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Abstract

A significant problem very often encountered when using a polyhedral grid framework for global
numerical weather simulation is the ‘imprinting’ of spurious computational noise that occurs
in the pattern of the edges and vertices of the chosen polyhedral geometry. Smoothing the
grid across edges only partially mitigates the problem since the singularities still persist at the
vertices. A more complete solution of this difficulty can be obtained by employing a composite
overset grid configuration where two or more large grid domains overlap to cover the globe
without singularities or regions of strong grid curvature. The redundancy of solutions in the
overlap regions is then resolved by interpolations and progressive blending. It is preferable, for
numerical reasons, to choose a grid that is orthogonal, especially if it possesses the additional
desirable attribute of being conformal, provided this can be done in such a way that the reso-
lution remains approximately uniform. A special class of these overset grids employs the idea
of a two-sheeted Riemann surface, which enables the overlap regions of a conformal grid to
be restricted to small two-cusp ‘bicorn’ areas very close to the polyhedron’s original vertices.
At the cusps of each bicorn are a pair of ‘branch points’ of the mapping between the space of
the grid and the geographical domain. While being the only singular points in the used part
of the computational grid, these branch points still preserve continuity of several derivatives
of the mapping and therefore behave as if they are effectively nonexistent as far as the model
numerics are concerned. This note describes a general method of constructing the blending
function for reconciling the two solutions in each bicorn based upon the principle of solving a
Laplace equation for a ‘potential’ there (which is a valid solution to the Laplace equation in
both sheets’ conformal coordinates) and deriving the weights as incomplete beta functions of
that potential, in order to achieve a high degree of smoothness on the bounding edges of the
bicorn.

1. Introduction

All of the traditional polyhedral grids, but especially the increasingly popular cubic families
of grids used for numerical weather simulation, are known to exhibit spurious ‘grid imprinting’
effects in their extended forecasts or climatology. This occurs mainly because these grids possess
discontinuities in their properties along the edges of the cube, and more particularly at the
vertices. The gnomonic cubic grid was introduced for numerical modeling by Sadourny (1972)
and minor modifications of it were considered by Ronchi et al. (1996), Rančić et al. (1996),
Putman and Lin (2007), and others. The article by Rančić et al. (1996) also introduced
the conformal cubic grid, which removed the edge discontinuity, but left a singularity at each
vertex. In the vicinity of each vertex, the resolution became excessively high, which is clearly
problematic for a model with explicit dynamics (though not so much for a semi-implicit semi-
Lagrangian model such as the one introduced by McGregor (1996) to exploit this grid). A more
generalized parameterized family of ‘smooth cubic’ grids (containing the conformal one as a
special extreme case) was introduced by Purser and Rančić (1998) and enabled a much more
uniform resolution of grid to be obtained. This family culminated in the extreme case of the



‘Uniform Jacobian’ grid tested in the context of the NMMB model (Janjić and Gall 2012) by
Rančić et al. (2017). Unfortunately, the more uniform resolution led to an exacerbation of the
excessive curvature that these grids suffer from in the vicinity of the eight vertices, and the
application of customized numerics there to address this anticipated problem was insufficient
to entirely remove the persisting grid imprinting visible at these places.

An alternative tactic, which has a much higher chance of eliminating the grid imprinting,
although at the cost of a greater numerical complexity and the need for accurate interpolations
along a broad swath of the the globe, is to use two or three overlapping or ‘overset’ grids, each
of a limited area kind without coordinate singularities anywhere within or near their region
of application, and to reconcile their solutions every time step by mutual interpolation and
appropriately weighted blending of the redundant portions of the solution. Probably the first
approach of this kind was the method proposed by Phillips (1957) using two polar stereographic
grids overlapping a central cylindrical map grid. The method of overset grids was developed
especially by Starius (1980), Chesshire and Henshaw (1990) and Browning et al. (1989). As pro-
posed by Kageyama and Sato (2004), the globe can be covered, with relatively little distortion,
using a congruent pair of elongated rectangular domains oriented transversally to one another
in the so-called ‘Yin-Yang’ configuration. The overlapping region is then a single sinuous zone
resembling the seam of a baseball ball.

In the context of regions each gridded with a square mesh, we recognize that, along substan-
tial stretches of the overlap regions of these various overset grids, the two overlapping meshes
can be made to coincide without much further distortion. This is true of both the Yin-Yang grid
and of the three-grid configuration proposed by Phillips, suggesting that, apart from eight iso-
lated corner regions, the grids can actually be made perfectly continuous. Furthermore, by the
careful construction of conformal mappings that involve two-sheeted Riemann surfaces winding
around branch-point weak singularities, it becomes possible to combine the best features of
the conformal grids with those of the overset grids in such a way that the amount of mutual
interpolation and blending involved is minimal. A Riemann surface is a complex manifold,
associated with some complex analytic function which would allow more than one solution on
the ordinary complex plane, but which becomes single-valued on this manifold. It can have a
non-trivial topology, and is a concept found throughout the field of complex function theory
(Weyl, 2009; Napier and Ramachandran, 2011; Krantz, 2016) and even in discrete group theory,
for example, in Beardon (1983, Chap. 6). Our application locally requires only consideration of
simple two-sheeted varieties of Riemann surfaces, as will be made clear in the following sections.
Corresponding to the Phillips-type overset configuration we have a conformal ‘barrel’ or ‘drum’
conformal grid exemplified by the construction shown in Fig. 1.

