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NUMERICAL SMOOTHING AND DIFFERENTIATION

BY FINITE DIFFERENCES

Henry E. Fleming and Lawrence J. Crone 

Office of Research
National Earth Satellite Service, NOAA 

Washington, D.C. 20233

ABSTRACT. General formulae are derived for digital polynomial 

smoothing and digital polynomial differentiation of data observed at 

equal abscissa spacings. The operations are performed by a moving fit 

of polynomials to small overlapping subsets of the data. Results are 

also derived for the special situation in which the moving fit approaches 

the boundary of the data set. Brief discussions indicate how the 

formulae are applied in practical situations and include a description 

of an error detection and correction technique which is very closely 

related to smoothing.
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1. introduction. The purpose of this paper is to present the 

theoretical results arising in the solution to the problems of digital 

polynomial smoothing and digital polynomial differentiation of observed 

(hence, noisy) data with equally spaced argument values. The method of 

smoothing is a simple moving fit of polynomials of a fixed, but arbi­

trary, degree to the data. At each step, the polynomial is fitted to 

a limited subset of consecutive data points, whose size is related to 

the degree of the polynomial. Furthermore, the moving fit is used to 

evaluate the polynomial at only the central point of the subset at each 

step. Smoothing is accomplished by replacing the original datum at the 

current central position by the polynomial value.

The results for polynomial smoothing extend in a natural way to the 

derivatives of the fitted polynomials, thereby yielding a method for the 

numerical differentiation of the data. Differentiation is accomplished 

in the same manner as smoothing in that again a moving fit is applied 

to subsets of consecutive data points and the fit is used to evaluate 

the derivative of the polynomial at the central point of the subset of 

data at each step. The polynomial derivative is then taken to be the 

derivative of the subset of data points at the central point of the sub­

set. Again, the size of the subsets and the degree of the fitted 

polynomials are related.
There is an exception to the use of only the central point of each 

subset of data. When points near the boundaries of the full data set 

are encountered, results for both smoothing and differentiation must be 

extended to additional points at and near the boundaries in those subsets.

The advantages of digital polynomial smoothing and differentiation 

for data having equidistant arguments are that the formulae are independent 

of the specific data set to which they are applied, and the formulae use
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only finite differences of the data and, hence, are computationally 

efficient. In fact the coefficients of the finite differences are strictly 

rational numbers and so only integer arithmetic is involved.

While it is clear that the smoothing and differentiation operators 

are both linear filters, this paper will not develop that approach.

Furthermore, this paper is limited to the derivation of the basic formulae 

and brief discussions of their application. Background and details on 

the smoothing and differentiation procedures and their practical imple­

mentation will be given in a series of three papers by Fleming and Hill,

[1], [2], and [3]. Specific examples and extensions to higher dimensions

also will be reserved for those papers.

2. Preliminaries. In practice, the numerical smoothing and differentiation 

procedures are applied to the entire data set by a moving fit, but for 

our purposes it is sufficient to restrict our results to a typical subset 

S of data referred to in Section 1. We require S to contain 2n+l data 

points y^ and we may assume without loss of generality that the equally 

spaced abscissae have unit spacing at integer values. In fact, there is 

also no loss in generality if for simplicity we choose the integer values 

to be fixed and centered on zero, that is,

(1) S = {y± = y(i): i = -n, ..., o, ..., n}

At the heart of this paper is the following problem.

PROBLEM 1. Fit the polynomial
_, * . 2 2n-2

01 2 2n-2

by least squares to the set S, that is, minimize the sum
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E [P(i) - yL]2

to find explicit expressions for and in terms of the elements of S.

Since P(0) = cQ and P^(0) = c^, the basic devices for smoothing and

differentiating in terms of S will have been established by the solution 

to this problem.

Before going into the solution, we state some definitions and 

two well-known properties from combinatorial analysis that are needed in the 

sequel. The notation for the binomial coefficients is given the following 

expanded definition for non-negative integers i and n:

nl for o ^ i S n
(2) i! (n-i)I

0 otherwise.

