
NOAA Technical Memorandum NMFS-F/NEC-21

JUN 15 1983

MARMAP Plankton Survey Manual

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Center Woods Hole, Massachusetts

NOAA TECHNICAL MEMORANDUM NMFS-F/NEC

The Northeast Fisheries Center (NEFC) conducts targeted research to provide needed information for fisheries resource and habitat managers in the Northwest Atlantic. The NEFC operates facilities in Gloucester and Woods Hole, Massachusetts; Narragansett, Rhode Island; Milford, Connecticut; Sandy Hook, New Jersey; and Oxford, Maryland. It also administers the NMFS's National Systematics Laboratory in Washington, D.C., and Atlantic Environmental Group in Narragansett, Rhode Island. This targeted research focuses on: (1) population sizes and replenishment rates of fisheries resources, (2) environmental quality and biological health of fisheries habitats, and (3) commercial aquaculture and commercial/recreational utilization of seafood species. Users of this information include federal and state agencies, private industry, and the general public.

The real-time need for this information by decision makers often precludes publication in formal journals. The NOAA Technical Memorandum NMFS-F/NEC series identifies informal documents prepared by NEFC authors or similar material prepared by others for NEFC purposes, where formal review and editorial processing are not appropriate or feasible. However, documents within this series reflect sound professional work and can be referenced in formal journals. Any use of trade names within this series does not imply endorsement.

Copies of this and other *NOAA Technical Memorandums* are available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161. Recent issues of *NOAA Technical Memorandum NMFS-F/NEC* are noted below:

- 7. Methodology for Identification and Analysis of Fishery Management Options. By Brian J. Rothschild, Richard C. Hennemuth, Jacob J. Dykstra, Leo C. Murphy, Jr., John C. Bryson, and James D. Ackert. December 1980. v + 10 p., 5 figs., 1 app. NTIS Access. No. PB81-200834.
- 8. Phytoplankton Community Structure in Northeastern Coastal Waters of the United States. I. October 1978. By Harold G. Marshall and Myra S. Cohn. August 1981. Revised and reprinted October 1981. v + 14 p., 4 figs., 1 app. NTIS Access. No. PB82-124561.
- 9. Phytoplankton Community Structure in Northeastern Coastal Waters of the United States. II. November 1978. By Harold G. Marshall and Myra S. Cohn. August 1981. Revised and reprinted October 1981. v + 14 p., 3 figs., 1 app. NTIS Access. No. PB82-124579.
- 10. Annual NEMP Report on the Health of the Northeast Coastal Waters of the United States, 1980. Northeast Monitoring Program Report No. NEMP IV 81 A-H 0043. August 1981. Revised and reprinted January 1982. xxi + 79 p., 23 figs., 4 tables, 5 app. NTIS Access. No. PB82-124587.

(continued on inside back cover)

NOAA Technical Memorandum NMFS-F/NEC-21

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information; and has not received complete formal review, editorial control, or detailed editing.

MARMAP Plankton Survey Manual

Jack W. Jossi¹ and Robert R. Marak²

¹Atlantic Environmental Group, National Marine Fisheries Serv., Narragansett, RI 02882 ²Narragansett Lab., National Marine Fisheries Serv., Narragansett, RI 02882

U.S. DEPARTMENT OF COMMERCE

Malcolm Baldridge, Secretary

National Oceanic and Atmospheric Administration

John V. Byrne, Administrator

National Marine Fisheries Service

William G. Gordon, Assistant Administrator for Fisheries

Northeast Fisheries Center

Woods Hole, Massachusetts

March 1983

Page Page
2.3.2.7 Time-Depth Recorder
2.3.2.8 Performance of Flowmeters
2.3.2.9 Rinsing Net-Removing Sample
2.3.2.10 Preservation of Sample
2.3.2.11 Specimen Jar Labels
2.3.2.12 MARMAP Zooplankton Sample Log
2.3.2.13 Net Maintenance
2.3.3 MARMAP Neuston Sampler
2.3.3.1 Surface Tow
2.3.3.2 Recording of Tow Times
2.3.3.3 Towing Speed
2.3.3.4 Towing Procedure
2.3.3.5 Rinsing Net-Removing Sample
2.3.3.6 Preservation of Sample
2.3.3.7 Specimen Jar Labels
2.3.3.8 Filling Out Log Sheets
2.3.4 Hardy Continuous Plankton Recorder 38
2.3.4.1 Towing Instructions
2.3.4.2 Instructions for Unloading on Completion of Tow 41
2.3.4.2.1 Removal of inside mechanism
2.3.4.2.2 Marking the silk
2.3.4.2.3 Addition of formalin to tank
2.3.4.2.4 Replacement of inside mechanism
2.3.4.3 MARMAP Ship of Opportunity Log
2.3.4.4 Source of Further Information
2.3.5 Undulating Oceanographic Recorder 50

	Page
2.3.5.1 Towing Instructions	50
2.3.5.2 Additional Information about the Undulating Oceanographic	
Recorder	50
2.3.6 Further Details on the Rationale Accounting for Survey I	
Methods	53
2.4 AT-SEA QUALITY CONTROL	53
2.4.1 Greenwich Mean Time and Greenwich Mean Date	53
2.4.2 Units for Data Recording	53
2.4.3 Station Position	54
2.4.4 Review of Log Sheets	54
2.4.5 Scientific Party Chief's Responsibilities	54
3. LABORATORY PROCESSING	55
3.1 INTRODUCTION	55
3.2 INITIAL QUALITY CONTROL OF DATA AND SAMPLES	58
3.2.1 Divergent Data and Consistency	58
3.2.2 <u>The Archivist</u>	58
3.2.3 MARMAP Sample History Log	63
3.3 PROCESSING OF CONTAMINANTS	67
3.3.1 Tar Contaminants Determination	67
3.3.1.1 Separation of Tar Contaminants	67
3.3.1.2 Drying and Weighing Tar Balls	68
3.3.1.3 MARMAP Tar and Plastics Log	68
3.3.2 Plastics Contaminants Determination	74
3.3.2.1 Separation of Plastics Contaminants	74
3.3.2.2 Categorizing Plastics	74
3.3.2.3 Drying and Weighing Plastics	74
3.3.2.4 Filling Out Log Sheet	75

-V1-	Page
3.4 PROCESSING FOR BIOMASS	75
3.4.1 Displacement Volume Determination	75
3.4.1.1 Removal of Non-Planktonics	76
3.4.1.2 Separation of "Small" and "Large" Organisms	76
3.4.1.3 Transfer of Sample to Graduated Cylinder	76
3.4.1.4 Funnel and Draining Cone	7 7
3.4.1.5 Standardization of Draining	77
3.4.1.6 Calculations	77
3.4.1.7 MARMAP Zooplankton Volume Log	77
3.4.1.8 Displacement Volume of Individual Specimens	81
3.4.2 Total Carbon Biomass Determination	83
3.4.2.1 At-Sea Procedure	84
3.4.2.2 On-Shore Procedure	84
3.4.2.3 Organic Carbon	86
3.4.2.4 Utilizable Carbon	87
3.4.2.5 MARMAP Carbon Biomass Log	87
3.4.3 Dry Weight Biomass Determination	90
3.4.3.1 At-Sea Procedure	90
3.4.3.2 On-Shore Procedure	91
3.4.3.3 Ash-Free Dry Weight	91
3.4.3.4 MARMAP Dry Weight Biomass Log	92
3.5 PROCESSING OF ICHTHYOPLANKTON	96
3.5.1 Sorting-Density Gradient Fractionation Method	96
3.5.2 Sorting-Traditional Method	97
3.5.2.1 Procedure for Sorting Eggs and Larvae	97
3.5.2.2 MARMAP Plankton Sorter's Worksheet	99
3.5.2.3 Varification of Couting	102
3.5.2.4 Identification during Sorting	102
3.5.2.5 MARMAP Ichthyoplankton Sorting Record	

	rage
3.5.2.6 MARMAP Vial Labels	106
3.5.2.7 Vial Storage	107
3.5.2.8 Ichthyoplankton Displacement Volume	107
3.5.2.9 Plastics Removal	107
3.5.2.10 Rebottle Invertebrates	107
3.5.3 Identification of Fish Eggs and Larvae	107
3.5.3.1 Fish Larvae	109
3.5.3.1.1 Naming Convention	109
3.5.3.1.2 Enumeration and Measuring	110
3.5.3.1.3 MARMAP Ichthyoplankton Data Record-Larvae	112
3.5.3.2 Fish Eggs	116
3.5.3.2.1 Naming Convention	117
3.5.3.2.2 Measuring	117
3.5.3.2.3 Staging	117
3.5.3.2.4 MARMAP Ichthyoplankton Data Record-Eggs	118
3.5.3.2.5 Further Information about Fish Eggs	127
3.6 PROCESSING INVERTEBRATE ZOOPLANKTON	128
3.6.1 <u>Aliquoting</u>	128
3.6.1.1 Folsom Plankton Splitter	129
3.6.1.2 Bourne Plankton Splitter	129
3.6.1.3 Splitting Procedure	129
3.6.2 Sorting-Automated Methods	133
3.6.3 Sorting-Traditional Methods	133
3.6.3.1 Major Taxa	133
3.6.4 Identification of Zooplankton	135
3.6.4.1 Naming Convention	135
3.6.4.2 Staging, Measuring, and Sexing	136
3.6.4.3 Labelling	136
3.6.4.4 MARMAP Zooplankton Data Log	136

-viii-	Page
3.7 REFERENCE COLLECTION	146
3.8 CURATING	146
4. ACKNOWLEDGMENTS	147
5. REFERENCES CITED	148
6. APPENDIX I - SPECIFICATIONS FOR MARMAP DATA RECORD TYPES	154
6.1 INTRODUCTION	154
6.2 RECORD TYPES	154 154
6.2.1 Master Station Data	155
6.2.1.1 Specifications	155
6.2.1.2 Comments	158
6.2.2 Bongo Net Tow Data	
6.2.2.1 Specifications	161
6.2.2.2 Comments	161
6.2.3 Neuston Net Tow Data	165
6.2.3.1 Specifications	168
6.2.3.2 Comments	168
6.2.4 Ship of Opportunity Data	171
6.2.4.1 Specifications	173
6.2.4.2 Comments	173
6.2.5 Sample History Data	176
6.2.5.1 Specifications	179
6.2.5.2 Comments	179
6.2.6 Tar and Plastics Data	181
6.2.6.1 Specifications	182
6.2.6.2 Comments	182
6.2.7 Zooplankton Displacement Volume Data	184
6.2.7.1 Specifications	86
6.2.7.2 Comments	86
	O'A

-ix-	Page
6.2.8 Carbon Biomass Data	191
6.2.8.1 Specifications	191
6.2.8.2 Comments	193
6.2.9 Dry Weight Biomass Data	195
6.2.9.1 Specifications	195
6.2.9.2 Comments	197
6.2.10 Plankton Sorter's Worksheet	199
6.2.10.1 Specifications	199
6.2.10.2 Comments	202
6.2.ll Ichthyoplankton Sorting Record	203
6.2.11.1 Specifications	203
6.2.11.2 Comments	206
6.2.12 Ichthyoplankton Larvae Data	207
6.2.12.1 Specifications	207
6.2.12.2 Comments	211
6.2.13 Ichthyoplankton Egg Data	221
6.2.13.1 Specifications	221
6.2.13.2 Comments	225
6.2.14 Zooplankton Data	234
6.2.14.1 Specifications	234
6.2.14.2 Comments	236
7. APPENDIX II - CALCULATIONS USED FOR MARMAP SURVEY I DATA	244
7.1 CABLE CAPACITY OF A WINCH DRUM	244
7.2 RATIO OF NETTING APERTURE TO MOUTH AREA FOR A PLANKTON	
NET	246
7.2.1 MARMAP Bongo Net	246
7.2.2 MARMAP Neuston Net	246

	Page
7.3 AMOUNT OF WIRE OUT FOR DESIRED MAXIMUM TOW DEPTH	247
7.3.1 General Formula	247
7.3.2 61 cm Bongo Array Formula	247
7.4 MAXIMUM DEPTH SAMPLED FOR A 61 CM BONGO ARRAY	248
7.4.1 Measured Depth from Bathykymograph	24 8
7.4.2 Cosine of Average Arctangent Method	2 48
7.4.3 Straight Cosine Law	248
7.4.4 Regression Equation	249
7.5 SAMPLER DESCENT OR ASCENT RATE FOR A DOUBLE OBLIQUE TOW	249
7.6 FORMALIN CONCENTRATION	249
7.7 FLOWMETER CALIBRATION	250
7.8 VOLUME OF WATER FILTERED	250
7.8.1 Standard MARMAP Neuston Net	250
7.8.2 Circular Mouth Net for Water Column Sampling,	
e.g., Bongo	251
7.8.2.1 All Data Available	251
7.8.2.2 Current Flowmeter Calibrations Not Available	251
7.8.2.3 Flowmeters Lost or Malfunctional	252
7.9 STANDARD HAUL FACTOR	253
7.9.1 <u>Surface Tows</u>	253
7.9.1.1 Factor for Value/1000 m ²	253
7.9.1.2 Factor for Value/1000 m ³	254
7.9.2 Water Column Tows	254
7.9.2.1 Factor for Value/10 m ²	254
7.9.2.2 Factor for Value/100 m ³	255
7.10 NORMALIZED ABUNDANCE OF ORGANISMS	255
7.10.1 Total Organisms	255
7.10.2 Organisms of Particular Length, Stage, etc.	255

-			Page
7.11 NO	RMAL I ZED	CONCENTRATION OF TAR OR PLASTIC	256
7.12 NO	RMALIZED	ZOOPLANKTON DISPLACEMENT VOLUME	256
7.13 NO	RMALIZED	DRY WEIGHT BIOMASS	256
7.14 NO	RMALIZED	ASH-FREE DRY WEIGHT BIOMASS	257
7.15 NO	RMALIZED	CARBON BIOMASS	258

LIST OF FIGURES

Figur Numbe		Page
2.1	The MARMAP Master Station Record	4a
2.2	Basic Cloud Types	7
2.3	Arrangement of MARMAP Bongo Samplers on Tow Wire	
	(after Posgay and Marak, 1980)	15
2.4	Cod end beaker for the MARMAP 61 cm Bongo net	17
2.5	Graph of amount of wire out to achieve desired	
	sampling depth for a standard MARMAP Bongo array	19
2.6	Examples of acceptable and unacceptable tow profiles	
	for double oblique MARMAP Bongo tows	22
2.7	MARMAP specimen jar labels	28
2.8	The MARMAP Zooplankton Sample Log	30
2.9	The MARMAP Neuston Sampler	36
2.10	Simplified diagrams of the Hardy Continuous	
	Plankton Recorder	40
2.11	Diagram for attaching towing wire to warping capstan	42
2.12	Diagram for removing and replacing Hardy Continuous	
	Plankton Recorder internal mechanism	43
2.13	Diagram for removing Hardy Continuous Plankton	
	Recorder storage spool	44
2.14	The MARMAP Ship of Opportunity Log	47
2.15	The Undulating Oceanographic Recorder	51
3.1	Sample and data flow for MARMAP ichthyoplankton	
	analyses	56

LIST OF FIGURES (cont'd)

Figur Numbe		Page
3.2	Sample and data flow for MARMAP zooplankton analyses	57
3.3	The MARMAP Station Activities Summary	59
3.4	The MARMAP Net Tow Report	60
3.5	The MARMAP Station Position Plot	62
3.6	The MARMAP Sample History Log	64
3.7	The IOC/WMO/IGOSS Tar Ball Log	69
3.8	Output of the MARMAP Information System program TARREP .	70
3.9	The MARMAP Tar and Plastics Log	72
3.10	The MARMAP Zooplankton Volume Log	78
3.11	A modification of the Tashiro-Hebard plankton	
:	volume gauge	82
3.12	Sample flow for dry weight and carbon biomass	
	determinations	85
3.13	The MARMAP Carbon Biomass Log	88
3.14	The MARMAP Dry Weight Biomass Log	93
3.15	The MARMAP Plankton Sorter's Worksheet	100
3.16	The MARMAP Ichthyoplankton Sorting Record	103
3.17	MARMAP Specimen Vial Labels	108
3.18	Examples of standard length larval fish measurements	711
3.19	The MARMAP Ichthyoplankton Data RecordLarvae	113
3.20	Fish egg development stages (from Marak and	
	Colton, 1961)	119
3.21	The MARMAP Icythyoplankton Data RecordEggs	120

LIST OF FIGURES (cont'd)

Figure Number	Title of Figure	Page
3.22	The Folsom Plankton Sample Splitter	130
3.23	The Bourne Plankton Sample Splitter	131
3.24	Standard MARMAP length measurements for various	
÷	taxa	137
3.25	The MARMAP Zooplankton Data Log	139
7.1	Winch drum dimensions necessary when calculating	
	drum cable capacity	245

LIST OF TABLES

Table Number	Title of Table	Page
2.1	Draining pan apertures to be used with various	
	collecting nets	24
2.2	Milliliters of concentrated formalin added to	
	sample jars for various concentrations	26
2.3	Principal features of the Mark 2 Undulating	
	Oceanographic Recorder	52

1. INTRODUCTION

The Marine Resources Monitoring, Assessment, and Prediction (MARMAP) program is a National Marine Fisheries Service program providing information in support of marine fishery resources management. MARMAP encompasses the collection and analysis of data to provide basic information on the composition, location, abundance, and condition of the commercial and recreational marine fishery resources of the United States (NMFS 1971 and 1973; TRW 1973a and 1973 b).

The principal elements of MARMAP include resource surveys, analyses of commercial and recreational fish catches and the environment of fish stocks, (fishery oceanography). Each of these elements is important for fisheries resource assessment. Data analysis tasks combine the results of surveys, catch statistics, biometric data (age, growth, fecundity, recruitment, and mortality rates) plus information on environmental and food chain conditions to produce updated stock assessments. MARMAP is presently being conducted from each of four strategically located NMFS Fisheries Centers headquartered at Woods Hole, Massachusetts; Miami, Florida where it is called SEAMAP for Southeastern Area Monitory Assessment and Prediction Program; La Jolla, California; and Seattle, Washington.

Resource Surveys--Three types of MARMAP surveys are conducted. The first (Survey I--Ichthyoplankton) assesses planktonic eggs and larvae of all fish species, pelagic and demersal, as well as other zooplankton which can be sampled with plankton nets. These survey operations have been conducted cooperatively in the Atlantic with the U.S.S.R., Poland, France, Canada, the Federal Republic of Germany, and the Democratic Republic of Germany and in the Pacific with the U.S.S.R., Mexico and Japan. Surveys are also conducted jointly with several state and private research institutions. A second type of survey (Survey II--Groundfish) focuses on the distribution and abundance of groundfish and shellfish species which live at or near the bottom when they

reach harvestable size (e.g. cod, flounder, hake, scallop, lobster, crab, and shrimp). Bottom survey operations are conducted with ICNAF (now NAFO) nations in the northwest Atlantic from Greenland to Cape Hatteras; under contract with the state of South Carolina from Cape Hatteras to the Florida Keys; in the Mississippi delta region; and in the northeast Pacific off California, Oregon, Washington, Alaska, and in the East Bering Sea. A third type of survey (Survey III) Pelagic Fish) assesses species that live off the bottom (salmon, herring, mackerel tuna, squid, menhaden, and others). Surveys of pelagic fish pose special problems, the application of hydroacoustic and remote sensing techniques.

A high degree of uniformity and standardization in Survey I operations is essential to achievement of MARMAP objectives. Every effort must be made to insure data comparability. This document specifies procedures for the at-sea collection and laboratory analyses of MARMAP Survey I data.

The reader should also consult the following two manuscripts: "Collecting and processing data on fish eggs and larvae in the California Current region" by Kramer, Kalin, Stevens, and Thrailkill; and "Standard techniques for pelagic fish egg and-larva surveys", by Smith and Richardson (see Section 5 for full citations), which were important to the development of this manual.

Additional details of the MARMAP Program may be obtained from the U.S. Department of Commerce, NOAA/NMFS, Woods Hole, Massachusetts.

2. AT-SEA DATA COLLECTION

2.1 INTRODUCTION

This section contains specifications and procedures for the at-sea acquisition of standardized MARMAP Survey I data. Log forms for the recording of data are included. Techniques for the quality control of all data are presented. Survey I methodology is described separately from that of Surveys II and III. In practice, however, these surveys are conducted simultaneously

whenever possible.

Certain specifications for the recording of observed data for the cruise in general are also given. These specifications are based on considerable experience in data acquisition and a long-term commitment to quality control. Deviations from these methods must be accompanied by thorough descriptions of methods and quantitative units employed.

NOTE: The log forms in this document are presented as a guide to those intending to do MARMAP Survey I.

Researchers may find log forms of a different format more useful for their particular cases. However, regardless of the log form used, all the individual data fields mentioned herein must be logged for analyses required by MARMAP.

Considerable duplication can be found in the logging instructions particularly for coded items. This was deliberate to permit each section to be complete in itself and to be easily extracted and used separately from the Manual.

Logs have been reduced for inclusion in this manual. Actual sizes are $8\frac{1}{2}$ " X 11" or 14" with data entry blocks $\frac{1}{4}$ " high.

2.2 THE MARMAP STATION

A MARMAP station is defined as any event from which data result that can be identified by time, date and position. It has, for most routine operations, one position but may involve a number of activities. Stations are numbered consecutively beginning with the first station of a cruise. The number assignment is made at the time of station occupation, not prior to the cruise. The latter practice does not provide for the unforeseen but sometimes necessary addition of stations and creates later difficulties and confusion during data processing and analysis. The policy of numbering bathythermograph (BT) lowerings

separately or not numbering between stations BT's is incompatible with a data base management approach. Therefore, BT lowerings should be considered a station and be assigned a station number. Underway observations which can be identified by a single position (latitude and longitude), e.g., bird or marine mammal observations, also should be assigned a station number. Data collection which involves multiple positions, e.g., drift buoy current measurements, should be assigned a station number and station position at the beginning of the collection, with multiple position data included with the data of the experiment—not the data of the station.

In order that the various types of data resulting from a station could subsequently be efficiently integrated and compared for ecological as well as quality control analyses, this integrated concept must be in evidence during all steps from data capture through data processing, and later analysis. A "master" station log containing information on the time and place of the station, the conditions existing there, and the types of experiments conducted, is the first requisite for conforming to this concept. One of these logs must be prepared for each numbered station. Logging may be done by the ship's bridge personnel to achieve uniformity at the very outset. In any case, this "master" station log is the only log sheet which lists the station position—this is done deliberately to prevent the proliferation of divergent data. Following each cruise these logs are used to produce an accepted list of station positions for the voyage. This list is made promptly available to all who are to be involved in the analyses of cruise data. Specifications for master station data are given in Section 6, Appendix I.

2.2.1 MARMAP Master Station Record

Figure 2.1 shows an example of a master station log, the MARMAP Master

MARMAP MASTER STATION RECORD

	OPERATIONAL UNIT	(MSR)	
	Vessel	Cruise —	
80)	Station ARRIVAL DATE (GMT) Latitude Number D D M M Y Y D D M M H D		ATR TEMP. SURFACE CLOUD WAVE (°C) TEMP (°C) TYP AMT (m)
CORD (MSR) FORM MSR (10/80)	CHECK TYPE OF OBSERVATION TIME (ONT) MBT XBT STD HYDRO - 1.7 L NISKIN HYDRO - 50 L NISKIN ROSETTE SAMPLER NUTRIENTS OXYGEN PLANT PIGMENT PLANT PRODUCTIVITY BONGO 61 cm	demarks, Damage, or Loss:	
STATION RE	UOR		
MARMAP MASTER			
MAM	Recorded by: Re	eviewed by:	

Station Record (MSR). Instructions for completion of the log form are presented below:

MARMAP Master Station Record (Form MSR, 10/80)

 $\underline{\text{NOTE}}$: In the event that data are not available due to equipment malfunction or other cause, enter an \underline{X} in the appropriate space on the log, and give reason under "Remarks" area.

Operational Unit Name of institution preparing this log, e.g., ZSOP, SWFC, U.S. Coast Guard.

<u>Vessel</u> The full name of the vessel making the cruise.

Cruise

The last two digits of the year of the vessel's cruise,
followed by a hyphen and the consecutive number of the
voyage of that vessel in that year.

Station Number The number of the station assigned consecutively beginning with the first station of the cruise.

Arrival Date Greenwich date (day-month-year) of the arrival on station.

<u>Latitude</u> The latitude of the station to the nearest whole degree

and whole minute north or south.

Longitude The longitude of the station to the nearest whole degree and whole minute east or west.

<u>Position Check</u> Enter initials after having checked acceptability of

By: position with bridge.

Arrival Time The Greenwich Mean Time of arrival on station.

Bottom Depth Depth to the bottom at this station to the nearest whole

meter.

<u>Wind Speed</u> Wind speed (sustained) at arrival on station to the nearest

whole knot.

Wind Direction

Wind direction at arrival on station to the nearest whole degree, magnetic or true.

NOTE: Under the "Remarks" section, record any significant wind speed and/or direction deviations occurring subsequent to those existing at station arrival time.

If readings are taken while the vessel is dead in the water, the wind direction has to be corrected for the vessel heading. If the vessel is underway both the speed and direction of the wind have to be corrected using a wind vector computer, e.g., Felsenthal Instruments.

Air Temp.

Air temperature (dry bulb) at arrival on station, to the nearest 0.1 degree Centigrade.

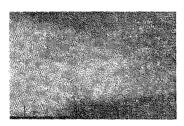
Surface Temp.

Temperature of the surface water at this station to the nearest 0.1 degree Centigrade.

Cloud Cover Type

Dominant cloud type present at arrival on station entered according to the table below and Figure 2.2.

	IGHT GROUP height to base)	CLOUD TYPE	ENTER .	٠
Hi	gh Clouds	Cirrus	0	-
(1	6500-45000 ft)	Cirrocumulus	1	
		Cirrostratus	2	**
Mi	ddle Clouds	Altocumulus	3	
(6	500-23000 ft)	Altostratus	4	
Lo	w Clouds	Nimbostratus	5	
(0	-6500 ft)	Stratocumulus	6	


Trade names referred to in this manuscript do not imply endorsement of commercial products.

CIRRUS

CIRROCUMULUS

CIRROSTRATUS

ALTOCUMULUS

ALTOSTRATUS

Low, dark, shapeless cloud tayer, usually nearly uniform, but sometimes with ragged, wet looking bases.

Nimbostratus is the typical raincloud. The precipitation which falls from this cloud is steady or intermittent, but not showery.

NIMBOSTRATUS

STRATOCUMULUS

STRATUS

CUMULUS

CUMULONIMBUS

Figure 2.2 Basic Cloud Types (For more details see: Cloud Code Chart, U.S. Dept of Commerce - NOAA, National Weather Service, WS TA B-0-20, Revised 9/72.)

Stratus Cumulus Cumulonimbus Cloud not visible owing to darkness, fog or other analogous phenomena

Cloud Cover Amount

Amount of celestial dome covered with clouds to the nearest OKTA (1/8) entered according to the list below:

	CLOUD AMOUNT (OKTAS)		
	0	0	
	1 OKTA or less, but not zero	1	
	2 OKTAS	2	
	3 OKTAS	3	
	4 OKTAS	4	
	5 OKTAS	5	
	6 OKTAS	6	
	7 OKTAS	7	
	8 OKTAS	8	
	Sky obscured, or cloud amount c	annot	
	be estimated.	9	
<u>Wave Height</u>	The vertical distance between t	rough and crest of local	
	wind generated waves, to the nearest 0.1 meter.		
Type of Observa-	Enter a check mark in front of	the type of observation(s)	
	made at this station.		
Type of Observa-	The Greenwich Mean Time of the	beginning and ending of any	

Type of Observa-

tion Start Time type of observation at this station.

and End Time

Other Types of The types and Greenwich Mean Times for observations not Observations preprinted.

Remarks, Damage, Enter any damage or loss of gear, and any other information

or Loss useful to the interpretation of the data recorded on this

log.

Recorded By Name of individual filling out the log.

Reviewed By Name of individual reviewing the log.

2.3 MARMAP SURVEY I (ICHTHYOPLANKTON)

2.3.1 Platforms and Equipment

2.3.1.1 Vessels

st

Generally, vessels utilized for these operations will be in the 30 to 60 meter (100 to 200 foot) length category. For example, the average length of an NMFS fisheries research vessel is 46 meters (151 feet). For inshore operations, a minimum length of 18 meters (60 feet) is usually necessary; however, small vessels may be acceptable under certain circumstances and provided that they can meet other Survey I requirements.

Minimum functional requirements and performance specifications for Survey I vessels are provided below.

2.3.1.1.1 Speed and maneuverability

The vessel shall have requisite sensitivity and response in speed adjustments to maintain a constant wire angle (measured from the vertical) of $47^{\circ} \pm 5^{\circ}$ for up to thirty minutes during the Bongo tows. The vessel shall have the capability of maintaining a constant selected speed between 1.0 and 2.0 knots, with variations about the constant selected speed not to exceed \pm 0.25 knots.

NOTE: The speed and maneuverability requirement is a consequence of the more specific requirements that

the Bongo net shall sample equal volumes of water at all depths between the surface and 200 meters; that the speed of the net through the water shall be such that plankton avoidance and extrusion and sample damage are minimized; and that comparable data result to support the long term, standardized monitoring objectives of MARMAP.

In addition, the vessel must be capable of maintaining a minimum speed of 8 knots during transit for sustained periods amounting to several days.

NOTE: When arranging for vessel use by charter, preference will be given to qualified vessels capable of higher transit speed (>8 knots) in order that cost savings may be realized through reduction of transit time.

Each vessel shall be sufficiently instrumented so that its speed relative to the water may be determined to within \pm 0.25 knots.

2.3.1.1.2 Range and endurance

我 然為你的你們們們所有 為 為 為 為

Desired minimum endurance for Survey I vessels is 20 days at sea. Desired minimum range capability is 7450 km (4000 nm).

NOTE: Smaller vessels of more limited range and endurance may be used for conduct of Survey I activities nearer shore. Providing these vessels can meet other requirements, acceptable minimum range and endurance would be 1860 km (1000 nm) and 7 days at sea.

2.3.1.1.3 Deck area

Deck area for deployment and handling of biosampling and environmental gear shall be a minimum of 18.6 m^2 (200 ft²). The area will be located such that: (1) sampling gear may be deployed from the side of the vessel; and (2) distance to the laboratory area is minimal.

Provision shall be made to safely secure all sampling gear on deck during vessel transit and during operations in heavy seas.

2.3.1.1.4 Laboratory area

Adequate laboratory area shall be provided aboard all MARMAP Survey I vessels to accommodate the specified procedures for preservation and labeling of biosamples.

Laboratory area shall be configured to separate the "wet" operations from "dry" operations (i.e., operations such as handling Nansen or Niskin bottles, rosette multi-bottle array, biosamples, etc., shall be separated from operations requiring a dry area such as data tabulation, data reduction, and on-board calculations and analysis). The "wet" laboratory shall be equipped with standard laboratory equipment, including workbenches, storage cabinets, drawers, racks, shelves, tables, sinks, and lighting. Configuration of laboratory areas may vary from ship to ship.

2.3.1.1.5 Storage area

Storage capacity shall be provided for the biological samples (minimum of 4 bottles per station, either 1 liter or 1 quart bottles). For a 30-day cruise, a minimum storage volume of 1.41 m 3 (50 ft 3) is required. In addition, approximately 0.28 m 3 (10 ft 3) are needed for storage of 4 and 8 liter (or gallon and 2-gallon) jars or cans (capacity for 12 to 24 of each) to preserve large nekton. A small amount of storage space (1.1 m 3 or 40 ft 3) is required for storage of jars to contain dried biomass samples. Racks of sufficient strength

to support the full sample bottles in heavy seas without breakage must be provided. Shelves shall be at least 0.3 m (1 ft) deep. The storage areas should be located in areas of the vessel where motion due to pitch and roll are minimal. Provision shall be made for securing individual containers to prevent their shifting with vessel motion.

The acceptable temperature range for storage of biosamples is 10° C to 30° C. On vessels operating in areas where it is possible for ambient climatic extremes to cause storage room temperatures to be outside these specified temperature limits, temperature control equipment is required to maintain the stated limits.

2.3.1.1.6 Deck equipment

Deck equipment shall include all equipment such as davit(s), boom(s), sheaves, etc., for deployment of sampling gear. Bongo and Neuston nets must be deployed from the side of the vessel. For Bongo and Neuston net sampling, the boom or davit shall be positioned such that the nets will enter the water forward of an imaginary line forming a 30° angle (apex at propellors) with the ship's center line. Deployment aft of this line is not acceptable.

A hydrographic "cage" is required for crew safety and to enable the safe handling of sampling gear without danger of damage and loss of samples due to contact with the side of the vessel in heavy seas. Additional equipment requirements are:

- a. Wire angle inclinometer.
- b. Remote wire angle readout (in pilot house), to permit control of wire angle to \pm 50 (recommended).
- c. Hose (connected to salt water bib) for wash-down on Bongo, Neuston, nekton nets. Water pressure shall be 10 psi minimum.

d. Reversible winch capable of variable speed controlled power hoisting, power lowering, and gravity lowering. The drum must have a cable length counter and level wind mechanism and shall accommodate at least 500 meters of 6.4 mm (1/4 inch) cable.

NOTE: The requirement for a <u>drum capacity</u> for 1/4 inch cable does not infer that 1/4 inch <u>must</u> be used. For instance, 3/16 inch hydrographic cable may be utilized. The winch will have sufficient power to produce a line pull of approximately 680 kg (1500 lbs) at approximately 122 m/min (400 ft/min) at mean drum layer. Winch will be located such that the operator has line of sight to the person handling the sampling gear.

2.3.1.1.7 Navigation

nt

Vessels shall be equipped so that the position can be determined to no less than the nearest whole minute of longitude and latitude. The capability of measuring bottom depth to the nearest whole meter is required. Vessel masters shall be required to log measured position coordinates at beginning of each station, and to maneuver to maintain position ($\frac{+}{-}$ 0.5 nm) during the station.

2.3.1.1.8 Communications

Shipboard communications must be adequate to permit continuous contact between bridge and deck gear deployment area to ensure maintenance of correct wire angles, as well as to assure safety of personnel and gear.

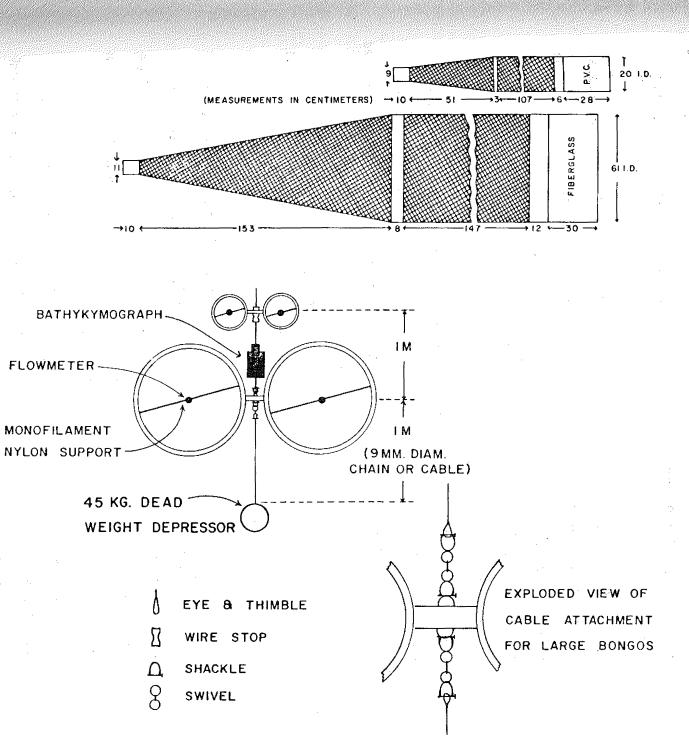
2.3.1.2 Environmental Data Acquisition

In order to meet MARMAP program objectives environmental measurements concurrent with those for ichthyoplankton, groundfish, and pelagic fish must be made. Researchers working under auspices other than MARMAP are urged to

collect these related data whenever possible. They consist of physical oceanographic data, meteorological data, as well as data on phytoplankton standing crop and productivity.

Physical oceanographic measurements required break down into two basic categories: (1) those parameters needed to identify water mass characteristics associated with fish egg and larva distribution and abundance (temperature, salinity, nutrients, dissolved oxygen); and (2) those parameters needed for determination of upper-ocean circulation dynamics, both geostrophic and wind driven (temperature and salinity to the depth of no motion, and surface wind vector).

Phytoplankton standing crop (chlorophyll concentration) and productivity (rate of uptake of carbon-14) measurements are necessary to determine the potential of the areas under investigation to support higher trophic level resources.


Meteorological data requirements consist of standard maritime meteorological observations at synoptic hours (0000, 0600, 1200, 1800 G.M.T.).

Methods which will produce data comparable with those of MARMAP may be obtained from the U.S. Department of Commerce, NOAA/NMFS, Woods Hole, Massachusetts 02543.

