n-1)\dots (n+1)]n!}{n!} \\
 &\quad \times \frac{(2n)!}{2^n [2n(2n-1)\dots (n+1)][(4n-1)(4n-3)\dots (2n+1)](2n)!} \cdot \square
 \end{aligned}$$

The machinery developed in the proof of Theorem 1 can be used to advantage in developing results analogous to those in Theorem 1 for polynomials of degree $2n-1$.

COROLLARY 1. If the degree of the polynomial in Theorem 1 is raised from $2n-2$ to $2n-1$, all the results of that theorem remain valid,
with the exception that $\alpha_{2n-1} \equiv 0$ replaces α_{2n-2} in (20), that is,

$$(37) \quad c_1 = \sum_{k=1}^n \frac{(-1)^k}{k} \binom{2k}{k}^{-1} \left[2\Delta^{2k-1} y_0 - \Delta^{2k} y_0 \right].$$

Proof. Use the proof of Theorem 1, but with the range of the index j increased from $2n-2$ to $2n-1$, that is, $j = 0, 1, \dots, 2n-1$ in the definition of \mathbf{A} , \mathbf{C} , \mathbf{E}_ℓ and \mathbf{U}_ℓ . The proof goes through as before,

except that now $\tilde{A}(\tilde{A}^T \tilde{A})^{-1} \tilde{A}^T$ is the projection operator on the linear manifold of R_{2n+1} spanned by $2n$ linearly independent columns of \tilde{A} . Consequently, the orthogonal complement of this linear manifold is spanned by a single vector orthogonal to each of the columns of \tilde{A} . That vector is \tilde{w}_1 of (27). In other words, (29) becomes

$$(38) \quad \tilde{A}(\tilde{A}^T \tilde{A})^{-1} \tilde{A}^T = \tilde{I} - \frac{\tilde{w}_1 \tilde{w}_1^T}{\|\tilde{w}_1\|^2},$$

and so (30) reduces to

$$(39) \quad c_{\ell-1} = \tilde{v}_{\ell \tilde{A}}^T - \frac{\tilde{x}_{\ell \tilde{A}}^T \tilde{w}_1 \tilde{w}_1^T \tilde{v}_{\ell \tilde{A}}^T}{\|\tilde{w}_1\|^2}$$

for $\ell = 1, 2$.

For the case $\ell=1$, (39) and (30) are identical because $\tilde{v}_1^T \tilde{w}_2 = 0$ in (30). Hence, the remainder of the proof is identical to that given for Theorem 1. On the other hand, for the case $\ell=2$, $\tilde{v}_2^T \tilde{w}_1 = 0$ in (39), so that $c_1 = \tilde{v}_2^T \tilde{y}$, which is the first double sum in (35) in the proof of Theorem 1, which in turn is (37). \square

COROLLARY 2. If the degree of the polynomial in Theorem 1 is raised from $2n-2$ to $2n$, then the constant term of the polynomial has the trivial relationship $c_0 = y_0$, but the second coefficient c_1 is identical to (37) of Corollary 1.

Proof. In this case the matrix \tilde{A} in the proof of Theorem 1 is \tilde{B} of (9), and so by Lemma 1 we have that

$$c_{\ell-1} = \tilde{v}_{\ell \tilde{A}}^T$$

for $\ell = 1, 2$. The results follow from (11), (33), and the first double sum in (35). \square

4. Additional Results. Two known results are presented for completeness and for consistency with our previous results and notation.

THEOREM 2. If a polynomial $P(x)$ of degree $2n-1$ is fitted exactly to the data set S of (1) with the point y_0 deleted (i.e., the set $S - \{y_0\}$), then the constant term of the polynomial is

$$(40) \quad c_0 = y_0 - \binom{2n}{n}^{-1} (-1)^n \Delta^{2n} y_0.$$

Proof. By hypothesis $y_i = P(i)$ for $i = -n, \dots, -1, 1, \dots, n$. Since it is not necessarily true that $y_0 = P(0)$, let $\delta = P(0) - y_0 = c_0 - y_0$. Then by (5) and (8)

$$\begin{aligned} (-1)^n \Delta^{2n} y_0 &= \sum_{i=-n}^n (-1)^i \binom{2n}{n+i} y_i = \sum_{i=-n}^n (-1)^i \binom{2n}{n+i} P(i) - \binom{2n}{n} \delta \\ &= 0 - \binom{2n}{n} \delta, \end{aligned}$$

which yields (40), since $\delta = c_0 - y_0$. \square

Theorem 2 states that the distance between the point y_0 of S and the polynomial of degree $2n-1$ that interpolates the $2n$ neighbors of y_0 is $\binom{2n}{n}^{-1} (-1)^n \Delta^{2n} y_0$.