It also will be useful to remember that Forward differences

for the set S of (1) are defined as follows:

(3) n.2n-l 2 (-1)(-I)' A*

and
2n-l

2 (-1)
n-1

(4) (-I)' A

are the differences of order 2n-l for the points yQ and y^, respectively, 

of S, while

(5) n A2n 2 (-D(-1) A y

is the 2nth difference of y It follows from these three definitions that
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(6) .2n .2n-lA y0 - A y0 . 2n-l -A y.1*

For non-negative integers i, k, m, and n, the two combinatorial 

properties are

(7) m+n
i k-i

for k £ m+n, and

(8) (-1) i (x+i) 0

for m < 2n and arbitrary x. Identity (7) follows from a comparison of
k mthe coefficients of the term x on both sides of the identity (1+x)

(l+x)n = (l+x)m+n, while (8) is just an expression of the well-known

fact that the finite difference of order n of a polynomial of degree less

than n is zero.

For a proof to follow, we also will need to know explicitly the 

first two rows of the inverse of the square matrix JBr which is of the 

form

(9) B =ru i = -nr n; j=0, 1, 2n ].

The details are given in the following lemma.

LEMMA 1. Given the unit basis vectors of dimension 2n+l, =
[lf 0, 0, 0]T and e = [0, 1, 0, 0]T, and the matrix g of (9),

there exist unique vectors and ^ Qf dimension 2n+l with the property

TBA# z = i, 2.(10)
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In fact, v^ and are given by

(11) = Ilf 1 °' l
v ' li (0, i=±l, ±n,/

and

n, .vi+l. V (k-1)!(k-1)I(12) ^2i- (-D * * (k-i)'.(k+i)(
k=|l|

Proof. The validity of (10) for £=1 is established by inspection. 

The proof for £=2 is by induction. For n=l, (9) and (12) applied to (10) 

bee cane

E v b . = ^[-(-l)-1 + (l)3] = i„r j=0, 1, 2, 
i=_l 21 13

where 5.. is the Kronecker delta.
ID

Now assume that the Lemma holds for nr that isr

(13)
n . _„ , vi+l. n
£ (-1) i E

i=-n k= KI

“ [(k-1)I]2 k
yk=i (2k): Lii=-k

(k-1)!(k-1)1 .j 
(k-i)!(k+i)!

(k+i

Hence, to prove the Lemma for n+1, we must show that

,14) [(k-1)!]2 \ l+l/2k\ j+l_(14) 'kfi (2k)! .J.k‘ 11 \k+i/ V

Notice first that the sum over i in (14) is zero whenever j+1 < 2k by 

virtue of property (8). Therefore, the term with k = n+1 in the first 

sum in (14) is zero for j = 0, 1, ..., 2n, and so (14) reduces to (13) 

and is satisfied by the induction hypothesis. This leaves only the cases
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j = 2n+l and 2n+2 to be proved, but the sum over i in (14) vanishes 

for any even value of j because the terms having indices i and -i cancel. 

Thus, there remains only the case j = 2n+l, that is, we must show that

(15)
nt1[(k-l)l]2 * i+l/2k\ 2n+2 _
M (2M! i=V W1 -°'

Let

,2 k
(16) r. _ [ (k-1) 1 ] v , ,%i+l/2k\.2n k,n---- (2k)!. E (_;L) l^)1

i=-k

for k = n+1. We verify that

(17) C, _ = k2C, - (k-l)2C, ,
k,n+l k,n k-l,n

Definition (16) yields

k2c - (k-l)2C
k,n k-l,n

[(k-i);]2 
(2k) •

k2Z
i=-k

(-1) i+1 . 2nl
k

(2k) (2k-l) E
i=-k

= • 32
(2k):

k
(k+i) (k-i) ] E (-1) 

i=-k

= ek,n+l r

2n

where the second half of definition (2) was used in the second sum of the first 

line.

Applying (16) and (17) to (15), we have
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n+1
k, n+1 E kC (k-1) C. k-l,n

(n+l)2C
n+l,n + E k C, 2

0 c

(n+l)2C
n+1,n.

is zero because the sum in (16) is the finite differenceHowever, Cn+1, n
of order 2n+2 of a polynomial whose degree is less than 2n+2. Therefore, 

the double sum in (15) is indeed zero.