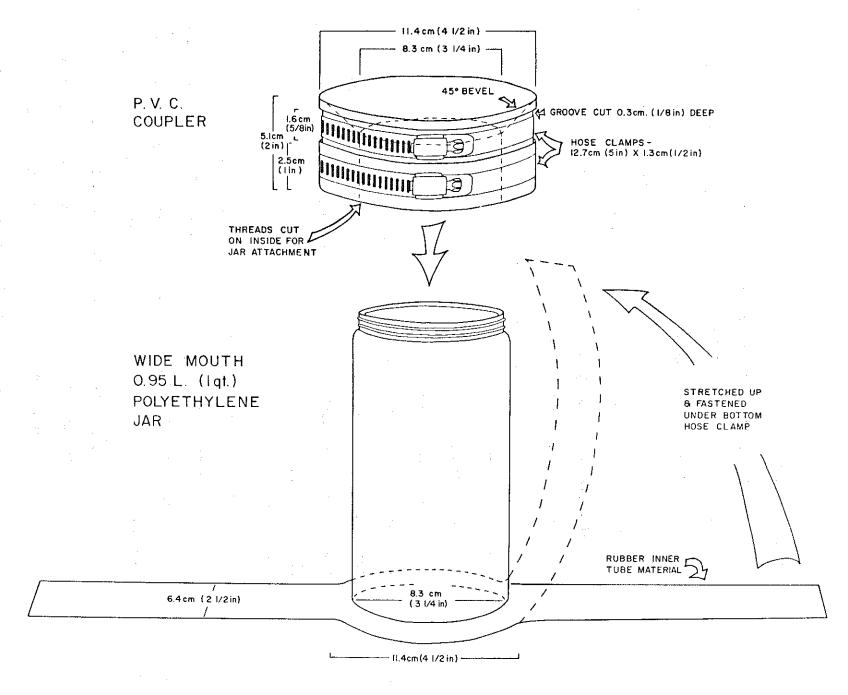
2.3.2 MARMAP Bongo Sampler

The standard sampling gear for all MARMAP Ichthyoplankton (Survey I) operations is the Bongo net (Posgay and Marak, 1980)(Fig. 2.3). It consists of two cylindrical mouth openings in which flowmeters (General Oceanics, or equivalent) are fastened. The towing wire passes between the cylinders and is therefore not in the sampling path. To obtain flowmeter readings representative of the entire mouth the meter must not be closer to the wall than 6 times the wall thickness. The nets are of a cylinder-cone configuration,

Figure 2.3 Arrangement of MARMAP Bongo Samplers (after Posgay and Marak, 1980)

3.6 m long. The mesh aperture of one net is 0.333 mm and of the other net, 0.505 mm, and the ratios of their mouth areas to total netting aperture areas are 1:7.3 and 1:7.9, respectively. Cod end beakers or socks are recommended (Fig. 2.4).

A depressing force is necessary to achieve desired results. At towing speeds of 1.5-2.0 knots a 45 kg dead weight depressor is sufficient. Towing wire must be at least 4.8 mm (3/16 inch) diameter and of 300 m length plus that necessary for all rigging and a safe amount on the winch. Although tension during towing is about 250 kg (670 pounds) it may be as high as 1000 kg (2679) pounds) under dynamic loads. A Bendix Model T-1, or equivalent, time-depth recorder (to record tow profile) is attached to the towing wire just above the attachment of the net. Each instrument must be calibrated at sea at the beginning and end of its use.


For special studies a 20 cm mouth diameter Bongo sampler may be used in addition, or in place of, the 61 cm Bongo.

2.3.2.1. Double Oblique Tow

The standard tow for all MARMAP Ichthyoplankton (Survey I) operations is the double oblique. This is a tow during which the sampler describes an oblique path and samples during one descent and one ascent. Multiple oblique ("yoyo") tows results in data which are not comparable to double oblique tows. Therefore, "yoyo" tows constitute a different tow type.

There should be no time spent at depth (horizontal sampling), and all depth strata should be sampled equally (i.e., the paths of descent and ascent should be straight lines).

P.V.C. BUCKET COD END

2.3.2.2 Depth of Tow

The desired depth of the tow is to within 5 m of the bottom or to a maximum of 200 m. Figure 2.5 is presented to aid in initially determining the amount of wire out to achieve desired depths. It is based on several hundred tows made by different ships under a variety of conditions. However, routine checks of time-depth records must be made and wire out for desired depths adjusted accordingly.

2.3.2.3 Recording of Tow Times

Start and end times for a Bongo tow are measured at flowmeter entry into and exit from the water, respectively.

2.3.2.4 Towing Speed

Towing speed is between 1.5 and 2.0 knots. Higher speeds introduce variables, particularly extrusion, which make inclusion of the data with those from standard tows difficult. For vessels without means for measuring speed a valid tow may be achieved by monitoring wire angles during retrieval (Section 2.3.2.6).

2.3.2.5 Flowmeters

At the beginning of each tow both flowmeter readings are recorded ("Flowmeter Start") to the nearest whole revolution (see MARMAP Zooplankton Sample Log, Section 2.3.2.12). Care must be taken to prevent this reading from changing prior to the commencement of sampling, e.g., "windmilling".

NOTE: Flowmeters are calibrated at the beginning and ending of each cruise. Calibration can be done by towing the flowmeters (attached to a suitable frame) over a known distance at several towing speeds between 1.5 and 2.0 knots. For calibration in open water

WIRE OUT (METERS)

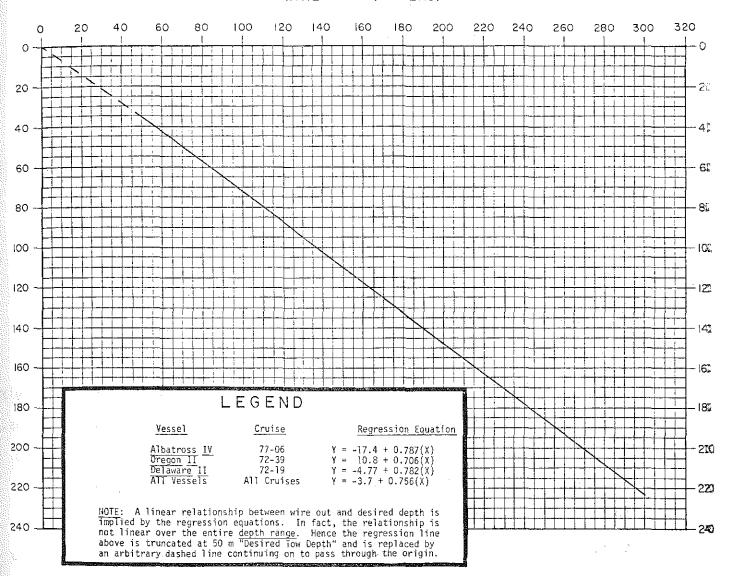


Figure 2.5 Graph of amount of wire out to achieve desired sampling depth for a standard MARMAP Bongo array

se

conditions where currents exist, at least 2 tows in opposite directions must be made. A calibration factor is calculated for the length of a column of water needed to affect one revolution of the flowmeter (meters per revolution) at each towing speed. The units of the factor (meters per revolution) were chosen so that the factor would be applicable to nets of different mouth area for obtaining volume of water filtered:

Volume Filtered = Flowmeter Revolutions x

Calibration Factor x Mouth Area.

2.3.2.6 Towing Procedure

With the ship on course and steaming at 1.5-2.0 knots the Bongo array is launched. Start time for the tow is the time the flowmeter enters the water (note any "windmilling"). The towing wire is payed out at a rate of 50 m/min. For measuring elapsed times during the haul a stop watch is strongly recommended. As soon as the necessary wire length is reached retrieval begins. Retrieval rate is 20 m/min. Ship speed should be maintained in order to keep the towing wire close to an angle of 47° (measured from the vertical). Wire angle is measured by an inclinometer which may be of the telemetering or non-telemetering type. If a telemetering inclinometer is used, the angle of stray can be controlled from the bridge and, at least for large vessels, the response is likely to be more satisfactory. When a non-telemetering inclinometer is used the winch operator or the recorder observes the wire angles during the tow and signals the bridge if the desired angle is not being maintained. In either case an observer on deck records wire angles for each 10 meters of wire during retrieval. Both the "time going out" and the "time coming in" (to the

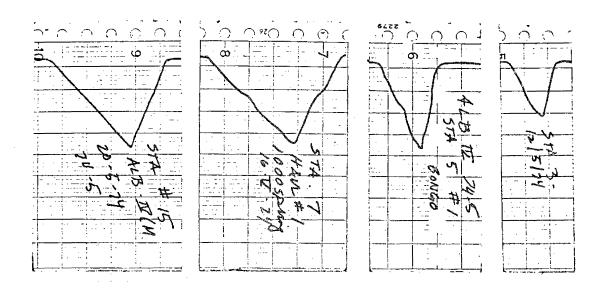
flowmeter's exit from water) are recorded. Standard tows result in zero "time at depth".

2.3.2.7 Time-Depth Recorder

After taking the sampler on board the TDR trace shall be examined to determine the tow's acceptability. Payout ("time going out") and retrieval ("time coming in") durations must be within \pm 5% of those resulting from dividing the maximum wire out for the haul by the rates given in Section 2.3.2.6.

Ideally the lines of descent and ascent should be straight--indicating that descent and ascent <u>rates</u> have been constant. If no TDR was used, but wire angle measurements were taken during both pay out and retrieval, calculations of the rate of descent and ascent can be made by the formula:

Rate* =
$$\frac{[(L_1) (\cos \theta_1)] - [(L_2) (\cos \theta_2)]}{t_2 - t_1^{**}}$$


where:

 L_1 = wire out at start of increment $\cos \theta_1$ = cosine of wire angle at start of increment L_2 = wire out at end of increment $\cos \theta_2$ = cosine of wire angle at end of increment t_1 = time at start of increment t_2 = time at end of increment

*Rate is positive (+) for ascent and negative (-) for descent.

** t - t should equal 12 sec for payout and 30 sec for retrieval. Normally, however, a judgement must be made on the acceptability of the tow, and a small amount of variation from the ideal is tolerated (see Fig. 2.6.). If the tow profile is unacceptable, the tow must be repeated.

ACCEPTABLE

UNACCEPTABLE

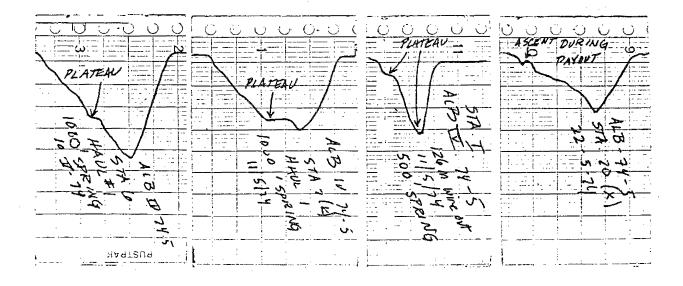


Figure 2.6 Examples of acceptable and unacceptable tow profiles for double oblique MARMAP Bongo tows

2.3.2.8 Performance of Flowmeters

Record the readings of both flowmeters ("flowmeter end") and note any observed or suspected reasons for questionable values (excess windmilling, damage, fouling of meter, or apparent clogging of meshes). Visual inspection of the net and/or the number of flowmeter revolutions for a particular duration and speed of deployment can, with experience, be indicative of clogging. Erratic readings are sometimes unavoidable. If clogging is the cause it probably would be unreasonable to repeat the tow.

2.3.2.9 Rinsing Net-Removing Sample

The nets are held off the deck by hand or by tackle and their contents are rinsed to their cod ends by a gentle spray of salt water directed from their outsides.

NOTE: In warm waters the cod ends of the nets should be dipped into a 20% formalin and sea water solution as they come aboard to harden specimens prior to further handling.

The samples are then quantitatively transferred to appropriately labeled (for the 0.333 mm and 0.505 mm mesh apertures) buckets or, if sample volume is small enough, the cod end socks or beakers provide a means for separating the samples from the nets.

NOTE: The buckets often contain a great deal more water than is desirable to preserve. This may be eliminated by the use of a draining pan with meshes smaller than those of the collecting net (see Table 2.1). A common brass geological sieve works very well for this operation. Also, on some

Table 2.1 Draining pan apertures to be used with various collecting nets.

Mesh Aperture of	Coarsest Acceptable
Collecting Net	Mesh Aperture of
	Draining Pan
(µ)	(µ)
947	333
505	333
333	2 53
254	153

occasions the sample may contain large quantities of jelly fish, salps, etc. They may be too large to fit into the sample jars available. On such occasions, as carefully and completely as possible, separate these organisms, rinse any small adhering organisms into the bucket containing the sample, log a description of the large organisms and estimated volume and discard them.

Quantitatively transfer the sample from the bucket or beaker to the draining pan. After the water has drained off, transfer the sample to a one quart sample jar(s) using a minimum of sea water from a rinse bottle directed at the under side of the mesh of the pan. Use extra jars when necessary so that no jar is more than 1/2 full of suspended, or 1/4 full of drained organisms. Add sea water to about 3/4 full before introducing the preservative, to avoid "burning" the delicate specimens.

2.3.2.10 Preservation of Sample

Add buffered, concentrated formalin to each sample jar and top off with sea water (see Table 2.2).

NOTE: Formalin is a saturated aqueous solution of formaldehyde gas, about 40% formaldehyde by weight. The preferred buffer is marble chips. These are added to the formalin supply container, not the sample container, in a quantity to produce an excess base. This results in a sample container receiving a preservative which is basic, but one which will not remain so indefinitely. Investigators working on samples containing delicate calcareous specimens may wish to alter the preservative they use. For

Table 2.2 Milliliters of concentrated formalin added to sample for various concentrations

CON	С	Ε	N	Т	R	Α	Ţ	Ţ	0	Ν	S	
-----	---	---	---	---	---	---	---	---	---	---	---	--

	3%	4%	5% (PLANKTON)	6%	8%	10%
2	1.8	2.4	3.0	3.6	4.8	6.0
4	3.6	4.8	6.0	7.2	9.6	12.0
8	7.2	9.6	12.0	14.4	19.2	24.0
SAMPLE JAR SIZE (OZ)		19.2	24.0	28.8	38.4	48.0
32 (1 qt	28.8	38.4	48.0	57.8	76.8	96.0
128	115.2	153.6	192.0	230.4	307.2	384.0
640 (5 gal	576.0	768.0	960.0	1152.0	1536.0	1920.0

further information about preservatives, see Steedman (1976).

Extreme caution should be exercised when formalin is being used as there are indications that it can cause serious health problems.

2.3.2.11 Specimen Jar Labels

Fill out and apply outside and inside jar labels. Inside labels are written with waterproof ink (Higgins Engrossing Ink, No. 892, which does not clog the pen--Kohinoor Rapidograph No. 1 or 0 --or equivalent). Outside labels, due to their oily surface texture, are written with ball point pen. Preprinting and color coding these labels for the gear and mesh used is helpful. Figure 2.7 shows examples of inside and outside labels of this kind.

Instructions for completion of these labels are presented below:

MARMAP Jar Labels (Form JAR, 9/78)

Jar labels are preprinted and color coded for the common gear and mesh used. Inside labels are written with waterproof ink (Higgins Engrossing Ink, No. 892, which does not clog the pen--Kohinoor Rapidograph No. 1 or 0 -- or equivalent). Outside labels, due to their oily surface texture, are written with ball point pen.

Date (GMT)	The date (Greenwich Mean Time) of the start of the haul.
<u>Vessel</u>	The full name of the vessel making the cruise.
Cruise	The last two digits of the year of the vessel's cruise
	followed by a hyphen and the consecutive number of the
	voyage of that vessel in that year.
<u>Station</u>	The number of the station assigned consecutively beginning
	with the first station of the cruise.
Haul	The consecutive time a particular type of tow was made at

this station, e.g., if the 61 cm Bongo was towed three

				-				\$			
MARMA BIOLOGICAL S		MAR BIOLOGICA		MARM BIOLOGICAL		MARN BIOLOGICAL		MARMA BIOLOGICAL			ARMAP CAL SAMPLE
DATE (GMT)		DATE (GMT)		DATE (GMT)		DATE (GMT)		DATE (GMT)		DATE (GA	AT)
VESSEL	CRUISE	VESSEL	CRUISE	VESSEL	CRUISE	VESSEL	CRUISE	VESSEL	CRUISE	VESSEL	CRUISE
STATION HAUL	NET NO.	STATION HA	UL NET NO.	STATION HAU	L NET NO.	STATION HAD	JL NET NO.	STATION HAUL	NET NO.	STATION	HAUL NET N
OF	мезн 505	OF	MESH - 333	OF	MESH 253	OF	мезн _ 165	OF	мезн 505	OF.	меsн 18 О(
GEAR 6) cm. BONGO		GEAR 6Icm. BONG		GE AR 20cm. BONG	0	GE AR 20cm.BONGC		GEAR 50 x 100 cm NEUS TON		GEAR 36 x 97 ci HAEDRIO	m.
· · · · · · · · · · · · · · · · · · ·	↑ RED		√} GREEN	<u> </u>	√P BLUE		₹ PINK		47- WHITE	<u></u>	☆ BROW

Figure 2.7. MARMAP specimen jar labels. Inside labels are printed with waterproof ink on 100% rag linen paper. Code for gear and mesh appears as colored symbol at lower right. Outside labels are also printed with waterproof ink but on adhesive tape rolls, e.g., "Time Tape", Professional Tape Co. Inc. The entire label is colored to indicate gear and mesh.

Logs should be filled out for hauls 1, 2, and 3. Unsuccessful hauls which result in no sample, or a sample which will not be retained, are not assigned haul numbers. Note reasons for failure under "Remarks" on the Zooplankton Sample Log. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on the same haul.

Gear No.

__ of __

The consecutive number of the jar plus the total number of jars containing the sample from this haul.

Mesh

Enter the mesh aperture size in microns, e.g., 1800, 253, 333.

Gear

Enter the whole name of the gear used for the haul.

2.3.2.12 MARMAP Zooplankton Sample Log

Fill in appropriate parts of the Master Station Record and prepare a log sheet for the plankton experiment. Specifications for zooplankton tow data are given in Section 6, Appendix I. Figure 2.8 shows an example of the MARMAP Zooplankton Sample Log (ZSL).

Instructions for completion of the log form are presented below:

MARMAP Zooplankton Sample Log (Form ZSL, 10/80)

NOTE: In the event that data are not available due to equipment malfunction or other cause, enter an X

U.S. DEPT. OF COMMERCE NOAA National Marine Fisheries Servici

OPERATIONAL UNIT _____

PAGE	 0 F	

MARMAP ZOOPLANKTON SAMPLE LOG (ZSL)

Vessel				Cruise <u> </u>		
STATION HAUL START TIME NUMBER NO. (GMT)	START DATE (GMT) SHIP D D M M Y Y SPEED	SHIP HEADING MEA	AS. TOW TIME GOING OUT M M S	1	ME COMING DURATION IN OF TOW M S S M M S S	DEPTH INSTRUMENT MAKE SER. NO. SPRING DEP
ഗ് Gear Id Gear/ ഇല്ല Flo	owmeter Flowmeter Start End	FLOIMETER TO THE WIND.	AX ANGLE AT ITEM M.W.O.	Remarks:		
Gear ID Gear/ Eg Flo	Owmeter Flowmeter Start End	LEGALLIEV 파일본링 M	AX 1RE ANGLE AT UT (M) M.W.O.			
Gear ID Gear/ Ea Flo	owmeter Flowmeter Start End	FLOWMETER JO NO STATE HIS	AX DIRE ANGLE AT UT (M) M.V.O.			
	owmeter Flowmeter Start Fnd	FLOMMETER DE NO.	AX ITRE ANGLE AT UT (M) M.W.O.			
WIRE ANGLES DURING RETRIEVAL WITH WIRE OUT =	300 290 280 270	260 250 240	230 220 21	200 190 18	0 170 160 150	140 130 120 110 100
A A A	90 80 70 60	50 40 30	20 10		ecorded by:	

in the appropriate space on the log, and give reason under "Remarks" area.

Operational Unit The name of institution preparing this log, e.g., ZSOP, SEFC, U.S. Coast Guard, NEFC, Woods Hole.

<u>Vessel</u> The full name of the vessel making the cruise.

<u>Cruise</u>

The last two digits of the year of the vessel's cruise,
followed by a hyphen and the consecutive number of the
voyage of that vessel in that year.

Station Number The number of the station assigned consecutively beginning with the first station of the cruise.

Haul No. The consecutive time a particular gear type was used at this station, e.g., if Bongo net was towed three separate times at this station, three "Zooplankton Sample Logs" should be filled out for hauls 1, 2, and 3. "Unsuccessful" hauls which result in no sample, or sample which will not be retained are not assigned haul numbers. Note reasons for failure under "Remarks".

Start Time The Greenwich Mean Time that the sampler(s') flowmeters(s) enter the water.

Start Date Greenwich date (day-month-year) of the start of this haul.

Ship Speed The average speed of the ship during the tow recorded to the nearest 0.1 knot.

NOTE: If these data are other than measured ships speed through the water, so indicate under "Remarks". The heading of the ship during the tow to the nearest

Ship Heading The heading of the ship during the tow to the neares whole degree, magnetic or true.

Measur. Tow The measured, maximum depth achieved by the net during the haul recorded to the nearest whole meter. If no measuring Depth device was used, leave this field blank. Time Going Out The duration in whole minutes and seconds, from flowmeter entry to maximum wire pay-out. Time at Depth The duration, in whole minutes and seconds, during which the maximum towing wire was payed out. (For a double oblique tow this should be zero). Time Coming In The duration, in whole minutes and seconds, from beginning of towing wire retrieval to flowmeter exit. Duration of Tow The sum, in whole minutes and seconds, of the three operations, listed immediately above. Depth Instrument Make The name of the manufacturer of the depth instrument used during this tow. Manufacturer's serial number for the instrument used during Ser. No.

this tow.

Spring Depth The depth range (0-300 feet, 0-1000 feet, etc.) of the spring used on certain depth instruments e.g., Bendix.

The number assigned to each net used during the haul. This Gear I.D. Number is necessary when gear of identical characteristics are deployed on the same haul.

Gear/Mesh The gear and the mesh size used in collecting the sample entered according to the table below.

GEAR	MESH	ENTER					
61 cm Bongo	3 33	6B3					
61 cm Bongo	505	685					
20 cm Bongo	333	283					
20 cm Bongo	505	285					
20 cm Bongo	165	2B1					
20 cm Bongo	253	2B2					
50 x 100 cm Neuston	5 05	1N5					
100 x 200 cm Neuston	947	2N9					
36 x 97 cm Haedrich	706	3H7					
36 x 97 cm Haedrich	1800	3H1					
Other Gear		Write out gear name	plus				
		mesh aperture in mic	rons				
Enter the number of bottles	in which th	e sample from each					
net was preserved.							
The flowmeter reading at the	ne start of t	he haul recorded to					
the nearest whole revolution.							
NOTE: For some General Oceanics meters the right hand digit							
is a "tenths" digit.							
The flowmeter reading at the	ne end of the	haul recorded to th	ie				
nearest whole revolution.	,						
The identification number of the flowmeter							

Flowmeter End

Bottles Filled

Flowmeter Start

Flowmeter No.

The identification number of the flowmeter.

Type of Tow

The type of tow for this haul entered according to the table below:

TOW TYPE	ENTER
Double Oblique	1
Surface	2
Other	3

NOTE: "Double Oblique" is the standard MARMAP Bongo tow type. This is pay out at 50 m/min and retrieval at 20 m/min sampling to within 5 m of the bottom or a maximum depth of 200 m. Retrieval begins immediately following pay out (no "Time at Depth"). "Surface". refers to surface tows with the MARMAP 0.5 x 1.0 meter mouth, 0.505 mm mesh net. Tows with other gear or in other manners should be logged as "Other" and details should be entered under "Remarks".

TDR Trace

The results of the Time Depth Recorder Trace entered according to the table below (see Fig. 2.6):

TDR TRACE	ENTER
Acceptable	1
Not acceptable	2
Malfunction	3
Not used	6

Max. Wire Out The maximum wire used during the haul, recorded to the nearest whole meter.

The wire angle recorded to the nearest whole degree at the time Angle at of maximum wire out. M.W.O.

> NOTE: Angles are measured from the vertical (Kramer, et. al., 1972 and Smith and Richardson, 1977).

The wire angles recorded to the nearest whole degree during Wire Angles retrieval for every 10 m of wire out. during retrieval

Remarks

Loss, damage of gear, or any other information useful to the

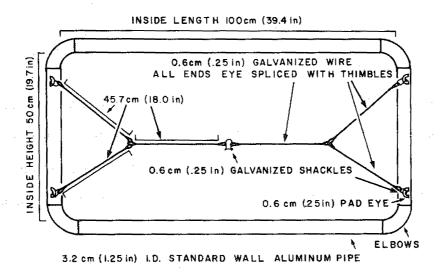
interpretation of the data recorded on this form.

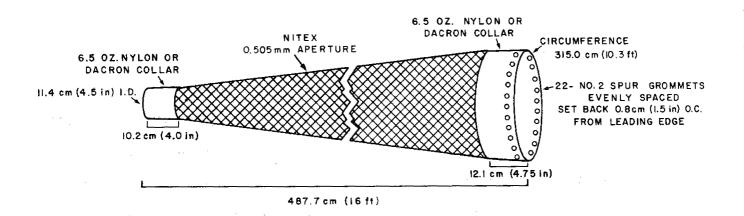
Recorded By

Name of individual filling out the log.

Reviewed By

Name of individual reviewing the log.


2.3.2.13 Net maintenance


The condition of the nets is vital to the quantitative validity of the samples. Regular examination between tows must be made to ensure that the net is free from any remains (organisms, tar, etc.) from the previous tow and that no tears are present. Details to accomplish the above may be found in Kramer et al. 1972, Page 18.

NOTE: In weather conditions where rapid drying of the net may occur, the samplers should be stored in a net bath between tows.

2.3.3 MARMAP Neuston Sampler

For neuston, near surface zooplankton, and contaminants such as tar and plastics the standard gear is the MARMAP neuston net (Figure 2.9). It consists of a rectangular mouth constructed of 3.2 cm (1-1/4") ID standard wall aluminum pipe with opening dimensions of 0.5 m high by 1 m wide. The net is of conical configuration, 4.9 m long. The mesh aperture is 0.505 mm, and the ratio of mouth area to total netting aperture area is 1:7.8. Presently the cod end is being folded and tied-off similar to the Bongo net cod ends. A cod end sock or beaker may be used if desired. A simple bridle, most of which is out of the water during fishing, precedes the net mouth. Towing wire must be at least 0.6 cm (1/4") diameter steel and of 40 m length plus that necessary for all rigging and a safe amount on the winch. Wire or 1.3 cm (1/2") diameter nylon line may also be used on a warping capstan if a regular winch setup is not available. Tension during towing is about 250 kg but may reach 1000 kg during dynamic loads.

=>NOTES

- TOLERANCES ON DIMENSIONS 1.3 cm (0.5 in)
 TOLERANCE ON MOUTH DIAMETER 1.3 cm (0.5 in)
- ►TOLERANCE ON COD END COLLAR O

Figure 2.9 The MARMAP Neuston Sampler

2.3.3.1 Surface Tow

The standard MARMAP tow is made with the net mouth 1/2 submerged.

Achievement of this is not absolutely possible due to such things as sea state.

Nevertheless, a combination of towing wire rigging, wire out and ship speed must be sought by which the average position of the net mouth during the tow is 1/2 submerged and the variations of its position are minimized.

2.3.3.2 Recording of Tow Times

The start time for a neuston tow is taken when the net begins fishing 1/2 submerged. The end time is taken when the net exits the water. For a neuston tow the "time going out" and "time coming in" should both be zero. "Time at depth" is the elapsed time between "start" and "end" of the tow.

2.3.3.3 Towing Speed

Speed for a neuston tow is 2.0 knots for a duration of 10 minutes. In subtropical and tropical areas or for studies of species of relatively low abundance tows of longer duration may be made.

2.3.3.4 Towing Procedure

The vessel should be executing a slow turn in the same direction as the side of the ship from which the tow is being made. Tows made in the wake of the vessel are unsatisfactory. Also any ship discharges which may contaminate the sample must be secured during the tow.

2.3.3.5 Rinsing Net--Removing Sample

The sample is quantitatively transferred from the net to a sample jar(s) in a manner similar to the Bongo samples (Section 2.3.2.9).

NOTE: Tar balls may be encountered. If possible preserve them with the rest of the sample. If, however, the tar balls are too large for the sample jars, place them in plastic bags with an

inside "Jar Label" and place the bags in a freezer.

2.3.3.6 Preservation of Sample

Preservation is identical to that described for Bongo Samples (See Section 2.3.2.10).

2.3.3.7 Specimen Jar Labels

Fill out and apply outside and inside jar labels (Section 2.3.2.11 and Fig. 2.7) which are preprinted and color coded for the gear and mesh used.

2.3.3.8 Filling Out Log Sheets

Sample Log according to the instructions given in Sections 2.2 and 2.3.2.12 above.

No wire angle data need be recorded for neuston tows.

2.3.4 Hardy Continuous Plankton Recorder

For sampling in areas beyond the geographical range and especially revisit frequency capabilities of conventional research ships, the Hardy Continuous Plankton Recorder (Hardy 1939) is the standard MARMAP sampler. The Recorder has been used from research ships in a number of countries but its most extensive utilization has been in a long-term survey of the plankton in the North Sea and North Atlantic Ocean using ships of opportunity. It is designed for towing from a ship on her normal passage, preferably at between 10 and 18 knots, at which speeds it is convenient to sample at a depth of 10 meters below the surface. Records may be obtained for up to 500 continuous nautical miles. Water enters through a 1.27 cm (1/2 inch) square aperture at the front of the Recorder and the plankton is filtered onto a slowly moving band of bolting silk (60 meshes to the inch; aperture approximately 225 μ by 234 μ when wet). The plankton is held in place by a second band of silk, and the double roll with the plankton held firmly between the two layers, is wound onto a storage spool in a tank containing formalin. The mechanism which drives

the silk rolls is driven by a propeller turned by the passage of the Recorder through the water (Fig. 2.10). The instrument is 1.0 m (40 inches) long, has a maximum width across the diving plane of 0.51 m (20 inches), and weighs 86.2 kg (190 pounds).

Towing wire must be at least 7.9 mm (5/16 inch) diameter and of 110 m length.

2.3.4.1 Towing Instructions

The Recorder is more robust than most oceanographic instruments, and can be towed in weather which would normally prohibit the working of hydrographical and plankton stations. Nevertheless, it is suggested that under the following conditions the gear should be hauled or shooting delayed until an improvement develops:

- a. In fog, or other circumstances of greatly reduced visibility, when the ship may have to proceed very slowly, stop, or go astern.
- b. In ice conditions where the instrument or towing wire may be damaged.
- c. In worsening weather conditions, when the sea is increasing so that if delayed, hauling would very likely result in damage when the Recorder was taken aboard.
- d. In the presence of boats fishing with fixed or drifting gear, if it is not possible to avoid crossing such gear.

If the Recorder is hauled in the middle of a tow, before it is relaunched the inside mechanism should be removed and the silk marked (Section 2.3.4.2.2).

On vessels which regularly tow the Continuous Plankton Recorder, the wire is taken over the quarter or stern by means of a 7.6 cm (3 inch) diameter davit carrying a 25.4 cm (10 inch) towing block, and hauling is by winch or warping capstan. The tension on the wire during towing is approximately 454 kg

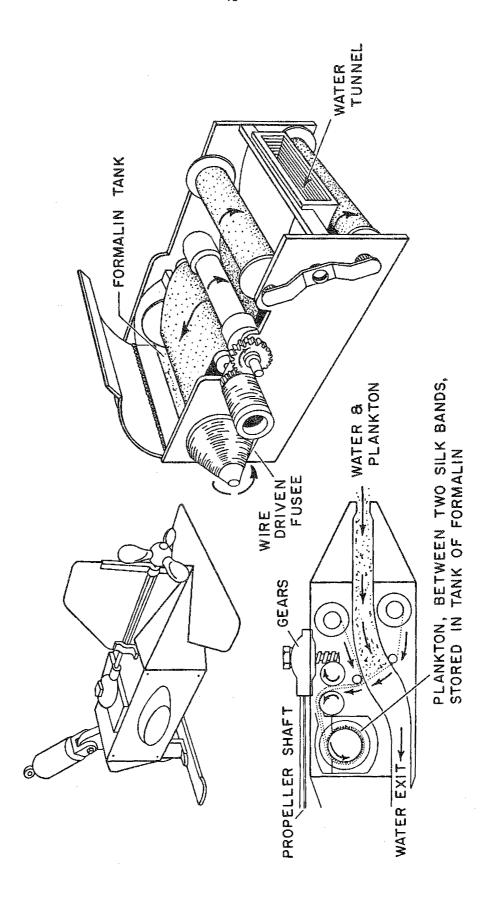


Figure 2.10 Simplified diagrams of the Hardy Continuous Plankton Recorder

(1000 pounds), and the instrument normally runs 10 m below the surface.

For towing from ships without a winch, a warping capstan may be used. The towing wire must be properly connected to the capstan (Fig. 2.11). Under these circumstances and those where no metering capability exists, a whipping should be applied 21.9 m from the outboard end of the wire to indicate the water line position when towing. It is most important that the cotter pin is securely fitted to the shackle bolt at the outboard (Recorder) end of the towing wire.

The instrument may be launched and hauled underway, but it is recommended that the ship slow down for hauling in bad weather. Launching should be done by lowering the instrument into the water steadily; dropping it with slack on the wire will put excessive strain on the gear. When the ship is steaming at her normal speed and the whipping on the towing wire is at the water surface, the wire should be made fast, and the gear can be left unattended.

Immediately after hauling the instrument on completion of the tow:

- (1) the inside mechanism is removed; (2) the silk marked; (3) the formalin tank opened; and (4) the liquid discarded and replaced by the formalin provided. Details of the method of doing this follow.
- 2.3.4.2 Instructions for Unloading on Completion of Tow

NOTE: Bracketed numbers below refer to labeled parts of Fig. 2.12 and 2.13:

- 2.3.4.2.1 Removal of inside mechanism
 - a. Remove four nuts on left side [1] with box wrench. Pull off side plate, using blister [4] as handle.
 - b. Swing locking tabs [2] on inside mechanism clear of bottom rail of casing.
 - c. Slide inside mechanism out of casing, using finger holes [3].

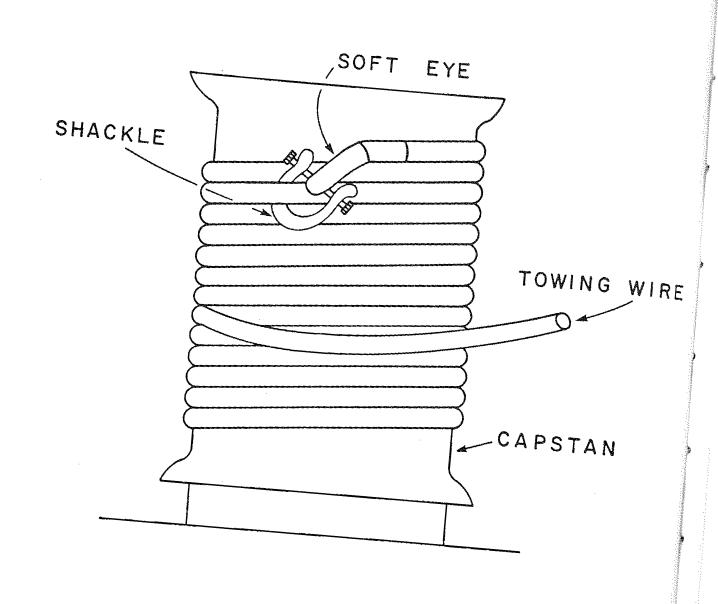
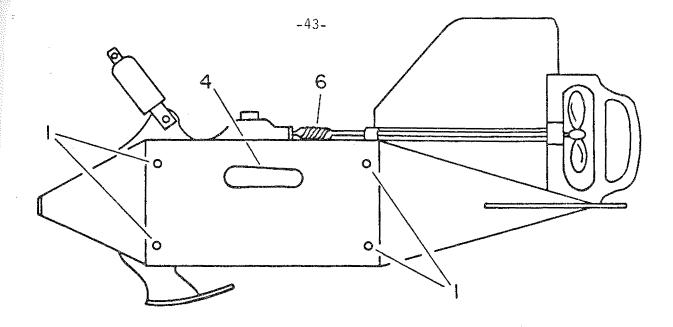
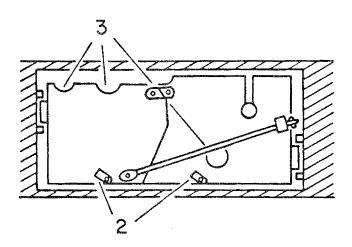
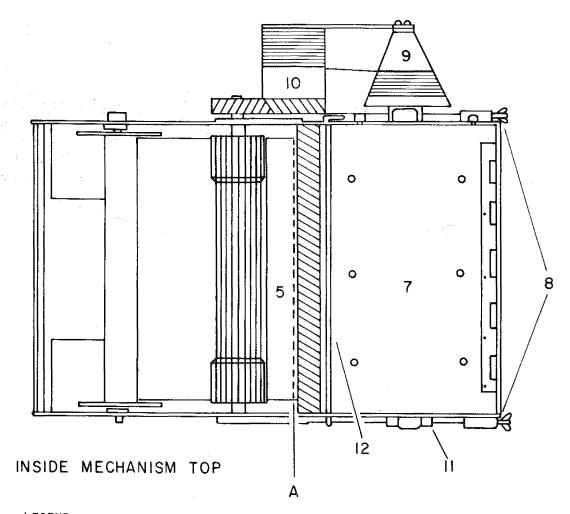




Figure 2.11 Diagram for attaching towing wire to warping capstan


LEGEND:

Ε

- Nuts for securing side plate.
- 2 Locking tabs for securing inside mechanism.
- 3 Finger holes for removing inside mechanism.
- 4 Blister useful in removing side plate.
- 6 Flexible coupling on drive shaft.