We leave the description of the construction of this and similar conformal overset grids to
another note (Purser and Rančić , 2020). What will concern us here is the question of how
best to define the blending weights by which the two solutions should be combined in the eight
compact ‘bicorn’ regions near what would be the singular corners of the standard conformal
cube. Owing to the transitivity of conformal mappings, it seems very natural to seek a solution
to this question involving a conformal mapping of this region to a parallel-sided strip, since this
will imply the strip is conformally mapped to both of the map domains simultaneously. The
contours of the mapping which, in the strip-domain, would be the lines parallel to the sides of
the strip, can then be taken to be the contours of the blending weights themselves. In fact,
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Figure 1. An example of a conformal overset grid based on cubic geometry. The symmetry is broken
by the overlapping regions, the reduced symmetry being that of a solid square dihedron, or square prism
(with a symmetry group of order 16). It is also possible to construct a superficially similar conformal

overset Yin-Yang cubic grid, with the smaller resulting symmetry (of order 8).

if we take the strip to run with its transverse coordinate y between 0 and 1, a good choice of
blending weights would be those that are the incomplete beta function, of a chosen symmetrical
degree, m, defined (see Abramowitz and Stegun, 1972, article 26.5.1, p944):

W (y)≡ Iy(m, m) =
1

B(m, m)

y

0
tm−1(1− t)m−1dt, (1.1)

∫
where B(a, b) is the two-parameter Euler beta function. This weight would apply to the solution
of one of the overlapping regions; the complement, 1−W (y), would supply the weight for the
other solution at the same geographical location. Examples of such beta function weights for
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parameters m= 2 and m= 3 are:

W (y) = 3y2 − 2y3, (1.2)

which ensures continuity up to the first derivative, or

W (y) = 10y3 − 15y4 + 6y5, (1.3)

which ensures continuity up to the second derivative of weight W , except at or beyond the cusps
of the bicorn, of course. The ‘branch points’ at the two cusps of the bicorn are weak singular-
ities of the mapping in the sense that only high order derivatives of it become discontinuous.
Therefore, it is not necessary for the blending weights to be smoothly continuous on a transect
through these special points since the two solution fields they modulate become identical at
these limiting points.

In physical terms, we can think of the solution for the implied spatial function y that we
seek as being equivalent to the electrostatic potential resulting from one side (y = 0) of the
bicorn being a ‘conductor’ at zero ‘potential’, while the other side (y = 1), also a conductor,
is maintained at a unit potential, in a problem of two-dimensional electrostatics. The rest of
this note will focus on approxmate solutions to just this special class of problems that are valid
when the curved boundary of the bicorn is smooth and the bicorn itself is a relatively slender
region, as it is in the overlap shown in Fig. 1.

2. Outline

The region we call a ‘bicorn’ is assumed to lie in the positive quadrant of a cartesian plane,
with cusps at (1, 0) and (0, 1), straight edge boundaries between these points and the origin, and
a smooth curved boundary (p, q) =G(s) in the interior of the positive quadrant that links the
cusp points. Thus, if we take complex Z = (p+ iq)2 ≡ (X + iY ), this somewhat awkward region
becomes transformed into a ‘hill’ or ‘bell’ in the positive-Y half-plane between transformed cusps
on the X-axis at X =±1, and the former bounding curve G becomes transformed into a new
bell-shaped curved boundary, Z = S(s). This can be thought of as a very trivial special case
of the Schwarz-Christoffel mapping, which has numerous practical applications (Driscoll and
Trefethen 2002). Owing to the transitivity of conformal mappings, a solution in the Z-plane
implies one in the original bicorn domain, but the Z-plane region (without a corner) is much
easier to work in. Although there is no restriction in principle to the validity of the method we
describe, we shall assume the symmetry of the problem about the imaginary Z axis (or about
the line p= q in the original problem).

The idea now is to seek a conformal mapping between the doubly-infinite unit strip in
another complex plane, of variable z = (x+ iy), where x ∈ (−∞,∞) and y ∈ [0, 1], to the bell-
shaped image of the bicorn in the complex plane of Z. If the solution domain has the afore-
mentioned mirror symmetry, we can express this solution as a complex Fourier transform:

Z(z) =Bz +

∫ ∞
0

F (k) sin(kz) dk, (2.1)
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with real scaling factor, B, and real coefficients F (k). Then we can approximate the solution for
a finite portion by using a fast Fourier transform (FFT), if the sufficiently resolved coefficients
F (k) are given at uniform intervals of positive wavenumber k. Note that

sin(kz) = sin(kx) cosh(ky) + i cos(kx) sinh(ky), (2.2)

so the coefficients Fj = F (jδk) can be found by ordinary FFT analysis of the solution X0(x) if
this solution is given along the real axis y = 0 at a set of uniformly spaced x (assuming we can
adequately deal with the technicality of requiring the numerical approximating solution to be
periodic, which we can generally do without incurring large error simply by making the period
in x finite but very large compared to the unit-width of the strip).