Finally, the uniqueness of vectors Zl and v2 follows from the 

existence of the inverse of the matrix 15. □

3. Principal Results. We now derive the solutions to Problem 1. 
THEOREM 1. If a polynomial of degree 2n-2 is fitted to the data 

set S of (1) by least squares, then there exists a rational number 0n 

such that the constant term cn of the polynomial has the form

(18) 9 (-1) A y

where

n
n (2i-l)

(19)
JI (2n+2i-l) 
i=l

Furthermore, the second term in the polynomial is given by

(20) 2n-l(-1) /2k 2 k-1 (-1) 2A‘'2n-2k=l k
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where

U n-aV1 ;
a2n-2 ” \2n-lJ ^

_1 n 2n /2k\ 1/2n+2k-2 
k(n+k) \^k y y n+k-1

Proof. Define the matrix A = [a__ = s i=-n, ...f n; j = 0, 1,

..., 2n-2], the vector of coefficients of the polynomial by c = [c_. :

j = 0, 1, . .., 2n-2 ], and the vector of data points of the set S in (1)

by y = [y.: i=-n, ..., n]. Then the coefficients are determined by
/u i

the solution to the system of normal equations

(21) T TA Ac = Ay./N/A-f rsj ZJ

Since we wish to determine only the pair of coefficients cQ and c^,

we need only to find vectors u and u of dimension 2n-l satisfying^1 ^ 2

T T T(22) & = fh

for  [1 T —Z = 1, 2, where e_ = , 0,  T 0, . .., 0] and e~[0, 1, 0, . .., 0]**1 ”2

are the unit basis vectors of dimension 2n-l. It follows from (21) that

(23) T T. = u0A y il-1 A'X,*'

for & = 1, 2.

Finding the unique vectors u^ is by (22) tantamount to finding the
Tfirst two rows of the inverse of A A for general n. How to do this by 

direct mean is not at all obvious. Instead, we seek any pair of vectors

v and v of dimension 2n+l for which^2

TA V = e0.(24)
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for Z = 1, 2. Lemma 1 provides us with just such a pair of vectors. 

Now if Vn were Au„, we could use 7, to find cn , via (23). This is not

the case, but we can use ~ZV.  to find "uZn. It has the form

(25) Up = (ATA)-1aV,

since by (24)

T T T -1 TA Aun = A A(A A) A \

thereby satisfying (22). Thus, all we need to know to calculate c0 by
X/—-L

(23) is the vector Au^, which by (25) is

(26) Au„ = A(ATA) 1ATV0.
a/a'X, ro rv AJ rJ /'■'X,

Fortunately, the inverse matrix in (26) can be avoided because 
T -1A (A A) A is the projection operator on the linear manifold of a (2n+l)- 

dimensional Euclidean space R2n+1 sPannec^ the 2n-l linearly independ­

ent columns of A. Hence, the orthogonal complement of this linear 

manifold is a linear manifold of R2n+1 sPanne(^ ky two linearly independ­

ent vectors orthogonal to each of the columns of A. Convenient choices 

for this pair of vectors are the vector of coefficients of the finite 

difference operator of order 2n, namely

(27) i = -n, • • • t ■] t

and a linear combination of vectors of coefficients of the finite 

difference operator of order 2n-l, that is,

(28) 22 = w2. - (-1) 2n-l
l n+i-1 = (-1) i+1
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These vectors are orthogonal to the columns of A because the inner 

products of w^ and with the columns of A yield, respectively, the 
2nth and 2n-lst differences of i\ which are zero for j = 0, 1,

2n-2 by (8) . In addition, the elements of w^ possess the symmetry 

property w^ = w^ while the elements of w^ were specifically chosen 

to have the anti-symmetry property w . = -w_. so that wn and w are2,—i 2l ^1 ^2
guaranteed to be orthogonal to each other as well.

Since and w2 span the orthogonal complement of the space spanned 

by the columns of A, we can write the projection operator in terms of 

the projection on the orthogonal complement, namely

(29) m m w_, w^ w w^
= I -~ ~ c* || || 2 || ||IIVl ll»2'l

where I is the identity matrix.

The formal solution to our problem is now in hand. Apply (29) to 

(26), and in turn apply that result to (23) to obtain the following 

representations for coefficients cQ and c^:

(30) C&)(& ) (%)(£ z)

for 1 = 1, 2.