Figure 2.12 Diagram for removing and replacing Hardy Continuous

Plankton Recorder internal mechanism

LEGEND:

- 5 FILTERING SILK BETWEEN DRIVE ROLLERS AND STORAGE TANK GASKET.
- 7 COVER FOR STORAGE TANK.
- 8 LOCKING RODS (NOT TO BE DISTURBED WHEN REMOVING OR REPLACING INSIDE MECHANISM).
- 9 CPR FUSEE.
- 10 CPR DRUM.
- 11 TAKE-UP SPINDLE CAP.
- 12 FRONT LOCKING ROD FOR SECURING STORAGE TANK LID.

Figure 2.13 Diagram for removing Hardy Continuous Plankton
Recorder storage spool

2.3.2.4.2 Marking the silk

- a. With colored pencil draw a line across the silk [5] along the edge of the storage tank gasket (line shown dotted at A).
- b. If the machine is to be launched again with the same inside mechanism, do not disturb the wire on the fusee [9] and drum [10]. If this wire is displaced, do not tow again.

2.3.4.2.3 Addition of formalin to tank

- a. Remove front locking rod [12] and open lid of storage tank.
- b. Discard the liquid in the formalin tank.
- c. Add 5% formalin to middle of storage spool.
- d. Close lid and replace locking rod.

2.3.4.2.4

- a. Slide mechanism into casing--but not right home.
- b. Make sure locking tabs [2] are clear of bottom rail.
- c. Press mechanism home, rotating propeller shaft if necessary to allow gears to mesh. (Spin shaft with hand on coupling [6] .)
- d. When correctly home and meshed, drop locking tabs [2], making sure that they are vertical.
- e. Replace side plate (TOP is marked for correct assembly). Replace the four nuts, with slotted ends outward, and tighten. These are special "stiff" nuts, and must be run fully home, but without undue force.

2.3.4.3 MARMAP Ship of Opportunity Log

Information about times, dates, and positions of launching, altered courses, and hauling of the CPR must be logged. It is of considerable assistance if any unusual behavior of the instrument, which normally tows steadily astern

or on the quarter, is also logged. Specifications for Continuous Plankton Recorder data are given in Section 6, Appendix I. Figure 2.14 shows an example of the MARMAP Ship of Opportunity Log.

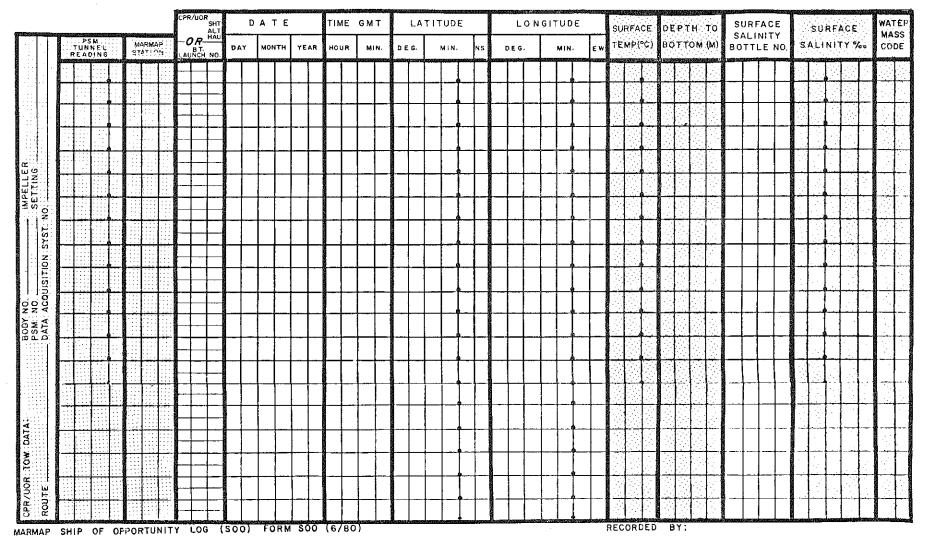
NOTE: This log form is used for recording information about not only the CPR tow but also expendable bathythermograph launches and Undulating Oceanographic Recorder tows. Hence, some of the log form data fields are unnecessary for a CPR experiment.

Instructions for completion of the log form are presented below:

MARMAP Ship of Opportunity Log (Form S00, 6/80) Page of The consecutive page of the log plus the total number of pages of logs for any cruise. Country The country to which the collecting vessel is affiliated. Operational Unit Name of institution preparing this log, e.g., Atlantic Environmental Group, NEFC, U.S. Coast Guard. Vessel The full name of the vessel making the cruise. Cruise The last two digits of the year of the vessel's cruise followed by a hyphen and the consecutive number of the voyage of that vessel in that year. Any information useful to the interpretation of the data Remarks recorded on this log. Shaded areas of the logsheet are filled in either before or after the cruise by shoreside personnel. Route The consecutive number of the route's occupation (3 digits)

and the two letter code for the route.

Opportunity Log


U.S. DEPT. OF COMMERCE - N.O.A.A.
NATIONAL MARINE FISHERIES SERVICE
ATLANTIC ENVIRONMENTAL GROUP

MARMAP SHIP OF OPPORTUNITY LOG (SOO)

PAGE _____ OF ____

COUNTRY:	OPERATIONAL UNIT	VESSEL	CRUISE

REMARKS: SHADED AREAS TO BE FILLED IN ASHORE

Body No.

The three digit number affixed to the body of the Continuous Plankton Recorder (1-199), the Fast Continuous Plankton Recorder (600-699), or the Undulating Oceanographic Recorder (800-899).

PSM No.

The five character number affixed to the Hardy Plankton Sampler Mechanism (PSM). PSM's are usually fitted to a particular body, e.g., PSM nos. 143/1 and 143/2 are used in body no. 143.

Data Acquisition System No.

The three character number affixed to the Data Acquisition System used in the CPR, FCPR, or the UOR. Characters 1-2 are the instrument number; character 3 is the modification number.

Impeller Setting

The pitch of the PSM drive impeller to the nearest whole degree (when prepared for the cruise).

PSM Tunnel

Reading

The silk reading to the nearest 0.1 division, taken at the bottom of the PSM tunnel. The filtering silk is marked and numbered at 2 inch intervals, termed divisions.

MARMAP Station

The number of the station assigned consecutively beginning with the first station of the cruise.

NOTE: For the SOO Log a "Station" will be any shooting or hauling of a CPR, FCPR, or UOR; any altered course during towing of the above-mentioned recorders; an XBT launch; or any more conventional data collection to which a time, date, and position can be assigned.

CPR/UOR SHT, ALT,

For CPR, FCPR, and UOR shooting enter SHT: for altered courses during the tow enter ALT; and for hauling enter HAU.

For BT launches enter the consecutive number of the launch

HAU or BT

Launch No.

nuous

Order

đ

ion -2

ion

2

the

ing

or ig

or

HAU. nch beginning with the first launch of the cruise.

NOTE: The rows in these columns have been split in two to provide for entry of both SHT, ALT, HAU; and BT launch data which may happen at the same time.

Date

Greenwich date (day-month-year) of the operation identified immediately above.

Time

The Greenwich Mean Time of the beginning of the operation described above.

Latitude

The latitude of the station to the nearest 0.1 minute north or south.

Longitude

The longitude of the station to the nearest 0.1 minute east or west.

Surface Temp.

Temperature of the surface water at this station to the nearest 0.1 degree Centigrade.

Depth to Bottom

Depth to the bottom at this station to the nearest whole meter.

Surface Salinity

Y The four character number engraved on the salinity bottle used for collecting surface water at this station.

Water Mass Code

Bottle No.

Two character surface water mass code (consult MARMAP Information System, System Code Table, group no. 17 for water mass codes).

Recorded By

Name of individual filling out the log.

NOTE: Data are to be entered into the shaded areas of the logsheet only in the laboratory.

2.3.4.4 Source of Further Information

Further details on the use of the Hardy Continuous Plankton Recorder may be obtained from: National Marine Fisheries Service, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882.

2.3.5 The Undulating Oceanographic Recorder

Although the Continuous Plankton Recorders (CPR's) have produced a wealth of data on spatial and temporal variability of plankton, their use has also emphasized the difficulties of identifying the sources and mechanisms of biological variability because of the scarcity of physical and chemical data of adequate coverage and discrimination in time and space.

To alleviate this deficiency, and the CPR's fixed depth limitation, a new instrument, the Undulating Oceanographic Recorder (Fig. 2.15 and Table 2.3), has reached production stage. It is designed to take series of plankton samples, each covering the depth range of the euphotic zone, and to record chemical and physical variables as a function of depth. The instrument is self-contained, is towed by ordinary, non-conductor, 8 mm (5/16 inch) towing wire at speeds between 9 and 26 knots.

2.3.5.1 Towing Instructions

The method for towing the Undulating Oceanographic Recorder is similar to that described for the Hardy Continuous Plankton Recorder (Section 2.3.4.1) except that speeds during launching and hauling should be reduced to minimize potential damage to the instrument. Data logging is identical to that described in Section 2.3.4.3.

 $\hbox{2.3.5.2} \quad \hbox{Additional Information about the Undulating Oceanographic Recorder}$

The Undulating Oceanographic Recorder began operational use in March 1979. Further details may be obtained from: National Marine Fisheries Service, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882.

ıtal

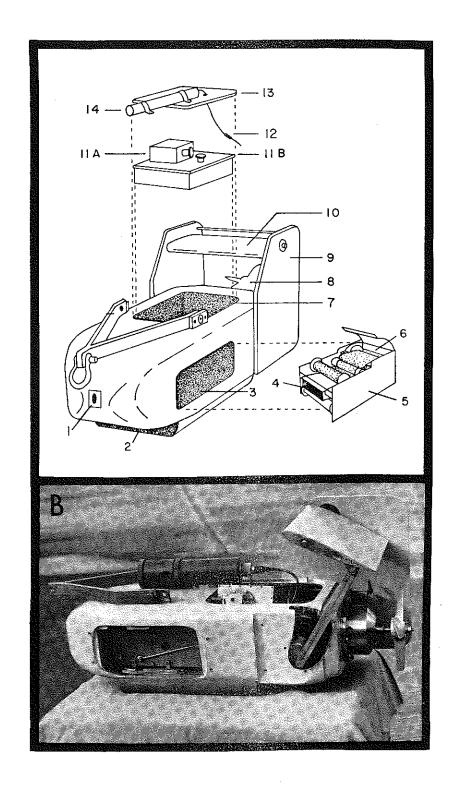


Figure 2.15 (A) Schematic representation of UOR Mark 2; 1, plankton aperture; 2, diving chute; 3, plankton sampler hold; 4, water tunnel; 5, plankton sampler; 6, formalin tank; 7, instrument hold; 8, alternator impeller; 9, tail fin; 10, tail plane; 11A, chlorophyll flash gun; 11B, chlorophyll detector/pressure sensor/tape recorder package; 12, connector cable; 13, instrument hatch cover; 14, temperature/salinity probe. (B) Cutaway view showing servo system, tail plane linkage, alternator power unit and impellers. From: Aiken, Wood, and Jossi, 1980.

-52-Table 2.3 Principal features of the Mark 2 Undulating

Oceanographic Recorder

Description

Main Body Shell

Dimensions

Length, 0.94 m; maximum width, 0.36 m; tail height, 0.46 m; maximum body height, 0.23 m

Weight

100 kg in air; 61 kg in water

Depth Rating

300 m

Instrument Space

0.020 m³

Towing Specification

Towing Speed

7 to 26 knots (3.6 to 13.4 m/sec)

Towing Load

90 to 900 kgf depending on depth, speed and cable

Towing Cable

Typically 250 to 300 m of unfaired 8 mm, 6 x 7 galvanized steel cable; minimum breaking strain

3830 kgf

Towing Modes

Fixed Depth

Selectable to any constant depth to accuracy of

Undulating

Follows a programmed saw-tooth pattern of selected wave length 0.8 km to 40 km (1.6 km, typical), between a minimum depth of 5 m and any preselectes

maximum in the range of 15 to 100 m

Plankton Sampling and Storage

Method of Filtering

Continuously moving band of silk gauze

Silk Movement

6 to 60 mm per km of tow

Hardy CPR mechanism

300 to 3000 km

Volume of Sample

For 16 km of tow, =3 m³ of water filtered

Intake Aperture

1.62 cm²

Filtering Area

 32 cm^2

Flow Velocity through Mesh

≅10 cm/sec

Filter Mesh Size

≅270 micrometer

Data Acquisition

Mechanical, from impeller via 1800:1 gear box

Sensors

Depth

Potentiometric (model 3000, type 34896, Vernitron, Inc.) 0 to 100 m, ±0.5 m; time constant: 2 msec for 63% response

Temperature

Thermistor (YSI #44030) range 0 to 30°C, ±0.1°C

interchangeable

Salinity

Toroid type (Braystoke, Ltd) range 32 to 37 o/ ∞ , temperature compensated accuracy ± 0.01 o/ ∞ .

<u>In Situ Chlorophyll a</u>

Fluorometric type (16), range 0 to 100 $\mbox{mg/m}^3$

 $\pm 0.1 \, \text{mg/m}^3$

Oxford Medilog, Inc., Miniature Digital Type Re-

Recorder

corder (MDTR); 4 track head records: (1) 8 channel multiplexed digital data, (2), (3), and (4) analog data; input range 0-1.023 volts; analog to digital conversion of all sensor data every 15 sec.; dimensions, 11 cm X 8.5 cm X 4.5 cm

Recording Medium

A good quality C-120 audio tape cassette

Recording Format

Continuously recorded, serial, digital; 8 channels multiplexed on a single track, each consisting of 3 bit channel identifier, 10 bit data word and

0.01 mm inter record gap

46,000 measurements per tape

Data Capacity

24 hours

Recording Duration

Power Supply

4 2x4 manganese alkaline cells 1800 mA hours

@ ± 5 Vdc

Recorder Current Drain

≃30 mA

2.3.6 Further Details Concerning the Rationale Accounting for Survey I Methods

Further details concerning the rationale accounting for Survey I methods may be found in Smith and Richardson (1977).

2.4 AT-SEA QUALITY CONTROL

The most effective time at which quality control can be exercised on any data is at the time of initial collection. Too often this is the point in the data's history which receives the least attention as far as control of quality. The resulting difficulties and the eventual discarding of very expensive and temporally irreplaceable data make it imperative that all MARMAP Survey participants adhere to a valid quality control procedure.

2.4.1 Greenwich Mean Time and Greenwich Mean Date

Greenwich Mean Time (GMT) is the standard for all dates as well as times. Clocks in the scientific areas of the vessel should be set to GMT and so labeled. Activities which extend or occur past 2400 GMT should have times recorded as morning times in the usual fashion, e.g., 0100, 0200, etc., but with an entry in the "Remarks" block of the MSR to alert the data processors. The MSR will retain the date when the station began. Log sheets for individual experiments have actual dates of the start of the experiment.

2.4.2 Units for Data Recording

The metric system is the standard for all MARMAP data. Conversion tables such as the Naval Oceanographic Office, Handbook of Oceanographic Tables (Bialek, 1966) should be on each vessel. The significant figures of the data entries should be in accordance with the instructions for each type of log. Entering extra digits means costly time loss in data processing. For further details on data specifications consult Section 6, Appendix I.

2.4.3 Station Position

A MARMAP station has one position for all routine observations and the Master Station Record (MSR) is the only log which lists this position in order to avoid proliferation of divergent data. The position will be checked for finality with the bridge and this check will be indicated by initialing the "Position Check" on the MSR.

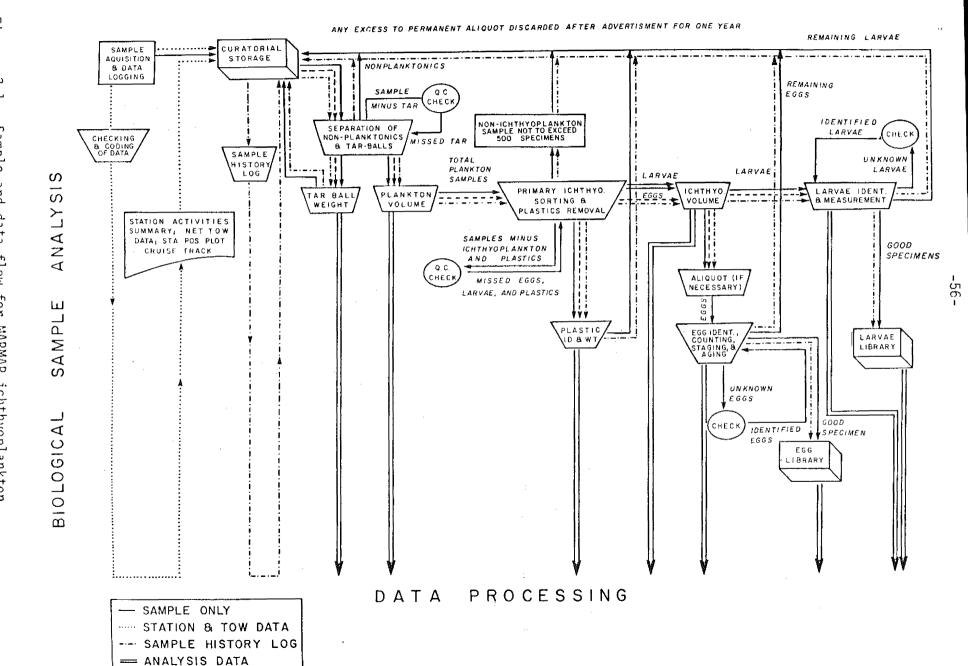
Multi-position experiments, e.g., drift buoys, will be assigned to the station at which they began. The particular log sheet for the multiposition experiment will list any multiple positions.

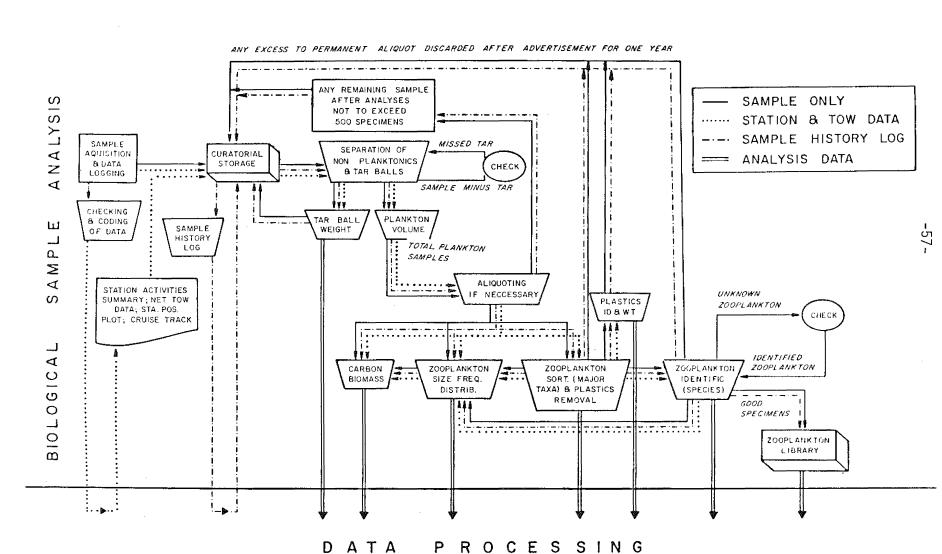
2.4.4 Review of Log Sheets

The oncoming watch will be responsible for checking the reasonableness and completeness of data entered by the offgoing watch. This must be done in timely manner so that reasons for unusual entries are still fresh in the recorders' minds.

2.4.5 Scientific Party Chief's Responsibilities

The Scientific Party Chief has the responsibility for the quality of all data collected, regardless of his particular area of scientific interest or the particular type of data. This is partially achieved through delegating certain duties to subordinates as in Section 2.4.4 above. The Scientific Party Chief must personally oversee that proper techniques are adhered to, that checks and reviews are being consistently made, and that the collection of data resulting from a cruise is consistent and complete. One way to achieve the latter two requirements is by having a conference prior to arriving at home port, or prior to the dispatching of any data to the laboratory during the cruise. One or more types of log sheets are given to each scientist—the Chief Scientist holds the MSR's. By reading data common to all types of logs, e.g., station number, date, type of activity, start time, etc., nearly all inconsistencies will be eliminated, as will be most of guesswork ashore.


3 LABORATORY PROCESSING


3.1 INTRODUCTION

Figures 3.1 and 3.2 show flow diagrams for a range of analyses of ichthyoplankton and zooplankton, respectively. Analyses of other constituents are also illustrated as are procedures for sample archiving and data flow. Steps are represented separately in the diagrams, but in reality, certain of these may be combined depending upon the nature of the plankton and the corresponding approach to the problem in each region. As an example, sorting and identification (and measurement) of key taxa may be performed as a single operation by personnel with adequate experience. Also, eggs and larvae may be enumerated together rather than in separate operations.

Processing of plankton is begun at the laboratory only upon completion of quality control of samples and logs and preparation of standardized products from the data base.

NOTE: The log forms presented are those suggested for use within the MARMAP Program. For sake of space, in this section, the narrative refers to these logs as well as certain MARMAP Information System (Petersen and Jossi, 1978) products exclusively. However, other researchers may find log forms or listings of a different format more useful for their particular cases. Regardless of the format used, all the individual data fields mentioned herein must be logged for analyses required by MARMAP.

3.2 INITIAL QUALITY CONTROL OF DATA AND SAMPLES

Upon completion of a cruise, certain quality control procedures are conducted prior to the delivery of the samples to the analysts. The objectives are to prevent the dissemination of divergent data and to insure the comparability between the data on the logs and that on the sample jar labels.

3.2.1 Divergent Data and Consistency

The first objective is met by confining the use of the original log forms to the production of the MARMAP Station Activities Summary (SAS), Net Tow Data Table (NTD), and Station Position Plot (SPP), (Fig. 3.3, 3.4 and 3.5). These data base products reflect the accepted station and tow data based on shipboard and computer executed quality control. Data on original log sheets often are in error, and although these logs must be retained as ultimate backup copies and for clarification purposes, they must not be distributed to analysts, thus proliferating conflicting and erroneous information.

The second objective is accomplished by separating the samples from a cruise into net type and mesh size. The number of jars from each station is then checked against the number entered on the Zooplankton Sample Log, where any discrepancies are noted. Also entries on the labels are checked and corrected if necessary. Any broken or lost samples are noted on the Zooplankton Sample Log.

Each resulting group is, if necessary, then repacked in boxes in numerical station order. The cruise, gear, mesh, and station numbers are written on the end of each box to be clearly visible during storage. All resulting boxes are consecutively numbered with individual box numbers plus number of boxes in each set.

3.2.2 The Archivist

Some operational units may require the services of a plankton archivist.

START THRATION

FREQUENCY/

MARMAP INFORMATION SYSTEM - STATION ACTIVITIES SUMMARY

PERMITTEN

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL MARINE FISHERIES SERVICE TIME IS EXPRESSED IN GMT AND DEPTH IN METERS.

S MEANS SURFACE AND C MEANS CONTINUOUS.
ZOOPLANKTON NET SIZES ARE EXPRESSED AS MOUTH
DIMENSIONS IN CM (BONGO DIAMETER) OR METERS
(NEUSTON OR HAEDRICH HEIGHT X WIDTH)/MESH IN MICRONS.
BONGO DEPTHS FROM TDR (A INDICATES DEPTH CALCULATED
FROM WIRE ANGLES). ASTERISKS INDICATE DATA NOT
AVAILABLE. E INDICATES AN ESTIMATE. T INDICATES
MAXIMUM TOW DEPTH IS SHALLOWER THAN 10 M OF BOTTOM
IN WATER DEPTHS LESS THAN 100 M OR GREATER THAN PLUS
OR MINUS 10 M OF 100-M TOW DEPTH IF THE BOTTOM DEPTH
IS GREATER THAN 100 M.

DELAWARE II: CRUISE 72-19
12 JULY 1972 - 13 AUGUST 1972

			TION				SHIRT	TIOUSTITUIA	[](%(A())!(A())	,
STATION	DATE	LATITUDE	LONGITUDE	TYPE		BT HAU	TIME	(MIN:SEC)	MAX. DEPT	Н
	12 07 72	42 00 00 N	070 00 00 W							
Τ.	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	74. UV UV 11			52	01				
		•		NEUSTON 1.0X2.0)/947	1	1544	10:00	1/8	
					t/505	2	1651	5 : 25	1/18	A
				BONGO 61	1/333	2	1651	5:25	1/18	Α
				STD						
		·		HYBRO						
				PLANT-PIGMENT						
				PHYTOPLANKTON						
				OXYGEN						
				NUTRIENTS						
				BT						
				TEX CACT						
	4/3 /4/39 77/53	40 00 00 11	069 30 00 W	STD CAST						
2	12 07 72	42 00 00 N	069 30 00 W		52	201				
				NEUSTON 1.0X2.0		1	1838	10:00	1/8	
					1/333	1	1924	31:22	1/230	A
					1/505	1	1924	31:22	1/230	Α
				STD						
				HYDRO						
		·ve.		PLANT-PIGMENT						
				PHYTOPLANKTON						

NTRW

VER 1.6

8/81

PAGE# 1

NET TOW REPORT WRITE-DATE: 20 AUG 82 DELAWARE II 72-19

4					A	•		DELAWA		5-14						
					W// 4214	m.1.15"	65.4.11 77	BONG			A I P" T"	TOW	FLOW	CAL.	TOW	NETOW
				SHIP	F'L.OW	SHF	SHF	SHF	VOLUME	AREA	NET SPEED	DEPTH	REV	FACTOR	TIME	ERROR KEY
닭	#	HEADING		SPEED	M . #	BONGO M 2	BONGO M3	NEUSTON	FILTERED	FILTERED	SPEED	WELTH.	LATE A	L MOTON	J .b I (b.,	1.J\1\U/\ J\1.
Ф	~~~	XXXX		XXXXX	XXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXX	XXXXXX	XXXX	xxxxxxxxx
MARMAP			^	5.7		1.06	0.61		162.78	******	2,93	17.18	* * * * *	0.2750	190	1171732X32
Ħ			•				0.26		382.35		1.18	242.51		0.2750	1106	1171732X32
3			•	2.3		6+34 7 04	0.93		107.62		1.03	41.33		0.2750	358	1171732X32
4			•	2.0		3.84	1.26		79.27		0.93	13.15		0.2750	293	11?1?32X32
			•	1.8	• • • •	1.66		• • • • • • • •	81.28		0,67	72.01		0.2750	416	1171732X32
₽ e			٠	1.3	* * * *	8+86	1.23 0.98		102.51		0.51	126.58		0.2750	382	1171732X32
(+		• • • •	•	1.0		12.35	0.78	• • • • • • •			0.87	249.01		0.2750	1180	1171732X32
_			•	1,7		8.26		• • • • • • •	301.49 354.73	• • • • • • •	1.03	258.88		0.2750	1180	1171732X32
Тош		• • • •	•	2.0		7.30	0.28	• • • • • • •	536,77		1.59	244.73		0.2750	1152	1171732X32
≆			•	3.1	• • • •	4.56	0.19	* * * * * * * *		* * * * * * * * *	0.93	252.89		0.2750	1320	11?1?32X32
∞		* * * *	+	1.8		7.08	0.28	• • • • • • •	357.12		1.03	244.33		0.2750	1230	1171732X32
ന			•	2.0		6.61	0.27		369.76				• • • • •	0.2750	1163	1171732X32
od			+	2.4		5.86	0.24	* * * * * * * * *	419.52		1.23	245.87 254.50		0.2750	1185	1171732X32
-3			•	2.7		5.29	0.21	*******	480.88		1.39					
+		• • • •	•	3.4		4.05	0.18	• • • • • • •	568.77	* * * * * * * *	1.75	230.51		0.2750	1113	1171732X32 1171732X32
			•	1 • 1		12.83	0.53		188.47		0.57	241.75		0.2750	1140	
			•	1.3		10.03	0.59	• • • • • • •	169.99		0.67	170.57	* * * * *	0.2750	870	1171732X32
			•	1.4		9.20	1.29		77.64		0.72	71,46	* * * * *	0.2750	369	1171732X32
	18		*	4.1		0.38	0.41		241.57		2,11	9.22	* * * * *	0.2750	392	1171732X32
	19		+	2.7		3,90	0.91		109.57	• • • • • • •	1.39	42.75		0.2750	270	1171732X32
	20		•	2,6		5.43	0.74		134.82	• • • • • • • •	1.34	73.21		0.2750	345	11?1?32X32
			•	1.9		6.86	0.29		339.54		0.98	232.85		0.2750	1189	1171732X32
	. 22		•	2.2		0.01	0.25	* * * * * * * * *	406.70		1.13	0.50	* * * * *	0.2750	1230	1171731X32
	23		+	1.7		6 • 68	0.32		314,52		0.87	210,24		0.2750	1231	1171732X32
	24		•	3.2		2.73	0.17		577.15		1.65	157,29		0.2750	1200	1171732X32
	25		•	3.0		4.12	0.17		588.45		1.54	242.33		0.2750	1305	1171732X32
	26		•	1.2		10.93	0.44		225.79	• • • • • • •	0.62	246.71	* * * * *	0.2750	1252	1171732X32
	27		•	2.7		5.06	0.21		469,52	• • • • • • •	1.39	237,59		0.2750	1157	1171732X32
	28			1.2		10.31	0.44		227.24		0.62	234.36		0.2750	1260	1171732X32
	29		•	4.1		2.89	0.42		240.34		2,11	69,37		0.2750	390	1171732X32
			•	2.8		2.01	0.36		276.08		1.44	55.35		0.2750	656	11?1?32X32
	31		•	1.9		4.11	0.87		114.80		0.98	47.15		0.2750	402	11?1?32X32
			•	1.4		6.31	1.02		97.84		0.72	61.70		0.2750	465	11?1?32X32
			•	1.1		10.39	0.94		106,64		0.57	110.82		0.2750	645	1171732X32
	34			0.6		23.55	0.98		101.90		0.31	240.00		0.2750	1130	1171732X32
			•	1.3		9.91	0.46		218.84		0.67	216.79		0.2750	1120	11?1?32X32

NTRW VER 1.6 8/81

MARMAP

Tow

Report

NETOW ERROR KEY:

THE NETOW ERROR KEY CONTAINS THOSE VALUES WHICH WERE USED TO CALCULATE A GIVEN STANDARD HAUL FACTOR (SHF). THE VALUES IN THE KEY ARE TRANSLATED AS FOLLOWS:

- O = PRIMARY FORMULA USED IN CALCULATING SHF BUT NET SPEED IS DUTSIDE DF 0.5 TO 1.5 M/SEC RANGE
- 1 = PRIMARY FORMULAE USED IN CALCULATING SHF
- 2 = SECONDARY FORMULAE USED IN CALCULATING SHF
- 3 = TERTIARY FORMULAE USED IN CALCULATING SHF
- X = INFORMATION REQUIRED FOR CALCULATING SHE NOT FOUND
- ? = DEFAULT IF INFORMATION FOR SHF NOT NEEDED OR NOT ACCESSED

FOR EXAMPLE, IF A SHE FOR NEUSTON WAS REQUESTED AND THE TERTIARY FORMULA WAS USED TO CALCULATE CALI-BRATION FACTOR AND NET SPEED AND FLOW METER REV WASN'T FOUND, THE NETOW ERROR KEY WOULD CONTAIN THE FOLLOWING 7:1:131x31

FROM LEFT TO RIGHT, THE VALUES REPRESENT THE FOLLOWING SHF VARIABLES:

SHF: SHF: SHF: VOL: AREA: NET: TOW :FLOW : CAL : TOW

B2 : B3 : N2 : FIL: FIL : SPD: TIME:M REV: FACT: TIME

IF A VALUE IN THE NETOW ERROR KEY CONTAINS AN "X" OR A "?", THEN THE CORKESPONDING FIELD ON THE DETAIL LINE IS BLANK AND IS, THEREFORE, FILLED WITH A SERIES OF DOTS (....). THIS SERIES OF DOTS ALSO APPEARS FOR ALL OTHER BLANK FIELDS ON THE DETAIL LINE.

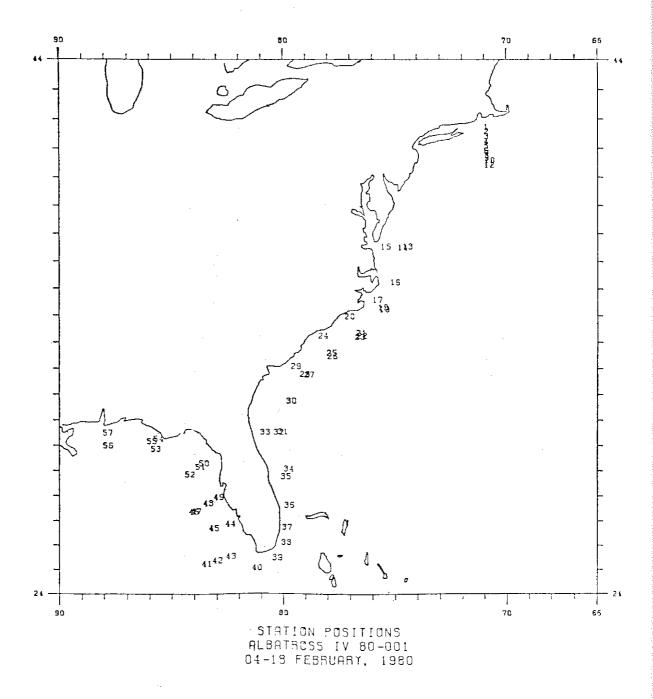


Figure 3.5 The MARMAP Station Position Plot

Also, all or part of the samples may be sent to other institutions for analyses. As the whereabouts and status of samples become more complex certain additional record keeping will become necessary. One such method has been devised using a MARMAP Sample History Log (SHL) (Fig. 3.6). These logs are initially filled out after checks mentioned in 3.2.1 above, and their contents are added to a computer file for automated query purposes.

<u>NOTE</u>: The discussion which follows assumes that an archivist will be available and that sample history data will be stored in a computer file.

The data base products mentioned in Section 3.2.1 above and the Sample History Log then accompany the samples to the analysts. Again, original station and tow log sheets are not delivered to the analysts. The data base products stop with the analysts, but the Sample History Log(s) accompanies the samples, or their derivatives through the entire flow shown in Figures 3.1 and 3.2. Copies of updates to the SHL are delivered to the plankton archivist for inclusion in the sample history file.

3.2.3 MARMAP Sample History Log

Instructions for completion of the log form are presented below:

MARMAP Sample History Log (Form SHL, 12/79)

General Instructions

A Sample History Log (SHL) listing the information described below must be prepared by the operational unit collecting any samples. The SHL is filed by them and a copy of it accompanies samples or portions thereof.

Information on subsequent sample disposition is communicated back to the plankton archivist for computer file updating.

Operational Unit Name of institution preparing this log, e.g., NEFC, SUSIO-FSU.

Vessel/Cruise As recorded on the Station Activities Summary.

U.S. DEPT. OF COMMERCE NOAA NATIONAL MARINE FISHERIES SERVICE

MARMAP SAMPLE HISTORY LOG (SHL)

	OPERATIONAL Vessel	UNIT		_			Cruise	e <u> </u>			
	Station-Haul:G [Aliquot Fract	ear ID No. (ion]/Vial Nu	No. of contai	ners)	GEAR/ MESH	Container/ Contents	Samr Date D - M - Y	le Disposition Delivered to, or Altered		Remarks	
<u>~</u>											
(12 / 79)											+
SHL											1
FORM											
(SHL)											_
L06 (S											\perp
1 L											-
N S											-
ᆚ											-
SAMPL											-
MARMAP											-
MAN	1	. 	11	i1	l	1	Check wh	en additional sh	eet is	required \Box	<u> </u>

<u>Station</u>

As recorded on the Station Activities Summary.

Haul_

Following a hyphen the haul number as recorded on the

Station Activities Summary.

NOTE: Only haul numbers other than one need

to be logged.

Gear I.D. No.

Following a colon the identification number of the gear used in collecting the sample whose history is being

described on this line.

No. of Containers Enclosed in parenthesis the number of containers of a particular size whose history is being described on this line.

> NOTE: Only number of containers other than one need to be logged.

Aliquot Fraction

Enclosed in brackets the aliquot fractions describing the contents in the above containers.

NOTE: Only fractions other than 1/1 need to be logged.