We make a further assumption that the boundary curve S is very smooth on the scale
of its height above the real axis, since this will allow us to make a preliminary asymptotic
approximation to the solution for X0(x) based on the height and first few derivatives of S at
this same X-coordinate. Once we have a sufficiently good approximation to the real function
X0(x), and hence the corresponding Fourier coefficients for the whole interior solution, we
can examine the mismatch between the y = 1 edge of the approximate solution, Z1(x+ i) =
(X1(x+ i) + iY1(x+ i)), and the known boundary location S. This is quantified in terms of
L, the integrated squared-distance between the two curves when the integral is with respect
to parameter s. Then we minimize this quantity with respect to variations in both the scaling
factor, B, and in the discrete Fourier sine coefficients Fj , to find the desired solution whose edge
conforms to the curve S. But in most practical cases, it looks as if the asymptotic approximation
can be made accurate enough just by itself, which is why much of this note is devoted to the
examination of the asymptotic method.

In the next section, we describe how the derivatives of the boundary curve, S(s) =X(s) +
iY (s), with respect to the smooth parameter s can be converted into corresponding expressions
for the derivatives of Y with respect to X. In section 4 we introduce the method by which the
asymptotic expansion coefficients are obtained for an increasing index parameter λ that labels
each successive set of terms in a systematic progression of higher ‘orders’. Finally, we discuss
the prospects for extending these techniques to the cases of more traditional overset topologies,
except with the restriction that the grids in each map panel are of the conformal kind.

3. Convenient notations for the manipulation of derivatives of a parameter-

ized curve

If X and Y are quantities (such as the real and imaginary parts of a complex quantity)
of similarly dimensioned units and given as smooth functions of the common dimensionless
parameter s, and if we want to relate the higher derivatives of Y with respect X in nondimen-
sional terms, then it will be convenient to use Y in the nondimensionalizing normalizations. A
convenient notation for these nondimensional derivatives is:

Dk ≡ Y k−1 d
kY

dXk
. (3.1)
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TABLE 1. Coefficients of the Faà di Bruno coefficients,
B, and those for the inverse formulas, C, for the first few

partition

π Bπ Cπ,1 Cπ,2 Cπ,3 Cπ,4 Cπ,5 Cπ,6

0 1 1 1 1 1 1

1 1 -1 -3 -6 -10 -15

2 1 -1 -4 -10 -20

1, 1 1 3 15 45 105

3 1 -1 -5 -15

2, 1 3 10 60 210

1, 1, 1 1 -15 -105 -420

4 1 -1 -6

3, 1 4 15 105

2, 2 3 10 70

2, 1, 1 6 -105 -840

1, 1, 1, 1 1 105 945

5 1 -1

4, 1 5 21

3, 2 10 35

3, 1, 1 10 -210

2, 2, 1 15 -280

2, 1, 1, 1 10 1260

1, 1, 1, 1, 1 1 -945

We also define the nondimensional derivatives,

pk =
1

Y

dkX

dsk
(3.2a)

qk =
1

Y

dkY

dsk
. (3.2b)

Another notational convenience is obtained by abbreviating products of such terms in the same
family by employing index vectors according to the rule,

Dq1...qm ≡
m∏
i=1

Dji , (3.3)

and similarly for p and q quantities.
By the chain rule:

q1 =D1p1, (3.4a)

and, extending to some of the higher order terms:

q2 = D1p2 +D2p1,1, (3.4b)
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q3 = D1p3 + 3D2p2,1 +D3p1,1,1, (3.4c)

leads to the general formula of Faà di Bruno type:

qn =
n∑
k=1

Dk
 ∑
π∈Πk

n

Bnpπ , (3.5)

 

where each index vector π corresponds to a ‘partition’ and Πk
n denotes the set of partitions of

n into exactly k parts. We adopt the arbitrary convention that the indices in each partition are
nonincreasing, as in the middle term of (3.4c). The Faà di Bruno coefficients Bπ are listed for
the first few nonempty partitions in table 1 and their combinatorial definition as multinomial
coefficients can be found in Abramowitz and Stegun (1972).

These formulas can be inverted systematically to obtain the Dn from all the pk and qk with
k ≤ n but, in order to express to resulting inverse formulas, it is convenient first to define the
modified nondimensional quantities,

q̂k =
qk
pk1

= Y k−1d
kY

dsk
dX

ds

−k
, (3.6)

( )
and

p̃k =
pk+1

pk+1
1

= Y k d
k+1X

dsk+1

(
dX

ds

)−(k+1)

. (3.7)

We also allow the index vector of the p̃ to include the null index, i.e., p̃≡ p̃0 = 1, that corresponds
to the single null partition. With these definitions, the first few of the inverse formulas can be
written explicitly:

D1 = q̂1p̃ (3.8a)

D2 = q̂2p̃− q̂1p̃1 (3.8b)

D3 = q̂3p̃− 3q̂2p̃1 + q̂1 (−p̃2 + 3p̃1,1) , (3.8c)

and the general formula given by:

Dn =
n−1∑
k=0

q̂n−k  ∑
π∈Πk

Cπ,np̃π , (3.9)

 

where the set of all partitions of n is Πn (including the null partition when n= 0), and the
coefficients Cπ,n are listed, for the first few n, in the same table 1.