Theorem 3. If each point of the extended set of data points $T = \{y_i = y(i): i = -2n, \dots, 2n\}$ lies on a polynomial $P(x)$ of degree $2n-1$, except the point y_0 which lies a distance δ away from the polynomial, then the sum

$$(41) \quad \sum_{k=-n}^n \Delta^{2n} y_k = 0,$$

where $\Delta^{2n} y_k$, defined by

$$(42) \quad (-1)^n \Delta^{2n} y_k = \sum_{i=-n}^n (-1)^i \binom{2n}{n+i} y_{i+k},$$

is the 2nth forward difference of the point in S of (1). Furthermore, the maximum of the absolute values of these $2n+1$ differences of the set S in T is $\Delta^{2n} y_0$.

Proof. By hypothesis $y_i = P(i)$ for $i = -2n, \dots, -1, 1, \dots, 2n$ and $y_0 = P(0) - \delta$. Therefore, by (42) and (8)

$$(43) \quad (-1)^n \Delta^{2n} y_k = \sum_{i=-n}^n (-1)^i \binom{2n}{n+i} P(i+k) - (-1)^k \binom{2n}{n-k} \delta = (-1)^{k+1} \binom{2n}{n+k} \delta,$$

and so the sum

$$\sum_{k=-n}^n \Delta^{2n} y_k = \delta \sum_{k=-n}^n (-1)^{n+k+1} \binom{2n}{n+k} = 0$$

by (8). In addition, for $k = -n, \dots, -1, 1, \dots, n$,

$$(44) \quad |\Delta^{2n} y_k| = \binom{2n}{n+k} |\delta| < \binom{2n}{n} |\delta| = |\Delta^{2n} y_0|,$$

by (43) and (40). \square

5. Results Near Boundaries. When the moving polynomial-fit procedure for both smoothing and differentiation approaches a boundary of the full data set, the procedure breaks down because the central point of the subset S of (1) no longer has its full complement of $2n$ neighboring

points. The solution to this difficulty is to start and stop the moving fit $n+1$ points away from the boundary, and then simply use the resulting values $P(i)$ of the fitted polynomial for $i = -n, \dots, -1$, at the beginning of the data stream and for $i = 1, \dots, n$ at the end. The necessary details are now provided.

THEOREM 4. If the polynomial $P(x)$ of degree $2n-2$ is fitted to the data set S of (1) by least squares, the polynomial values for $i = -n, \dots, n$ are given by

$$(45) \quad P(i) = y_i - (-1)^{n+i} \binom{2n}{n+i} \left\{ \binom{4n}{2n}^{-1} \Delta^{2n} y_0 - i \binom{4n-2}{2n-1}^{-1} \left[2\Delta^{2n-1} y_0 - \Delta^{2n} y_0 \right] \right\}.$$

Proof. Define the matrix \mathbf{A} and vectors \mathbf{c} and \mathbf{y} as in the proof of Theorem 1, then it follows that the vector of polynomial values

$$(46) \quad \mathbf{p} = [\mathbf{p}_i = P(i): i = -n, \dots, n]$$

can be written

$$(47) \quad \mathbf{p} = \mathbf{A} \mathbf{c}$$

Furthermore, the system of normal equations (21) can be written

$$\mathbf{c} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y};$$

therefore,

$$(48) \quad \mathbf{p} - \mathbf{y} = \mathbf{A} \mathbf{c} - \mathbf{y} \\ = [\mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T - \mathbf{I}] \mathbf{y}.$$

Now follow the proof of Theorem 1 from (21) through (29). Applying (29) to (48), we have

$$\frac{\mathbf{p} - \mathbf{y}}{\|\mathbf{w}_1\|^2} = - \frac{(\mathbf{w}_1^T \mathbf{y}) \mathbf{w}_1}{\|\mathbf{w}_1\|^2} - \frac{(\mathbf{w}_2^T \mathbf{y}) \mathbf{w}_2}{\|\mathbf{w}_2\|^2}.$$