Vial Numbers

Following a slash the number of the specimen vials whose history is being described on this line. Specimen vials are assigned numbers as recorded on the Ichthyoplankton Data Records or the Zooplankton Data Record (Sections 3.5.3.1.3, and 3.5.3.2.4, and 3.6.4.3 respectively).

NOTE: Larval fish vial numbers should be 01 to 99; fish eggs, 100-199; and invertebrates, 200-upwards.

Gear/Mesh

The gear and the mesh size used in collecting the sample entered according to the table below:

MESH	ENTER
333	6B3
505	6B5
333	2B3
505	2 B5
165	2B1
253	2B2
505	1 N5
947	2N9
706	3H7
1800	3H1
	Write out gear name plus
	mesh aperture in microns.
	333 505 333 505 165 253 505 947 706

<u>Container/Contents</u> Size of the containers listed on this line and, <u>following</u>

<u>a slash</u>, contents of those containers entered according

to the table below:

CONTAINER	ENTER	CONTENTS	ENTER
Gallon	G	Unsorted Plankton	U
Quart	Q	Unsorted Invertebrates	G
		& Fish Eggs	
Pint	P	Unsorted Invertebrate	А
		Zooplankton	
Half-Pint	H	Sorted Fish Eggs	Ε
		Sorted Fish Larvae	L
Vial	٧	Sorted Invertebrate	В
		Zooplankton	

Identified Fish Eggs 1 Identified Fish Larvae F Identified Invertebrate C Zooplankton Tar Т Plastics P Unspecified Debris Broken/Lost Z

Sample Disposition

Date of delivery or alteration to samples entered as Date follows: day - month - year.

Delivered The operational unit or individual to which samples are To delivered. If other than the plankton archivist forward

copy to the archivist.

Altered A check mark if the characteristics of a sample have been altered, even though it has not been sent anywhere, e.g., sorted, aliquoted, identified.

Remarks Any information useful to describing the history of a MARMAP sample.

Recorded By Name of individual filling out the log.

Check when Enter a check to indicate the existence of additional additional sheet Sample History Logs for a particular cruise.

is required

- 3.3 PROCESSING OF CONTAMINANTS
- 3.3.1 Tar Contaminants Determination
- 3.3.1.1 Separation of Tar Contaminants

The plankton samples are removed from their boxes and readied for

analysis by arranging them in numerical order of stations. Each sample and its preservative are poured into a white tray approximately 40 X 30 X 5 cm. Any tar contaminants present in the tray are removed, placed in jars, and labeled for analysis as described below.

NOTE: MARMAP is a participant in the IOC/WMO/IGOSS Marine Pollution Monitoring Pilot Project. Figure 3.7 is the standard form for this project. MARMAP Information System (MIS) users can avoid transposing data to this log by running this MIS program TARREP which produces a printout of tar data similar in format to the above log form (see Fig. 3.8). To avoid not only the transposing but also the data re-entry by the Pilot Project staff, MIS users can run the program TARCRD which creates eighty-character records of tar ball information according to the data format of IOC/WMO/IGOSS. A tape file of these records can then be sent to the Pilot Project staff.

Plastic contaminants are usually removed during a subsequent analysis (Section 3.5.2.9).

3.3.1.2 Drying and Weighing Tar Balls

Tar contaminants are placed on a piece of pre-weighted wax paper and allowed to air dry (12 hours) and are then weighed. The weight of the paper is subtracted from the weight of the tar plus the paper to obtain the tar weight.

3.3.1.3. MARMAP Tar and Plastics Log

The resulting weight of the tar is recorded on MARMAP Tar and Plastic

							TOC/WMO	213	3 Ω5		ΜA	RIL	E	PQ		JIL	οи	ΜC	NI	TQF	₹[N	G F	٦L	ОΤ	ЬÞ	۱٥٠ ن	EC	Τ:						*******							
TYPE		PLATFO NAME		HIP		CALL SIGN #	NOAA FOR	м 7	2-9)						N/	TIC	ANC	LC	CEA	NIC	AN	U. S D A	, DI	EP#	RTI	ME N	AD	OF MIN	CO	MME HA	RC	E			oras .					
1	h	Jestw.	-	1		WZL		F	·ΔF	₹.					-				-	ND RES							11	5)			÷					O.M 41R Ex cent	28: pire	36			
COUNTR	Y Y					1	INSTITUT			<u>`</u>			`	- '										E N				SA	MPI	LIN	ıG		_	М	ES)	151	ZΕ				
	Uni	ted	Sł	ta t	e 5	,	NOAA,	Αc	วพ	۱L	, F	ЬΗ	01									\	2	24	2				:VI		t o	n			•	5	0.	5			
		SAMPLE	, M10	отн	W 2	TOBEF	ILLED	Ţ	D	AT	E #			Т	ME			T		PO:	SITI								PT1	ИО И	<u>F 0</u>	Rм	ΑT	R OI	N M E	Ент					
STAT MUM8		NUMBER	0	F	X C	BY LABO	TAR	+	AY	СM Г		ΥF	_	HR	TM.) AIN.			LA.	MIN	+	DE	.0N	G. I MI	N.		WII	ND T	SP			B T	E HT	+		TE	MP		CATE		ĺ
NOME	JEK	(1)	NE (C/	DTH IF ET M)	TSIG	OF TAR	CONC.	-	Îγ	 -	м	J	-+	G	-+-		Q c	+	→ 1	L L	1	L	•	₽		i		а	7		PF					T T	T	T		T	
	4	0001		00				1	0	0	2	7	6	2	2/1	7	7	_	—	01		8	5	3	5	1	3	5	a									2	O	6	descenses
	6	0002	. 1) O	0 1	2.2571		Ц		0	2	7	6	1	413	8	7	2	Щ	5 =	3 2	2 8	6	4	1									\perp			\perp	L		-	
	10	0003	1 (00	01	.2366		Ĭ/	2	o	2	7	6	1	8 6	0 4	7	2	5	0	0/0	8	7	5	6	3	ì	1	0	7	٥	8	0	\mathbf{z}_{U}^{1}	0 5	12	C	12	3	5	
	13	0004	10	00	01	.1350			3	0	2	7	6		8 2	. 5	7	2	6	2 8	7 0	8	6	5	3								0					2	3	0	Ū
	20	0009	1	00	01	trad	· e		5	0	2	7	6	1 8	3 3	0	7	2		4/0	c	8	4	3					0				0								The same of the sa
	23	0010	10	00	01	tra	ce		6	0	2	7	6	11:	5 3	30	7	2	6	2	1	8	ч	5	3													2	0	5	and the second
	16	0005	- 1	00	01	20.4815		\prod	4	0	2	7	6	1	Ы		7	2	7	0/2	3 0	8	6	5	1						T				T	T		2	1 (0	The Charles
	27	0006	, 1	00		1.1313		1	7	0	2	7	6	16	3	0	7	2	6	0 4	10	g	6	3	7	1				Ī				I		I	L	2	7	0	
	30	0007	7 1 4	00	01	8.2897		1	9	0	2	7	6	0 0	> 9	10	7	2	5	51	0	8	6	1	5	1	5	5	7	0	2	4	0	3				2	4	5	
	32	0008	3 1	00	١٥١	0,4251														1/4												floor				\perp	L	L			l
																																				\perp	L				l
																					\perp																L	L	Ц		i
								<u>.</u>	L												\perp																L	L	Ц		
								L	Ļ	L	Ш			\perp	\perp	\perp						_								\downarrow	\perp	\downarrow	\perp	Ļ	\perp	_		L	Ц		
								L		L										\perp		\perp							\perp			\downarrow	1	\perp	\perp	L			Ц	_	
			\coprod					L	_	_			_	\perp	1	\perp			Ц	_										1	\perp	1	\perp	\downarrow	\perp	\perp		L	Ц	_ 	
			Ш			<u> </u>		L	_							\perp			Щ	\perp					_	\perp	\perp					\perp		\perp	\perp	Ļ			Ш	_	
NAME A	ND ADD					contact refere	nce this repo	rt.)	I									*	NO	TE:								mo	orke	eď	wit	h c	n c	zste	eris	sko	n			- Constant	
		Dr. R	oloei	rt '	M 0,	linari												† ₁	ra	c € irk S		<i>e</i> ከ	te.	ottle red	e lo d	abe a S	1.		00	00	1	Qт	и.							Market	
		15 R	,1901 cke,	ML, Nbo	ckev	- (ausewy											(1)					ĒΙ	\U!	МΒ	ΕŔ	on	bo	th.	sar	npl	& F	ott	le	and	l				Name of Street	
		Mic	×120	6	-19	33/49													Ьо	ttle	cap	٠.																			

MARMAP INFORMATION SYSTEM - TAR DATA

Figure 3.8

 					;	IOC/WMO	IGOSS M	ARINE	POLLUT	TON M	тімо	ORINO	3 PILO	OT PRO	JECT				
		PLATFOR	H/SHIP	700 THE RES OFF MAY 100 THE RES OF		NOAA FOR (1-75)	M 72-9	NATI	ONAL O	CEANI	C AN					COMMERCE STRATION	FOR		
Output	TYPE	N LBATROSS	IV.	 	CALL SIGN		PART:	LOG ICULAT	FOR SA						.\$)		1	M.B. 1 41R28 EXPIR EMBER	36 ES
of the	COUNTRY	USA	feet on) spec be- ver van	AT A	1	INSTITUT	E		han and spil uffi for			f	RUISE 73-02	NO.	IDEV	PLING ICE USTON	ł	947 M	
MARMAP		1 1 1 1	;	T	TO BE F		I I DATE	;		 (Q.)	POS	ITIO	ч	;	OF	TIONAL E INFOR			AL :
	: STATION NUMBER	: SAMPLE NUMBER	OF	S E	DAALI YA	JKA LUK I	I (GM)	*** **** **** ****		IAI						WAVE		TEMP	oC ;
Informati		<u> </u>	NET	C M	WEIGHT OF TAR (G)	CONC.	IYIYIMII	HUILI	G 6 6	GIQIL	ILIL	ILIL IAIO	L L	10:0:0:	Dibif	#	:H!S!	TITIT	
on System program TARREP .	000001 000002 000003 000004 000005 000006 000007 000009 000010 000011 000012 000013 000014 000015 000015	N/A N/A N/A N/A N/A	200 200	1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2 1543.2	1.2157 0.6770 4.2134 2.0132 0.5738 0.6769 0.8631 0.0000 3.3118 0.1336 3.0806 2.9650 29.7611	0.1530 0.3939 0.2193 1.3651 0.6523 0.1859 0.2056 0.2796 0.0000 1.0730 0.0434 0.9607 9.6427 10.9525	12 2 0 12 3 0 12 3 0 11 2 3 0 11 2 4 0 11 2 5 0 11 2 5 0 11 2 5 0 11 2 6 0 11 2 6 0 11 2 7 0 11 2 7 0 11 2 7 0 11 2 7 0	1 7 3; 1 7 3; 1 7 3; 1 7 3; 1 7 3; 1 7 7 3;	1 9 4 4 4 4 1 1 1 2 2 2 5 3 0 0 1 5 1 2 2 2 5 2 5 0 0 1 1 1 2 2 2 5 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 0 0 0 1 2 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 0	51712 51712 51712 51712 51712 51712 01712 01712 01712 01712	2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	010 010 010 010 010 010 010 010 010 010	7 1 1 () () () () () () () () ()	00 0141 00 0141 01 0141 0141 0141 0141 0	0 9:11 1 2:22 1 0:11 1 3:11 1 3:11 1 4:11 1 3:11 0 3:00 0 9:11 0 6:22 0 7:10 0 9:11 1 7:11	81/ /1/ 61/ /1/ 01/ /1/ 61/ /1/ 51/ /1/ 01/ /1/ 01/ /1/ 91/ /1/ 01/ /1/ 81/ /1/ 81/ /1/ 41/ /1/	/ 10 1 / 10 1	2 2.4 2 3.4 3 2.3 2 2.3 3 6.1 5 6.1 5 6.1 5 6.2 5 6.3 5 6.3 5 6.2 2 2.6 6 2.6 6 3.6 6	12 3.31 12 4.21 12 4.31 12 5.21 12 6.21 12 6.61 12 6.61 12 5.81 12 5.81 12 4.81 12 4.81 12 4.01 12 3.41

Logs (TPT) (Fig. 3.9) beginning with data from the Station Activities Summary.

Appendix I. Instructions for completion of the log form are presented below:

MARMAP Tar and Plastics Log (Form TPT, 10/80)

Page of The consecutive page of this log plus the total number of pages of logs for any cruise.

Operational Unit Name of institution preparing this log, e.g., ZSOP, NEFC, NWAFC.

<u>Vessel</u> As recorded on the Station Activities Summary.

<u>Cruise</u> As recorded on the Station Activities Summary.

Gear/Mesh The gear and the mesh size used in collecting the sample entered according to the table below:

GEAR	<u>MESH</u>	ENTER
61 cm Bongo	333	6B3
61 cm Bongo	5 05	6 B5
20 cm Bongo	333	2B3
20 cm Bongo	505	2 B5
20 cm Bongo	165	2B1
20 cm Bongo	253	2B2
50 x 100 cm Neuston	5 05	1 N5
100 x 200 cm Neuston	947	2N9
36 x 97 cm Haedrich	706	3H7
36 x 97 cm Haedrich	1800	3H1,
Other Gear		Write out 9

Write out gear name

plus mesh aperture in

microns.

U.S. DEPT. OF COMMERCE NOAA NATIONAL MARINE FISHERIES SERVICE

MARMAP TAR AND PLASTICS LOG (TPT)

	OPE	RA'	TION	1AL	U	INI	T	_																			
	Ves	sel		П				Ι							Ϊ							(Cru	iş	e	Gear/Mesh 🔲	
	STATION	NOMBER	HAUL	GEAR ID	NUMBER	D		AM DA M	ΤE		ALIGUOT	CODE	NO. JARS	TAR	WEIGHT	(m.b)	TYPES	—	TYPES T	WEIGHT		TYPES	WEIGHT	(am)	REMARKS:		
	\Box	L			\perp	L					Ш		_				1	_	2			3	_				
		_	<u> </u>	<u> </u>		<u> </u>	,	,,	_		ļ.,	_	_		_	_	4	_	5			9	_	_			
(10/80)	<u> L</u>	Ц,	 				<u>L</u>	Ш	ĻL		4-4	\dashv			L	<u> </u>	11	_	2	╀	\downarrow	3					
3/6	—	_		1	-	1	r		1	1	╀-	4	4			Т.	4	-	5	-		6	-	Н			
Ξ		4	<u> </u>			-	<u> </u>	Ш		L_	╀╌┦	┥	-1	Щ.		۰	4	-	5			3 6					
_		 	-			-	r	r1			╂┉	-			Т	$\overline{}$	1		2	┢		3	╅	\dashv			
TPT		┸┤		1.	_1_	┞┤		ш	- 1		╁	\dashv	-			4	4	┪	5	十		6					
Σ		T^{\dagger}		1	Т				П	Т	$\dagger \neg$	7	\dashv		Т	T	i	1	2	H	1-1	3	Î	ᅦ			
FORM	•					ऻ					1-1	7				.а	4	1	2 5	厂	T	<u>3</u>	Ī	╗			
ட		T		П	Т		Π				П	╗	コ	T	Τ	Ţ	1	Ţ	2	Γ	П	3	Ī	٦			
(C)															•		4	Ī	5	匚		6					
T06	Ш	\coprod					L									<u>. </u>			2	L		3		╝			
				Ц.		Ш											4	_	5	L		6	_	╝			
2		Щ				┰	L			L_	4-1					1_	11	_	2	L	4	3		-1			
151	 	-		.		ļ	_	,	—т		 		\dashv	_	_	_	4	-	5	 		6		긕			
PLASTICS	 	Щ		├ ──┴		╁	L	<u>. </u>	L		4-4		\dashv	L_	Т-	.	1		2	├-		3	-	긕			
		$\overline{}$	-	┝┯	T	-		- 1	-		╁	\dashv			_	_	4	_	5 2	⊢		6	_	┥			
AND	┝╾┷	Н		╁╌┶			ا	Ш			╁┵	┪			1_	<u> </u>	4		5	-		3 6	┿	\dashv			
		T		1	Т	\vdash		П	П	Т	╁┯	ᆉ		-т-	Т	T-	7		Ž			3	┪	┨			
TAR		닉				┰	L	L1	l			+	\dashv	<u> </u>		4	4	1	5	-		<u>ĕ</u>	╅	ᅥ			
		П		T	Т	П		П	7	Ť		7	-	T	Т	Γ	H	1	2			3	7	┪			
MARMAP		•				Г					†	寸	_			<u>s</u>	4	1	5	Г		6	1	┪			
2€				П	Т			П	П	Т	П	┪	寸		Τ	I	1	Ţ	2	Г		3	T	┪			
Σ																	4		5			6	Ĵ	1			
	Reco	rde	d by	. <u> </u>									Ω.	ıte:													

Station Number As recorded on the Station Activities Summary. Haul No. As recorded on the Station Activities Summary. The number assigned to each net used during the haul. Gear I.D. No. This is necessary when gear of identical characteristics are disployed on the same haul.

Date (day-month-year) when sample was collected; from the Sample Date Station Activities Summary.

The code for the factor by which counts from an aliquot can Aliquot Code be converted to numbers for the whole sample (list below).

ALIQUOT FRACTION	ALIQUOT FACTOR	ENTER
1/1	1 .	01
1/2	2	02
1/4	4	04
1/8	8	80
1/16	16	16
1/32	32	32
1/64	64	64
1/128	128	12
1/256	256	25
1/512	512	51
1/1024	1024	10
1/2048	2048	20
1/4096	4096	40

No. Jars

As recorded on the Zooplankton Sample Log.

Tar Weight

The weight of the air dried tar recorded to the nearest 0.1 gm.

Plastics Weights The weight of each type of air dried plastic recorded to the nearest 0.1 gm. The six types, preprinted for each station are as follows:

Type 1 Opaque polystyrene spherules

Type 2 Clear and translucent polystyrene spherules

Type 3 Opaque and translucent polyethylene cylinders

Type 4 Styrofoam

Type 5 Plastics sheets

Type 6. Plastic pieces and paint chips

Recorded By Initials or name of person entering data on the log.

<u>Date</u> Date (day-month-year) that data are entered on the log.

Remarks Any information useful in subsequent analyses of these samples.

3.3.2 Plastics Contaminants Determination

3.3.2.1 Separation of Plastics Contaminants

Plastic contaminants in the samples usually are removed during the sorting for fish eggs and larvae (Section 3.5.2.1). It is a helpful practice to arrange and analyze the samples and log the results in numerical order of stations.

3.3.2.2 Categorizing Plastics

Floating plastic contaminants usually fall into the classifications of white opaque polystyrene spherules, translucent to clear polystyrene spherules, opaque to translucent polyethlene cylinders or disks, styrofoam pieces, thin flexible wrapping material, and fragments of containers, toys, etc. (see Colton, Knapp, and Burns, 1974).

3.3.2.3 Drying and Weighing Plastics

Plastic contaminants are placed on a piece of pre-weighed wax paper and allowed to air dry (12 hours) and are then weighed. The weight of the paper is subtracted from the weight of the plastic plus the paper to obtain the plastic weight.

3.3.2.4 Filling Out Log Sheet

The resulting weights are recorded on the MARMAP Tar and Plastics Log (Section 3.3.1.3).

3.4 PROCESSING FOR BIOMASS

Displacement volume, dry weight, and total carbon determinations have as their aim the measurement of zooplankton biomass. For comparability of these methods see Wiebe, Boyd and Cox (1975), and Kane (in press).

3.4.1 Displacement Volume Determination

The information gained from volume determination is limited. Ahlstrom and Thrailkill (1963) have shown that there is a variation in plankton volume as a function of preservation time in formalin and as a function of species composition. Wiebe, Boyd and Cox (1975) show data partly in contradiction to the above, but there is little doubt that attempts to measure plankton biomass by displacement volume have limitations. Nonetheless, this technique is relatively simple, inexpensive and rapid, and within its limitations can provide useful data.

Plankton volumes are determined by displacement, (sometimes termed "wet volumes") and recorded to the nearest milliliter. Two volumes are routinely recorded for each sample:

Volume of Large Organisms - displacement volume of those planktonic organisms >2.5 cm in longest dimension

Volume of Small Organisms - displacement volume of those planktonic organisms <2.5 cm in longest dimension

Ichthyoplankton volumes may also be determined.

The plankton samples are removed from their boxes and readied for volume measurements by arranging them in the numerical order of stations.

The procedure for determining volumes is as follows:

3.4.1.1 Removal of Non-Planktonics

Each sample and its preservative are poured into a white tray approximately $40 \times 30 \times 5$ cm. All non-zooplanktonic organisms, i.e., small adult fishes, juvenile fishes, squids, octopi, adult pelagic crabs, and seaweed are removed, placed in a jar of adequate size and appropriately labeled inside and outside. The names and quantities (number or volume) of these organisms are recorded on the Zooplankton Volume Log (Section 3.4.1.7). Data are also recorded for any specimens which were removed at sea and recorded on the Zooplankton Sample Log (Section 2.3.2.12).

NOTE: As mentioned earlier, data on original field logs such as the ZSL undergo extensive quality control. Use caution in dealing with these data.

3.4.1.2 Separation of "Small" and "Large" Organisms

All organisms with longest dimension approx. > 2.5 cm are removed, washed, and placed in a graduated cylinder (size depending on volume of sample) containing a known volume of 3-5% buffered formalin (Section 2.3.2.10). The difference in the resulting reading and the known volume of formalin is the volume of the large (> 2.5 cm) organisms.

3.4.1.3 Transfer of Sample to Graduated Cylinder

The remainder of the sample and its preservative are poured from the tray into a 1000 ml graduated cylinder and enough preservative is added or subtracted to bring the level of the liquid to an even milliliter. This volume (to the nearest whole milliliter) is retained for subsequent computations (Section 3.4.1.6)

3.4.1.4 Funnel and Draining Cone

A funnel is placed in another clean graduated cylinder.

NOTE: This cylinder is plastic tubing,

3.8 cm I.D. x 86.4 cm long (1.5 in x 34 in)

with graduations etched on the cylinder or

on a grooved board fastened to the back side of

the cylinder. The graduations on the cylinder

or on the board are 5-ml increments from 0-600 ml

and 2-ml increments from 600-910 ml (see Kramer,

et. al., 1972, p. 24)

A draining cone is placed in the funnel (see Table 2.1).

3.4.1.5 Standardization of Draining

The plankton and preservative from Step 3.4.1.3 are poured into the draining cone. The plankton is retained in the cone while the liquid drains into the cylinder. The plankton is considered drained when the interval between drops from the bottom of the cone increases to 15 seconds. Draining times very with the size and composition of the sample.

3.4.1.6 Calculations

The volume of the drained liquid in the cylinder is subtracted from the initial volume of plankton plus liquid (Step 3.4.1.3). The difference is the volume of the organisms approx. < 2.5 cm. Return both of the size groups of plankton to the jar with preservative in preparation for sorting.

3.4.1.7 MARMAP Zooplankton Volume Log

The plankton volumes are recorded on MARMAP Zooplankton Volume Logs (ZVL) (Fig. 3.10) beginning with data from the Station Activities Summary. Further specifications for zooplankton displacement volume data are given in Section 6, Appendix I.

Figure 3.10 The MARMAP Zooplankton Volume Log

MARMAP ZOOPLANKTON VOLUME LOG (ZVL)

OPERA Vessel		NAL	TINU	Г <u> </u>					1		- 		Crui	se !		<u>[=]</u>]		Gear/Mesh
STATION NUMBER	HAUL NO.	GEAR D NO.		SAMPL DATE	-	γ	NALY DAT	E		ALIQUOT	No. Jars	NON-PLANKTO AND SEAWEED Organisms	REMOVED	La 0	ol. rge rgs. ml)		Vo On <2.5	ol. rgs. i cm	ICHTHYO- PLANKTON	VOL. (m1)	Remarks
N VOLUME LOG (ZVL) FORM ZVL (10/80)				IM I	A) A			MY	Y			Urganisms	tity								
MARMAP ZOOPLANKTON		rded h																			

-78

MARMAP Zooplankton Volume Log (Form ZVL, 10/80)

page of	The c	onse	ctive	pag	je of	f the log	plus	the	total	number	of
	pages	of	logs	for	any	cruise.					

Operational Name of institution preparing this log, e.g., ZSOP, SWFC, NWAFC, SEFC.

Unit

Vessel As recorded on the Station Activities Summary.

Cruise As recorded on the Station Activities Summary.

Gear/Mesh The abbreviation for the name of the gear and the mesh size used in collecting the sample entered according to the list below:

GEAR	<u>MESH</u>	ENTER
61 cm Bongo	333	6B3
61 cm Bongo	505	6B5
20 cm Bongo	3 33	2B3
20 cm Bongo	505	2B5
20 cm Bongo	165	2B1
20 cm Bongo	253	2B2
50 x 100 cm Neuston	505	1N5
100 x 200 cm Neuston	947	2N9
36 x 97 cm Haedrich	7 06	3H7
36 x 97 cm Haedrich	1800	. 3H1
Other gear		Write out a

Other gear Write out gear name plus mesh aperture in microns.

<u>Station Number</u>

As recorded on the Station Activities Summary.

Haul No.

As recorded on the Station Activities Summary.

<u>Sample</u> Date

Date (day-month-year) when sample was collected; from the Station Activities Summary.

Gear I.D. No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are disployed on the same haul.

Analysis Date Local date (day-month-year) when volume analysis was performed.

Aliquot Code The code for the factor by which counts from an aliquot can be converted to numbers for the whole sample (list below).

ALIQUOT FRACTION	ALIQUOT FACTOR	ENTER
1/1	1	01
1/2	2	02
1/4	4	04
1/8	8	08
1/16	16	16
1/32	32	32
1/64	64	64
1/128	128	12
1/256	256	25
1/512	512	51
1/1024	1024	10
1/2048	2048	20
1/4096	4096	40

NOTE: Aliquot factor should rarely be other than 1 for this analysis. If aliquoting is necessary, see Section 3.6.1 for details.

No. Jars As recorded on the Zooplankton Sample Log. Non-Planktonic Name and quantity (number or volume). Under "Remarks enter data for any of these organisms discarded at sea as recorded Organisms and Seaweed removed on the Zooplankton Sample Log.

Vol. Large Orgs. Displacement volume of organisms approx. > 2.5 cm in longest dimension recorded to the nearest whole milliliter. Under "Remarks" add data for any of these organisms discarded at sea as recorded on the Zooplankton Sample Log.

Vol. Orgs. Displacement volume of organisms approx. < 2.5 cm in longest

2.5 cm dimension recorded to the nearest whole milliliter.

Ichthyoplankton Displacement volume of ichthyoplankton recorded to the

Vol. nearest 0.1 milliliter.

Remarks Any information useful in subsequent analyses of these samples.

Recorded By Initials or name of person entering data on the log.

3.4.1.8 Displacement Volume of Individual Specimens

Displacement volume determination of individual specimens of ichthyoplankton and other zooplankton requires apparatus of smaller scale and greater accuracy. As the displacement volumes involved become smaller the error due to interstitial water becomes more significant. The mercury immersion method of Yentsch and Hebard (1957) offers an improvement to the interstitial water problem. The modification of the plankton volume gauge for use aboard ship described by Tashiro and Hebard (1969) deals similarly with the interstitial water but avoids the use of mercury.

The authors had a glass blower construct a much reduced model of the Tashiro-Hebard gauge (Fig. 3.11) with

crucible dimensions of:

I.D. = 2.0 cm

height = 1.5 cm

volume = 4.71 cm^3

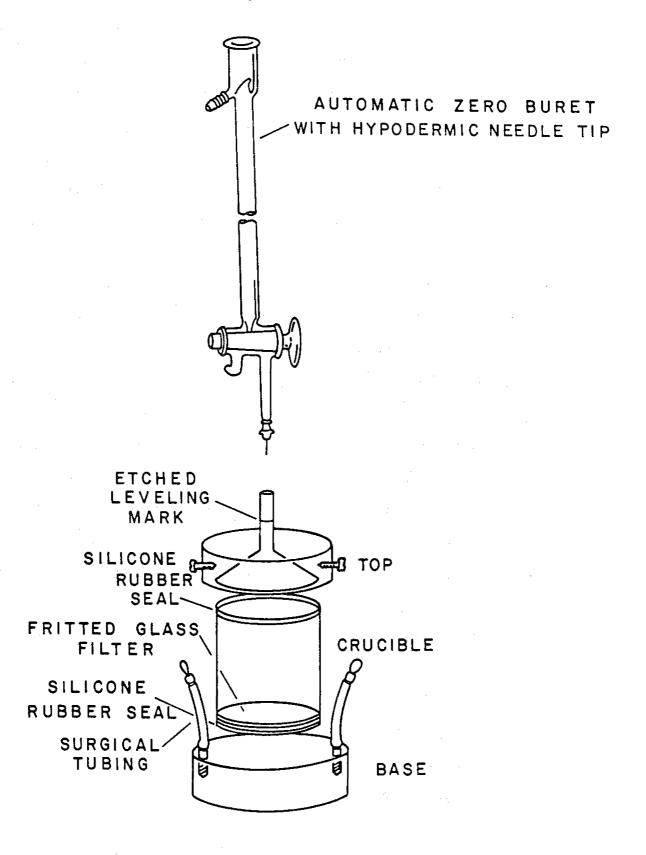


Figure 3.11 A modification of the Tashiro-Hebard plankton volume gauge

top dimensions of:

I. D. (bottom) = 2.0 cm

I. D. (capillary) = 0.2 cm

height = 3.0 cm

volume = 2.41 cm^3

empty gauge volume of:

 $= 7.12 \text{ cm}^3$

By using a micro, precision bore buret of 10 ml capacity and graduations at 0.01 ml intervals it was possible to measure the displacement volume of samples or single specimens \leq 5 ml to \pm 0.01 ml accuracy.

Emerging technologies, e.g., image analysis may prove to be superior to the above method, although they will surely require a substantially greater initial cost. For a simple, low cost, reasonably accurate determination of plankton biomass the above method has obvious application.

3.4.2 <u>Total Carbon Biomass Determination</u>

A determination of carbon biomass is the preferred method for obtaining zooplankton standing stock. The method to be used for MARMAP samples was prepared by Frederick D. Knapp and is based on the method of Curl (1962a). It involves the determination of organic carbon in an induction furnace and measurement of the resulting CO_2 . Following is an outline of the method, but researchers should consult Curl's work as well as Lovegrove (1961) and Platt, Brown, and Irwin (1969) for further details.

<u>NOTE</u>: Since the sample is destroyed by this technique, a separate sample must be taken or obtained by aliquoting for other analyses.

3.4.2.1 At-Sea Procedure

The carbon biomass determination is usually composed of two somewhat separate operations (Fig. 3.12). Aboard ship a 0.333 mm mesh net sample is aliquoted if necessary and/or possible (see Section 3.6.1). Then the sample is placed in a draining pan of mesh aperture no larger than 253 microns, and rinsed with a liter of tap water to dilute interstitial sea salts. Depending upon the preservation method available, the drained sample is either 1) transferred to a numbered pre-weighted jar for drying at 60°C for 24 hours and preserved by desiccation or freezing, or 2) transferred to a graduated cylinder, brought to known volume in fresh water, homogenized for 90 sec and preserved in a lyophilizer.

NOTE: Preservation of homogenized samples by freezing is permissible but leads to odor problems if the samples are also to be used for dry weight determination.

Various rinsing and preserving techniques are in common practice. Until the effect of these differences has been established the actual method used must be documented on the log sheet.

3.4.2.2 On-Shore Procedure

At the shore laboratory the preserved sample is re-dried at 60° C to constant weight, cooled to room temperature in a desiccator, and the dry weight is determined. (See Section 3.4.3 for further details on the dry weight determination.) Approximately 100 mg of dry material is placed in a clay crucible and burned in an induction furnace, e.g., LECO Model 521-300. This furnace reaches a temperature of 1650 degrees C in about 15 sec, burning all carbon to CO_2 , and then the gases are conducted to a LECO WR-12 Carbon

9

ns-

nder,

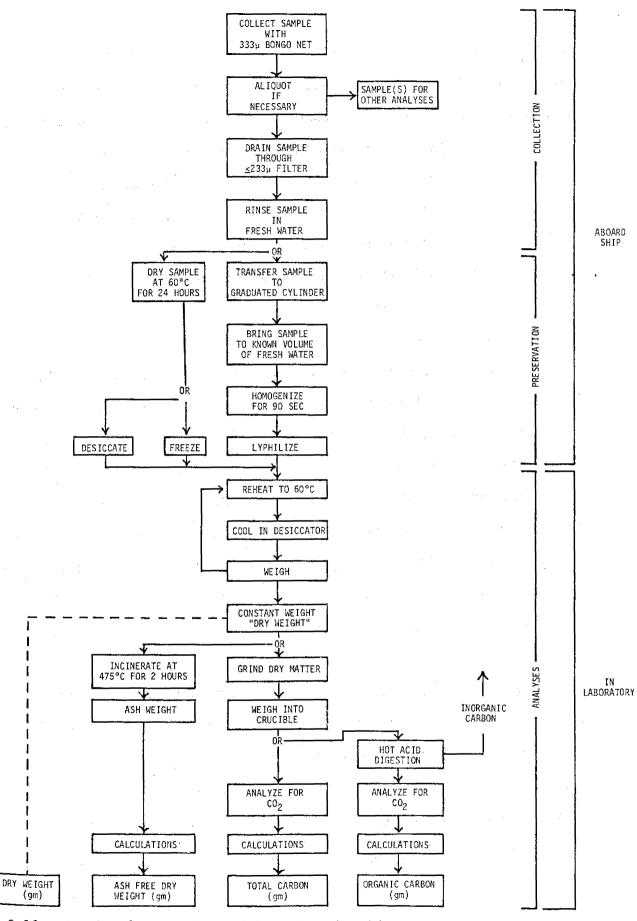


Figure 3.12 Sample flow for dry weight and carbon biomass determinations

Determinator. The Determinator selectively traps ${\rm CO_2}$ which is measured via thermal conductivity. Appropriate correction factors are applied to give the mg of carbon in the original plankton sample (see Section 7, Appendix II).

NOTE: Since differences in rinsing and preservation procedures and carbon analysis equipment may alter the resulting data and since standards for these operations/equipment are not yet available, details about them must be logged for later data comparability.

3.4.2.3 Organic Carbon

This method measures total carbon, whereas organic carbon is the desired quantity. It appears that often there is no appreciable inorganic carbon in the zooplankton community. Curl (1962a) utilized the above method to analyze for carbon in zooplankton. For numerous individual plankton groups and for mixed plankton samples, only three test samples showed that inorganic carbon was present in appreciable amounts; these were the isopod, Idotea metallica; the mollusc, Limacina; and a mixed sample of phytoplankton and fish. However, other studies (Raymont, et al., 1967; Curl 1962b; and Harris and Riley, 1956) report ash weight to exceed 20 percent of dry weight.

Until and perhaps after the question is resolved, a simple addition to the method can give organic carbon. An aliquot, in addition to the one used for total carbon, is required. A portion of dry material is weighed out into a clay crucible, and then treated with a hot acid digestion to break down carbonates, releasing inorganic ${\rm CO_2}$. Then the sample is burned in the normal fashion with the results representing only the organic carbon in the sample.

3.4.2.4 Utilizable Carbon

Also this method may not provide data which indicates that portion of the total carbon which is utilizable as a food energy source by consumers. Carbon tied up in calcareous or chitinous material may not be available to certain organisms. Corrections involve biochemical determinations which require special sample handling (Raymont, et al., 1964).

3.4.2.5 MARMAP Carbon Biomass Log

The weight of the carbon from the entire sample is calculated and entered on the MARMAP Carbon Biomass Log (TCB) (Fig. 3.13). Further specifications for carbon biomass data are given in Section 6, Appendix I. Instructions for completion of the log are presented below:

MARMAP Carbon Biomass Log (Form TCB, 10/80)

<u>Page of</u> The consecutive page of the log plus the total number of pages of logs for any cruise.

Operational Unit Name of the institution preparing this log, e.g., NWAFC, NEFC.

Vessel As recorded on the Station Activities Summary.

<u>Cruise</u> As recorded on the Station Activities Summary.