When we compound the Dk to form various partition-associated products it becomes natural
to group into vectors those combinations that associate with partitions of the same n. Thus,
we define vectors:

D(1) = [D1]T (3.10a)

D(2) = [D2, D1,1]T (3.10b)

D(3) = [D3, D2,1, D1,1,1]T (3.10c)

D(4) = [D4, D3,1, D2,1, D2,1,1, D1,1,1,1]T (3.10d)

D(5) = [D5, D4,1, D3,2, D3,1,1, D2,2,1, D2,1,1,1, D1,1,1,1,1]T . (3.10e)
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In the practical application of this formalism that we develop in the next section to obtain
asymptotic series, we shall use the fact that the same nondimensional derivatives Dk can be
obtained from two or more parameters corresponding to the ‘s’ we have used here. We shall
particularly consider the case where the X(s) and Y (s) correspond to the smooth boundary
curve of the solution domain of the region in which we wish to solve the two-dimensional Laplace
equation with this boundary defining one of the potentials. But since the complex combination,
Z(z) =X(z) + iY (z) as a function of the complex z defines a conformal mapping between the
(X, Y ) solution domain and the infinite unit-width strip of z = x+ iy, then we can also think
of the boundary values X1(x) =X(x+ i) and Y1(x) = Y (x+ i) as being given as functions of
the alternative parameter, x.

4. Asymptotic series to estimate dX0/dx

If we can estimate the x-derivative of X0, we can easily integrate it numerically to obtain
X0(x) itself, which is all we need to imply the whole solution. With a shift of origin, we can
assume it is the derivative at x= 0 that we are trying to estimate, and we can therefore expand
the solution locally as a Taylor series (remembering that we can no longer invoke the mirror
symmetry assumption, though, with this shifted origin). In preparation for an asymptotic
analysis, we can assume that the coefficient of the mth derivative is of a smaller order than
unity by a factor λm−1. With this symbolic rescaling, the real Taylor series coefficients can
be taken to have order of magnitude ai ∼ 1 in the expansion in which the smallness of the
successive terms is indicated explicitly by the appropriate power of λ:

X0 = a1x+ λa2x
2/2 + λ2a3x

3/6 +O(λ3). (4.1)

It is algebraically convenient in the following derivations to define ratios:

ck =
ak+1

a1
k ≥ 0, (4.2)

so that (4.1) is equivalently written:

X0 = a1 x+ λc1x
2/2 + λ2c2x

3/6 +O(λ3) (4.3a)

≡ a1

∞∑
k=1

λk−1ck−1
xk

k!
. (4.3b)

[ ]

For the solution Z1 at the upper edge, where y = 1, we must use the fully complex-valued
powers of (x+i) to obtain the real (X1) and imaginary (Y1) parts of the complex answer. We
can express the kth derivative with respect to x in formulas of similar forms in the following
unified way, using binomial expansions of the components, x and i in the powers, (x+ i)k:

dkX1

dxk
= a1

[
λk−1ck−1R0 + λkckR1 + . . .

]
(4.4a)

dkY1

dxk
= a1

[
λkckQ1 + λk+1ck+1Q2 + . . .

]
, (4.4b)
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where Rk has for its first few examples,

R0 = 1 (4.5a)

R1 = x (4.5b)

R2 = −1

2
+
x2

2
(4.5c)

R3 = −x
2

+
x3

6
(4.5d)

R4 =
1

24
− x2

4
+
x4

24
, (4.5e)

or generally:

Rk =
1

k!

bk/2c∑
`=0

(−)`
k

2`
xk−2` (4.6)

( )
and Qk has for its first few examples,

Q0 = 0 (4.7a)

Q1 = 1 (4.7b)

Q2 = x (4.7c)

Q3 = −1

6
+
x2

6
(4.7d)

Q4 = −x
6

+
x3

6
, (4.7e)

or generally,

Qk =
1

k!

bk/2c∑
`=0

(−)`
(

k

2`+ 1

)
xk−2`−1. (4.8)

If we look only at the first three terms of the expansion for X1 itself (i.e., k = 0 in (4.4a)),
then

X1 = a1 x+ λc1 −1

2
+
x2

2
+O(λ2). (4.9)

[ ( )]
Then the offset x= x̂ needed to make X1 vanish can be made an expansion in powers of λ:

x̂= λx1 + λ2x2 + . . . , (4.10)

where we immediately see from (4.9) that, in order that the terms in λ vanish,

x1 =
c1

2
. (4.11)

More generally, if we use the partition-associated notation for vector indices that we introduced
in section 3, then including the next higher order term in the expansion for x̂ gives:

x̂= λ
c1

2
+ λ3 − c3

24
+
c2,1

4
− c1,1,1

8
+O(λ5), (4.12)

( )
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where, as a consequence of symmetry, only odd orders of λ appear in the general formal expan-
sion for x̂.