To make (30) explicit, we first evaluate the normed quantities 

the denominators. By (27), (28), and repeated use of (2) and (7),

T
W. w_ ~1~1(31)

n
E

i=-n
2n
n+i

4n\ 2n ]'
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and

(32) T
-2-2

2n-l 2n-l
n+i-1

2n-l
n-i-1

2n-l 2n-l 2n-l
2n-l-k

2n
£

k=0
2n-l
2n-k

2n-2 2n-l\ / 2n-l 
k y\2n-2-k

2n-l 2n-l 2n-l
2n-l-k

4n-2
2n-l

/ 4n-2 
l 2n

/ 4n-2 
\^2n-2 +

/ 4n-2 
\^2n-l)

4n-2 1 4n-2\
n \2n-lJ.

TIn addition, we will need the scalar For this we write

v . of (12) in the equivalent form

/2k\ 1 /2k-l\ _ (2k-l \

W Lvk+i/ \k-1+i/.
so that again by the repeated use of (2) and (7),

(34)
/2n-l\ _ / 2n-l ^ ” l/2k\ 1 /2k-l\ ( 2k-l \
\n+i / ' \n+i-1/Jk=|i| kW L\k+i/ " \k-1+V*'2*2

(“)' (£*£) - (K)i=-k
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i ‘4T“(—.XT) - ? £s)Cr:

2 if^V1
k-i kw

/ 2n+2k-2N

V n+k-1 ,
/2n+2k-2'

V n+k ,
/2n+2k-2\ /2n+2k-2^
y n+k-2 ) + l n+k-1 J

j, *r / 2n+2k-2 
n+k-1V

/ 2n+2k-2 
l n+k

n
= Z

/2k \ 1/2n+2k-2'\
) n+k-1 J.k=l k \k / \ n+k--L j

Next, we note that since the elements of ^ and v* are arranged
symmetrically about the center element and those of v_ and w_ are arranged anti- 

. T tsymmetrically, it follows that = 0 and = 0. Also, by (11) and (27),
-1^1 Finallyr by (1), (11), (33), (37), (28), (31), (34), and the
foregoing/ we may write (30) as follows:

which by (5) yields (18) and (19), and

(35)

4n-2
2n-l

v-1 n
E

k=l
2n

k(n+k)0 1 /2n+2k-2N 
\ n+k-1 ,

n
s (-D1

i=-n
2n-l> 
n+i .

2n-l^
n+i-lj
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s iM"1

w kW
"i1 (-i)i''2k-lV

i=-k Wy*
k-1

+ Z (-1)
i=-k

i^-Ay
yk+i y i+1

4n-
,211

n / \ —1 / \ fn-1 / \“ 2n /2k\ /2n+2k-2 \ E + y. )V n+i / ui ^i+1 7k=l \ / \ 'J i=-n \ '

which by (3), (4), and (6) is (20). The identity in (19) follows from

the relationship

/2n\/4n\ 1 = (2n) \ (2n) 1 (2n) I 
\^ny\2n/ nlnl (4n) !

2nn![(2n-l)(2n-3)... l] y [2n(2n-l) ... (n+1)]nl 
n i n •

x ------------2n[2n(2n-l)
________(2n)!_______
(n+1)][(4n-l)(4n-3)

-------------□
(2n+l)](2n)•

The machinery developed in the proof of Theorem 1 can be used to 

advantage in developing results analogous to those in Theorem 1 for 

polynomials of degree 2n-l.
COROLLARY 1. If the degree of the polynomial in Theorem 1 is_ 

raised from 2n-2 to 2n-l, all the results of that theorem remain valid, 

with the exception that a ^ E ° rePlaces a2n-2 ^*n 7 that is'

2k-l

Proof. Use the proof of Theorem 1, but with the range of the 

index j increased from 2n-2 to 2n-l, that is, j = 0, 1, ..., 2n-l in

The proof goes through as before,the definition of A, c, e. and un
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except that now A_(A_ a) A. is the projection operator on the linear 

manifold of ^n+l sPanne<^ by 2n linearly independent columns of A. 