<u>Gear/Mesh</u> The gear and the mesh size used in collecting the sample entered according to the list below:

GEAR	MESH	ENTER
61 cm Bongo	333	6B3
61 cm Bongo	505	6B5
20 cm Bongo	333	2B3
20 cm Bongo	505	2B5
20 cm Bongo	165	2B1
20 cm Bongo	253	2B2

Page	0	f
~ 4 ~		·

MARMAP CARBON BIOMASS LOG (TCB)

C	OPERATIONAL UNIT																												
	Vessel Cruise -																												
	Gear/Mesh []																												
	TA	TI	ON	НА	UL	G	EAR				SAM	PL I	 -		TON	CODE		TOT	AL C		ON		01	RGAN	IN HIC		BON		Remarks:
ľ	'UN	16 E	R	NO		ID	NO				DA			1	AL I	<u>ა</u>	0	RIG	INAL 4D)	. SA	MPL	Ē	Oį	R161	NAL (GM	S.A.	MPLE	=	
ŀ	1																				-	<u> </u>	_	-			Н		Rinsing
-	+	\dashv	-	\dashv			-				_	L		-		_		F											Technique:
-	7																												
-	1						-	 																					
-	†															_													
L	$\frac{1}{2}$						-	-		-	-	-			-							L					Ŀ		
F	1			_								F				ļ.	F					F	F						
2	1																												Preservation
00/01	+						_			_																			Technique:
3	+												_	_															
בול בולים בולים			_				_	_	-	_	-	_		_	_				\vdash					_					
2	1	-												_			F												
3	7	-																											
2	1																									_			
DIOM H S	+																												
	+									_		_								L	_								
מס ציין	_					-									_														Analyzer –
	-							-					_			_	_												Make/Model:
4 10 11 10	7									_		_									_								
L		ᆜ	<u>.</u>	l a d			1	1	<u></u>	<u> </u>		<u></u>			<u></u>	<u> </u>	L	L			L	<u></u>	L.	L., 4			Ш		

Figure 3.13 The MARMAP Carbon Biomass Log

50 x 100 cm Neuston	505	1N5
100 x 200 cm Neuston	947	2N9
36 x 97 cm Haedrich	706	3H7
36 x 97 cm Haedrich	1800	3H1
Other Gear	W	rite out gear name plus
•	m	esh aperture in microns.

Station Number

As recorded on the Station Activities Summary.

Haul No.

As recorded on the Station Activities Summary.

Gear ID No.

The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on the same haul.

Sample Date

Date (day-month-year) when sample was collected; from the Station Activities Summary.

Aliquot Code

The code for the factor by which counts from an aliquot can be converted to numbers for the whole sample (list below)

ALIQUOT FRACTION	ALIQUOT FACTOR	ENTER
1/1	1	01
1/2	2	02
1/4	4	04
1/8	8	08
1/16	16	16
1/32	32	32
1/64	64	64
1/128	128	12
1/256	256	25
1/512	512	51
1/1024	1024	10
1/2048	2048	20
1/4096	4096	40

NOTE: The aliquot factor for data on this log should always be 1 (aliquot code = 01) since data for dry weight and ash-free dry weight fields have already taken aliquot into account.

Although constant, the aliquot data are processed into master files to simplify subsequent normalization calculations.

Total Carbon in

Original Sample

The weight of the total (organic and inorganic) carbon contained in the plankton captured in this haul, recorded to the nearest 0.0001 gm.

Organic Carbon
in Original

The weight of the organic carbon contained in the plankton captured by this haul, recorded to the nearest 0.0001 gm.

Sample

Remarks

Any information useful in subsequent analyses of these samples. Until the effects of differing methods of rinsing and preservation, and possibly of different analysis equipment are known, details of these components of the determination must be logged.

Recorded By Initials or name of person entering data on the log.

3.4.3 Dry Weight Biomass Determination

When carbon analysis equipment is not available the determination of zooplankton standing stock for MARMAP samples can be made by measuring dry weight and ash-free dry weight.

3.4.3.1 At-Sea Procedure

Methods of collection and preservation at sea are identical to those described in Section 3.4.2 for carbon biomass (Fig. 3.12).

NOTE: Various rinsing and preserving techniques are in common practice. Until the effect of these differences has been established, the actual method used must be documented on the log sheet.

3.4.3.2 On-Shore Procedure

At the shore laboratory the preserved samples are redried in an oven at 60°C for a period (quite variable, from approximately one day to several weeks) expected to bring it to constant weight. The sample is cooled in a desiccator and then weighed. Drying, cooling, and weighing is repeated, usually at one day intervals until successive weights vary by less than 5 percent. The lowest weight obtained is considered the "dry weight". Exposure time from desiccator to weight determination for a single sample must not exceed 5 minutes. However, when many samples must be analyzed, removing single samples from the desiccator every few minutes negates the desiccating process. A technique has been devised by Joseph Kane² whereby large numbers of samples can be processed and corrections for air exposure can be applied. All samples plus an empty blank sample container are removed at once from the desiccator on a tray. Caps are immediately applied and tightened. The blank is weighed first, then all the samples are weighed, and finally the blank is reweighed. Any variation of the blank's weight is applied incrementally as a linearly interpolated correction to the samples (see Section 7, Appendix II). 3.4.3.3 Ash-Free Dry Weight

To determine the amount of dry weight which was organic matter, the sample is incinerated at 475°C for 2 hours. The remaining ash is weighed and the ash-free dry weight is calculated by difference from the dry weight described above. For further details see Lovegrove (1961, 1966).

² Joseph Kane, NOAA, NMFS, Northeast Fisheries Center, Narragansett, RI, pers. comm. January 1981.

3.4.3.4 MARMAP Dry Weight Biomass Log

The dry weight and ash-free dry weight are entered on the MARMAP Dry Weight Biomass Log (DWB) (Fig. 3.14). Further specifications for dry weight biomass data are given in Section 6, Appendix I. Instructions for completion of the log are presented below:

MARMAP Dry Weight Biomass Log (Form DWB 10/80)

Page of	The consecutive page of the log plus the total number of
e e e e e e e e e e e e e e e e e e e	pages of logs for any cruise.
Operational Unit	Name of the institution preparing this log, e.g., ZSOP,

Operational Unit Name of the institution preparing this log, e.g., ZSOP, NEFC, SWFC.

Vessel As recorded on the Station Activities Summary.

Cruise As recorded on the Station Activities Summary.

Gear/Mesh The gear and the mesh size used in collecting the sample entered according to the list below:

GEAR	MESH	ENTER
61 cm Bongo	333	6B3
61 cm Bongo	505	6B5
20 cm Bongo	333	2B3
20 cm Bongo	505	2B5
20 cm Bongo	165	2B1
20 cm Bongo	253	2B2
50 x 100 cm Neuston	505	1N5
100 x 200 cm Neuston	947	2N9
36 x 97 cm Haedrich	706	3H7
36 x 97 cm Haedrich	1800	3H1
Other Gear	Wri	ite out gear name plus

mesh aperture in microns.

U.S DEPARTMENT OF COMMERCE
NATIONAL MARINE FISHERIES SERVICE

AGE ____ ÓF _____

MARMAP DRY WEIGHT BIOMASS LOG (DWB)

Ve	sse	ı	Т	77		\Box	Т	_	T	П	П	Т	1	Т			Ŧ	Т	7	7		C	rui	is	A		Blant	Correc	tions
Gea				T]						L	1_	_1	<u>-</u>	!	1						_			•			Dry Wt	Auh Fre DryWi
Geu	rivie	SII L	_	٠	1			_	_						_	_		_			_			_			Final Wt.		
STATION NUMBER	ER	GEAR ID		S	A A	МРI	LE		ALIQUOT		Uncorrected	(mg)	Exposure	٠ • •	ted.	Dry Wt. (gm)	Uncorrected	(E)	Air Exposure	<u>اة</u> (Corrected	(E 0)	9 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Weigning	Remarks:	Initial Wt.		
A∃ ≅₩	HAUL NUMBER	A Z	1			АТЕ			ō	8	01.0	: ;	000		Corrected	*	0	ž	A ir	50	Ę	×	5 L 3		9 7	ļ		<u> </u>	·
ST NU	702	ю П = 2	2	D I		M M		Y	ΑL	٦	2 5	Š	Ж	Š	ပိ	20	٠ د د	Ash	Ä	ő	ပီ	Ash	Corrected Ash-Free		ž v				
			_				11	V / 7	TIA	7	Б	L	1 //	K	_			_				-	-		3;]			
		Ш			T				\square			I	Γ					\Box		Γ				I		,			
4-4-4		$\sqcup \sqcup$	4	4	_	4	↓_	┡	\Box	_	4	4	4_	<u> </u>	Ы		_	4	4	↓_	H		_	4	4-	ļ			
		┝┼┤		+	+	+	╁	₽		-	-	+	┿	⊢	H	Ч	+	-		╀	Н	Н	-	╂-		ł			
╅┼		$\vdash \vdash \vdash$	┥	+	+	╁	╁╌	╁	\dashv	-	+	┿	╀	\vdash	Н	\dashv	-	+	+	╁	Н	\vdash	╅	╁	╁╌	{			
++		\vdash	ᅱ	\dashv	+	╁	╀	+-	H	\dashv	+	+	╀	⊢	Н	\vdash	+	╅	+	╁	Н	Н	+	╁	╫	}			
			\neg	十	十	╅	十	1	\Box	┪	十	\dagger	1	╁	П		7	7	1	T	П	H	1	†-	 				
				1			1				1	Ť	1				Ī	7	1	\top			Ţ	T		Rinsing Techni	aue:		
		\Box		\Box	\downarrow	I					\Box	Ţ	T					\Box	4	I				I	\top	Transing recini	que.		
		╌┼┥	4		4		╂-	╂╼ぱ	\vdash	4	-	4	4_	╀		Н	4	4	-4-	╁-	H	Ч	-∳-	+	╀				
╂═╂═	┝╌┼╾	┞┼┤	┥	+		┿	╂	╂┤	\vdash	\dashv	-	+	╅┈	╂	Н	\dashv		+	-	╀	Н	Н	╅	╁	+-				
╅╂┤		H	┪	╅	+	╅	╁	╁┤	\vdash	ᅥ	_	╅	† -	H	Н	\dashv	+	╅	╅	╀	H	\vdash	┪	╁	╁╴	ł			
- - -		┞┼┼┤			十	+-	╁	†-		\dashv	1	+	1	+	Н		1	✝	1	╁╌	П		1	t	\top	1			
					\Box								I				Ī							1]			
4-1-	Щ	$\sqcup \sqcup$			_		Ļ	$oldsymbol{ol}}}}}}}}}}}}}}$			ightharpoonup		\perp	$oxed{oxed}$		Ц	_	\perp			Ц		4	\perp	4_	 			
+		╎┤┤	-	-	4	4	4	4-	\vdash	4	-	4	4-	 	Н		-	4	+	╄	Н		+	4-	4-	Preservation 1	ecnniq	ue:	
╅╾╁╾	 	╂╼┼╌┤	Н	\dashv	+	-		+-	Н		-	╬	╅	╀	-	Ч	┥	4		╁	H	Н	+	╁	╁╴	·			
╅╅	┝┼╴	╁╌┼╌┤		╅	╅	╁	╁	╀╌			-	+	1	+-:	Н	\dashv	+	╌┼		+-	Н	-	+	╁	╫				
		Π		寸	7	十	t	1	H	\neg	1	†	1	t	П	\exists	1	7	1	十	П		1	T	1				
					\top	1	T	1	Н		+	+	<u>†</u>				1	十	1	1-			1	T					
							F	/N	4 L		BL.	Al	VK									_	-	E	³f				

Station Number Haul No.

As recorded on the Station Activities Summary. As recorded on the Station Activities Summary. The number assigned to each net used during the

Gear ID No.

haul. This is necessary when gear of identical characteristics are deployed on the same haul.

Sample Date

Date (day-month-year) when sample was collected; from the Station Activities Summary.

Aliquot Code

The code for the factor by which counts from an aliquot can be converted to numbers for the whole sample (list below)

Weight

Uncorrected Dry The weight, uncorrected for air exposure, of the dried plankton sample recorded to the nearest 0.1 gm.

Weight change due to air exposure, applied to the series Air Exposure of weighed samples as linearly interpolated correction Correction and recorded to the nearest 0.01 gm. Corrected Dry "Uncorrected Dry Weight" minus "Air Exposure Correction" recorded to the nearest 0.1 am. Weight Uncorrected Ash The weight, uncorrected for air exposure, of the incinerated plankton sample recorded to the nearest 0.1 gm. Weight Air Exposure As above. Correction "Uncorrected Ash Weight" minus "Air Exposure Correction" Corrected Ash recorded to the nearest 0.1 gm. Weight "Corrected Dry Weight" minus "Corrected Ash Weight" re-Corrected Ash-Free Dry Weight corded to the nearest 0.1 gm. The sequential number for the order in which the samples Weighing Sequence (excluding the blanks) were weighed. Blank Corrections For dry weights and/or ash weights: Final Wt. Weight of the blank sample container at the end of the sample weighing operation, recorded to the nearest 0.01

gm.

Init. Wt. Weight of the blank sample container at the beginning of the sample weighing operation, recorded to the nearest $0.01 \, \text{gm}$.

> Any information useful in subsequent analyses of these samples. Until the effects of differing methods of rinsing and preservation are known, details of these components of the determination must be logged.

Recorded By Initials or name of person entering data on the log.

Remarks

3.5 PROCESSING OF ICHTHYOPLANKTON

The processing is carried out in several steps: removal of tar and plastics contaminants (Sections 3.3.1 and 3.3.2); measuring the volume of the plankton in each sample (Section 3.4.1); sorting out and enumerating all fish larvae and eggs; identifying all larvae; measuring certain larvae; identifying certain fish eggs and staging (aging) some; and curating all fish eggs and larvae.

3.5.1 Sorting-Density Gradient Fractionation Method

A means of sorting plankton samples, density gradient fractionation, is currently being put into experimental use. The drained sample is overlaid on a colloidal silica gradient of about 1.00 to 1.09 g/cc. Fish eggs band tightly at about 1.02 g/cc and fish larvae more braodly at \geq 1.05, while invertebrates (with the exception of those having calcareous shells) tend to be in-between. The technique is somewhat limited in that only samples free of mucilaginous and fibrous algae can be used, but this drawback is more than compensated for by the saving in sorting time. It is estimated that the technique could reduce the time spent processing samples by up to a factor of 10. The hardware for a large-scale system is currently being assembled, and variations in the composition of the gradient are being investigated, in order to affect better separation.

For further information contact: Mr. John B. Colton

NOAA/NMFS

South Ferry Road

Narragansett, RI 02882

3.5.2 Sorting-Traditional Method

Each sample delivered to the sorting laboratory is sorted for fish eggs (whole sample or aliquot—no less than 500 eggs—the decision to aliquot should be made by a senior staff member) and all larvae. It is recommended that each sample is examined by only one sorter. The samples are assigned in a random manner to prevent any one sorter from receiving more than his share of "difficult" or "easy" samples.

The level to which identifications of fish eggs and larvae are carried out by the sorters is dependent on their experience. Until experience is gained by the sorters it is advisable to have all the fish eggs placed in one vial and all the fish larvae in another.

3.5.2.1 Procedure for Sorting Eggs and Larvae

Although techniques may vary with individual sorters, the general method for sorting is as follows: The plankton is separated from its preservative by straining it through a nylon draining cone (mesh to be according to Table 2.1). The cone containing the inside jar label and the plankton is rinsed gently and then suspended in a one-liter beaker filled over 1/2 the way up the cone with fresh water containing a few drops of concentrated formalin. Fresh water is used because it has been found that prolonged exposure to concentrations of formalin (even 3 to 5%) in handling, stirring and under their eyes may cause sorters to become sensitive and allergic to the fumes and liquid. A sample can be kept as long as 1 month in the weak solution of fresh water with formalin. This does not imply that such length of time is necessary for sorting any single sample. The sorting is highly variable; however, the average time is about one sample (100 ml plankton) per day per sorter.

A small amount of plankton is removed with a plastic spoon, about 1/2 teaspoon or less, and placed in a petri dish. Any plankton removed from the labeled sample should be accompanied by a temporary label containing vessel, cruise and station number. Add enough fresh water to float the organisms freely. Gently swirl the dish for even distribution of organisms. Have a number of petri dishes next to the microscope, each labeled with the station data, and the name of the organism which will be transferred to it when sorted. Each of the labeled dishes should be about half full of 3% to 5% buffered formalin (in this instance, the few dishes of such formalin are not enough to affect the sorters adversely). All fish eggs and larvae are picked out with pipettes and/or fine quality (stainless steel) "soft touch" forceps and transferred to their appropriately labeled dishes. A recheck (2 additional scans) of the sorting dish should be made by the original sorter to ensure all fish eggs and larvae have been removed.

NOTE: Generally a binocular, dissecting microscope, at a total of 10% magnification, with transmitted light is used. Research quality microscopes are necessary because those of inferior quality would be detrimental to the eyesight of persons engaged in this type of work for 6 to 8 hours per day.

When the fish eggs and larvae have been sorted and checked, the remaining contents of the dish are poured into a "sorted" 1.5 liter beaker containing fresh water with a few drops of concentrated formalin. If any samples are to set for any length of time (lunch-overnight), the dishes (unsorted and sorted) and the sample in the cone must be covered to prevent drying out.

The above procedure is repeated until the entire sample has been examined.

3.5.2.2 MARMAP Plankton Sorter's Worksheet

20 cm Bongo

50 x 100 cm Neuston

100 x 200 cm Neuston

The contents of each dish of sorted organisms are enumerated and the data entered on the MARMAP Plankton Sorter's Worksheet (Fig. 3.15) beginning with data from the Station Activities Summary. Instructions for completion of the log form are presented below:

comprection of the	e rog form are presented be	TOW.						
	MARMAP Plankton Sorter's	Worksheet (Form	PSW, 9/74)					
Page of	The consecutive page of t	he log plus the t	otal number of					
	pages of logs for any sta	tion.						
Operational	Name of institution prepa	ring this log, e.	g., NEFC, ZSOP,					
<u>Unit</u>	SWFC.							
Vessel/Cruise	As recorded on the Statio	n Activities Summ	nary.					
Station-Haul No.	As recorded on the Statio	n Activities Summ	nary.					
Sample Date	Date (day-month-year) tha	t sample was coll	ected; from					
	the Station Activities Su	mmary.						
<u>Gear/Mesh</u>	The gear and the mesh siz	e used in collect	ing the sample					
	entered according to the	list below:						
	GEAR	<u>MESH</u>	ENTER					
	61 cm Bongo	333	6B3					
	61 cm Bongo	505	6B5					
	20 cm Bongo	333	2B3					
	20 cm Bongo	505	2B5					
	20 cm Bongo	165	281					

253

505

947

2B2

1N5

2N9

U.S. Dept. of Commerce - NOAA National Marine Fisheries Service

Page	of	
-		

MARMAP Plankton Sorter's Worksheet (PSW)

Operational	Unit
•	

Vessel/CruiseStation - Haul No.	Sample Date Day Month Yea
	Day Month Yea
Gear/Mesh Gear ID No	Original Examination
	Re-examination
	Sorter
रोड कार्याच्या कार्याच्या कार्याच्याच्याच्याच्याच्याच्याच्याच्याच्याच	प्रकार जाप का प्रजान के प्रजान के प्राप्त के प्रकार के प्राप्त के कार्य के प्रकार के प्रकार के प्राप्त के प्रकार
	Remarks
Total Original Volume	
Total Orig. Vol. minus Lg. Orgs	
Fractioned Yes	
No	
Aliquot Factor	
Date Start	
Date Finished	
Larvae Removed	
No. of Heads	
No. of Tails	
No. of Disintegrated	
Eggs Removed	

Figure 3.15 The MARMAP Plankton Sorter's Worksheet

NAME	MESH	ENTER
36 x 97 cm Haedrich	706	3H7
36 x 97 cm Haedrich	1800	ЗНТ
Other Gear		Write out full
		name plus mesh
		aperture in microns.

Gear ID No.

The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on the same haul.

Original Examina- Check the appropriate box as to whether this log contains tion Re-examina- tion data from an original sort or a re-examination (checking) sort.

Sorter

The initials or name of the sorter entering data on the log.

Total Original Volume

The sum of "Vol. Large Orgs." and "Vol. Orgs. <2.5 cm" as recorded on the Zooplankton Volume Log.

Total Orig. Vol. The "Vol Orgs. <2.5 cm" from the Zooplankton Volume less Large Orgs.

Log.

Fractioned

Check whether the sample to be sorted has been split into smaller fractions.

Aliquot Factor

The factor by which counts from an aliquot can be converted to numbers for the whole sample, e.g., for a 1/2 aliquot the aliquot factor is $\underline{2}$.

 ${\tt NOTE:}$ Aliquot factor should rarely be other than <u>l</u> for this analysis. If aliquoting is necessary, see Section 3.6.1 for details.

Date Start

Date (day-month-year) that sorting of each sample begins.

Date Finished

Date (as above) that sorting of each sample is complete.

Larvae Removed

The total number (not including heads, tails, and disintegrated) of larvae removed from each sample and placed in a vial(s).

No. of Heads The total number of larvae head sections removed from each sample.

No. of Tails The total number of larvae tail sections removed from each sample.

 $\frac{\text{No. of Dis-}}{\text{integrated}} \qquad \qquad \text{The total number of disintegrated larvae removed from} \\ & \text{each sample}$

Eggs Removed The total number of eggs removed from each sample and placed in a vial(s).

Remarks Any information useful in subsequent analyses of these examples.

3.5.2.3. Verification of Sorting

During a training phase all samples are re-examined, but for experienced sorters only a random selection of sorted samples are subsequently re-examined, by a sorter other than the original sorter, for the presence of any eggs or larvae. Data from the re-examinations are entered on an additional Plankton Sorter's Worksheet which is attached to the original of such log. The percentage of samples to be re-examined by any sorter will be up to the discretion of the senior sorter.

3.5.2.4. Identification during Sorting

If during sorting it is possible to identify the fish larvae to species then follow procedures for "Identification of Fish Eggs and Larvae" (Section 3.5.3).

3.5.2.5. MARMAP Ichthyoplankton Sorting Record

The combined results from the Plankton Sorter's Worksheets (examination and re-examination) are entered on the MARMAP Ichthyoplankton Sorting Record (Fig. 3.16) beginning with data from the Station Activities Summary.

U.S. Dept. of Commerce - NOAA National Marine Fisheries Service

Pag	е.	of	
			-

MARIAP ICHTHYOPLANKTON SORTING RECORD (ISR)

Vessel					-	Cruise				Gear/Mesh				
Sta. Haul No.	Gear ID No.		Sample Date - M - Y	No. of Jars	Aliquot Factor	D	Date Start - M - Y	Eggs Removed	No. of Vials	Larvae Removed	No. of Vials	Date Finished D - M - Y	Sorter	Rem
											- B-A' ≠			
						-	-v.,							
						<u> </u>								
		-	· · · · · · · · · · · · · · · · · · ·			-								
						F		,						
						\vdash					-			
	<u> </u>	+	·.			-							+	
		-	-		-									
		-											 	
						L								
-		-				+					<u> </u>		 	
		-				+				-	-		+	
			· · · · · · · · · · · · · · · · · · ·	+	 	+		<u> </u>	 	 			_	1

Figure 3.16 The MARMAP Ichthyoplankton Sorting Record

.3).

NOTE: The Plankton Sorter's Worksheet is useful when the sorting operation involves distributing the samples from a cruise among <u>numerous sorters</u>. The results from each station are logged on the PSW by the individual sorting that station and when all stations are sorted, the data from all PSW's are combined on the Ichthyoplankton Sorting Record. It is important to realize that transposing of data increases the potential for error, so that in operations where one sorter examines an entire cruise or where the logging can otherwise be satisfactorily performed, use of the PSW and transposing of data should be avoided.

Following are the instructions for completion of the log form:

MARMAP Ichthyoplankton Sorting Record (Form ISR, 10/80)

Page of The consecutive page of the log plus the total number of pages of logs for any cruise.

Operational Unit Name of institution preparing this log, e.g., NEFC, ZSOP, SWFC.

<u>Vessel</u> As recorded on the Station Activities Summary

<u>Cruise</u> As recorded on the Station Activities Summary.

Gear/Mesh The gear and the mesh size used in collecting the sample entered according to the list below:

GEAR	MESH	ENTER
61 cm Bongo	333	6B3
61 cm Bongo	505	6B5

20 cm Bongo	333	2B3
20 cm Bongo	505	2B5
20 cm Bongo	165	2B1
20 cm Bongo	253	2B2
50 x 100 cm Neuston	505	1N5
100 x 200 cm Neuston	947	2N9
36 x 97 cm Haedrich	706	3H7
36 x 97 cm Haedrich	1800	3H1
Other gear		Write out full
		name plus mesh
		aperture in microns
No managed on the Cta	tion Activit	ica Cummanu

Sta.-Haul No.

As recorded on the Station Activities Summary.

Gear ID No.

The number assigned to each net used during the haul.

This is necessary when gear of identical characteristics

are deployed on the same haul.

Sample Date

Date (day-month-year) that sample was collected; from

the Station Activities Summary.

No. of Jars

As recorded on the Zooplankton Sample Log.

Aliquot Factor

The factor by which counts from an aliquot can be converted to numbers for the whole sample, e.g., for a 1/2 aliquot the aliquot factor is 2.

NOTE: Aliquot factor should rarely be other than $\underline{1}$ for this analysis. If aliquoting is necessary, see Section 3.6.1 for details.

Date Start

Date (day-month-year) that sorting of each sample began.

Eggs Removed

The total number of eggs removed from each sample and

placed in a vial(s).

No. of Vials The number of vials necessary to contain the sorted eggs.

<u>Larvae Removed</u> The total number (not including heads and tails) of larve

removed from each sample and placed in a vial(s).

No. of Vials The number of vials necessary to contain the sorted larvae.

Date Finished Date (as above) that sorting of each sample was completed.

Sorter Initials or name of person sorting each sample.

Remarks Any information useful in subsequent analyses of these samples.

Checked By Initials or name of person checking data on the log.

Date Date (day-month-year) that log is checked.

As stated in the instructions the number of "larvae removed" does not include the head and tail sections which may have been sorted, but these latter specimens are placed in the vials with the larvae and are re-examined during the identification phase.

3.5.2.6 MARMAP Vial Labels

Each group of organisms is placed in one or more 18 ml vials. Labels are placed in, and on the cap of each vial, and the vial is capped.

NOTE: The selection of standard sizes and configurations of sample jars and vials is a great aid to sample archiving. The preferred type of screw cap to be used is plastic with a vinyl insert that is "self-sealing" when screwed tightly on the vial, thus preventing evaporation for long periods of time and decreasing amount of curating time needed to replenish evaporated preservative (see Section 3.8). This is much preferred over corks, rubber stoppers, or screw caps with paper liners. Inside labels are written with waterproof ink (Higgins Engrossing Ink, No. 892, which does not clog the pen--Kohinoor Rapidograph No. 0 or 00--or equivalent. Paper for labels should be

100% rag content, e.g., Keuffel & Esser Co., "Albanene" tracing paper. Inferior quality paper eventually deteriorates in formalin or loses legibility.

Figure 3.17 shows inside and outside labels, for sorted and identified specimens, and explains the entries thereon.

3.5.2.7. Vial Storage

es.

The vials of each station are arranged in numerical order in small cardboard boxes with vial dividers, for delivery to the identification group.

3.5.2.8. Ichthyoplankton Displacement Volume

A volume determination of this ichthyoplankton component may be performed. Since this volume is usually small it necessitates the use of a more precise, direct volume measurement than that used on the entire sample. See Section 3.4.1.8 for more details.

3.5.2.9. Plastics Removal

Any plastics contaminants removed during sorting should be analyzed according to the method described in Section 3.3.2.

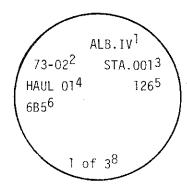
3.5.2.10. Rebottle Invertebrates

The sorted plankton (invertebrates) is poured from the 1.5 liter beaker into the mesh cone to drain off the water, and the plankton is returned with the original label to its original jar which is then filled with fresh 3-5% formalin. The original label remains with the sample unless it has disintegrated or is illegible, in which case a fresh label is prepared.

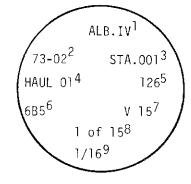
3.5.3. <u>Identification of Fish Eggs and Larvae</u>

NOTE: The identification of fish eggs and larvae, as well as

MARMAP Vial Labels


A. Inside Labels

ALB.IV ¹ HAUL 01 ⁴ 6B5 ⁶	73-02 ² 126 ⁵ 1 of 3 ⁸	ST 001 ³
ALB.IV ¹ HAUL 01 ⁴ TRICHIURIDAE ¹⁰ 6B5 ⁶	73-02 ² 126 ⁵	ST 001 ³ V 15 ⁷ l of 15 ⁸


Sorted Specimens

Identified Specimens

B. Cap Labels

Sorted Specimens

Identified Specimens

LEGEND:

- TVESSEL
- 2 CRUISE
- 3 STATION
- A HALL NO
- 4 HAUL NO.
- 5 GEAR ID NO.
- 6 GEAR CODE (AS IN SECTION 3.5.2.5)
- 7 VIAL (FROM ICHTHYOPLANKTON DATA RECORD)
- 8 VIAL NUMBER PLUS TOTAL VIALS PER TAXON
- 9 ALIQUOT FRACTION
- 10 TAXON (FROM ICHTHYOPLANKTON DATA RECORD OR ZOOPLANKTON DATA LOG)

Figure 3.17 MARMAP Specimen Vial Labels

invertebrates, sometimes requires the temporary recording of data which are not retained in the final data files. Therefore, various worksheets are often useful or even necessary. Although the style and number of these is left to the individual investigator, certain minimum logging must take place (i.e., see Fig. 3.19, 2.21, and 3.25). If the use of a worksheet results in transposing of data to a more formal logsheet great care must be exercised to avoid error introduction. Operational procedures should be designed to eliminate the need for transposing whenever possible.

When the identifiers receive the vials, the Ichthyoplankton Sorting Records, and the Planton Sorter's Worksheet from the sorting laboratory, their procedures are generally as follows:

3.5.3.1. <u>Fish Larvae</u>

Identifications and measurements of fish larvae may have been made by trained sorters for certain commonly occurring species. After checks by senior staff members, these data will be combined with those from the full identification described below.

3.5.3.1.1. Naming Convention

The identifier will assign each specimen to the lowest taxomic level possible. Those specimens which cannot be taken to at least the Order level, but which are in identifiable condition, will be classified as "unknown" fish". Those larvae in such a poor state that they are impossible to identify are put into a "disintegrated fish" category. Head and tail sections are sometimes present and may possibly be identified. However, these data should not be included in the total for whole specimens but are entered separately.

Except for "unknown and disintegrated fish", specimens are named according

to the American Fisheries Society Special Publication (Bailey, et al, 1970) and assigned a 9-digit numerical code (Bullis, Roe and Gatlin, 1972). Request from MARMAP Information System (MIS) users for listings or for additions or corrections to these bionumeric codes should be made to:

Mr. Jack W. Jossi

NOAA/NMFS

Atlantic Environmental Group

South Ferry Road

Narragansett, RI 02882

Similar requests from non-MIS users should be addressed to:

Mr. Frederick C. Minkler

NOAA/NMFS

P.O. Box Drawer 1207

Pascagoula, MS 39567

See Section 6, Appendix 1 for further details on ichthyoplankton larvae data.

NOTE: MARMAP Information System users may obtain a current listing of the bionumeric codes by running the MIS program A9SRT.

Each group of specimens thus categorized is placed in spearate petri dishes with appropriate temporary labels.

3.5.3.1.2. Enumeration and Measuring

All larvae are counted, and if identified to species, measured for standard length (Fig. 3.18). Individual specimens of a species are arranged in rows in a plain petri dish. The dish is moved under the microscope each specimen is aligned, and then measured with the eyepiece micrometer to the nearest 0.1 mm. Measurements are usually done by members of the sorting staff.

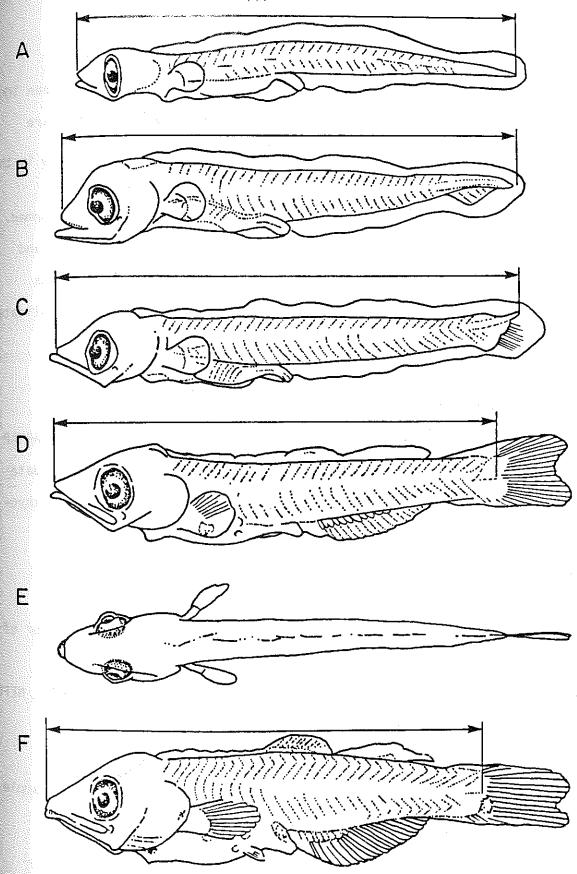


Figure 3.18 Examples of standard length larval fish measurements

Up to 100 randomly selected specimens of a species will be measured from any sample. It is seldom necessary to measure more than 100 specimens of a species; however, if there is doubt that these data are representative of the length frequency distribution of the specimens in the entire sample, then more measurements must be made.

NOTE: Subsequent re-identifications of larvae may be performed.

The resulting information, including data from any counts and length measurements, and resulting vial number and contents alterations must be processed in such a way as to not invalidate the quantitative aspects of existing data files.

3.5.3.1.3. MARMAP Ichthyoplankton Data Record-Larvae

Specimens from each category are then placed in a labeled vial (Fig. 3.17), numbered consecutively as the taxa are entered on the MARMAP Ichthyoplankton Data Record-Larvae (IDL) (Fig. 3.19) beginning with data from the Station Activities Summary. Further specifications for ichthyoplankton larvae data are given in Section 6, Appendix I.

Instructions for completion of the log form are presented below: MARMAP Ichthyoplankton Data Record-Larvae (Form IDL, 10/80)

Page of The consecutive page of the log plus the total number of pages of logs for this station.

Operational Unit Name of institution preparing this log, e.g., NWAFC, NEFC.

<u>Vessel</u> As recorded on the Station Activities Summary.

<u>Cruise</u> As recorded on the Station Activities Summary.