By (27), (28), (31) and (32), the elements of these vectors can be written

$$(49) \quad \begin{aligned} \mathbf{p}(i) = \mathbf{y}_i - \binom{4n}{2n}^{-1} \left[\sum_{k=-n}^n (-1)^k \binom{2n}{n+k} \mathbf{y}_k \right] (-1)^i \binom{2n}{n+i} \\ - n \binom{4n-2}{2n-1}^{-1} \left\{ \sum_{k=-n}^n (-1)^k \left[\binom{2n-1}{n+k} - \binom{2n-1}{n+k-1} \right] \mathbf{y}_k \right\} (-1)^{i+1} \frac{i}{n} \binom{2n}{n+i}, \end{aligned}$$

from which (45) results after applying (3), (4), (5) and (6). \square

Note that for $i=0$, (45) becomes (18).

COROLLARY 3. If a polynomial $P(x)$ of degree $2n-1$ is fitted to the data set S by least squares, the polynomial values for $i = -n, \dots, n$ are given by

$$(50) \quad \mathbf{p}(i) = \mathbf{y}_i - (-1)^{n+i} \binom{2n}{n+i} \binom{4n}{2n}^{-1} \Delta^{2n} \mathbf{y}_0.$$

Proof. Using the proof of Theorem 4 and the supporting arguments of Corollary 1 related to the increase in dimension, we can apply (38) to (48) and obtain

$$\frac{\mathbf{p} - \mathbf{y}}{\|\mathbf{w}_1\|^2} = - \frac{(\mathbf{w}_1^T \mathbf{y}) \mathbf{w}_1}{\|\mathbf{w}_1\|^2}.$$

The elements of these vectors are those given in the first line of (49), from which one obtains (50). \square

Note that for $i=0$, (50) also becomes (18).

For the derivatives near boundaries, we need to determine the derivative of the polynomials $P_k(x)$ of degrees $k = 2n-2, 2n-1$ fitted by least squares to the set S , and of the exact-fit polynomial of degree $k=2n$, for $x=i$ with $i = -n, \dots, n$. The problem can be formulated as follows. Let \tilde{p}'_k be the required vector of derivatives of the polynomial $P_k(x)$, that is,

$$\tilde{p}'_k = [p'_{ki} = P'_k(i): i = -n, \dots, n],$$

and let \tilde{D}_{k+1} be a $(k+1)$ -dimensional superdiagonal matrix of the form

$$\tilde{D}_{k+1} = [d_{i,i+1} = i, i=1, \dots, k; d_{ij} = 0, \text{ otherwise: } i, j=1, \dots, k+1].$$

Then by the structure of the matrix \tilde{A} and the vector of polynomial coefficients \tilde{c} , it follows that the vector of polynomial derivatives is precisely

$$(51) \quad \tilde{p}'_k = \tilde{A} \tilde{D}_{k+1} \tilde{c}$$

for $k = 2n-2, \dots, 2n$ and where \tilde{A} and \tilde{c} are dimensioned accordingly.

Now we do not know the full vector \tilde{c} , but by (47) we do know

$$(52) \quad \tilde{A} \tilde{c} = \tilde{p}_k \quad \rightarrow$$

where \tilde{p}_k is the vector (46) of polynomial values. For polynomials of degree $k = 2n-2, 2n-1, 2n$, these values are given explicitly by (45), (50), and $P_{2n}(i) = y_i$, respectively. Since we know only $\tilde{A} \tilde{c}$, we first must find a $(2n+1)$ -dimensional matrix \tilde{E} such that

$$(53) \quad \tilde{E} \tilde{A} = \tilde{A} \tilde{D}_{k+1}$$

The matrix \tilde{E} obviously is not unique, but any \tilde{E} that satisfies (53) will suffice. Unfortunately, we cannot give a general expression for a choice of the elements of \tilde{E} as a function of n . All we can say is that given the matrix \tilde{E} , one finds the vector \tilde{p}'_k from the relationship

$$(54) \quad \tilde{p}'_k = \tilde{E} \tilde{A} \tilde{c} = \tilde{E} \tilde{p}_k$$

obtained from (51), (52), and (53), where \tilde{p}_k is known as noted previously. Thus, the problem of finding the derivatives $\tilde{p}'_k(i)$ for all indices i in the set S reduces to that of finding an appropriate matrix \tilde{E} .