The combinations of the products of c that m
k appear in a term at order λ are those for

which the sum of the k indices equals m. In other words, the vector of combinations of products
of ck at each order λm can be deduced from the set of partitions of m, and it is convenient to
define such vectors c(m). The first few of these are given as follows (including the null-partition
case, c(0)):

c(0) = 1 (4.13a)

c(1) = λ[c1]T (4.13b)

c(2) = λ2[c2, c1,1]T (4.13c)

c(3) = λ3[c3, c2,1, c1,1,1]T (4.13d)

c(4) = λ4[c4, c3,1, c2,2, c2,1,1, c1,1,1,1]T (4.13e)

c(5) = λ5[c5, c4,1, c3,2, c3,1,1, c2,2,1, c2,1,1,1, c1,1,1,1,1]T . (4.13f)

We can use the notation to write,

x̂ = (
1

2
) · c(1) + (−1/24,+1/4,−1/8) · c(3) + . . .

=
∞∑
k=1

GT
2k−1 · c(2k−1), (4.14a)

for appropriate coefficients vectors, G2k−1.
ˆCorresponding to this offset x̂ that makes X1(x̂) = 0 the value Y1 of Y1 at that point is

found to be:

Ŷ1 = a1 1 + (−1

6
,

1

2
) · c(2) + (

1

120
,−1

8
, 0,

3

8
,−1

8
) · c(4) +O(λ6). (4.15)

[ ]
By equating powers of λ we can formally invert this expansion to obtain one for a1 in terms

ˆof Y1 and the components of the vectors c(k) for even k. The first few terms of this inverted
expansion can be written:

a1 = Ŷ1 1 + F T
(2) · c(2) + F T

(4) · c(4) +O(λ6), (4.16)
[ ]

where

F (2) =
1

6
,−1

2

T

(4.17a)

F (4) =

(
− 1

120
,

1

8
,

1

36
,−13

24
,

3

8

)T
(4.17b)

( )

ˆAlthough we already know Y1 (from the specification of the boundary curve) we still have some
work to do to get expressions for the components of the vectors c(k) in terms of quantities that
we can diagnose from the definition of the same boundary curve. We proceed by evaluating the
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x-derivatives, at x̂, of X1 and Y1 using (4.4a) and (4.4b) and applying the methods of section
3 to combine these derivatives into the nondimensionalized vectors D(k) of products of the

ˆ ˆderivatives of Y1 with respect to X1, which the boundary curve determines. We exemplify the
process explicitly only for the first few terms in the expansion in powers of λ, but higher order
terms can be obtained by a straightforward extension of the same methods, but with greater
labor, of course.

When we use the first few terms of x̂ to obtain the corresponding approximation for Rk and
Qk and plug these results into the expansion for dkX1/dx

k and dkY1/dx
k we find:

1

a1

dX1

dx
= 1 + (

1

2
,−1

2
) · c(2) +O(λ4) (4.18a)

1

a1

d2X̂1

dx2
=

[
1 · c(1) + (−1

2
,

1

2
, 0) · c(3)

]
+O(λ5) (4.18b)

1

a1

d3X̂1

dx3
= (1, 0) · c(2) +O(λ4) (4.18c)

1

a1

d4X̂1

dx4
= (1, 0, 0) · c(3) +O(λ5), (4.18d)

ˆ [ ]

where the higher order terms can be obtained, if needed, by a mechanical algebraic process.
ˆSimilarly for the derivatives of Y1:

1

a1

dŶ1

dx
= (1) · c(1) + (−1

6
,

1

2
, 0) · c(3) +O(λ5) (4.19a)

1

a1

d2Ŷ1

dx2
=

[
(1, 0) · c(2) + (−1

6
,

1

2
, 0, 0) · c(4)

]
+O(λ6) (4.19b)

1

a1

d3Ŷ1

dx3
= (1, 0, 0) · c(3) +O(λ5) (4.19c)

1

a1

d4Ŷ1

dx4
= (1, 0, 0, 0, 0) · c(5) +O(λ6). (4.19d)

[ ]

In order to apply the methods of section 3 to get derivatives of Y1 with respect to X1, we
need the powers of the inverse of dX1/dx at x̂. The leading terms are just:

ak1
dX̂1

dx

k

= 1 + −k
2
,
k

2
· c(2) +O(λ4). (4.20)

( ) [ ]
We now have the ingredients to construct the expansions, correct to order λ4, of D(2) and D(4),
which we can express in matrix form:[

D(2)

D(4)
=

M (2,2) M (2,4)

0 M (4,4)

c(2)

c(4)
+O(λ6), (4.21)

] [ ] [ ]
where,

M (2,2) =
1 −1
0 1

(4.22a)

[ ]
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ˆFigure 2. The approximate bicorn solutions obtained using the zeroth-order approxmation a1 = Y1 in
panel (a), compared to the corresponding improved solution of panel (b) that uses the approximation

(4.23) good to order λ2.