Gear/Mesh The gear and the mesh size used in collecting the sample entered according to the list below:

GEAR	MESH	ENTER
61 cm Bongo	333	6B3
61 cm Bongo	505	6B5

MARMAP ICHTHYOPLANKTON DATA RECORD - LARVAE (IDL)

OPERATIONAL UNIT																																																							
١	/e	SSI	el						\Box	I	1	1	\perp	\perp	Ι.	\prod	I			Ι.	I	Ι	\Box		C	Cru	ıis	e [I		Ι	L	\mathbf{L}]	Ge	a r	/ N	les	h		L	s	ta	tio	n	No.			\Box] H	aul	N	o. [
	Ge	ar	ı	D	N	lo.		Τ			Sa	m	ple	e	Do	at e	е			Ι	_												/06	a 1		•	Tot	tal	١	W۱	10	е	L	ar۱	/a (<u>e [</u>	工	工]^	iliç	uot	1	od	e l	
	7	Αх	10	1;	N N	IUN IAN	IBE IE	R			IAL NO.		ı		1	2		1	3		ST I	ΑΛ 4				LEI			S I	(m	m) 7		8			9	_1_	10	2	M	NO. Eas	NO.	T ED	NC OF HF A	ns i	NO. OF TAILS	I.I B	D. Y							
_				_]				I	I	I	L			T	1	T	I	ļ	L	L	_	_	_				\Box	1		\prod		1	L	L			1	1	T	ļ			L			Ι	1	┨	ı						
/80			Т	٦			T	_	Т	+	T	\vdash	\vdash	╀	+-	╁	\dagger	+	╁-	1	\vdash	t	╀	Н		\dashv	\dashv	1	+	十	+	- -	+	╁	-		+	+	+	+	Τ			П	\dashv	Т	+	\dashv							
: :		1		1	{		T	1	1	+	T	-	-	-	\vdash	-	\perp	+	-	F	-	F	F		\dashv	-	-	-	-	7	-	+		\vdash			7	-	1	F	Т	Ι	Γ		-	- - [\vdash	\dashv							
<u>.</u>			i	!		_							上	1	\downarrow		1		1	İ						\exists	\exists	1	\exists	1			_	1				1	1	1		_	_	Ľ	#	<u></u> -	1								
2		!								╁		╁	╁	╀	-	+	╁	ł	╀	\dagger	t		┞	Н	\dashv		+	1	+	+	+	+	╁	╁	Н	\dashv	+	+	+	+		<u> </u>	<u> </u>	Ш	-	L_	1								
_]						F	Ι	-			F	F	Ţ.	Ŧ	L	Ţ.,	Ţ					4	4	7	7	7	- -	-	F	-	П		7			-	1	I	L		-		$ar{\parallel}$								
A		\Box	1	I			I	Τ	Τ	上		ҍ	L	L	t	ţ.	1	1	上	1								#	#	1	1	#		‡			\downarrow	#	‡	‡	I				\downarrow	I	‡	\dashv							
AH	7	٦	Т	T	П		T	Ţ	Т	╀	T	╁	╁	╀	+	╁	╁	╁	╁	\vdash	+	-	-	Н		-	-	+	+	\dashv	╁	╁	+	╁	H	+	-	十	╁	+	Т		Γ	7	+	Т	+	\dashv							
- 0			_					1		-	·	L	-	F		F	Ŧ	Ţ		I	ļ.							7		1				1			4	1	T	F	T	·	_				1	4							
ECO		l		!	!	_				İ	<u></u> _	L	L	Ţ		t	L	1			L	L					1			1		1				1	\perp	1	1		_ <u>_</u> _	<u> </u>					1								
A A	لــ		1	_1					<u>i</u>	╁	1_	╀	╁	╁	+	╁	╁	+	╁	╁		╁	┝	Н	\dashv		\dashv	+	\dashv	+	+	╁	+	╁		\dashv	+		+	╀		1	<u></u>	Ш	+		1								
ΠD		J					\Box			Ţ	Ι	1	Ţ	T	_	1	Ţ	1	T	L								1	1	1		Ţ	T				1	#	1	ļ					7	\Box	T	٦							
No.			\Box				Ι	1	Τ	t				上	ţ		1	1			上							1	1	_	1	1	t				#	1	1	İ		I	L			I	十	\dashv							
ZV		_	_	Т	-1		П	Т	Т	╁	Т	╁	╀	╁	+	╁	+	+	+	-	╁	H		Н	-	+	\dashv	\dashv	\dashv	+	+	+	╁	-	$\left \cdot \right $		+	╁	╀	╀	Т	Γ	r	7	+	Т	╁╌	\dashv							
HΛO			<u>'</u>	<u>`</u>				1	<u> </u>	‡	<u> </u>	1		1	1	‡	1	1	Ŧ	1	ļ	F				4	1	1	_	1	1	-	1				7	+	‡	1	_	1			7		1	_							
F U		ł	1	I				_1,		L		\pm	T	L	1	Ĺ	1	t		İ	L				_		1	_		土			\perp	Ì				1	1	上		<u> </u>			#		<u>1</u>	\dashv							
A P	R	m	ar	ks	:																																																		
Z Z Z														٠																																									

MESH

333

ENTER

2B3

<u>GEAR</u>

20 cm Bongo

20 cm Bongo 165 281 20 cm Bongo 253 282 50 x 100 cm Neuston 505 1N5 100 x 200 cm Neuston 947 2N9 36 x 97 cm Haedrich 706 3H7 36 x 97 cm Haedrich 1800 3H1 Other Gear Write out full name plus mesh aperture in microns. Station Number As recorded on the Station Activities Summary. Haul No. As recorded on the Station Activities Summary. Gear 1D No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot can be converted to numbers for the whole sample		20 cm Bongo	505	2B5							
50 x 100 cm Neuston 505 1N5 100 x 200 cm Neuston 947 2N9 36 x 97 cm Haedrich 706 3H7 36 x 97 cm Haedrich 1800 3H1 Other Gear Write out full name plus mesh aperture in microns. Station Number As recorded on the Station Activities Summary. Haul No. As recorded on the Station Activities Summary. Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The code for the factor by which counts from an aliquot		20 cm Bongo	165	2 B1							
100 x 200 cm Neuston 947 2N9 36 x 97 cm Haedrich 706 3H7 36 x 97 cm Haedrich 1800 3H1 Other Gear Write out full name plus mesh aperture in microns. Station Number Haul No. As recorded on the Station Activities Summary. Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The code for the factor by which counts from an aliquot		20 cm Bongo	253	2B2							
36 x 97 cm Haedrich 706 3H7 36 x 97 cm Haedrich 1800 3H1 Other Gear Write out full name plus mesh aperture in microns. Station Number As recorded on the Station Activities Summary. Haul No. As recorded on the Station Activities Summary. Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The code for the factor by which counts from an aliquot		50 x 100 cm Neuston	505	1N5							
36 x 97 cm Haedrich 1800 Other Gear Other Gear Write out full name plus mesh aperture in microns. Station Number Haul No. As recorded on the Station Activities Summary. As recorded on the Station Activities Summary. Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. The code for the factor by which counts from an aliquot		100 x 200 cm Neuston	947	. 2N9							
Other Gear Other Gear Other Gear Other Gear Other Gear Number as recorded on the Station Activities Summary. As recorded on the Station Activities Summary. Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthypplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot		36 x 97 cm Haedrich	706	3H7							
Name plus mesh aperture in microns. Station Number As recorded on the Station Activities Summary. Haul No. As recorded on the Station Activities Summary. Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot	•	36 x 97 cm Haedrich	1800	3H1							
As recorded on the Station Activities Summary. Haul No. As recorded on the Station Activities Summary. Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot		Other Gear		Write out full							
Station Number Haul No. As recorded on the Station Activities Summary. Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot				name plus mesh							
Haul No. As recorded on the Station Activities Summary. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot	•	•		aperture in microns.							
Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot	Station Number	As recorded on the Stat	ion Activities Summary	•							
is necessary when gear of identical characteristics are deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot	Haul No.	As recorded on the Station Activities Summary.									
deployed on a haul. Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot	Gear ID No.	The number assigned to each net used during the haul. This									
Sample Date Date (day-month-year) when sample was collected; from the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot		is necessary when gear	of identical character	istics are							
the Station Activities Summary. Vials Sorted Larvae The number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot	÷	deployed on a haul.									
Vials Sorted LarvaeThe number of vials of larvae resulting from the sort; from the Ichthoplankton Sorting Record.Total Whole LarvaeThe number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record.Aliquot CodeThe code for the factor by which counts from an aliquot	Sample Date	Date (day-month-year) w	hen sample was collect	ed; from							
the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot		the Station Activities	Summary.								
the Ichthoplankton Sorting Record. Total Whole Larvae The number of whole larvae resulting from the sort; from the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot		The number of vials of	larvae resulting from	the sort; from							
Larvae the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot	Larvae	the Ichthoplankton Sort	ing Record.								
the Ichthyoplankton Sorting Record. Aliquot Code The code for the factor by which counts from an aliquot		The number of whole lar	vae resulting from the	e sort; from							
	Larvae	the Ichthyoplankton Sorting Record.									
can be converted to numbers for the whole sample	Aliquot Code	The code for the factor	by which counts from	an aliquot							
		can be converted to num	bers for the whole san	nple							

ALIQUOT FACTOR

1

2

ENTER

01

02

04

ALIQUOT FRACTION

1/1

1/2

1/4

ALIIQUOT FRACTION	ALIQUOT FACTOR	ENTER
1/8	8	08
1/16	16	16
1/32	32	32
1/64	64	64
1/128	128	12
1/256	256	25
1/512	512	51
1/1024	1024	10
1/2048	2048	20
1/4096	4096	40

NOTE: Aliquot factors other than 1 should be extremely rare and result only after review by a senior staff member. See Section 3.6.1 for details.

Taxon Number

licrons.

The 9 digit Southeast Fisheries Center Bionumeric Code for Fishes (Bullis, et al., 1972).

NOTE: Ten boxes are provided for researchers who may be using the more universal National Oceanographic Data Center (NODC) Taxonomic Code. A current list of names and codes is available, upon request from the authors, or for MARMAP Information System users, by running the MIS program A9SRT. See Section 6, Appendix I for further comments on this log sheet field.

Taxon Name

The scientific name according to the American Fisheries Society (Bailey et al, 1970) for the following taxonomic levels:

0rder

Family

Genus

Species

Vials are numbered sequentially as taxa for each station/ haul/gear are identified. Numbers must be confined to the range 001-099.

Standard Lengths The standard length(s) to the nearest 0.1 mm for the larvae of each taxon identified to the species level (see Fig. 3.11).

No. not Measured The number of whole larvae of each logged taxon which were not measured.

No. of Heads

Number of larval head sections for each taxon logged.

No. of Tails

Number of larval tail sections for each taxon logged.

I.D. By

Initails of individual identifying each taxon.

Remarks

Any information useful in subsequent analyses of these samples.

3.5.3.2 Fish Eggs

Although many species have characteristic eggs that pose no problem in identification (as for example, eggs of the northern anchovy, Engraulis mordax; sprat, Sprattus sprattus; or the Pacific saury, Cololabis saira), some species have eggs that are difficult to identify because of similarity in size and appearance to eggs of co-occurring species. In some fishes late-state eggs can be identified readily, but not newly spawned (early-stage) eggs. In some cases artificially fertilized eggs (from known parents) can provide data which would permit the positive identification of eggs from plankton samples.

Identification, measurement, and staging of fish eggs may have been performed by trained sorters for certain commonly occurring species.

After checks by senior staff members, these data will be combined with those from the full identification described below.

The manipulation of the specimens, their temporary labeling, and the microscopic techniques for measurement are similar to those used for larvae (Section 3.5.3.1). Aliquoting, which is rarely used for larvae, may be employed more often when analyzing eggs (Section 3.6.1). 3.5.3.2.1 Naming Convention

The identifier will assign each specimen to the lowest taxonomic level possible. Those specimens which cannot be taken to at least the Order level but which are in identifiable condition will be classified as "unknown eggs". Those eggs in such a poor state that they are impossible to identify are put into a "disintegrated eggs" category.

Except for "unknown and disintegrated eggs" specimens are named according to the American Fisheries Society Special Publication (Bailey et al, 1970) and assigned a 9-digit numerical code (Bullis, et al, 1972). Requests from MARMAP Information System users for listings or for additions or corrections to these bionumeric codes should be made as indicated in Section 3.5.3.1.1.

3.5.3.2.2 Measuring

Measurement of the egg diameter and the oil globule diameter is often necessary in order to identify the egg. Both these diameters should be measured with the eyepiece micrometer to the nearest 0.01 mm.

3.5.3.2.3 Staging

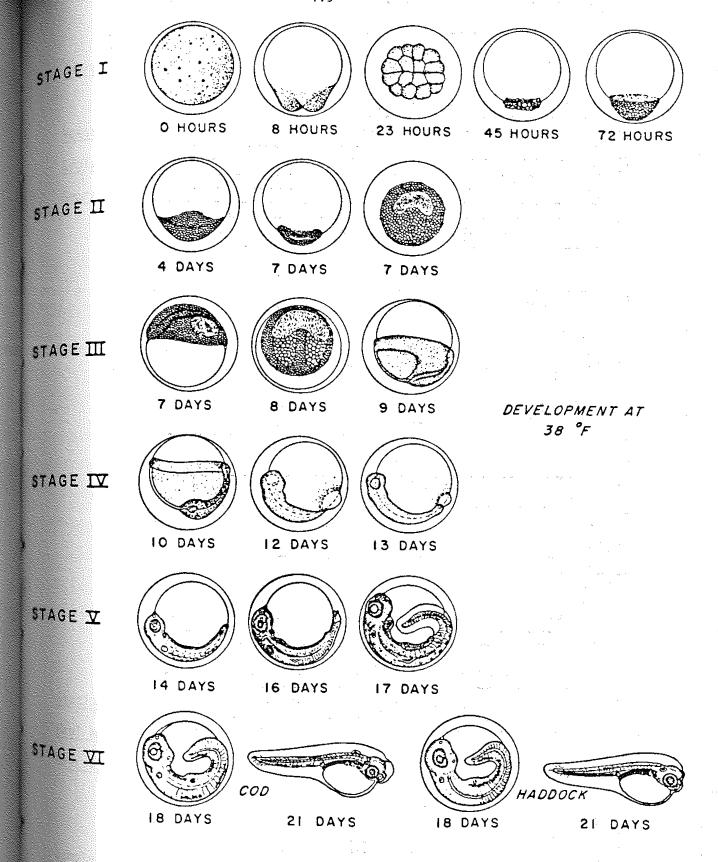
ge)

Stages of development of the eggs have been categorized by several workers (Marak and Colton, 1961; Masueti and Hardy, 1967; E. H. Ahlstrom $\frac{3}{2}$; and A. Naplin and P. Barrien $\frac{4}{2}$.

³ Elbert H. Ahlstrom, deceased, NOAA/NMFS, Southeast Fisheries Center, LaJolla, CA pers. commun. January 1978.

Ann Naplin and Peter Berrien, fishery biologists, NOAA/NMFS, Northeast Fisheries Center, Highland, NJ, Pers. commun., January 1978.

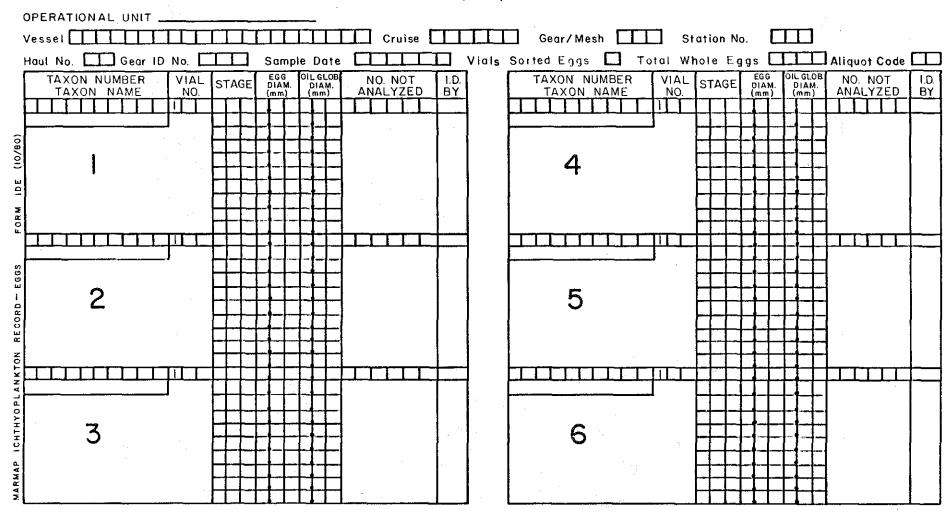
Those of Marak and Colton are shown in Figure 3.20. The number of categories varies between investigators and among taxa. A composite of the various lists of stages has been prepared for investigators storing data in the MARMAP Information System. A three digit numerical code has been assigned to each stage. The first "word" (characters separated by blanks) of the stage name is actually an abbreviation for the authority from whom the name was taken (See Section 3.5.3.2.4 for list of stages and codes).


NOTE: Subsequent re-identifications of eggs may be performed. The resulting information, including data from any counts and measurements, and resulting vial numbers and contents alterations must be processed in such a way as to not invalidate the quantitative aspects of existing data files.

3.5.3.2.4 MARMAP Ichthyoplankton Data Record-Eggs

Specimens from each analyzed category are then placed in a labeled vial (Fig. 3.17), numbered consecutively as the taxa are entered on the MARMAP Ichthyoplankton Data Record-Eggs (IDE) (Fig. 3.21) beginning with data from the Station Activities Summary. Further specifications for ichthyoplankton egg data are given in Section 6, Appendix I.

Instructions for completion of the log are presented below: MARMAP Ichthyoplankton Data Record - Eggs (Form IDE, 10/80)


Page of The consecutive page of the log plus the total number of pages of logs for this station.

Fish egg development stages (from Marak and Colton, 1961).

U.S. DEPT. OF COMMERCE - NOAA NATIONAL MARINE FISHERIES SERVICE

MARMAP ICHTHYOPLANKTON DATA RECORD - EGGS (IDE)

Operational Unit

Name of the institution preparing this log, e.g., NEFC, NWAFC, ZSOP.

<u>vessel</u>

As recroded on the Station Activities Summary.

cruise

As recorded on the Station Activities Summary.

Gear/Mesh

The gear and the mesh size used in collecting the sample entered according to the list below:

GEAR	MESH	ENTER
61 cm Bongo	333	6B3
61 cm Bongo	505	6B5
20 cm Bongo	333	2B3
20 cm Bongo	505	2B5
20 cm Bongo	165	2B1
20 cm Bongo	253	2B2
50 x 100 cm Neuston	505	1 N5
100 x 200 cm Neuston	947	2N9
36 x 97 cm Haedrich	706	3H7
36 x 97 cm Haedrich	1800	3H1
Other gear		Write out gear
		name plus mesh
		aperture in microns.

Station Number

As recorded on the Station Activities Summary.

Haul No.

As recorded on the Station Activities Summary.

Gear ID No.

The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on the same haul.

Sample Date

Date (day-month-year) when sample was collected;

from the Station Activities Summary.

<u>Vials Sorted Eggs</u> The number of vials of eggs resulting from the sort; from the Ichthyoplankton Sorting Record.

Total Whole Eggs The number of whole eggs resulting from the sort; from the Ichthyoplankton Sorting Record.

Aliquot Code

The code for the factor by which counts from an aliquot can be converted to numbers for the whole sample.

ALIQUOT FRACTION	ALIQUOT FACTOR	ENTER
1/1	1	. 01
1/2	2	02
1/4	4	04
1/8	8	08
1/16	16	16
1/32	32	32
1/64	64	64
1/128	128	12
1/256	256	25
1/512	512	51
1/1024	1024	10
1/2048	2048	20
1/4096	4096	40

NOTE: Aliquot factor may be other than 1 for this analysis. If aliquoting is necessary, see Section 3.6.1 for details.

Taxon Number

The 9 digit Southeast Fisheries Center Bionumeric Code for Fishes (Bullis, et al., 1972).

 ${\tt N\underline{OTE:}}$ Ten boxes are provided for researchers who may

be using the National Oceanographic Data Center (NOCD)
Taxonomic Code. A current list of names and codes is
available upon request from the authors, or for MARMAP
Information System users, by running the MIS program
A9SRT. See Section 6 Appendix I for further comments on these log sheet fields.

Taxon Name

The scientific name according to the American Fisheries Society (Bailey et al, 1970) for the following taxonomic levels:

Order

Family

Genus

Species

Vial No.

Vials are numbered sequentially as taxa from each station are identified. Identified egg vials must be numbered in the range 100-199. The hundreds digit is preprinted on the log. This is to avoid identical vail numbers for eggs, larvae, and zooplankton from the same station, gear and haul. Be sure to include the preprinted digit on any vial labels.

Stage

The developmental stage of eggs of a particular taxon according to the list below (See Section 3.5.3.2.3 for further explanation):

	NAME	ENTER
PB	Unstaged	000
РВ	Through Blastopore Almost Closed	001
РВ	Blastopore Closed to Tail Tip Almost Free	002

	PB Tail Tip Free to Hatching	003
	PB Dead at Capture	004
¥.	PB Abnormal	005
	EHA Prefertilization or Precleavage	010
	M&C Stage One O hr	020
	AN Precell O Hr	030
	M&H Early Cleavage	040
	M&C Stage One 8 hr	050
	AN Two Cell	060
	AN Four Cell	070
	AN Eight Cell	080
	AN Sixteen Cell	090
	M&C Stage One 23 hr	100
	AN Cell Stage	110
	M&C Stage One 45 hr	120
•	M&C Stage One 72 Hr	130
	M&H Morula	140
	EHA Morula	150
	AN Early Blastula	160
	AN Blastodermal Cap	170
	M&C Stage Two 4 Days	180
	M&C Stage Two 7 Days	190
	M&H Blastula	200
	EHA Blastula Part of Gastrula	210
	M&C Stage Three 7 days	220

NAME	ENTER
M&C Stage Three 8 Days	230
M&C Stage Three 9 Days	240
M&H Gastrula	250
AN Early Germ Ring	260
AN Germ Ring 1/2 Down	270
M&C Stage Four 10 Days	280
AN Germ Ring 3/4 Down	290
M&C Stage Four 12 Days	300
M&H Early Embryo	310
EHA Gastrula Early Embryo	320
M&C Stage Four 13 Days	330
AN Blastopore Almost Closed	340
AN Ruptured Germ Ring	350
AN Ruptured late germ ring or early middle	360
AN Early Middle	370
EHA Early Embryo to Blastopore Closure	380
EHA Blastopore Closure to Tail Bud	390
M&C Stage Five 14 Days	400
M&H Tail Bud Stage	410
AN Middle Middle	420
AN Late Middle	430
AN Ruptured late middle or early late	440
M&C Stage Five 16 days	450
EHA Early Tail Free	460
AN Early Late	470

1.0

1. To 4.

NAME	ENTER
M&H Tail Free Stage	480
EHA 1/3 Embryo Tail Free	490
AN Tail 1/2 Yolk	500
AN Tail 5/8 Yolk	510
EHA Tail Leaves Plane of Embryo	520
M&C Stage Five 17 Days	530
AN Tail 3/4 Yolk	540
An Tail 7/8 Yolk	550
AN Full Circle	560
AN Tail 1 1/8 Yolk	570
AN Tail I 1/4 Yolk	580
AN Tail 1 3/8 Yolk	590
AN Tail 1 1/2 Yolk	600
M&C Stage Six 18 Days	610
M&H Late Embryo	620
EHA Late Embryo	630
EHA Prehatching	640
AN Ruptured Early	700
AN Early Stages 030 through 350 and 700	730
AN Early Stages 030 through 270 and 700	760
AN Middle Stages 370 through 430	790
AN Later than Full Circle	820
AN Abnormal Usually Late	850
JJ Stage Unknown	900

The diameter(s) to the nearest 0.01 mm for the measured eggs of each taxon logged.

Oil Globule
Diameter

The oil globule diameter(s) to the nearest 0.01 mm for the measured eggs of such taxon logged.

No. Not Analyzed

The number of eggs of each logged taxon for which no analysis (staging or measuring) was performed.

I.D. By

Initials of individual identifying each taxon.

The order in which the blocks of log sheet fields are to be filled in, one or more for each taxon.

3.5.3.2.5 Further Information About Fish Eggs

More Information on the analyses of fish eggs may be obtained as follows:

Image Analysis Mr. Raymond Maurer

NOAA/NMFS

Narragansett Laboratory

South Ferry Road

Narragansett, RI 02882

Atlantic Taxa: Mr. Peter Berrien

NOAA/NMFS

Sandy Hook Laboratory

Highlands, NJ 00732

Pacific Taxa: Dr. Reuben Lasker

NOAA/NMFS

P. O. Box 271

LaJolla, CA 92037

3.6 PROCESSING OF INVERTEBRATE ZOOPLANKTON

The processing is carried out in several steps: removal of tar and plastics contaminants (Sections 3.3.1 and 3.3.2); measuring the volume of the plankton in each sample (Section 3.4.1); aliquoting sample; determining size frequency distribution; sorting and enumerating of major taxa; and identifying, staging, measuring and sexing taxa. 3.6.1 Aliquoting

Aliquoting of samples would not be performed in the ideal analysis situation since several commonly occurring factors can act to cause variations between splits and/or between the results of different splitter operators, e.g., 1) aliquoting by a factor sufficient to reduce abundant forms to reasonable numbers usually results in an aliquot factor which exceeds the number of many taxa present in the original sample -- an aliquot level satisfactory for one taxon is unsatisfactory for many others; 2) it is not always possible to get the organisms randomly distributed in the undivided chamber before performing the split; 3) much of the skill and the techniques applied by splitter operators are difficult to document and therefore difficult to standardize between operators (Longhurst and Seibert, 1967; Miller, 1975; Green, 1976).

There are, however, practical requirements that result in the need for aliquoting samples. First, the samples must be reduced to a reasonable (~500 specimens) size for microscopic examination, and second, enough samples must be obtained for the different analyses which may be desired. The size of these latter aliquots will be determined by the requirements of each analysis.

3.6.1.1 Folsom Plankton Splitter

A "satisfactory" instrument for aliquoting MARMAP Zooplankton samples is the Folson Plankton Sample Splitter (McEwen, et al., 1954) as modified by Longhurst and Seibert (1967) to uniformly distribute the specimens prior to splitting through the use of an air manifold (Fig. 3.22).

3.6.1.2 Bourne Plankton Splitter

Another splitter that compares favorably with the Folsom Splitter is a modification of Motoda's (1959) box type plankton splitter and is called the Bourne Plankton Splitter (Betelho and Donnelly, 1978) (Fig. 3.23). This device relies on user skill rather than the air manifold for random mixing, but does have an emptying and continued splitting feature which speeds up the operation.

3.6.1.3 Splitting Procedure

Regardless of which of these splitters is used, the following two steps must be performed prior to the operation: 1) the splitter must be leveled using the leveling screws and a mechanics level attached to the base plate to insure that identical fractions result, and 2) for a new instrument a comparison of the geometry of the two parts of the chamber must be made. This can be done by measuring the volumes of water resulting from splitting operation. The allowable difference depends on the volume being split and the abundance of those organisms to be studied in the split. Non-allowable differences should result in rejection or rebuilding of the splitter rather than carrying awkward correction factors through the processing of these data.

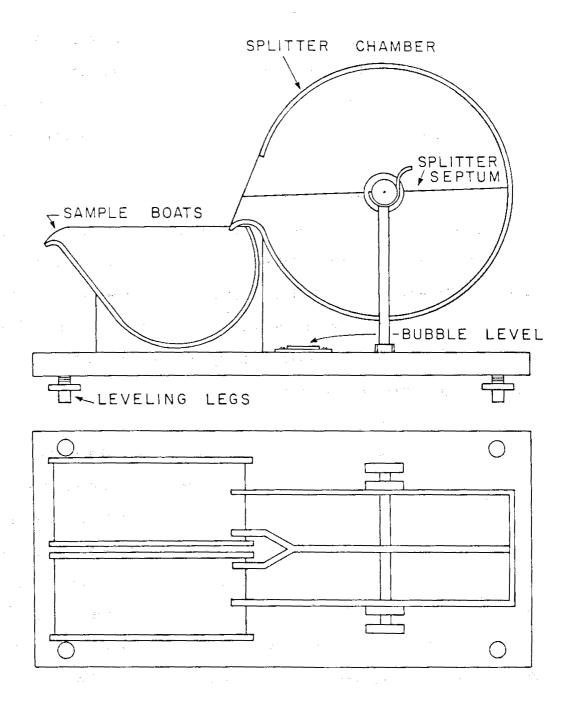
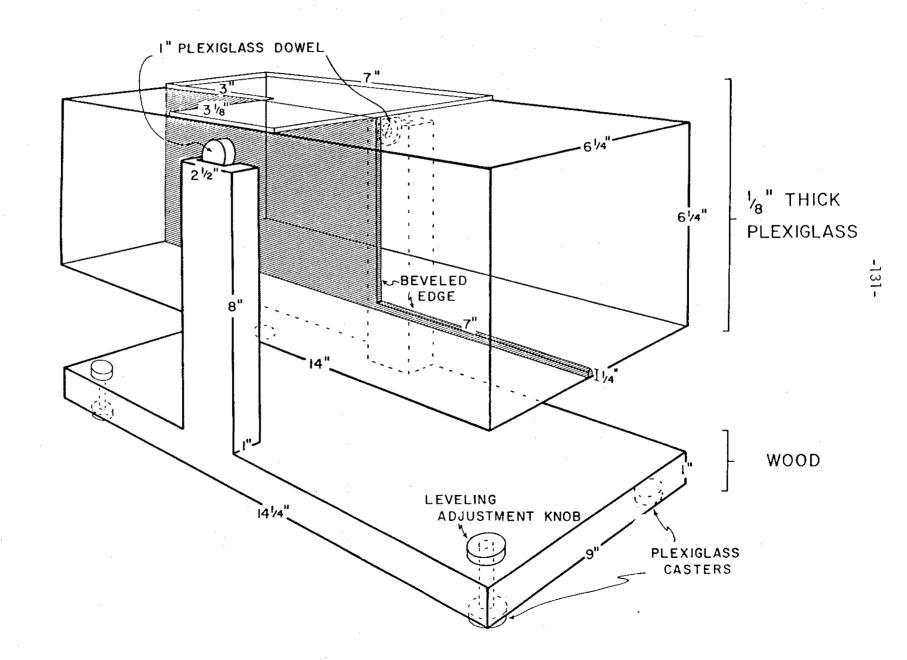



Figure 3.22 The Folsom Plankton Sample Splitter

The following procedure assumes that the modified Folsom splitter will be used: The splitting is done on a sample after removal of any large organisms (>2.5 cm). At this point air is introduced into the drum through numerous small holes connected to a manifold. Air pressure is regulated based on a prior test to determine homogeneous distribution of the specimens. The sample is then poured into the undivided portion of the drum and allowed to mix for approximately 10 seconds. The drum is then rotated until the septem splits the sample. Lifting the drum and rotating a little more, the two separated samples are completely transferred into the "plastic boats". Smaller samples are obtained by returning the contents of one "boat" to the drum. Thus aliquot portions of approximately 1/2, 1/4, 1/8, etc., of the original are obtained, and the process is continued until the sample is small enough for counting. One member of all intermediate splits is temporarily retained and labeled until the final aliquot is obtained, and decisions for all desired analyses are made. The retained aliquots are labeled according to Figure 3.17.

The remainder of the sample is returned to the original sample jar with fresh preservative, and an additional label, stating the total aliquot removed, is included. The sample is then archived according to Section 3.8.

3.6.2 Sorting - Automated Methods

rge

ugh

ed

At present an automatic image analysis technique is nearing operational status for obtaining data (Jeffries et al., 1980). Also particle size separation using an elutriation technique holds promise. The resulting size groups could be enumerated and then sacrificed for total carbon determination. These two determinations would greatly reduce the effort presently expended during traditional microscopic examination. In order to describe the species contribution to these above data, at least a random selection of samples should be examined in the traditional manner prior to carbon analysis.

For further details see the cited manuscript or contact:

1 /

Mr. Raymond Maurer

NOAA/NMFS

Narragansett Laboratory

South Ferry Road

Narragansett, RI 02882

3.6.3 Sorting - Traditional Methods

Until such improved methods are made fully operational, sorting and identification of zooplankton are done under the microscope. Techniques and equipment necessary for sorting zooplankton are generally similar to those described for ichthyoplankton sorting (Section 3.5.2).

3.6.3.1 Major Taxa

For determining the major taxa present in a plankton sample, an approximately 500 specimen aliquot (Section 3.6.1) is sorted for the italicized groups below:

Protozoa

Radiolaria

Cnidaria

Siphonophora

Cterophora

Annelida

Polychaeta

Anthropoda

Cladocera

Ostracoda

Copepoda

Cirripedia

Amphipoda

Mysidacea

Euphausiacea

Decapoda

Macrura

Anomura

Brachyura

Mollusca

Gastropoda

Heteropoda

The cosomata (Pteropoda, shelled)

Seferica y company of compressionings

Committee of the property of the following states of the following states of the property of the following states of the follo

Pelecypoda

Cephalopoda House the second and second their second and

Decapoda

Octopoda

Echinodermata

Chaetognatha

Tunicata

Thaliacea

Larvacea

Invertebrate eggs

3.6.4 Identification of Zooplankton

To characterize the community structure and monitor changes in the composition and relative abundance of lower trophic level organisms, identification will be made for all specimens in selected aliquots.

Species identification techniques and necessary equipment are generally similar to those employed during ichthyoplankton identification (Section 3.5.3).

3.6.4.1 Naming Convention

The identifier will assign each specimen to the lowest taxonomic level possible. A great deal more variety exists in the naming conventions for invertebrate zooplankton than is the case for ichthyoplankton. MARMAP has generally made taxonomic codes available for two or more taxa which some workers believe to be synonymous, thus retaining the detail and the ability for later "lumping". Specimens are assigned a 4-digit numerical code.

Requests from MARMAP Information System users for listings or for additions or corrections to these codes should be made to:

Mr. Jack W. Jossi
NOAA/NMFS
Atlantic Environmental Group
South Ferry Road
Narragansett, RI 02882

NOTE: MARMAP Information System users may obtain a current listing of these codes by running the MIS program A4SRT.

3.6.3.2 Staging, Measuring, and Sexing

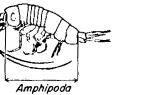
Developmental stages are determined (See listing of life stages in Section 3.6.4.3). Standard length measurements are made as indicated in Figure 3.24. These measurements are modified from Isaacs, Fleminger, and Miller (1971) to be more comparable with measurements made during automatic image analysis. When measuring taxa other than those shown in Figure 3.24, the logged data must include the published source, or a written description, of the technique used. The sex of each specimen should be determined, i.e., male, female, ovigerous female, or sex unknown.

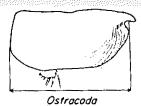
3.6.4.3 Labelling

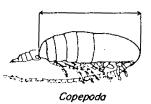
Labelling of all resulting specimen containers should be done as in Figure 3.17.

3.6.4.4 MARMAP Zooplankton Data Log

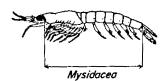
Results of these analyses are tabulated and entered on the Zooplankton Data Log (Fig. 3.25). Further specifications for zooplankton data are given in Section 6, Appendix I.

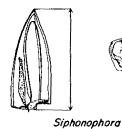

Instructions for completion of the log are presented below:


taxa

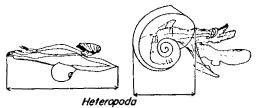


Pteropoda





Euphausiacea



Decapoda

This is a blank page.

MARMAP ZOOPLANKTON DATA LOG (ZDL)

OPERATIONAL UNIT	
Vessel	Cruise Gear/ Mesh
Station No. Haul No. Gea	ID No. Sample Date Aliquot Code
TAXON NUMBER VIAL LENGTH & LIFE STAGE N.N.A.	TAXON NUMBER VIAL LENGTH LIFE N.N.A. Remarks: TAXON NAME NO. (mm) STAGE N.N.A. Remarks:
	4
2	5
3	6
	Recorded By:

-139

MARMAP Zooplankton Data Log (Form ZDL, 10/80)

Page of _____ The consecutive page of the log plus the total number of pages of logs for any station.

Operational Unit Name of the institution preparing this log, e.g., NWAFC, ZSOP, NEFC.

<u>Vessel</u> As recorded on the Station Activities Summary.

<u>Cruise</u> As recorded on the Station Activities Summary.

Gear/Mesh The gear and the mesh size used in collecting the sample entered according to the list below:

GEAR	MESH	ENTER
61 cm Bongo	333	6B3
61 cm Bongo	505	6B5
20 cm Bongo	333	2B3
20 cm; Bongo	505	2B5
20 cm Bongo	165	2B1
20 cm Bongo	253	2B2
50 x 100 cm Neuston	505	1N5
100 x 200 cm Neuston	947	2N9
36 x 97 cm Haedrich	706	3H7
36 x 97 cm Haedrich	1800	3H1
Other Gear		Write out gear

name plus mesh

aperture in microns

Station No. As recorded on the Station Activities Summary.

Haul No. As recorded on the Station Activities Summary.

Gear ID No. The number assigned to each net used during the haul. This is necessary when gear of identical characteristics are deployed on the same haul.

Sample Date

Date (day-month-year) when sample was collected; from the Station Activities Summary.

Aliquot Code

The code for the factor by which counts from an aliquot can be converted to numbers for the whole sample (list below)

ALIQUOT FRACTION	ALIQUOT FACTOR	ENTER
1/1	1	01
1/2	2	02
1/4	4	04
1/8	8	08
1/16	16	16
1/32	32	. 32
1/64	64	64
1/128	128	12
1/256	256	25
1/512	512	51
1/1024	1024	10
1/2048	2048	20
1/4096	4096	40

Taxon Number

The four-digit "Interim Code for MARMAP Zooplankton Data".

NOTE: Ten boxes are provided for researchers who may be using the National Oceanographic Data Center (NODC) Taxonomic Code. A current list of names and codes is available upon request from the authors or for MARMAP Information System users by running the MIS program A4SRT See, Section 6, Appendix I for further comments on this and the subsequent log sheet fields.

Taxon Name

icrons.

The scientific name of the specimen.

Length

The standard length of each specimen measured to the nearest 0.1 mm. See Figure 3.24 for standard length measuring methods to be used for various taxa. For taxa not found in Figure 3.24, enter standard length description under Remarks.

Sex

The sex of each specimen entered according to the table below:

SEX Male Female	ENTE
Male	1
Female	2
Ovigerous female	3
Unknown	4

Life Stage

The developmental stage of each specimen entered according to the table below:

LIFE STAGE	ENTER
Adult	000
Planula	001
Actinula	002
Medusa	003
Polyp	004
Ephyra	005
Scyphistoma	006
Cydippid	007
Epitoke	008
Atoke	009
Trochophore	010

LIFE STAGE		ENTER
Veliger		011
Protonymphon		012
Nauplius		013
Nauplius I		014
Nauplius II		015
Nauplius III		016
Nauplius IV		017
Nauplius V		018
Nauplius VI		019
Copepodite I		020
Copepodite II		021
Copepodite III		022
Copepodite IV		023
Copepodite V		024
Cypris		025
Manca (Postlarva)		026
Calyptopis (Protozoea)	÷	028
Furcilia (Zoea)		0 29
Cyrtopia (Postlarva)		0 30
Protozoea		031
Mysis (Zoea)		032
Mastigopus (Postlarva)		033
Elaphocaris (Protozoea)		034
Acanthosoma (Zoea)		035

	Zoea		036
	Parva (Postlarva)		037
	Postlarva		038
	Phyllosoma (Zoea)		039
•	Puerulus, Nisto, or Pseudobaccus (Postlarva)		041
	Glaucothoe (Postlarva)	÷	042
	Megalopa (Postlarva)		043
	Bipinnaria	-	044
	Branchiolaria		045
	Ophiopluteus		046
	Echinopluteus		047
	Auricularia		048
	Doliolaria		049
	Egg		050
	Larva		051
	Copepodite		052
	Metatrochophore		053
	Immature (Sexually) or Juvenile		054
	Strobila		055
	Vitellaria		056
	Molt		057
	Cyphonauntes		058
	Unknown		999

N.N.A.