Consequently, the orthogonal complement of this linear manifold is 

spanned by a single vector orthogonal to each of the columns of A. That 

vector is of (27). In other words, (29) becomes

(38) A (ATA) -1 T A
w, w, T <vL~l

W2'
and so (30) reduces to

(39) '£-1
T=

^1 VlZ

»l‘

for £ = 1, 2.

the case £—1, (39) and (30) are identical because v^w = 0 in
~1~2

(30). Hence, the remainder of the proof is identical to that given for

Theorem 1. On the other hand, for the case £= 2, vjw^ = 0 in (39), so 
Tthat c1 = v2y, which is the first double sum in (35) in the proof of 

Theorem 1, which in turn is (37).D

COROLLARY 2. If the degree of the polynomial in Theorem 1 is 

raised from 2n—2 to 2n, then the constant term of the polynomial has 

the trivial relationship c^ = y^, but the second coefficient c.^ is 

identical to (37) of Corollary 1.

Proof. In this case the matrix A in the proof of Theorem 1 is B of 

(9), and so by Lemma 1 we have that

'£-1 =*ll
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for H = lr 2. The results follow from (11), (33), and the first double 

sum in (35) . ^

4. Additional Results. Two known results are presented for 

completeness and for consistency with our previous results and notation.

THEOREM 2. If a polynomial P(x) of degree 2n-l is fitted exactly 

to the data set S of (1) with the point yQ deleted (i.e., the set 

S - {y^ } ), then the constant term of the polynomial is

(2n\ 1, . xnA2n
(40) co = Yo ■ \n) (_1) A Yo

Proof. By hypothesis y^ = P(i) for i = -n, .“1* 1# •••# n- 

Since it is not necessarily true that yQ = P(0), let 6 = P(0) - yQ = 

cQ - yQ. Then by (5) and (8)

, „xnA2n (-1) A y
n

= E
i=-n

n

i=-n
(-X) I

i / 2n
n+i I

|P(i)

= 0

which yields (40), since 6 = c0 - yQ- ^

Theorem 2 states that the distance between the point yQ of S and 

the polynomial of degree 2n-l that interpolates the 2n neighbors of y(
-1' 2n (-DnA2ny0.

is . n
Theorem 3. If each point of the extended set of data points

t = fy = vfi)t i = -2n„ __ , 2n} lies on a polynomial P(x) of degree^
----—±---- i--------------------- —
2n-l, except the point yQ which lies a distance 6 away from the polynomial,

then the sum
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(41) E A2V = 0,
k=-n k

a 2nwhere A y - defined by
K

(42) <-i)VV - r (-i)i^2n''
i=-n

n+ijyi+k *

is the 2nth forward difference of the point in S of (1). Furthermore,

the maximum of the absolute values of these 2n+l differences of the
_ . _ . .2nset S in T is A y„._-*0

Proof. By hypothesis y^ = P(i) for i = -2n, ..., -1, 1, __ , 2n

and yQ = P(0) -5. Therefore, by (42) and (8)

(43) n 2n(-1) A y.
n

= Z (-1)
i=-n

-uL( 2n
Vn+i |P(i+k) - (-1) k/ 2n \n-k

5 ■ (-i)k+l(„2+t)s'

and so the Siam

n
E A2n .t A = sv

k=-n k=-n

n
Z (-1)

n+k+1/ 2n
0

by (8). In addition, for k = -n, ___ -1, 1, n,

fe)*! <(2„") l«l - |A2ny0l-

by (43) and (40). D

5. Results Near Boundaries. When the moving polynomial-fit procedure 

for both smoothing and differentiation approaches a boundary of the full 

data set, the procedure breaks down because the central point of the 

subset S of (1) no longer has its full complement of 2n neighboring



- 18-

points. The solution to this difficulty is to start and stop the 

moving fit n+1 points away from the boundary, and then simply use the

resulting values P(i) of the fitted polynomial for i = -n, -- , -1,

at the beginning of the data stream and for i = 1, n at the end.

The necessary details are now provided.