M (2,4) =
−1

6
7
6

5
6 −17

6 1
0 −1

3 0 2 −1
(4.22b)

M (4,4) =


1 −7 −4 25 −15
0 1 0 −4 3
0 0 1 −2 1
0 0 0 1 −1
0 0 0 0 1

 . (4.22c)

[ ]

This upper-triangular, or at least block-upper-triangular, matrix structure persists to higher
orders, allowing the inversion of it to each even degree in the formal parameter, λ. Thus, to
just second-order, we can now express the asymptotic expansion for a1:

a1 = Ŷ1 1 +HT
(2) ·D(2) +O(λ4), (4.23)

[ ]
and at fourth order:

a1 = Ŷ1 1 +HT
(2) ·D(2) +HT

(4) ·D(4) +O(λ6), (4.24)
[ ]

where the vectors of coefficients are defined recursively:

HT
(2) = F T

(2)M
−1
(2,2) (4.25a)

HT
(4) =

(
−HT

(2)M (2,4) + F T
(4)

)
M−1

(4,4), (4.25b)
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Figure 3. In this extreme example of a fat bicorn, constructed to make apprximation by asymtotic
mean very hard, we see that, in this case of the zeroth-order approximation, there is indeed a sizeable
mismatch between the edge of the solution and the prescribed boundary of the bicorn. The Z-plane
solution in its entirety is shown in panel(a), and an expanded view of a portion of it, to more clearly show
the mismatch, is provided in (b). Panel (c) shows the corresponding bicorn region itself, corresponding

to the views shown in the two panels of Fig. 2.

with corresponding generalizations of the recursion to higher orders if required. The numerical
coefficients for these first two vectors are:

H(2) = 1
6 −1

3

T
(4.26a)

H(4) =
[

7
360 − 2

45 − 1
30 − 2

15
1
5

]T
. (4.26b)

[ ]

Recalling the definitions of the derivative vectors D, the fourth order formula written out
explicitly becomes,

dX0

dx

∣∣∣∣
x=0

≡ a1 = Ŷ1 1 +
1

6
Ŷ1
d2Ŷ1

dX2
1

− 1

3

dŶ1

dX1

2

+
7

360
Ŷ 3

1

d4Ŷ1

dX4
1

− 2

45
Ŷ 2

1

d3Ŷ1

dX3
1

dŶ1

dX1

− 1

30
Ŷ 2

1

(
d2Ŷ1

dX2
1

)2

− 2

15
Ŷ1
d2Ŷ1

dX2
1

(
dŶ1

dX1

)2

+
1

5

(
dŶ1

dX1

)4
+O(λ6). (4.27)

 ( )

As suggested in the next section, it is unlikely that any further practical numerical benefit
would result from extending the asymptotic expansion to higher orders except in very special
cases; nevertheless, we list these, and the next two orders of the H coefficients, together with
their associated partitions, in Table 2 (although we don’t attempt to give algebraic details for
these higher order extensions).
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Figure 4. Like Fig. 3 except with the use of the first additional asymptotic approximation terms of
(4.23).

5. Idealized examples

If we take the function,
q = 1− [1− (1− p)α]1/α (5.1)

for some exponent α greater than 1, then the region for q below the graph of this function in a
cartesian (p, q) plot for p ∈ [0, 1] defines an idealized and simple bicorn region. if we take for our
exponent the intermediate value, α= 4, the reconstructed conformal mapping result obtained
for the asymptotic approximation correct to order λ2 is already excellent. In Fig. 2 is shown
the zeroth-order estimate using dX0(0)/dx= a1 ≈ Ŷ1 in panel (a), where a small mismatch can
be seen between the solution edge and the defined boundary curve (black). The correction to
order λ2 is shown in right panel, (b).

In order to see any further effect of the higher-order correction, we need to consider a more
extreme test of the method, which is provided by the choice of the exponent, α= 1.2. Although
the shape of this bicorn no longer resembles anything we would expect to see in a conformal
overset grid configuration, it more clearly displays the effects of the higher orders of expansion.
In Fig. 3 we show the zeroth-order solution for the Z-plane region in panel (a) and, a magnified
portion of the same solution, in panel (b). The bicorn solution is now shown in panel (c), and
the boundary mismatch is very obvious.

When we apply the asymptotic correction (4.23) accurate to order λ2 the improvement,
shown in Fig. 4 in the same style, is evident, but a mismatch is still visible. Finally, with the
fully order-λ4-accurate approximation that uses the additional terms of (4.24), we see in Fig.
5 that the resulting mismatch between the solution edge and the prescribed boundary curve is
hardly visible at all. We need to be aware, though, that the expansion in even powers of λ that
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Figure 5. Like Figs. 3 and 4 but with the additional terms in the asymptotic series given by (4.24) (or
equivalently, by (4.27)).

we are using is asymptotic, and not convergent; extending the series to higher powers might not
necessarily always reduce the residual error, and the numerical evaluation of the higher order
derivatives of the boundary curve to a sufficient accuracy necessitated by such higher order
asymptotic expansions becomes extremely difficult in practice.