The number of specimens of each logged taxon for which no analysis (measuring, sexing, or staging) was performed.

Vial Number

analysis (measuring, sexing, or staging) was performed. Vials are numbered sequentially as taxa from each station are identified. Identified zooplankton (non-ichthyoplankton) vials must be numbered in the range 201-299. The hundreds digit is preprinted on the log. This is to avoid identical vial numbers for eggs, larvae and zooplankton from the same station, gear, and haul. If more than 99 taxa are identified at a single station, assign 301, 302, 303, etc., vial numbers to them and alert the data processing unit of this situation. Be sure to include the preprinted digits on any vial labels.

Remarks

Any information useful in subsequent analyses of these samples.

Recorded By

Initials or name of person entering data on the log.

1 2 3 4 5 6

The order in which the blocks of log sheet fields are to be filled in.

3.7 REFERENCE COLLECTION

Special reference collections of ichthyoplankton larvae, eggs, and of zooplankton are kept adjacent to the identification laboratory. The specimens in this collection are the "best of a kind" and used for reference in identifying questionable material or rare specimens. The material is also used occasionally to train identifiers.

3.8 CURATING

Following analyses and the removal of samples for reference collections, any remaining sample is returned to storage according to the following:

- If the remaining sample contains <500 specimens, it is permanently retained in storage.
- 2) If the remaining sample is large enough that it can be split into an ≈ 500 specimen aliquot, this is done and the aliquot is permanently retained in storage.
- 3) Any subsample in excess of that stored according to item 2 above will be retained only until it has been advertised to the scientific community for a period of one year.

The general and reference collections are periodically checked to assess the evaporation of preservative from the sample containers. The screw-top lid with the vinyl liner now used on our vials is virtually evaporation-proof if well tightened when stored. However, periodic checks (not greater than 6 months) must be made. Occasionally some vials with loose caps may lose liquid by evaporation in which case preservative is added, the cap tightened properly, and the vial stored again.

4. ACKNOWLEDMENTS

We wish to express our appreciation to the many people who have helped in the preparation of this manual. Thanks are expecially due to the MARMAP associated staffs at the National Marine Fisheries Service's Southwest, Northwest and Alaska, Northeast, and Southeast Fisheries Centers; the Plankton Sorting Center, Szczecin, Poland; the Smithsonian Oceanographic Sorting Center; the State of South Carolina Wildlife and Marine Resources Department, Marine Research Laboratory; to Gertrude Kavanagh, Gail Santoro, Marilyn Brennan, Elinor Werberger, Jennie Dunnington, and Karen Heise for typing the manuscript; and to Lianne Armstrong and Joanne Rose for preparation of the figures.

The manual has been widely used since 1972. As a result we are also deeply indebted to the scientists, technicians, vessel officers, and crews who have made numerous valuable suggestions.

5. REFERENCES

- Ahlstrom, E. H., and J. R. Thrailkill.
 - 1963. Plankton volume loss with time of preservation. Calif. Coop. Oceanic Fish. Invest. Rep., vol. 9, p. 57-73.
- Aiken, James, Grayson Wood, and Jack Jossi.
 - 1980. The Undulating Oceanographic Recorder Mark 2: A new ship of opportunity ocean monitoring instrument. Conf. Rec., OCEANS '80, Seattle, Washington, 8-10 September 1980, p. 37-43. (IEEE Publication no. 80, CH 1572-7).
- Bailey, Reeve M., John E. Fitch, Earl S. Herald, Ernest A. Lachner, C. C. Lindsey, C. Richard Robins, and W. B. Scott.
- 1970. A list of common and scientific names of fishes from the United States and Canada. Am. Fish. Soc., Spec. Publ. no. 6, 150 p.
- 1966. Handbook of oceanographic tables. U.S. Nav. Oceanogr. Off.,
- Botelho, V. M., and G. T. Donnelly.

Spec. Publ. no. 68, 423 p.

Bialek, Eugene L.

- 1978. A statistical analysis of the performance of the Bourne Plankton Splitter, based on test observations. (Unpubl. manusc. Available from: NOAA, NMFS, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882).
- Bullis, Harvey R., Jr., Richard B. Roe, and Judith C. Gatlin.

 1972. The Southeast Fisheries Center Bionumeric Code Part I: fishes.

 U.S. Dep. Commerce, NOAA Tech. Rep., NMFS SSR-F, no. 659, 95 p.
- Colton, John B., Jr., Frederick D. Knapp, and Bruce R. Burns.

 1974. Plastic particles in surface waters of the northwestern

 Atlantic. Science, vol. 185, no. 4150, p. 491-497.

Curl, Herbert, Jr.

1962a. Analyses of carbon in marine plankton organisms. J. Mar. Res., vol. 20, no. 3, p. 181-188.

Curl, Herbert, Jr.

1962b. Standing crops of carbon nitrogen and phosphorous and transfer between trophic levels in continental shelf waters south of New York. Rapp. P.-V. CIEM, vol. 153, p. 183-189.

Green, J.

1976. Analysis of splitting effects from the Polish aliquoting experiment. (Unpubl. manuscr. Available from: NOAA, NMFS, Narragansett Laboratory, South Ferry Road, Narragansett, RI 02882).

Hardy, A. C.

1939. Ecological investigations with the Continuous Plankton Recorder: object, plan and methods. Hull Bull. Mar. Ecol., vol. 1, p. 1-57.

Harris, E., and G. A. Riley.

1956. Oceanography of Long Island Sound. Bull. Bingham Oceanogr. Collect., no. 17, p. 31-65.

Tsaacs, J. D., A. Fleminger, and J. K. Miller.

1971. Distributional atlas of zooplankton biomass in the California Current region: winter 1955-1959. Calif. Coop. Oceanic Fish. Invest., Atlas no. 14, 122 p.

Jeffries, H. Perry, Kenneth Sherman, Ray Maurer, and Constantin Kalsinis.

1980. Computer processing of zooplankton samples. <u>In</u>: Estuarine
Perspectives, Victor S. Kennedy (Ed.), p. 303-316, Academic Press,
New York.

Kane, J.

_____. Effect of season and location on the relationship between zooplankton displacement volume and dry weight in the northwest Atlantic. Fish. Bull. (In press).

Knapp, Frederick D.

1972. A method for determining zooplankton biomass in terms of organic carbon weight. (Unpubl. manuscr. Available from: NOAA, NMFS, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882).

Kramer, David, Mary J. Kalin, Elizabeth Stevens, James R. Thrailkill, and James R. Zweifel.

1972. Collecting and processing data on fish eggs and larvae in the California Current region. U.S. Dep. Commerce, NOAA Tech. Rep., NMFS CIRC. no. 370, 38 p.

Longhurst, Alan R., and Don L. R. Seibert.

1967. Skill in the use of the Folsom plankton splitter. Limnol. Oceanogr., vol. 12, no. 2, p. 334-335.

Lovegrove, T.

1961. The effect of various factors on dry weight values. Rapp. P.-V. CIEM, vol. 153, p. 86-91.

Lovegrove, T.

1966. The determination of the dry weight of plankton and the effect of various factors on the values obtained. <u>In</u>: H. Barnes (Ed.), Some Contemporary Studies in Marine Science, p. 429-467, George Allen and Unwin, Ltd., London.

Mansueti, Alice J., and Jerry D. Hardy, Jr.

1967. Development of fishes of the Chesapeake Bay region. An atlas of egg, larval, and juvenile stages. Part I. Natural Resources Inst., University of Maryland, 202 p.

Marak, Robert R., and John B. Colton, Jr.

1961. Distribution of fish eggs and larvae, temperature and salinity in the Georges Bank-Gulf of Maine area, 1953. U.S. Dep. Interior, Fish Wildl. Serv., SSR-F, no. 398, 61 p.

McEwen, G. F., M. W. Johnson, and Th. R. Folsom.

Moser, H. Geoffrey, and Elbert H. Ahlstrom.

1954. A statistical analysis of the performance of the Folsom plankton splitter, based upon test observations. Arch. Meteorol. Geophys.

Bioklimatol., ser. A, 7, p. 502-527.

Miller, C. B.

1975. Sampling error of the Folsom plankton sample splitter. Plankton Statistics Project, Department of Zoology, University of Aukland, New Zealand. (Unpubl. manuscr. Available from: NOAA, NMFS, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882).

1970. Development of lanternfishes (Family Myctophidae) in the California Current. Part I. Species with narrow-eyed larvae. Bull. Los Angeles County Mus. Nat. Hist. Science no. 7, 145 p. Motoda, S.

1959. Devices of simple plankton apparatus. Mem. Fac. Fish. Hakkaido Univ., vol. 14, p. 152-162.

National Marine Fisheries Service.

Assessment and Prediction (MARMAP) Program, July, 1971. (Unpubl. manuscr. Available from: NOAA, NMFS, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882).

National Marine Fisheries Service.

1973. Revised program development plan (PDP) for MARMAP, January,

1973. (Unpubl. manuscr. Available from: NOAA, NMFS, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882).

Petersen, Harold, Jr., and Jack W. Jossi.

1978. The MARMAP Information System. Introduction plus Volumes 1-8, 1486 p. (Unpubl. manuscr. Available from: NOAA, NMFS, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882).

Platt, T., V. M. Brawn, and B. Irwin.

1969. Caloric and carbon equivalents of zooplankton biomass.

J. Fish. Res. Board Can., vol. 26, p. 2345-2349.

Posgay, J. A., and R. R. Marak.

1980. The MARMAP Bongo Zooplankton Samplers. J. Northw. Atl. Fish. Sci., vol. 1, p. 91-99.

Raymont, J. E. G., J. Austin, and E. Linford.

1964. Biochemical studies on marine zooplankton. I. The biochemical composition of Neomysis integer. J. Cons., vol. 28, p. 354-363.

Raymont, J. E. G., J. Austin, and E. Linford.

1967. The biochemical composition of certain oceanic zooplankton decapods. Deep Sea Res., vol. 14, p. 113-115.

Smith, P., and S. Richardson.

1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish. Tech. Pap., no. 175, 100 p.

Steedman, H. F. (Ed.).

1976. Zooplankton fixation and preservation. Monogr. Oceanogr. Methodol., no. 4, UNESCO Press, Paris, 350 p.

Tashiro, Joseph E., and James F. Hebard.

1969. A modification of the plankton volume gauge for use aboard ship. Limnol. Oceanogr., vol. 14, no. 5, p. 794-796.

T.R.W. Systems Group.

1973a. MARMAP system description. Report of Contract No. 2-34305. (Unpubl. manuscr. Available from: NOAA, NMFS, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882).

T.R.W. Systems Group.

1973b. Survey I plan for MARMAP. Report of Contract No. 2-34305. (Unpubl. manuscr. Available from: NOAA, NMFS, Atlantic Environmental Group, South Ferry Road, Narragansett, RI 02882).

Wiebe, P. H., S. Boyd, and J. L. Cox.

1975. Relationships between zooplankton displacement volume, net weight, dry weight, and carbon. Fish. Bull., vol. 73, p. 777-786. Yentsch, Charles S., and J. Frank Hebard.

1957. A gauge for determining plankton volume by the mercury immersion method. J. Cons., vol. 22, p. 184-190.

6. APPENDIX I - SPECIFICATIONS FOR MARMAP DATA RECORD TYPES

6.1 INTRODUCTION

Logsheet data field specifications are applicable to all MARMAP Survey I operations.

Master file specifications and comments mostly apply to MARMAP Information System (MIS) users. Their master files are heirarchical in format. Category definitions frequently include parenthetical entries where the first entry indicates data-word(s) content and/or accuracy and/or data units, and the second entry (when necessary) further defines data units.

6.2 RECORD TYPES

MARMAP PLANKTON SURVEY DATA

PAGE 1 0F 3

RECORD CONTENT MASTER STATION RECORD

RECORD CODE _MSR

LOGSHEET					z	1		YSTEM		L) GTH	(S 34
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUM 1) WORD LENGTH	DATUM TY
1	OPERATIONAL UNIT	na	na	na	na	na	na	na	na	na	na
2	VESSEL	na	21 char	na	35	VESSEL:	002	01	na .	21	С
3_	CRUISE	year	year:00-99	±0.5 min	na	CRUISE (YY-CCC):	004	01	01	6	C
			hyphen: na	na							
			cruise: 001-999	na							
4_	STATION NUMBER	na	001-999	na	na	STATION NUMBER:	100	01	01	3	N
5	ARRIVAL DATE	day (GMT)	01-31	±0.5 min	na	STA DATE (DD MM YY) (GMT):	103	01	01	2	N
		month (GMT)	01-12	±0.5 min			103	01	02	2	N
		year (GMT)	00-99	±0.5 min	_[_		103	01	03	2	N
6	LATITUDE	degree	00-90	±0.5 min	na	LATITUDE (DD MM H):	136	01	01	2	Ν·
		minute	00-60	±0.5 min			136	01	02	2	N
		hemisphere	na	±0.5 min	_		136	01	03	1	А
7	LONGITUDE	degree	000-180	±0.5 min	na	LONGITUDE (DDD MM H):	138	Q1 _.	01	3	N
		minute	00-60	±0.5 min			138	01	02	2	N
		h <u>emisphere</u>	na	±0.5 min			138	01	03	1	Α
8	POSITION CHECK BY:	na .	na	na	na	na	na	na	na	na	na

PAGE _2_ OF _3_

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT MASTER STATION RECORD RECORD RECORD CODE MSR

	LOGSHEET					MARMAP INFORMATION	l SY:	STE	М	GTH (2)
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRE D ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUM WORD LEN	DATUM TYPE
9	ARRIVAL TIME	hour (GMT)	00-24	±0.5 min	na	STATION TIME (HHMM) (GMT):	146	01	01	4	N
		min (GMT)	00-60	±0.5 min				<u></u>	<u></u>		
10	BOTTOM DEPTH	meter	0001-9999	±0.5 m	na	BOTTOM DEPTH (METERS):	112	01	01	4	N
11	WIND SPEED (KNOTS):	knot	01-99	+0.5 kt	na_	WIND SPEED (KNOTS):	148	01_	01	2	N
12	WIND DIRECTION	degree	000-360	±0,5 deq	na	WIND DIRECTION (DDD M/T):	150	01	01	3	N_
		magnetic or true	na	na	na	na	150	01	02	1	Α
13	AIR TEMP.	centrigrade degree	-20.0 - 50.0	±0.5 deg	na	AIR TEMP (DEG C):	124	01	01	4	С
14	SURFACE TEMP.	centrigrade degree	-02.0 - 40.0	±0.5 deg	na	SURFACE TEMP (DEG C):	120	01	01	4	С
15	CLOUD COVER TYPE	na	na	na	18	CLOUD TYPE:	114	01	82	15	Α
16	CLOUD COVER AMT.	Ukta (1/8 of Celestial dome)0-8	±0.5 okta	20	CLOUD COVER (%):	116	01	01	3	N
17	WAVE HEIGHT	meter	00.0 - 15.0	±0.5 m	na	WAVE HGT (DD.D)(METERS):	156	01	01	4	c
18	TYPE OF OBSERVATION	na	na	na	25	STA EXPERIMENTS & TIMES:	128	01- 13-	01	21	С
19	TYPE OF OBSERVATION - START TIME	hour (GMT)	00-24	±0.5 mjn	na	(start)	128	01- 13	02	4	N
		minute (GMT)	00-60	±0.5 min						i	
	END TIME	hour (GMT)	00-24	±0.5 min	na	(finish)	128	01- 13-	03	4	N
		minute (GMT)	00-60	±0.5 min ,							

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT MASTER STATION RECORD RECORD CODE MSR

	LOGSHEET					MARMAP INFORMATION MASTER FILE	SYS	STEN	^	13.	rPE 2)
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUM 1) WORD LENGTH	DATUM T
20	OTHER TYPES OF OBSERVATIONS	na	na	ı na	na	(same as items 18 and 19 above)					
21	REMARKS DAMAGE OR LOSS	na	na	na	ì	STATION REMARKS:	109	91- 99	na	na	С
22	RECORDED BY	na .	na	na	<u>na</u>	na .	na	na	na	na	na_
23	REVIEWED BY	na	na	na	na	na	na	na	na	na	na
_	· · · · · · · · · · · · · · · · · · ·				.l						
				· · · · · · · · · · · · · · · · · · ·	 						
				·							
<u> </u>					<u> </u>						
					<u> </u>						
-					-						
					 						
_					! —			_			
			·		<u> </u>						\dashv
					 		—		-		
<u> </u>		·			-			—			

6.2.1.2 Comments on: Master Station Data

A. Footnotes

- 1) Word length for data resulting from a code group substitution is, in fact, the maximum length of the substitution element rather than the length of any word(s).
- 2) Datum Type:

Code	Meaning
А	Strictly an alphabetic field.
N	Strictly a numeric field.
С	A field that can contain any combination of characters.

3) GMT = Greenwich Mean Time

B. Items

- 1. This log sheet field is not exposed to automatic data processing.
- 2-3. The cruise numbering convention specified for this log sheet field would be expected to rarely require more than five digits, since more than 99 cruises by the same vessel in one year would be unusual. However, data are stored within the MIS originating from operational units other than those of MARMAP and for which other conventions have been used. Hence, an additional digit is provided to accommodate these larger cruise numbers.

 These fields are provided by the user when running the MIS program SETUPCNV. See MIS Documentation Vol. 2, STC p. Ø5, and Vol. 1, Aiv p. Ø7.
 - 5. For special processing on arrival date field, see MIS Documentation Vol. 7, FCV p. Ø9, TRNVAL Code 4.
 - 6. For special processing on latitude field, see MIS Documentation Vol. 7, FCV p. 10, TRNVAL Code 17.

- 7. For special processing on longitude field, see MIS Documentation Vol. 7, FCV p. 10, TRNVAL Code 18.
- 8. This log sheet field is not exposed to automatic data processing.
- 12. For special processing on wind direction field, see MIS Documentation Vol. 7, FCV p. 10, TRNVAL Code 19.
- 13-14. For negative air and sea surface temperatures, the measured values are algebraically subtracted from 50°C and the resulting differences entered into the MIS, e.g., -2.0°C is entered as 52.0°C.
 - 15. For special processing on cloud cover type field, see MIS Documentation Vol. 7, FCV p. Ø9, TRNVAL Code 1.
- 15-16. When cloud amount equals zero or the amount cannot be determined (coded 0 or 9 respectively) the cloud type should be logged as X and no data for cloud entered into the MIS.
- 18-19. Data on the types of station observations usually reach a master file when the results of the particular experiments are merged into the master file. The experiment type is stored in category 300 while the experiment details are stored in categories below 300 in the file hierarchy. Since details from some experiments are not available until months after the original station data are processed, a means for storing general information about the station's experiments at the outset was instituted. This information is placed in category 128 using the MIS program KEYDATA and the OEXØ1 segment of the SDT Table. Thus, a complete Station Activities Summary can be prepared shortly after a cruise. For an example, see data file where DSN = URI.EXQ1.MODEL.AL8001.
 - 21. Narrative data about the station are provided by the user through the MIS program KEYDATA and the COMØ1 segment of the SDT table.

They are merged into category 109 of a master file. See MIS Documentation Vol. 1, Aiv p. 26, and Vol. 7, FCV p. 10/2, TRNVAL Code 31.

PAGE _1_ OF 1__

RECORD CONTENT ZOOPLANKTON SAMPLE LOG FOR BONGC NETS

RECORD CODE ZSB

	LOG	NO.	MARMAP INFORMATION	I SY	STE	М	G HT B	2) PE			
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUM 1) WORD LENGTH	DATUM TY
1	OPERATIONAL UNIT	na	na	na	na	na	na	na	na	na	na
2	VESSEL	na	21 char	na	35	VESSEL:	002	01	na	21	С
3_	CRUISE	3) year (GMT)	year: 00-99	+0.5 min	na	CRUISE (YY-CCC):	004	01	01	6	С
		na	hyphen: na	na							
		na	cruise: 001-999	na							
4	STATION NUMBER	na	001~999	na	na na	STATION NUMBER:	100	01	01	3	N
5	HAUL NUMBER	na	01-99	na	na	HAUL NUMBER:	301	01	01	2	N
6	START TIME	hour (GMT)	00-24	±0.5 min	na	EXP TIME (HHMM)(GMT):	303	01	01	4	N
		minute (GMT)	00-60	40.5 min				<u> </u>			
7_	START DATE	day (GMT)	01-31	±0.5 min	na	EXP DATE (DD MM YY)(GMT):	305	01	01	2	N
		month (GMT)	01-12	±0.5 min			305	01	02	2	N
		year (GMT)	00-99	+0.5 min			305	01	03	2	N
8	SHIP SPEED	knots	00.1-03.5	±0.5 kt	na	SHIP'S SPEED (KNOTS):	308	01	01	4	С
9	SHIP HEADING	degree	000-360	±0.5 deg	na	SHIP'S HEADING (DDD M/T):	309	01	01	3	N
		magnetic or true	na	na		·	309	01	02	1	Α
10	MEASUR, TOW DEPTH	meter	000-999	±0.5 m	na	MEASUR TOW DEPTH (METERS):	348	01	01	.3	N

-162

MARMAP PLANKTON SURVEY DATA

PAGE _ 2 OF _ 4

RECORD CONTENT ZOOPLANKTON SAMPLE LOG FOR BONGO NETS						RECORD CODE ZSB						
LOGSHEET					UP NO	MARMAP INFORMATION		7	M T a	A I)	TYPE 2)	
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	CAT. NO.	WORD NO	MAXIMUM I) WORD LENGTH	MITTAG	
11	TIME GOING OUT	minute	00-99	±0.5 sec	na	TIME GOING OUT (MMSS):	320	01	01	4	N	
		second	00-60	±0.5 sec								
12	TIME AT DEPTH	minute	00-99	. ±0.5 sec	<u>na</u>	TIME AT DEPTH (MMSS):	322	01	01	4	N	
		second	00-60	±0.5 sec				<u> </u>			<u> </u>	
13	TIME COMING IN	minute	00-99	±0.5 sec	na na	TIME COMING IN (MMSS):	324	01	01	4	N	
		second	00-60	±0.5 sec								
14	DURATION OF TOW	minute	000-999	±0.5 sec	na	na	na	na	na	na	na	
	· ·	second	00-60	±0.5 sec								
15	DEPTH INSTRUMENT	na	. na	na	na	na	na	na	na	na	na	
	Make	na	na	na	na	na	na	na	na	na	na	
	Ser. No.	na	na .	na :	na	na	na	na	na	na	na	
1	Spring Depth	foot	0000-1000	±1.5 ft	na	na	na	na	na	na	na	
			0000-0500			•						
			0000-0300									
	A .		0000-0200									
			0000-0100		2000							

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT ZOOPLANKTON SAMPLE LOG FOR BONGO NETS

RECORD CODE ZSB

LOGSHEET						MARMAP INFORMATION		SYSTEM			2) PE		
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRE D ACCURACY) CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUM I)	DATUM TY		
15			0000-0050										
1.6	GEAR ID NUMBER	na	1-4	na	na	[See Comments]	400	01	02	1	N		
17	GEAR/MESH	na	na	na	na	na	na_	na	na		na		
	Gear	na	na	na	10	GEAR:	400	01	01	[See	sl		
	Aperture Size	micron	005-999	+0.5 micron	3	GEAR:	400	01	03	[Sec	s]		
	Mouth Diameter	meter	0,10-2.00	0.005 m	11_	GEAR:	400	01	04	[See] Imen			
	Mouth Height	na	na	na	<u>na</u>	[See Appendix Entry for Record	Co	de	ZSN."	1			
	Mouth Width	na	na	na	_na	[See Appendix Entry for Record	Ca	de, '	ZSN'				
18	BOTTLES FILLED	na	1-9	na	14_	BOTTLES FILLED:	406	01	01	1	N		
19	FLOWMETER START	revolution	00001-99999	±0.5 rev	na	FLOWMETER START:	402	02	01	5	N		
20	FLOWMETER END	revolution	00001-99999	±0.5 rev	na	FLOWMETER END:	402	03	01	5	N		
21	FLOWMETER NO.	na	001-999	na	<u>na</u>	FLOWMTR NO & CALIB FACTOR:							
						[Number]	402	01	01	3	С		
					_]	[Factor]	402	01	02	5	С		
22	TYPE OF TOW	na	na	na	15	TYPE OF TOW:	302	01	01	20	А		
23_	TDR TRACE	na .	na	na	16	TDR TRACE:	372	01	01	15	Α		

PAGE 4 OF 4

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT ZOOPLANKTON SAMPLE LOG FOR BONGO NETS

RECORD CODE _ZSB____

LOGSHEET					UP NO.	MARMAP INFORMATION		I SYSTEM			.ype
ı⊤Eӂ	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRE D ACCURACY	CODE: GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUN WORD LE	DATUM TYPE
24	MAX. WIRE OUT	meter	000-999	±0.5 m	na	MAX WIRE OUT (METERS):	312	.01	01	3_	N
25	ANGLE AT M.W.O.	degree	20~70	±0.5 deg	na	ANGLE @ MAX WIRE OUT (DD):	316			2.	N
26	WIRE ANGLES DURING RETRIEVAL	degree	20-70	±0.5 deq	na	WIRE OUT (METERS): WIRE ANGLE (DD):	314 315	01-02 01-02	na na	3 2	N N
27:	REMARKS	na	na	na	_na	FXPERIMENT-REMARKS:	319	2199	na	c	_na_
28	RECORDED BY	na	na	na	na	na	na	na	na	na	na
29	REVIEWED BY	na	na	na	na	na	na	na	na	na	na
							<u> </u>				
		·									
				:							

64-

6.2.2.2 Comments on: Bongo Net Tow Data

A. Footnotes

- 1) Word length for data resulting from a code group substitution is, in fact, the maximum length of the substitution element rather than the length of any word(s).
- 2) Datum Type:

Code	Meaning
Α	Strictly an alphabetic field.
N	Strictly a numeric field.
С	A field that can contain any combination of characters.

3) GMT = Greenwich Mean Time

B. Items

- 1. This log sheet field is not exposed to automatic data processing.
- 2-3. These fields are provided by the user when running the MIS program SETUPCNV. See MIS Documentation, Vol. 2, STC p. Ø5, and Vol. 1, Aiv p. Ø7.
 - 5. For special processing on haul number field, see MIS Documentation Vol. 7, FCV p. Ø9, TRNVAL Code 7.
 - 7. For special processing on date field, see MIS Documentation Vol. 7, FCV p. Ø9, TRNVAL Code 4.
 - 9. For special processing on ship's heading field, see MIS Documentation Vol. 7, FCV p. Ø9, TRNVAL Code 8.
 - 14. This log sheet field is derived and therefore not added to the master file. Fields in items 11 through 13 are sufficient.
 - 15. This log sheet field is not exposed to automatic data processing. Logsheet specifications for item 15 (spring depth) are for a Bendix Model T-1 Time Depth Recorder.

16. This data field has been used to designate each of the four nets which can be recorded on a MARMAP Zooplankton Sample Log, and used during any one haul. See MIS Documentation Vol. 7, FCV p. 10, TRNVAL Codes 21-24.

In the future a 3 character "Gear ID Number" will be logged to distinguish between otherwise identical gear deployed on the same haul.

17. A 3 character code is logged on the ZSB to describe the type(s) of gear used. This description is divided into parts as follows:

The code groups indicated apply to the three parts of the gear description. They are involved with the MIS programs OPREAD and OPEDIT and to a lesser degree with the program KEYDATA. Currently, however, entry of most Bongo data involves the use of a 6 character gear code found in code group 46 with further processing involving code group 2, 3, and 4.

(Mouth Height & Mouth Width) These data fields are used only for Neuston nets (See Record Code ZSN immediately following in Appendix I.).

- 17-26. These data fields receive special processing. Familiarity with the MARMAST and SDT Tables and the MIS program FILECONV is essential. Explanations specific to these fields can be found in MIS Documentation Vol. 6, SDT p. Ø4-Ø7 (Mnemonic Code items RGRP, NGRP, GRPD, GETR), p. 12-13 (TRNS Code 13) and Vol. 7, FVC p. Ø4 (Utility Flag Value 4) and p. Ø6-11 (TRNVAL Code Nos. 3, 21, 22, 23, and 24).
 - 21. Master file category 402, line 1, word 1 contains flowmeter numbers.

 Word 2 has been used for flowmeter calibration factor, (starting position = 18, field length = 5). MIS programs which calculate

- volume of water filtered first look for the existence of this word and if not found use a mean factor for "General Oceanics" flowmeters.
- 27. Narrative data about the bongo experiment may be provided by the user by running the MIS program KEYDATA and are merged into category 319 of a master file. See MIS Documentation Vol. 1, Aiv p. 26, and Vol. 7, FCV p. 10, TRNVAL Code 32.
- 28-29. These log sheet fields are not exposed to automatic data processing.
- General: One policy of the MIS is to store only raw data in the master files.

 The major reason for this is to avoid the difficult process of making updates to the diverse, derived data if errors are subsequently discovered in the raw data. On a very few occasions, when raw data were simply not available, new master file categories have been created to store derived data, e.g., Category 349

 "Calculated Tow Depth (M)" instead of Category 348 "Measured Tow Depth (M)".

PAGE _ 1 _ OF _ 3 __

RECORD CONTENT ZOOPLANKTON SAMPLE LOG FOR NEUSTON NETS

RECORD CODE __ZSN_

	L O G	LOGSHEET						SYSTEM		() N	TYPE 2)
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTIC!PATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUM ()	DATUM
	OPERATIONAL UNIT	na	na	na	na	na	na	na	na	na	na
2	VESSEL	na	21 char	na	35	VESSEL:	002	on on	na	21	.c
3	CRUISE	year (GMT) 3)	vear:00-99	10.5 min	na_	CRUISE (YY-CCC):	004	91_	91	6	С
<u> </u>		na	hyphen:na	na			<u> </u>	ļ			
		na	cruise:001-999	na	_						
4	STATION NUMBER	na	001-999		_ na_	STATION NUMBER:	100	01	01	3	N
5_	HAUL NUMBER	na	01-99	na	_ na	HAUL NUMBER:	301	01	01	2	N
_6	START TIME	hour (GMT)	00-24	+0.5 min	na	EXP TIME (HHMM) (GMT):	303	01	01	4	-N
		minute (GMT)	00-60	+0.5 min	- I						
<u></u>	START DATE	day (GMT)	01-31	±0.5 min	_na_	EXP DATE (DDMMYY) (GMT):	305	01_	01	2	N
<u> </u>		month (GMT)	01-12	/0.5 min	.]_		305	ſΩ	02	2	N
		year (GMT)	00-99	±0.5 min	<u> </u>		305	01	03	2	. N
8	SHIP SPEED	knot	00.1-05.0	±0.05 kn	<u>na</u>	SHIP'S SPEED (KNOTS):	308	01	01	4	С
9	SHIP HEADING	degree	000-360	10.5 deg	<u>na</u>	SHIP'S HEADING (DDD M/T):	309	01	01	3	N
		magnetic or true	na	na	_		309	01	02	7.	Α
10	MEASUR, TOW DEPTH	meter	000-999	±0.5 m	na	na	na	na	na	na	na

PAGE _ 2 OF _ 3

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT ZOOPLANKTON SAMPLE LOG FOR NEUSTON NETS

RECORD CODE ZSN

	LOG	SHE	E T	***************************************	UP NO.	MARMAP INFORMATION MASTER FILE				INGTH	TYPE]
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUM I) WORD LENGTH	DATUM
11	TIME GOING OUT	minute	00-99	±0.5 sec	na	na	na	na_	na	na.	na
		second	00-60	10.5 sec	110	na	na	na_	na	na	na
12	TIME AT DEPTH	minute	00-99	±0.5 sec	na_	TIME AT DEPTH (MMSS):	322	01_	01_	.4	N.
		second	00-60	+0.5 sec	_ _		ļ				
13	TIME COMING IN	minute	00-99	±0.5 sec	<u>_na_</u>	na	na	na	na	na	na.
		second	00-60	±0.5 sec	_na_	na	na	na	na.	na_	na.
14	DURATION OF TOW	minute	000-999	±0.5 sec	na_	na	na_	na_	na	na_	na
 		second	00-60	±0.5 sec	na	na	na	<u>na</u>	na :	na	na
15	DEPTH INSTRUMENT	na	na	na	na	na	na	na_	na	<u>na</u>	na
	Make	na	na	na	na	na	na_	na_	na	na .	na
	Serial No.	na	na	na	na	na	na	na	na_	na	na
	Spring Depth	foot	0000-1000	±1.5 ft	na	na	na	na	<u>na</u>	na	na
16	GEAR ID NUMBER	na	1-4	na	na	(See Comments)	400	01	02	1	N
17	GEAR/MESH										
	Gear	na	na	na	10	GEAR:	400	01	01	(See Çonn	ents
	Aperture Size	micron	0005-1800	0.5 micron	3	GÉAR:	400	01	03	(See Comm	

PAGE 3 OF 3

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT ZOOPLANKTON SAMPLE LOG FOR NEUSTON NETS

RECORD CODE ZSN

	L O G	LOGSHEET						YSTEM		AXIMUM 1)	TYPE ²⁾
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUI WORD LE	DATUM
17	GEAR/MESH (Cont.)										
-	Mouth Diameter	na	na	na	<u>na</u>	na .	na	na_	na_	ņa	na na
	Mouth_Height	meter	0.1-2.0	±0.05 m	12	GEAR:	400_	01_	04	Comm (See	ents)
	Mouth Width	meter	0.1-2.0	<u>'0.05 m</u>	. 13.	GFAR:	400_	01	05	(See Conn	
13	BOTTLES FILLED	na	1-9	na	14	BOTTLES FILLED:	40 <u>6</u>	01	01	1	N
19	FLOWMETER START	na	na	na	. na_	na	na .	na_	na_	na	na
20	FLOWMETER END	na	na	na	na.	na	na .	na_	na_	na	na
21	FLOWMETER NO.	na	na	na	<u>na</u> _	na	na	na	na	na	na
22	TYPE OF TOW	na	na	na	<u>15</u>	TYPE OF TOW:	302	01	01	20	<u>A</u>
23	TOR TRACE	na	na	na .	16	TDR TRACE:	<u>372</u>	01	01	15	A
24	MAX. WIRE OUT	meter	000-999	+0.5 m	nā.	na	na	na	na	na	na
.25	ANGLE AT M W.O.	degree	20=70	'0 5 deg	na_	na	na	na	nta_	na	na
26	WIRE ANGLES DURING RETRIEVAL	degree	20-70	±0.5 deg	na_	na	na_	na_	na	na	na
27	REMARKS	na	na	na	na_	EXPERIMENT REMARKS:	319.0	1-99	sa_	η <u>a</u>	<u>c</u>
28	RECORDED BY	na	na	na	<u>na</u>	na	na	na_	na	na	na
29	REVIEWED BY	na	na	na	na	na	na	na_	na	na	na

-170.

6.2.3.2 Comments on: Neuston Net Tow Data

A. Footnotes

- Word length for data resulting from a code group substitution
 is, in fact, the maximum length of the substitution element
 rather than the length of any word(s).
- 2) Datum Type

<u>Code</u>	<u>Meaning</u>
• • A • • • • • •	Strictly an alphabetic field
, N .	Strictly a numeric field
С	A field that can contain any combination
	of characters.

3) GMT = Greenwich Mean Time

B. Items

- 1. This log sheet field is not exposed to automatic data processing.
- 1-3. These fields are provided by the user when running the MIS program SETUPCNV (See MIS Documentation Vol. 2, STC p. Ø5, and Vol. 1, Aiv p. Ø7).
 - 5. For special processing on the haul number field, see MIS Documentation Vol. 7, FCV p. 09, TRNVAL Code 7.
 - 7. For special processing on date field, see MIS Documentation Vol. 7, FCV p. Ø9, TRNVAL Code 4.
 - 9. For special processing on ship's heading field, see MIS

 Documentation Vol. 7, FCV p. Ø9, TRNVAL Code 8.
 - 10. This field is required to be 0 meters for a valid neuston tow and therefore need not be stored in a master file.

- 11-13. These Logsheet fields should be zero for a valid neuston tow.
 - 14. This Logsheet field is derived and therefore not added to the master file. The Time at Depth field is sufficient for a newston tow.
 - 15. These data fields are unnecessary for a neuston tow and therefore are not included in the master file.
 - 16. This data field has been used to designate each of the four nets which can be recorded on a MARMAP Zooplankton Sample Log, and used during any one haul. See MIS Documentation Vol. 7, FCV p. 10, TRNVAL Codes 21-24.

In the future a 3 character "Gear ID Number" will be logged to distinguish between otherwise identical gear deployed on the same haul.

- 17. A three character code is logged on the ZSL to describe the type of gear used. This description is divided into parts as follows:

 The code groups indicated apply to the four parts of the gear description. They are involved with the MIS programs OPREAD and OPEDIT and to a lesser degree with the MIS program KEYDATA.

 Currently, however, entry of most neuston data involves the use of a six character code found in code group 46 with further processing involving groups 2,3,4, and 5.
 - 17. (Mouth Diameter) This data field is used only for Bongo nets (See Record Code ZSB immediately preceding in Appendix I.)
 - 19-21. Flowmeters are not required for a MARMAP neuston tow.
 - 23-26. These fields are unnecessary for a neuston tow and therefore are not included in the master file.
 - 27. Narrative data about the neuston experiment may be provided by the user when running the MIS program KEYDATA and are merged into category 319 of a master file (See MIS Documentation Vol. 1, Aiv p. 26, and Vol. 7, FCV p. 11, TRNVAL Code 33.