THEOREM 4. If the polynomial P(x) of degree 2n-2 is fitted to 

the data set S of (1) by least squares, the polynomial values for

i = -n, ___ n are given by

(45) P(i) = y. - (-D
i

n+i( 2n
n+i,V.

f4n\ 1.2n
,2„ A *0

. /4n-2

- v.
-I r_ A2n-1 A2n2A yQ - A y

Proof. Define the matrix A and vectors c and y as in the proof----- -w ^ rk/
of Theorem 1, then it follows that the vector of polynomial values

(46) p — [p, P (l) : i -n, • • • / n ]
l

can be written

(47) p = Ac

Furthermore, the system of normal equations (21) can be written

, T -1 T c = (A A) Ay;

therefore,

(48) p-y = Ac-y

r , T -1 T ,= [a(a A) A - l]y.

Now follow the proof of Theorem 1 from (21) through (29). Applying

(29) to (48), we have
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p-y fc&K (;&)»2II "ill 2 _ II 22II 2 '

By (27), (28)f ,(31) and (32), the elements of these vectors can be

written

2 (-1)
k=-n

k/2n-l\ /2n-l\] . , i+1 i / 2n \
\ n+k / (n+k-1 J Yk> X) n ^n+ij,4n-2 2 (-1)2n-l k=-n

from which (45) results after applying (3), (4), (5) and (6). tH

Note that for i=0, (45) becomes (18).

COROLLARY 3. If a polynomial P(x) of degree 2n-l is fitted to 

the data set S by least squares, the polynomial values for i = -n, .n 

are given by

(50) P(i) = y± - (-1) n+i/ 2n \n+i

Proof. Using the proof of Theorem 4 and the supporting arguments 

of Corollary 1 related to the increase in dimension, we can apply (38) 

to (48) and obtain

p-y =AX *>✓

The elements of these vectors are those given in the first line of (49), 

from which one obtains (50). □
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Note that for i=0, (50) also becomes (18).

For the derivatives near boundaries, we need to determine the 

derivative of the polynomials P^(x) of degrees k = 2n-2, 2n-l fitted 

by least squares to the set S, and of the exact-fit polynomial of 

degree k=2n, for x=i with i = -n, n. The problem can be formulated

as follows. Let p' be the required vector of derivatives of the 

polynomial (x), that is,

5k = ^ki = P"(i) k l = -n. n] 9

and let D be a (k+1)-dimensional superdiagonal matrix of the form '"k+l

D = [d . , = i, i=l, k; d. . = 0, otherwise: i, j=l, ..., k+1].5k+l 1 i,i+l ' ' ID

Then by the structure of the matrix A, and the vector of polynomial 

coefficients o, it follows that the vector of polynomial derivatives 

is precisely

(51) pk ^Sk+1~*

for k = 2n-2, ..., 2n and where A and jc are dimensioned accordingly. 

Now we do not know the full vector jc, but by (47) we do know-

<52> = pk »

where p is the vector (46) of polynomial values. For polynomials of 
.c-k

degree k = 2n-2, 2n-l, 2n, these values are given explicitly by (45), 

(50), and = Yrespectively. Since we know only Ac i we first

must find a (2n+l)-dimensional matrix E such that
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(53) EA = AD ,

The matrix JE obviously is not unique, but any E that satisfies (53) will 

suffice. Unfortunately, we cannot give a general expression for a 

choice of the elements of E as a function of n. All we can say is that 

given the matrix E, one finds the vector p' from the relationship

(54) p. = EAc = Ep, ^ k /viuk

obtained from (51), (52), and (53), where p is known as noted previously.«%*k
Thus, the problem of finding the derivatives P^(i) for all indices i in 

the set S reduces to that of finding an appropriate matrix E.

6. The Smoothing Procedure. For completeness we give a brief 

description of how the results of this paper apply to numerical smooth­

ing. For complete details, see [1] and [2]. One begins by choosing 

values n and k for the number of points in the moving fit and the degree 

of polynomial, respectively. Let the complete data set be Y = {y_. = y(j): 

j=l, ..., n}, where usually n is picked so that n«N. Form consecutive,

overlapping subsets S_. = {y i = -n, ..., n} for j = n+1, ___ N-n.

Then the smoothed data set Y = {y_. : j=l, . .., n} is obtained in the

following manner.