6. Discussion and Conclusion

It is important to emphasize that the construction of the blending weights, although seem-
ingly involving a complicated sequence of computations, needs only to be done once – at the
same time that the grid itself is constructed. The blending weights at the two overlapping
grids in a representative bicorn region are then stored for use over the duration of the forecast
run, and using these complementary weights is a relatively trivial matter of multiplying each
of the pair of fields or fluxes, interpolating, summing, and possibly instituting some form of
constraint-restoration to ensure conservations (this will be described more fully in Purser and
Rančić , 2020).

The fact that the weighting function, described in the Introduction as an incomplete beta
function of y, has very slack gradients at both sides (y = 0 and y = 1) of the bicorn region,
means that the remaining positional discrepancy at of the solution edge at y = 1 translates
into a very much tinier discrepancy in the weight W itself. Thus, although it is not too
difficult to employ the Fourier machinery iteratively to refine our trivially-computed asymptotic
approximate solution, it is almost certainly not worth the effort and extra compuational time
in practice.
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TABLE 2. Coefficients H up to order λ8

π H π H

2

1, 1

1
6

− 1
3

8

7, 1

6, 2

127
604800

1
315

53
18900

4 7
360

3, 1 − 2
45

5, 3 19−
4725

2, 2 − 1
30

4, 4 11−
3024

2, 1, 1 − 2
15

6, 1, 1 317
37800

1, 1, 1, 1 1
5

5, 2, 1

4, 3, 1

− 121
6300

− 167
1890

6 31
15120

5, 1 11
1260

4, 2, 2 − 149
2520

4, 2 1−
168

3, 3, 2 − 107
1260

3, 3 19−
1260

5, 1, 1, 1 8−
1575

4, 1, 1 9−
280

4, 2, 1, 1 97−
1260

3, 2, 1 − 19
126

3, 3, 1, 1 − 2
45

2, 2, 2 − 41
840

3, 2, 2, 1 − 11
315

3, 1, 1, 1 26
315

2, 2, 2, 2 37
2520

2, 2, 1, 1 13
70

4, 1, 1, 1, 1 11
252

2, 1, 1, 1, 1 19
210

3, 2, 1, 1, 1 121
315

1, 1, 1, 1, 1, 1 − 1
7

2, 2, 2, 1, 1

3, 1, 1, 1, 1, 1

2, 2, 1, 1, 1, 1

2, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1

443
1260

− 4
35

− 3
7

− 16
315

1
9

The problem we have addressed here, conformally mapping a given region to a parallel-sided
strip, also occurs (though usually in slightly more general form, without the one straight edge)
in the semigeostrophic theory of two-dimensional frontogenesis in an atmosphere of uniform po-
tential vorticity, as shown in the work of Hoskins (1971) and Hoskins and Bretherton (1972). It
seems very likely, therefore, that a minor generalization of the asymptotic technique described
here could be made to apply also to the problem of finding approximate semigeostrophic solu-
tions. We return to this analogy below.

The adaptation of the Phillips (1957) three-map overset configuration in which the pole-
centered grids are (conformal) polar-stereographic, and the equatorial grid is the (conformal)
Mercator, has two distinct annular overlap regions with four right-angular corners on only one
side of each overlap band. When we view this overlap from the Cartesian coordinate frame
of the polar grid, the edge of the overlap that remains smooth is simply the circle just inside
the square boundary of the polar grid, as shown in panel (a) of Fig. 6. In this case, the way
to transform away the right angles is to apply the Schwarz-Christoffel transformation from an
upper complex half-plane, z, with pre-images of the corners taken to be the points on the real
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(a)
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Figure 6. The case of the three-map Phillips (1957) style of fully overset grids involving a central cylin-
drical map sandwiched between polar-steareographic maps can have their two overlap regions equipped
with a solution to the Laplace equation from which we derive a smooth blending function as before.
From the square frame of one of the polar maps, the boundary of the equatorial map forms a circle just
inside, as shown in panel (a). This configuarion, when placed just above the real axis of a complex plane,
can be regarded as the image of the elliptic integral (6.1) from the complex z-plane configuration shown
in panel (b), where the singular pre-images of the four corners of the polar grid are indicated by the tall
vertical dashes cutting the real axis. In order to further transform the overlap region into one which is
suitable for Fourier anaylysis, we take the complex atan transformation to the complex w-plane where
the corresponding configuarion is shown in panel (c), and the expected four-wave periodicity is readily

seen.