6. The Smoothing Procedure. For completeness we give a brief description of how the results of this paper apply to numerical smoothing. For complete details, see [1] and [2]. One begins by choosing values n and k for the number of points in the moving fit and the degree of polynomial, respectively. Let the complete data set be $\mathbf{y} = \{y_j = y(j): j=1, \dots, N\}$, where usually n is picked so that $n \ll N$. Form consecutive, overlapping subsets $S_j = \{y_{j+i}: i = -n, \dots, n\}$ for $j = n+1, \dots, N-n$. Then the smoothed data set $\hat{\mathbf{y}} = \{\hat{y}_j: j=1, \dots, N\}$ is obtained in the following manner.

If $k = 2n-1$ and an exact polynomial fit to $S_j - \{y_j\}$ is desired, use (40), that is,

$$(40) \quad \hat{y}_j = y_j - \binom{2n}{n}^{-1} (-1)^n \Delta^{2n} y_j.$$

For $k = 2n-1$ (or $2n-2$) and a least squares polynomial fit to S_j , use (18), that is,

$$(18) \quad \hat{y}_j = y_j - \theta_n (-1)^n \Delta^{2n} y_j$$

with θ_n given by (19). Recall that (40) and (18) provide elements for \hat{Y} only for the indices $j = n+1, \dots, N-n$. For the remaining points at and near the boundary of Y we use

$$\hat{y}_j = p_k(j),$$

where $p_k(j)$ is given by (50) if $k = 2n-1$, and by (45) if $k = 2n-2$.

Note that in both (50) and (45), $\Delta^{2n} y_0$ must be replaced by $\Delta^{2n} y_{n+1}$ if $j < n+1$ and by $\Delta^{2n} y_{N-n}$ if $j > N-n$. This entire cycle can be repeated any number of times, depending upon the amount of smoothing that is required.

A procedure closely related to smoothing, but much more selective, is an error detection and correction procedure based in part on the work of Guerra and Tapia [4]. It takes advantage of the properties developed in Theorems 2 and 3. Error detection and correction differs from smoothing in that smoothing adjusts all points in Y , whereas the error detection and correction procedure corrects only those points in Y that are bad, that is, in error by an amount greater than the background noise level of the data, which we denote by ε .

Briefly, the error detection and correction procedure works as follows. Errors are detected by generating the difference $\Delta^{2n} y_j$ for each set S_j and by searching their absolute values for the maximum value, denoted $|\Delta^{2n} y_j|$, as a result of (44) and Theorem 3. If by (40), the difference

$$(55) \quad |c_0 - y_j| = \left| \binom{2n}{n}^{-1} (-1)^n \Delta^{2n} y_j \right| > \varepsilon,$$

(i.e., the difference is larger than the background noise level) the point y_J is assumed to be in error. Furthermore, if in analogy to (41)

$$(56) \quad \left| \sum_{i=-n}^n \Delta^{2n} y_{J+i} \right| \leq (2n+1) \binom{4n}{2n}^{\frac{1}{2}} \varepsilon,$$

(see [1]) the error in y_J is an isolated one relative to the set S_J and, hence, can be corrected to the value \hat{y}_J using (40) with c_0 and y_0 replaced by \hat{y}_J and y_J , respectively.

On the other hand, if the test (56) fails, two or more points in the set S_J are in error. In this case, y_J is corrected to \hat{y}_J by the least squares polynomial using (18).

After y_J has been replaced by \hat{y}_J in Y , the entire set is searched again for the maximum of the absolute values of its differences of order $2n$. The point corresponding to this new maximum value also is corrected by the foregoing procedures. This process is continued until all the absolute difference quantities in (55) are less than or equal to ε . This means that in the final set \hat{Y} some of the points will remain unaltered from their original value in Y , while other points may have been changed several times. In [4], Guerra and Tapia prove that this process is guaranteed to be a finite process.

Finally, we have not discussed the treatment of points at and near the boundaries of Y that may be in error. This procedure is too involved to discuss here, but can be found in [1].

7. The Differentiation Procedure. To numerically differentiate the set Y , one simply does a moving fit of the polynomial $P_k(x)$ of degree k to the subsets S_j one at a time and evaluates the derivative of the polynomial $P'_k(x)$ for $x=j$. Specifically, the differentiated set $Y' = \{y'_j: j=1, \dots, N\}$ is obtained in the following manner.