If k = 2n-l and an exact polynomial fit to S_. - {yj} is desired, 

use (40), that is,

(40) y. = y.j j

- (2nn)<-i>n A 2n

For k = 2n-l (or 2n-2) and a least squares polynomial fit to S_. , use (18),

that is,
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2n(18) y = Yj - 6n (-1) A Yj

with 9 qiven by (19). Recall that (40) and (18) provide elements 
n

for Y only for the indices j = n+1, . N-n. For the remaining 

points at and near the boundary of Y we use

A

- V31'
where P (j) is given by (50) if k = 2n-l, and by (45) if k - 2n-2.

K
Note that in both (50) and (45), A2nyQ must be replaced by A nyn+1 if
i < n+1 and by A y if j > N-n. This entire cycle can be repeated J J N-n
any number of times, depending upon the amount of smoothing that is 

required.
A procedure closely related to smoothing, but much more selective, 

is an error detection and correction procedure based in part on the 

work of Guerra and Tapia [4]. It takes advantage of the properties 

developed in Theorems 2 and 3. ffirror detection and correction differs 

from smoothing in that smoothing adjusts all points in Y, whereas the 

error detection and correction procedure corrects only those points in 

Y that are bad, that is, in error by an amount greater than the back­

ground noise level of the data, which we denote by e.

Briefly, the error detection and correction procedure works as
.2nfollows. Errors are detected by generating the difference A y for 

each set S and by searching their absolute values for the maximum
j

value, denoted |A y |, as a result of (44) and Theorem 3. If by (40),J
the difference

n * 2 n A(55) > e,
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(i.e., 'the difference is larger than the background noise level) the

point y is assumed to be in error. Furthermore, if in analogy to (41) 
j

(56) .2n A yJ+i < (2n+l)
h
e,

(see [1]) the error in y is an isolated one relative to the set S and,J J
hence, can be corrected to the value y using (40) with c and y replacedJ 0 0

Aby y and y , respectively.J J
On the other hand, if the test (56) fails, two or more points in

the set S are in error. In this case, y is corrected to y by the o J J
least squares polynomial using (18).

After y has been replaced by y in Y, the entire set is searched J J
again for the maximum of the absolute values of its differences of order 

2n. The point corresponding to this new maximum value also is corrected 

by the foregoing procedures. This process is continued until all the 

absolute difference quantities in (55) are less than or equal to e.

This means that in the final set Y some of the points will remain 

unaltered from their original value in Y, while other points may have 

been changed several times. In [4], Guerra and Tapia prove that this 

process is guaranteed to be a finite process.

Finally, we have not discussed the treatment of points at and near 

the boundaries of Y that may be in error. This procedure is too involved 

to discuss here, but can be found in [1].

7. The Differentiation Procedure. To numerically differentiate the 

set Y, one simply does a moving fit of the polynomial P (x) of degree k
JC

to the subsets S. one at a time and evaluates the derivative of the D
polynomial v'(x) for x= j . Specifically, the differentiated set Y^ =

K
{y^: j=l,..., N} is obtained in the following manner.
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For a polynomial of degree k=2n (or 2n-l), one obtains y' by 

setting y^ = in (20) and replacing yQ by y_. everywhere. If a 

polynomial of degree 2n-2 is desired, set y^ = in (37) and replace 

both of the yQ by y_. . Note that this procedure provides elements 

for the set only for the indices j = n+1, . .., N-n. For the remain­

ing points at and near the boundary of Y, we obtain the derivatives by 

finding an appropriate matrix E from (53), which is then applied to (54) 

to obtain the elements of p^.

8. Conclusions. We have developed theoretical results for 

numerically smoothing noisy data sets using polynomials of degree 2n-2 

and 2n-l, and for numerically differentiating data sets using polynomials 

of degree 2n-2, 2n-l, and 2n, where n is related to the size of the 

subsets S of Y. In addition, we established an interesting result for 
fitting a polynomial of degree 2n-l to the set S - {y^}r which has 

application to error detection and correction. Also, brief descriptions 

were given on the practical application of smoothing and differentiation 

to noisy data sets. It should be pointed out that all results and 

procedures in this paper hold as well for central and backward differences.

Finally, we note that the three operations, error correction, 

smoothing and differentiation, taken together give one a set of very 

versatile tools. For example, smoothing is usually more effective if 

error detection is done first. Also, differentiation is usually more 

meaningful if the data are smoothed first. In fact, some of the best 

results can be obtained for differentiation if all three operations are

performed in order.
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