√
axis, Z1 =−1/p, Z2 =−p, Z3 = +p and Z4 = +1/p, with p= 2− 1. This transformation:

q = C
Z

0

4∏
i=1

1

(t− Zi)1/2
dt= C

Z

0

1

[(t2 − p2)(t2 − 1/p2)]1/2
dt, (6.1)

∫ ∫
is essentially an ‘elliptic integral of the first kind’ (Whittaker and Watson, 1902). We find that
the pre-image of the circular inner boundary of the overlap maps to a large smooth loop in the
z plane, a portion of which is shown (in blue) in panel (b) of the figure. In order to make the
overlap conveniently cyclic for Fourier analysis, we can apply the further analytic (and therefore
conformal) transformation,

w = 2arctan(z), (6.2)
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Figure 7. A sketch of the configuration on the sphere of the boundary rectangles of the mutually
overlapping ‘Yin-Yang’ grids.

where the complex form of this function is employed. This results in the w-plane mapping of
the overlap shown in panel (c), and it is periodic in Real(w) with four identical waves spanning
the periodic interval [−π, π] of this mapping. Clearly, the solution of the Laplace equation by
the methods discussed in the previous sections of this note should present us with no difficulty
in this case.

A much more challenging problem arises when we consider how the Laplace equation might
be solved in the case of the Yin-Yang grid of Kageyama and Sato (2004), where two congruent
rectangular regions overlap in transverse orientations so that the boundary of one lies just inside
the rectangle of the other, mutually, as shown in the sketch of Fig. 7, where each is given a
margin sufficient to maintain a nonvanishing width of overlap all around. The image of the
boundary of one map (blue) is shown in the Cartesian frame of the other (red) in panel (a) of
Fig. 8. In this case the elliptic integral (6.1) is still valid, but the value of p that determines the
preimages of the corners needs to be found (by a separate suitable iteration, typically) to ensure
that the image is a rectangle of the correct aspect ratio. For a long rectangle, this places the
pre-images in closely clustered pairs, as we see in the panel (b) of this figure, and the result now
is that the pre-image of the inner boundary (blue) of the overlap possesses deep ‘notches’ where
the thickness of the z-plane overlap domain is reduced by orders of magnitude. The corners
of the overlap region are only removed on one edge of the overlap. Again, the application of
the further mapping using (6.2) to the complex w-plane makes the overlap region periodic,
(panel (c)) and therefore amenable to treatment by ordinary Fourier methods, but the angular
boundary curve makes the solution procedure much harder than in previous examples.

One approach to solving the Laplace equation in this example would be to estimate the
position of the median y = 1/2 contour of the potential spanning y = 0 on the ‘outer’ (red)
boundary, and y = 1 on the ‘inner’ angular (blue) boundary of the annular overlap. Then
solve the Laplace problem with this interim solution, and use the symmetry between the two
congruent domains to transform the symmetric image of this solution, originally for the y <
1/2 portion, into the corresponding image of the y > 1/2 portion, and record the integrated
mismatch of both components of the complex-valued solution of both versions of this median
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Figure 8. The case of the overlap region of the Yin-Yang grid, whose shape in the frame of one of the
conformal maps is the annular band bounded by the red rectangle on the outside an the image of the
congruent rectangle whose boundary (blue) is contained inside it, is shown in panel (a). The pre-image
of the elliptic integral with the correct choice of the parameter, p, for this aspect ratio leads to the
picture shown in panel (b). This is made periodic by the further transformation to the w-plane by the
application of the complex function (6.2) as before, but the difficulty of the angular boundary (the blue

curve) remains to be dealt with by a more involved procedure.

curve, as an integrated squared-distance cost function. Then we can minimize this mismatch
with respect to variations in the Fourier expansion coefficients that define our Laplace equation
solution, as well as with respect to the ‘modulus’, or period, of the solution. In this way, we
can avoid direct numerical involvement with the right-angles that remain on the y = 1 side of
the solution, and a consistent solution can be found when the mismatch becomes negligible.
Returning to the semigeostrophic analogy again, it would seem that this more general problem
of finding the conformal mapping to a constant-width annular strip bears some similarities,
computationally at least, to the problem of finding solutions in two-dimensional semigeostropic
theory that involve two stratified layers of different constant potential vorticities, one lying
above the other, which Hoskins and collaborators also studied in the context of a ‘stratosphere’
overlying a ‘troposphere’; in which case, it is necessary to match the locations of points along
the common interface, computed separately from the equations governing the solutions of the
two different air masses, which is analogous to the median-matching problem we have with the

19



Figure 9. An example of a conformal overset grid based on icosahedral geometry. The symmetry is
broken by the overlapping regions to what is known as “pyritohedral symmetry”.

Yin-Yang overlap.
Finally, we note that the Riemann surface conformal overset grid, or the traditional patterns

of overset grids, also have forms adapted to triangular meshes. As an example, Fig. 9 shows how
to modify a conformal icosahedral grid (with 12 vertex regions) to a corresponding Riemann-
surface conformal overset grid where the high symmetry (order 120) of the original icosahedron
is broken, by the necessity for oversets, to the lower ‘pyritohedral’ symmetry (of order 24).
Again, the conformal overset version of the icosahedral grid eliminates the strong singularities
that the unmodified conformal icosahedral grid possesses. One small difference from the cubic
case is that the icosahedral bicorn regions have corners making an internal angle of 120◦ instead
of 90◦, so the necessary exponent in the complex power transformation needed to remove them
is 3/2 instead of 2.
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