For a polynomial of degree $k=2n$ (or $2n-1$), one obtains y'_j by setting $y'_j = c_1$ in (20) and replacing y_0 by y_j everywhere. If a polynomial of degree $2n-2$ is desired, set $y'_j = c_1$ in (37) and replace both of the y_0 by y_j . Note that this procedure provides elements for the set Y' only for the indices $j = n+1, \dots, N-n$. For the remaining points at and near the boundary of Y , we obtain the derivatives by finding an appropriate matrix E from (53), which is then applied to (54) to obtain the elements of \tilde{p}' .

8. Conclusions. We have developed theoretical results for numerically smoothing noisy data sets using polynomials of degree $2n-2$ and $2n-1$, and for numerically differentiating data sets using polynomials of degree $2n-2$, $2n-1$, and $2n$, where n is related to the size of the subsets S of Y . In addition, we established an interesting result for fitting a polynomial of degree $2n-1$ to the set $S - \{y_0\}$, which has application to error detection and correction. Also, brief descriptions were given on the practical application of smoothing and differentiation to noisy data sets. It should be pointed out that all results and procedures in this paper hold as well for central and backward differences.

Finally, we note that the three operations, error correction, smoothing and differentiation, taken together give one a set of very versatile tools. For example, smoothing is usually more effective if error detection is done first. Also, differentiation is usually more meaningful if the data are smoothed first. In fact, some of the best results can be obtained for differentiation if all three operations are performed in order.

REFERENCES

- [1] Fleming, H.E., and M.L. Hill, 1982: An objective procedure for detecting and correcting errors in geophysical data: I. One-dimensional applications, J. Geophys. Res., to be published in June.
- [2] _____, 1982: An objective procedure for detecting and correcting errors in geophysical data: II. Multidimensional applications, to be submitted to J. Geophys. Res.
- [3] _____, 1982: An objective procedure for detecting and correcting errors in geophysical data: III. Application to numerical differentiation, to be submitted to J. Geophys. Res.
- [4] Guerra, V., and R.A. Tapia, 1974: A local procedure for error detection and data smoothing, MRC Tech. Summary Rept. #1452, Mathematics Research Center, University of Wisconsin, Madison, WI, 51 pp.

(Continued from inside front cover)

NESS 61 The Measurement of Atmospheric Transmittance From Sun and Sky With an Infrared Vertical Sounder. W. L. Smith and H. B. Howell, September 1972, 16 pp. (COM-73-50020)

NESS 62 Proposed Calibration Target for the Visible Channel of a Satellite Radiometer. K. L. Coulson and H. Jacobowitz, October 1972, 27 pp. (COM-73-10143)

NESS 63 Verification of Operational SIRS B Temperature Retrievals. Harold J. Brodrick and Christopher M. Hayden, December 1972, 26 pp. (COM-73-50279)

NESS 64 Radiometric Techniques for Observing the Atmosphere From Aircraft. William L. Smith and Warren J. Jacob, January 1973, 12 pp. (COM-73-50376)

NESS 65 Satellite Infrared Soundings From NOAA Spacecraft. L. M. McMillin, D. Q. Wark, J. M. Siomkajlo, P. G. Abel, A. Werbowetzki, L. A. Lauritson, J. A. Pritchard, D. S. Crosby, H. M. Woolf, R. C. Luebbe, M. P. Weinreb, H. E. Fleming, F. E. Bittner, and C. M. Hayden, September 1973, 112 pp. (COM-73-50936/6AS)

NESS 66 Effects of Aerosols on the Determination of the Temperature of the Earth's Surface From Radiance Measurements at 11.2 m. H. Jacobowitz and K. L. Coulson, September 1973, 18 pp. (COM-74-50013)

NESS 67 Vertical Resolution of Temperature Profiles for High Resolution Infrared Radiation Sounder (HIRS). Y. M. Chen, H. M. Woolf, and W. L. Smith, January 1974, 14 pp. (COM-74-50230)

NESS 68 Dependence of Antenna Temperature on the Polarization of Emitted Radiation for a Scanning Microwave Radiometer. Norman C. Grody, January 1974, 11 pp. (COM-74-50431/AS)

NESS 69 An Evaluation of May 1971 Satellite-Derived Sea Surface Temperatures for the Southern Hemisphere. P. Krishna Rao, April 1974, 13 pp. (COM-74-50643/AS)

NESS 70 Compatibility of Low-Cloud Vectors and Rawins for Synoptic Scale Analysis. L. F. Hubert and L. F. Whitney, Jr., October 1974, 26 pp. (COM-75-50065/AS)

NESS 71 An Intercomparison of Meteorological Parameters Derived From Radiosonde and Satellite Vertical Temperature Cross Sections. W. L. Smith and H. M. Woolf, November 1974, 13 pp. (COM-75-10432)

NESS 72 An Intercomparison of Radiosonde and Satellite-Derived Cross Sections During the AMTEX. W. C. Shen, W. L. Smith, and H. M. Woolf, February 1975, 18 pp. (COM-75-10439/AS)

NESS 73 Evaluation of a Balanced 300-mb Height Analysis as a Reference Level for Satellite-Derived soundings. Albert Thomasell, Jr., December 1975, 25 pp. (PB-253-058)

NESS 74 On the Estimation of Areal Windspeed Distribution in Tropical Cyclones With the Use of Satellite Data. Andrew Timchalk, August 1976, 41 pp. (PB-261-971)

NESS 75 Guide for Designing RF Ground Receiving Stations for TIROS-N. John R. Schneider, December 1976, 126 pp. (PB-262-931)

NESS 76 Determination of the Earth-Atmosphere Radiation Budget from NOAA Satellite Data. Arnold Gruber, November 1977, 31 pp. (PB-279-633)

NESS 77 Wind Analysis by Conditional Relaxation. Albert Thomasell, Jr., January 1979.

NESS 78 Geostationary Operational Environmental Satellite/Data Collection System. July 1979, 86 pp. (PB-301-276)

NESS 79 Error Characteristics of Satellite-Derived Winds. Lester F. Hubert and Albert Thomasell, Jr. June 1979, 44 pp. (PB-300-754)

NESS 80 Calculation of Atmospheric Radiances and Brightness Temperatures in Infrared Window Channels of Satellite Radiometers. Michael P. Weinreb and Michael L. Hill, March 1980, 43 pp. (PB80 208-119)

NESS 81 Improved Algorithm for Calculation of UTM and Geodetic Coordinates. Jeff Dozier, September 1980, 21 pp. (PB81 132680)

NESS 82 The Effect of Precipitation on Microwave Soundings in Low Latitudes. Lester F. Hubert, Norman C. Grody, Andrew Timchalk, and William C. Shen, April 1981, 34 pp. (PB81 225062)

NESS 83 Atmospheric Sounding User's Guide. Adolf Werbowetzki, ed., April 1981, 82 pp. (PB81 230476)

NESS 84 Use of NOAA/AVHRR Visible and Near-Infrared Data for Land Remote Sensing. Stanley R. Schneider, David F. McGinnis Jr., James A. Gatlin, September 1981. (PB82 129388)

NESS 85 Transmittances for the TIROS Operational Vertical Sounder. M.P. Weinreb, H.E. Fleming, L.M. McMillin, and A.C. Neuendorffer, September 1981. (PB82 155920)

NESS 86 Statistical and Synoptic Evaluations of TIROS-N and NOAA-6 Retrievals. Harold J. Brodrick, Carmella Watkins, and Arnold Gruber, October 1981. (PB82 188053)

NESS 87 Satellite Observations of Variations in Northern Hemisphere Seasonal Snow Cover. Kenneth F. Dewey and Richard Heim, Jr. December 1981. (PB82 196668)

NESS 88 Observations of Hurricane David (1979) Using the Microwave Sounding Unit. Norman C. Grody and William C. Shen, March 1982.

NESS 89 A Statistical Approach to Rainfall Estimation Using Satellite and Conventional Data. Linwood F. Whitney, Jr. April 1982, 50 pp.

NESS 90 Total Precipitable Water and Rainfall Determinations From the SEASAT Scanning Multichannel Microwave Radiometer (SMMR). John C. Alishouse, May 1982, 36 pp.

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic effects of natural and technological changes in the environment and to monitor and predict the state of the sea, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical publications in the following kinds of publications:

PROFESSIONAL PAPERS — Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS — Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS — Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS

Reports containing data, observations, instruments, A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS — Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS — Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

**ENVIRONMENTAL SCIENCE INFORMATION CENTER (OA/D812)
ENVIRONMENTAL DATA AND INFORMATION SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
U.S. DEPARTMENT OF COMMERCE**

Rockville, MD 20852

NOAA--S/T 82-150