A BURN DURANT CORRECTION OF THE PROPERTY OF THE PARTY OF

PAGE 1 OF 3 NN

RECORD CONTENT SHIP OF OPPORTUNITY LOG

RECORD CODE 500

Ship of Opportunity Data Specifications

	LOG	SHE	E T		O N	MARMAP INFORMATION	SY	STE	М	C H F	TYPE 2)
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUM I)	DATUM TY
1	PAGE OF	na	na	na	ņa	na	na	na	na	na	na
_2	COUNTRY	na	na	na	na	na	na	na	na	na	na
3	VESSEL	na	na	na	35	VESSEL:	002	01	01	21	<u>c</u>
4	CRUISE	year (GMT) ³⁾	year:00-09	±0.5 min	na	CRUISE (YY-CCC);	004	01	01	6	<u>c</u> .
-			hyphen:na	na	1						:
		,	cruise:001-999	°0.5 min			<u> . </u>	ļ		:	
5	REMARKS:	na	na	na	na	STATION REMARKS:	109	01-99	<u>na</u>	na	<u>C</u>
i,						EXPERIMENT REMARKS:	319)1-99	na	na	С
6	ROUTE	na	number:001-999	na	na	na	na	na	na	na	na
			name:MA-MZ	na	na	SOOP ROUTE NAME:	017	01	01	2	A
<i>;</i> 7	BODY NO. (GEAR ID NUMBER)	na	001-999	na	na	na	na	na	na	na	na
: 8	PSM NO:	na	001/1-999/9	na	na	na	na	na	na	na	na -
9	DATA ACQUISITION SYST. NO.	na	001-999	na .	na	na	na	na	na	na	na
10	IMPELLER SETTING	degree	40-80	10.5 deg	na	na	na	na	na	na	na
11	PSM TUNNEL READING	PSM divisions	000.1-999.9	±0.5 div	na	na .	na	na	na	na	na
12	MARMAP STATION	na	. 001-999	na	na	STATION NUMBER	100	01	01	3	na

REC	ORD CONTENT SHIP OF OPPORTUNITY LOC				30-4	F	ECOI	RD CO	ODE _	<u>\$0</u> 0	
	L O G	SHE	E T		OUP NO.	MARMAP INFORMATION MASTER FILE	SY	Ι	M,	NGTH D	TYPE 2)
TEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GRO	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO	WORD NO	MAXIMUM WORD LENGTH	DATUM
13	CPR/UOR OPERATION	na	SHT ALT HAU	na	na	na	na .	na	na.	na	na
	OR BT LAUNCH NO.	na	001-999	na	na	CONSECUTIVE NUMBER:	371	01	01	3	N
14	DATE	day (GMT)	01-31	±0.5 min	na	STA DATE (DD MM YY):	103	01	01	2	N
		month (GMT)	01-12	±0.5 min			103	01	02	2	N
		year (GMT)	00-99	±0.5 min			103	01	03	2	N
15	TIME	hour (GMT)	00-24	±0.5 min	na	STATION TIME (HHMM) (GMT):	146	01	01	4	N .
	agrandi oli oli oli oli oli oli oli oli oli ol	minute (GMT)	00-60	±0.5 min							
16	LATITUDE	degrées	00-90	10.05 min	na	LATITUDE (DD MM H):	136	01	01	2	N .
		minutes	00-60	±0.05 min			136	01	02	2	N
i i i i i i i i i i i i i i i i i i i		1/10 minutes:	0-9	10.05 min		A CONTRACTOR OF THE CONTRACTOR	na	па	na	na	na
		hemisphere	na	±0.05 min			136.	01	03	1	A
17	LONGITUDE	degrees	000-180	0.05 min	na	LONGITUDE (DDD MM H):	138	01	01	3	N
		minutes .	00-60	10.05 min			138	01	02	2	N
		1/10 minutes	0-9	10.05 min			na	na	na	na	na
	A CONTROL OF THE SECOND	hemisphere	na	10.05 min			138	03	03	,	Δ
18	l	centigrade degrees	-2.0-40.0	+0.05 deg	na	SURFACE TEMP (DEG.C):		01			r.

PAGE _3__ OF _3_

RECORD CONTENT SHIP OF OPPORTUNITY LOG RECORD CODE 500 MARMAP INFORMATION SYSTEM LOGSHEET MASTER FILE RECOMMENDED DATA FIELD DATA ANTICIPATED REQUIRED CATEGORY ACCURACY DEFINITION UNITS RANGE DEFINITION BOTTOM DEPTH (METERS): 112 01 01 4 19 DEPTH TO BOTTOM meters 0001-9999 0.5 m. 20 SURFACE SALINITY BOTTLE NO. na na na na na CCCC 0.0005 ⁰/oo na | SURFACE SAL (PARTS/THOUS): 121 | 01 6 parts/thous 00.000-40.000 01 21 SURFACE SALINITY 17 WATER MASS 164 | 01 na 22 WATER MASS CODE 23 RECORDED BY na na na na ma na

-175

6.2.4.2 Comments on: Ship of Opportunity Data

A. Footnotes

- 1) Word length for data resulting from a code group substitution is, in fact, the maximum length of the substitution element rather than the length of any word(s).
 - 2) Datum Type

<u>Code</u>	<u>Meaning</u>
Α	Strictly an alphabetic field
N	Strictly a numeric field
C ,	A field that can contain any combination
	of characters.

3) GMT = Greenwich Mean Time

B. General

Unlike most logsheets described in this manual the SOO log contains data pertinent to the station and to several experiments. During data processing the SOO log information is split up into an MSR (Master Station Record) file, an NBT (Expendable Bathv-thermograph) file, a ZSR (Hardy Plankton Tow) file, an EDA (Environmental Data) file, and the HED and COM record types common to other logsheets.

The table below lists the disposition of the logsheet fields with respect to the above record types:

S00 Log Sheet	Field		1 1 1	A i	Record Cod	<u>les</u>
Item No.		MSR	NBT	EDA	ZSR COM	HED
1					* :	
2						
3	:		1 4 4 4	plant.		3 1
4			F 10			X
5						χ
6		1 15.			7	Χ.
· · · · · · · · · · · · · · · · · · ·	The state of the s			51 19		: X.

S00 Log Sheet Field

Record Codes

Item No.	MSR	NBT	EDA	ZSR	COM	HED
8	4				X	
9 (Name)						Χ
10-				X		
11				Χ	:	
12		,	X			
13				X		
14	X	X	Х	X		
15 (BT Launc	h No.)	Х				· · · · · · · · · · · · · · · · · · ·
16	X					
17	X					
18	Χ					
19	X				· · · · · · · · · · · · · · · · · · ·	
20	X					
21	Х	Χ	······································			
22	X					
23	X		· · · · · · · · · · · · · · · · · · ·		······································	
24	· X					
25	X					

C. Items

- 1-2. These log sheet fields are not exposed to automatic data processing.
- 3-4. These fields are provided by the user when running the MIS program SETUPCNV (See MIS Documentation Vol. 2, STC p. Ø5, and Vol. 1, Aiv p. Ø7).
 - 4. The cruise numbering convention specified for this log sheet would be expected to rarely require more than five digits, since more than 99 cruises by the same vessel in one year would be unusual. However, data are stored within the MIS originating from operational units other than those of MARMAP and for which other conventions have been used. Hence, an additional digit is provided to accommodate these large cruise numbers. These fields are provided by the user when running the MIS program SETUPCNV (See MIS Documentation Vol. 2, STC p. Ø5, and Vol. 1, Aiv p. Ø7.

- 5. Narrative data about a station are provided by the user using the MIS program KEYDATA and the COMØ1 segment of the SDT Table. They are merged into category 109 of a master file. Narrative data about any experiment are entered similarly, but are merged into category 319 of a master file. See MIS Documentation Vol. 1, Aiv p. 26, and Vol. 7, FCV p. 10, TRNVAL Codes 31-39.
- 6. The route number is provided by the user when running the MIS program SOOTOZSR. See MIS Documentation, Vol. 9, p. ZSR Øl. The route name is provided by the user when running the MIS program SETUPCNV. See references in items 3-4 above.
- 13. CPR/UOR operation data are used by the MIS program SOOTOZSR to generate tow data for the Hardy Continuous Plankton Recorder, e.g., number of 10-mile blocks, times, dates and positions of blocks, silk cutting points.

 BT Launch No. data are processed as part of an NBT file type.
- 14. For special processing on data field, see MIS Documentation Vol. 7, FCV p. Ø9, TRNVAL Code 4.
- 16. For special processing on latitude field, see MIS Documentation Vol. 7, FCV p. 10, TRNVAL Code 17.
 - For special processing on longitude field, see MIS Documentation Vol. 7, FCV p. 10, TRNVAL Code 18.
 - 21-23. These log sheet fields are not exposed to automatic data processing.

Barrier Committee Committe

DZSR

eiis

tion

PAGE _1 OF 2

REC	ORD CONTENT SAMPLE HISTORY LOG				`		RE	COR	D C	DDE	na	
	LOG	SHE	ET		Z	MARMAP INFORMAT MASTER FILE	ION F	SYS		М	INGTH	2)
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION		CAT. NO.	LINE NO.	WORD NO	MAXIMUN WORD LE	DATUM TYPE
	OPERATIONAL UNIT	na	na	na								
_2	VESSEL	na	21 char	na				-				
3	CRUISE	_vear (GMT) 3)	year:00-99	.0.5 min								
		 	hyphen:na	na								
			cruise:001-999	na								
_4	STATION	na	001-999	na							,	
5	HAUL:	_na	01-99	na								
6	NO. OF CONTAINERS	na	gallon:001-005 1)	na								
			quart:001-006 2)	na	NOT	E: No master file format has	as y	et b	een	leve	oped	
<u> </u>		· · · · · · · · · · · · · · · · · · ·	pint:001-011 3)	na								,
			half pint:001-011) _na								
			vial:001->100	na								
7	ALIQUOT FRACTION	na	1/1 to 1/2048	na			1/-					
8	VIAL NUMBER	na	fish larvae: 001-099	<u>na</u>								
			fish eggs:100-199	na								
			inverts:200-299	na								1

PAGE 2 OF 2

REC	ORD CONTENT SAMPLE HISTORY LOG			<u> </u>			RÉCOI	RD C	ODE _	na	
	L O G	S H E	ET		OUP NO.	MARMAP INFORMATION		Т	М	M I)	Z) TYPE
ITEM	DATA FLELD DEFINITION	- DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GRO	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUM I) WORD LENGTH	DATUM
9	GEAR/MESH	na	3 character	na						:	
10	CONTAINER	na	l character	na							
11	CONTENTS	na] character	na	<u> </u>		<u> </u>				
12	SAMPLE DISPOSITION DATE (LOCAL)	_day	D1÷31	±0 5 min	<u> </u>					_	
		month	01-12	±0.5 min	 	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
		year	00-99	±0.5 min	NOT	: No master file format has as	yet	been	deve	loped	
13	DELIVERED TO	na	40 characters	na .							
14	ALTERED	na	na	na		·					
15:	REMARKS	na	na .	na		s e como de la como de la como de la como de la como de la como de la como de la como de la como de la como de]
16	RECORD. BY	na	na	na			<u> </u>			_	
17	CHECK WHEN ADDITIONAL SHEET IS	na	na	na]		<u> </u>]
	INCOUNTED										
5a	GEAR ID NUMBER	na	001-999	na	na	na	na	na	na na	na	na
					[[
	NVHAT:										

6.2.5.2 Comments on: Sample History Data

A. Footnotes

- Gallon jars would be used only for special studies where coelenterates, siphonophores, sargassum weed, etc., were being retained.
- Quart jars are the standard size for Bongo, Neuston and Hardy plankton samples.
- 3) When aliquoting, pints and half-pints may be used to retain one member of each split. If a sample was split to 1/2048 eleven containers would be necessary.

B. Items

9. Currently the MIS stores only 3 character data for mesh aperture. The units are microns. One net has been used, however, with mesh of 1800 microns. It will be found in master files as a 3 character word, but its units are millimeters. Work is underway to standardize all mesh apertures to units of microns.

PAGE 1 OF 2

RECORD CONTENT TAR AND PLASTICS LOG

RECORD CODE TPT.

MARMAP INFORMATION SYSTEM FIN

	L O G	GROUP NO.	MARMAP INFORMATION MASTER FILE		1	М Го	M I) ENGTH	TYPE ²⁾			
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GRO	RECOMMENDED CATEGORY DEFINITION	CAT. NO	LINE NO.	WORD NO	MAXIMUM (1) WORD LENGTH	DATUM
	PAGE OF	na	na	na	na	na	na	na :	na	na_	na_
_2	OPERATIONAL UNIT	ŋa	na	na	na	na	na	na	na	na	na
3	VESSEL	na	21 char	na	35	VESSEL:	002	01	na	21	Ċ
4	CRUISE	year (GMT) 3)	year:00-99	±0.5 min	na	CRUISE (YY-CCC):	004	01	01	6	С
	· .		hyphen:na	·							
			cruise:001-999			`					
5	GEAR/ME SH	na	ccc	na	2	GEAR:	400	01	01	Comii	ents
	(mesh aperture)	micron	0005-1800	±0.5 micron	3	GEAR:	400	01	03		ents
	(mouth diameter)	meter	0.10-2.00	±0.005 m	4	GEAR:	400	01	04		ents
	(mouth height)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	04		ents)
	(mouth width)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	05	(See Cond	ents)
6	STATION NUMBER	na	001-999	na	na	STATION NUMBER:	100,	01	01	3	N
7	HAUL NO.	na	01-99	na	na	HAUL NUMBER:	301	01	01	2	N
8	SAMPLE DATE	day (GMT)	01-31	±0.5 min	na	EXP DATE (DD-MM-YY) (GMT):	305	01	01	2	N
		month (GMT)	01-12	_± 0.5 min	na		305	01	02	2 -	Ŋ
		year (GMT)	00-99	±0.5 min	na		305	01	03	2	N

PAGE _2_ OF _2__

MARMAP PLANKTON SURVEY DATA

TAR AND PLASTICS LOG RECORD CODE TPT RECORD CONTENT. WORD NO. NAXIMUM I) MARMAP INFORMATION SYSTEM LOGSHEET MASTER FILE RECOMMENDED DATA FIELD DATA ANTICIPATED REQUIRED CODE CATEGORY DEFINITION UNITS ACCURACY RANGE DEFINITION 9 ALIQUOT CODE 01-40 na ALIQUOT FACTOR: 452 01 10 NO. JARS 1-9 na na |BOTTLES FILLED: na -11 TAR WEIGHT 000.1-999.9 na TAR WEIGHT (GM): gram 0.05 gm 447. 01 01 12 PLASTIC WEIGHTS 0.1 - 9.9gram 0.05 gm na PLASTIC WEIGHT (GM): 446_l01. 105_ 13 RECORDED BY <u>na</u> na lna -14 DATE day (local) 01-31 0.5 min na na laa. na na month (local) 01-12 0.5 min na na year (local) 100-99 0.5 min na Ina na <u>na Ina</u> 15 CHECKED BY na na na Ina na na na na l na 16 DATE day (local) 01-31 0.5 min na <u>na</u> na na month (local) |01-12 0.5 min na na na na year (local) 00-99 0.5 min na na na Ina na **11**-17 REMARKS na ANALYSIS REMARKS: 441 na na 20 GEAR ID NUMBER 001-999 na na Ina na na na

-183-

6.2.6.2 Comments on: Tar and Plastics Data

A. Footnotes

- 1) Word length for data resulting from a code-group substitution is, in fact, the maximum length of the substitution element rather than the length of any word(s).
 - 2) Datum Type

<u>Code</u>	<u>Meaning</u>
A	Strictly an alphabetic field
N	Strictly a numeric field
, C	A field that can contain any combination
	of characters.

- 3) GMT = Greenwich Mean Time
- 4) The analytical procedure does not warrant the accuracy implied by the intermediate and master file field length. Until this is corrected users should report these data with accuracy not exceeding ± 0.05 gm.

B. Items

- 1-2. These logsheet fields are not exposed to automatic data processing.
- 3-4. Vessel and cruise would already exist in the master file to which the tar and plastics data were to be merged. However, some master files may contain data from several vessels and/or cruises. In these latter circumstances "super category" information about which vessel and cruise has to be supplied when running the MIS program SETUPMRG (See MIS Documentation Vol. 2, STM p. Øl-13 and Vol. 1, Aiv p. 13a and 33a).

- 5. Currently the MIS stores only 3 character data for mesh aperture. The units are microns. One net has been used, however, with mesh of 1800 microns. It will be found in master files as a 3 character word, but its units are millimeters. Work is underway to standardize all mesh apertures to units of microns.
- 13-16. These log sheet fields are not exposed to automatic data processing.
 - 17. Narrative data about this analysis currently must be entered into Master File category 441 using the MIS program MASTUPD (See MIS Documentation Vol. 2, UPD, p. Ø1-18).

AGE ____ OF._3_

RECORD CONTENT_

ZOOPLANKTON VOLUME LOG

RECORD CODE ZVL

	L O	UP NO.			YSTEM		() NGTH	T.Y.PE			
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT NO.	LINE NO.	WORDING	MAXIMUM () WORD LENGTH	DATUM 1
1	PAGE OF	na	na	na	na	na-	na	na	na	na	na
2	OPERATIONAL UNIT	na	na	na	na_	na	na	ha_	na	na	na
3	VESSEL	na	21 char	na	35	VESSEL:	002	01	na	21	
4	CRUISE	year (GMT) 3)	year:00-99	±0.5_min	na_	CRUISE (YY CCC):	004	01		6	C
			hyphen:na				<u>. </u>	<u> </u>			
			cruise:001-999				·	<u> </u>			
5	GEAR/MESH	na	ccc	na	2	GEAR:	400	01	01	(See	uent 1)
	(mesh aperture)	micron	0005-1800	±0.5 micron	3	GEAR:	400	01	03	(See Comm	ents
	(mouth diameter)	meter	0.10-2.00	±0.005 m	4_	GEAR:	400	01	04	(See	ents
	(mouth height)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	04	(See Comm	ents
	(mouth width)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	05	(See Connu	
6	STATION NUMBER	na	001-999	na	na	STATION NUMBER:	100	01	0.1	3;	N .
7	HAUL NO.	na	01-99	na	na	HAUL NUMBER:	301	01	01	2	N
8	SAMPLE DATE	day (GMT)	01-31	±0.5 min	na	EXP. DATĘ (DD MM YY) (GMT):	305	01	01	2	N
		month (GMT)	01-12	±0.5 min		,	305	01	02	2	N
		year (GMT)	00-99	±0.5 min			305	01	03_	2	N

PAGE ____ OF _____

RECORD CONTENT __ ZOOPLANKTON VOLUME LOG RECORD CODE ZVL MAXIMUM I) WORD LENGTH MARMAP INFORMATION SYSTEM LOGSHEET MASTER FILE GROUP RECOMMENDED DATA FIELD DATA ANTICIPATED REQUIRED LINE ЫJ CATEGORY 000 DEFINITION UNITS RANGE ACCURACY DEFINITION 9 ANALYSIS DATE day (local) 01 - 31-0.5 min month (local) 01-12 _0.5 min vear (local) 00-99. ±0.5 min ALIQUOT FACTOR: 452 01 01 10 ALIOUOT CODE 01-40 1-9 BOTTLES FILLED: 406 01 01 11 NO. JARS na na 12 NON-PLANKTON ORGS. AND SEAWEED REMOVED na na nalna na na VOL ORGS >2.5 CM (ML): 458 | 01 milliliter 0001-9999 ±0.5 ml 13 VOL. LARGE ORGS. VOL ORGS <2.5 CM (ML): 460 01 01 3 Ν VOL. ORGS. <2.5 CM 001-999 ±0.5 ml milliliter C VOL ICHTHYOPLANKTON (ML): 462 01 01 ±0.05 m1 ICHTHYOPLANKTON VOL. milliliter 00.1-99.9 С 441 ANALYSIS REMARKS: na REMARKS na na 09 na na na 17 RECORDED BY na na na na day (local) 01-31 0.5 min na na na .18∤ DATE na na 01-12 ±0.5 min month (local) year (local) 00 - 99±0.5 min na na na CHECKED BY na na na

-187-

LOGSHEET						MARMAP INFORMATION	ION SYSTEM			VGTH
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUM I) WORD LENGTH
20	DATE:	day (local) month (local)	01-31 01-12	+0.5 min	na	na .	na	na		na n
7a	. "	year (local) na	00-99 001-999	±0.5 min	na	na	na	na	na	na n
-										
				*						
<u>.</u>										

-88

6.2.7.2 Comments on: Zooplankton Displacement Volume Data

A. Footnotes

- Word length for data resulting from a code group substitution
 is, in fact, the maximum length of the substitution element
 rather than the length of any word(s).
- 2) Datum Type

<u>Code</u>	Meaning
А	Strictly an alphabetic field
N	Strictly a numeric field
С	A field that can contain any combination
	of characters.

3) GMT = Greenwich Mean Time

B. Items

- 1-2. These log sheet fields are not exposed to automatic data processing.
- 3-4. Vessel and cruise would already exist in the master file to which the volume data were to be merged. However, some master files may contain data from several vessels and/or cruises. In these latter circumstances "super category" information about which vessel and cruise has to be supplied when running the MIS program SETUPMRG (See MIS Documentation Vol. 2, STM p. Ø1-13 and Vol. 1, Aiv p. 13a and 33a).
 - 5. Currently the MIS stores only 3 character data for mesh aperture. The units are microns. One net has been used, however, with mesh of 1800 microns. It will be found in master files as a 3 character word, but its units are

millimeters. Work is underway to standardize all mesh apertures to units of microns.

- 9. The analysis date is important when determining possible changes in volume due to preservation time in formalin.

 These data are not currently entered into the MIS.
- 10. The master file contains a decimal equivalent of the inverse of the aliquot factor, e.g., an aliquot factor of 2 is stored in a master file as 0.50000. For researchers more accustomed to aliquot fractions the values found in the master file are decimal equivalents of the aliquot fraction. See MIS Documentation Vol. 6, SDT p. 11, INST Code 2 and p. 12 TRNS Code 6.
- 12. This log sheet field is not exposed to automatic data processing.
- 16. Narrative data about this analysis currently must be entered into master file category 441 using the MIS program MASTUPD (See MIS Documentation Vol. 2, UPD p. Ø1-18).
- 17-21. These log sheet fields are not exposed to automatic data processing.

PAGE _1__ OF _2_

RECORD CODE TCB RECORD CONTENT CARBON BIOMASS LOG MARMAP INFORMATION SYSTEM MORD LENGTH

DATUM TYPE LOGSHEET MASTER FILE GROUP o N ó ö RECOMMENDED WORD DATA FIELD DATA ANTICIPATED REQUIRED LINE Σ 3GOO CAT. CATEGORY **ACCURACY** DEFINITION UNITS RANGE DEFINITION PAGE 0F OPERATIONAL UNIT na 002 01 | na VESSEL VESSEL . 21 char. year (GMT) 3) CRUISE vear:00-99 0.5 min CRUISE (YY-CCC): 004Ωī hyphen:na cruise:001-999 01 Comments GEAR/MESH CCC GEAR na 01 03 Comments 0005-1800 ±0.5 micron GEAR: micron (mesh aperture) 01 04 400 Comments (mouth diameter) meter 0.10 - 2.00±0.005 m GEAR: (See 04 (mouth height) 0.1-2.0 0.05 m GEAR: 400 01 Comments meter (See 0.1-2.0 ±0.05 m GEAR: 400 01 0.5 Comments (mouth width) meter 001-999 STATION NUMBER: 01 01 3 N 6 STATION NUMBER na na HAUL NUMBER: 30.1 01 01 01-99 HAUL NO. na EXP DATE (DD MM YY)(GMT): 305 01 01 SAMPLE DATE day (GMT) 01-31 ± 0.5 min month (GMT) +0.5 min 305 01 02 01-12 na 03 305 01 ±0.5 min year (GMT) 00 - 99

REC	ORD CONTENTCARBON_BIOMASS_LOG			<u> </u>		en en en en en en en en en en en en en e	ECOR	D C	DDE _	TCB	4
	L Q G	SHE	E T		GROUP NO	MARMAP INFORMATION MASTER FILE		-	M (M I) ENGTH	Z) TYPE
ITEM	DATA FIELD DEFINITION	DATA	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GR	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD N	MAXIMUM I) WORD LENGTH	ратим
9	ALIQUOT CODE	na	01-40	na -	6	ALIQUOT FACTOR	452	01	01	7	<u>C</u>
10_	TOTAL CARBON IN ORIGINAL SAMPLE	gram	00.0001-99.9999	0.00005 qm	ıa_	TOTAL CARBON (GM)	444	01	01	7	_C
11_	ORGANIC CARBON IN ORIGINAL SAMPLE	gram	00.0001-99.9999	0.00005 gm	<u>na</u>	ORGANIC CARBON (GM):		na 01-	na	na	na
12_	REMARKS	na	na	na	<u>na</u>	ANALYSIS REMARKS:	441		na	na	<u>C</u>
13	RECORDED BY	na -	na	na .	na	na · · · · · · · · · · · · · · · · · · ·	na	na	na	na	na
.7a	GEAR ID NUMBER	na	001-999	na s s s	1a	na	na	na	ma	na	na
	A CONTRACTOR OF THE CONTRACTOR			v.	-		,				
	a a company of the co			*							
		,			<u> </u>		·				
					<u> </u>						
											<u> </u>
	: : : : : : : : : : : : : : : : : : : :		*	š	<u> </u>			٠			-
		e T			-						
						v promitier vannen kriefels veillen de Vannier van met des die veille Ville des des die veille des die des des des des des des des des des de		. <u></u>	*******		
					-]

- 6.2.8.2 Comments on: Carbon Biomass Data
 - A. Footnotes
 - Word length for data resulting from a code group substitution
 is, in fact, the maximum length of the substitution element
 rather than the length of any word(s).
 - 2) Datum Type

Code	<u>Meaning</u>
Α	Strictly an alphabetic field
N	Strictly a numeric field
С	A field that can contain any combination of
	characters.

3) GTM = Greenwich Mean Time

B. Items

- 1-2-12. These log sheet fields are not exposed to automatic data processing.
 - 3-4. Vessel and cruise would already exist in the master file to which the carbon biomass data were to be merged. However, some master files may contain data from several vessels and/or cruises. In these latter circumstances "super category" information about which vessel and cruise has to be supplied when running the MIS program SETUPMRG (See MIS Documentation Vol. 2, STM. p. Ø1-13 and Vol. 1, Aiv p. 13a and 33a).
 - 5. Currently the MIS stores only 3 character data for mesh aperture.

 The units are microns. One net has been used, however, with

 mesh of 1800 microns. It will be found in master files as a

 3 character word, but its units are millimeters. Work is underway to standardize all mesh apertures to units of microns.

- 9. The master file contains a decimal equivalent of the inverse of the aliquot factor, e.g., an aliquot factor of 2 is stored in a master file as 0.50000. For researchers more accustomed to aliquot <u>fractions</u> the values found in the master file are decimal equivalents of the aliquot fraction. See MIS Documentation Vol. 6, SDT p. 11, INST Code 2 and p. 12, TRNS Code 6.
- 10-11. Calculations involved in obtaining weight of carbon in the original sample are shown in Section 7. Appendix II.

 Organic carbon values from this determination are not presently stored in the MIS.
 - 12. Narrative data about this analysis currently must be entered into master file category 441 using the MIS program MASTUPD (See MIS Documentation Vol. 2, UPD p. Ø1-18).

September 18 Grand Control of the Co

and the production and the contract of the second of the second

artistication and the control of the

The first of the state of the s

"Rinsing Technique", "Preservation Technique", and "Analyzer-Make/Model" are preprinted under Remarks. This is to provide a place to log these details until such time as standard procedures/equipment are established.

PAGE ___1_ OF _3__

ഗ

RECORD CONTENT __ DRY WEIGHT BIOMASS LOG RECORD CODE __DWB_ MAXIMUM I)
WORD LENGTH
DATUM TYPE MARMAP INFORMATION SYSTEM LOGSHEET MASTER FILE RECOMMENDED WORD ANTICIPATED REQUIRED DATA FIELD DATA CODE CAT. Έ. CATEGORY DEFINITION UNITS RANGE ACCURACY DEFINITION na na PAGE 0F na | na na na OPERATIONAL UNIT na na l na na na na 21 3. VESSEL. 21 char 35 VESSEL: 002 07 na na $year (GMT)^3$ 004 01 6 01 4 CRUISE vear:00-99 ±0.5 min na | CRUISE (YY CCC): hyphen:na cruise:001-999 01 GEAR/MESH 3 char GEAR: Comments na (Se 400 01 03 Commen ts (mesh aperture) 0005-1800 GEAR: micron ±0.5 micron 400 01 04 Comments (mouth diameter) ±0.005 m GEAR: meter 0.10-2.00 (See 01 04 Compents (mouth height) 0.1 - 2.0±0.05 m GEAR: 400. me ter (See 400 01 05 GEAR: Comments) (mouth width) meter 0,1-2.0 +0.05 m 3 STATION NUMBER 001-999 STATION NUMBER: 100 01 01 N na 01 01 2 Ν HAUL NO. 01 -- 99 HAUL NUMBER 301 na na na 2 01 day (GMT) ±0.5 min na EXP DATE (DD MM YY)(GMT): 305 0] SAMPLE DATE 01-31 01-12 ± 0.5 min month (GMT) 2 N 305 01 02 year (GMT) 00-99 +0.5 min305 01 03 2

PAGE 2 OF 3

RECORD CONTENT DRY

DRY WEIGHT BIOMASS LOG

RECORD CODE _

DWB

	LO	P NO.	MARMAP INFORMATION	I SY	1 7		MAXIMUM I) WORD LENGTH DATUM TYPE				
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRE D ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUM WORD LEI	DATUM T
9	ALIQUOT CODE	na	01-40	na	6	ALIQUOT FACTOR:	452	01	01	7	С
10	UNCORRECTED DRY WEIGHT	gram	0.1-9.9	0.05 gm ⁴)	na	na	na	na	na	na	na
11	AIR EXPOSURE CORRECTION	gram	0.01-9.99	0.005 gm	na	na	na	na	na	na	na
12_	CORRECTED DRY WEIGHT	gram	0.1-9.9	0.05 mg ⁴)	<u>na</u>	DRY WEIGHT (GM):	449	01	01	6	С
13	UNCORRECTED ASH WEIGHT	gram	0.1-9.9	0.05 gm ⁴)	na	na	na	na	na	na	na
14	AIR EXPOSURE CORRECTION	gram	0.01-9.99	0.005 gm	na	na	na	na	na	na	na
15	CORRECTED ASH WEIGHT	gram	0.1-9.9	0.05 gm ⁴)	na	na	na	na	na	na	na
16	CORRECTED ASH FREE DRY WEIGHT	gram	0.1-9.9	0.05 gm ⁴)	na	ASH FREE DRY WEIGHT (GM):	450	01	01	6	С
17	WEIGHIMS SEQUENCE	na	01-99	na	na	na	na	na	na	na	na
18	BLANK CORRECTION										
	(Final Wt.)	gram	0.1-9.9	0.05 gm	na	na	na	na	ņа	na	na
	(Init. Wt.)	gram	0.1-9.9	0.05 gm	na	na	na	na	na	na	na
	(Diff.)	gram	0.1-9.9	0.05 gm	na	na	na	na	na	na	na
	(t)	na	01 -99	па	na	na	na	na	na	na	na
	(biff./t)	na	01-99	na	na	5à	na	na	fiù	na	na
19	REMARKS	na	na	na	na	ANALYSIS REMARKS:	441	01 - 99	na	na	c

PAGE _3 OF _3

DRY WEIGHT BIOMASS LOG RECORD CONTENT ___ RECORD CODE ____ DWB MARMAP INFORMATION SYSTEM MAXIMUM 1)
WORD LENGTH LOGSHEET GROUP MASTER FILE RECOMMENDED WORD DATA FIELD DATA ANTICIPATED REQUIRED CAT. LIN M Σ CODE CATEGORY DEFINITION UNITS RANGE ACCURACY DEFINITION 20 RECORDED BY na na na na na na nal na GEAR ID NUMBER 001+999 na na na

-196a-

6.2.9.2. Comments on: Dry Weight Biomass Data

A. Footnotes

Word length for data resulting from a code group substitution
is, in fact, the maximum length of the substitution element
rather than the length of any word(s).

2) Datum Type

<u>Code</u>	<u>Meaning</u>
А	Strictly an alphabetic field
N	Strictly a numeric field
C	A field that can contain any combination
	of characters.

- 3) GMT = Greenwich Mean Time
- 4) The analytical procedure does not warrant the accuracy implied by the intermediate and master file field length. Until this is corrected users should report these data with accuracy not exceeding \pm 0.05 gm.

B. Items

1, 2, 8, 10, 11, 13-15,

17, 18, 20.

These log sheet fields are not exposed to automatic data processing.

3-4. Vessel and cruise would already exist in the master file to which the dry weight biomass data were to be merged. However, some master files may contain data from several vessels and/or cruises. In these latter circumstances "super category" information about which vessel and cruise has to be supplied when running the MIS program SETUPMRG (See MIS Documentation Vol. 2, STM p. Ø1-13 and Vol. 1,

Aiv p. 13a and 33a.

- 5. Currently the MIS stores only 3 character data for mesh aperture. The units are microns. One net has been used, however, with mesh of 1800 microns. It will be found in master files as a 3 character work, but its units are millimeters. Work is underway to standardize all mesh apertures to units of microns.
- 9. The master file contains a decimal equivalent of the inverse of the aliquot factor, e.g., an aliquot factor of 2 is stored in a master file as 0.50000. For researchers more accustomed to aliquot <u>fractions</u> the values found in the master file are decimal equivalents of the aliquot fraction. See MIS Documentation Vol.6, SDT p. 11, INST Code 2 and p. 12, TRNS Code 6.
- 19. Narrative data about this analysis currently must be entered into master file category 441 using the MIS program MASTUPD (See MIS Documentation Vol. 2, UPD, p. Ø1-18). "Rinsing Techniques" and "Preservation Techniques" are preprinted under Remarks. This is to provide a place to log these details until such time as standard procedures are established.

PAGE _1 _ OF _3

REC	ORD CONTENT PLANKTON SORTERS WORKS	HEET		·	•	į	RECO	RD C	ODE _	na	
	LOG	GROUP NO.	MARMAP INFORMATION MASTER FILE		Ι	MO.	M I)	TYPE ²⁾			
нем	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GRO	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUR WORD LE	DATUM TYPE
1	PAGEOF	na	na	na	ACCOUNT OF THE PERSON						
2	OPERATIONAL UNIT	na	na	na							
3	VESSEL	na	21 char	na							
4	CRUISE	year (GMT) ^{])}	year:00-99	±0.5 min	A STATE OF THE STA						
			hyphen:na								
			cruise:001-999		THE COLUMN						
5	STATION	na	001-999	na	2000						
6	SAMPLE DATE	day (GMT)	01-31	±0.5 min	NO.	IE: No master file format has	s ye	: bee	n dev	elop	ed.
		month (GMT)	01-12	±0.5 min							
		year (GMT)	00-99	±0.5 min				~~~~ ~			
7	GEAR/MESH	na	3 char	na	DOMESTIC ACTUALISM						
	(mesh aperture)	micron	0005-1800	±0.5 micron							
	(mouth diameter)	meter	0.10-2.00	±0.005 m	CENTRAL						
	(mouth height)	meter	0,1-2.0	±0.05 m	A-last Blackeds						
	(moùth width)	meter	0.1-2.0	±0.05 m							
8	ORIGINAL EXAMINATION	na	na	na	e de la composition della composition della comp						

MARMAP PLANKTON SURVEY DATA

PAGE 2 OF 3

RECORD CONTENT PLANKTON SORTERS WORKSHOP RECORD CODE __na__ MARMAP INFORMATION SYSTEM LOGSHEET MASTER FILE GROUP . 0 RECOMMENDED LINE ANTICIPATED REQUIRED DATA CAT. DATA FIELD CATEGORY DEFINITION UNITS RANGE ACCURACY DEFINITION RE-EXAMINATION na na SORTER na 10 11 TOTAL ORIGINAL VOLUME milliliter 000.1-999.9 ±0.05 ml TOTAL ORIG. VOL. MINUS LG. ORGS. milliliter 000.1-999.9 ±0.05 ml 13 FRACTIONED na na 14 ALIQUOT FACTOR 0001-4096 na na 15 DATE START day (local) 101-31 ±0.5 min month (local) 01-12 ±0.5 min NOTE: No master file format has a ± 0.5 min year (local) |00-99 16 DATE FINISHED 01-31 ±0.5 min day (local) month (local) 01-12 ± 0.5 min year (local) 00-99 ± 0.5 min 17 LARVAE REMOVED 0001-9999 na na 18 NO. OF HEADS 01-99 na na 19 NO. OF TAILS 01-99 na na 20 NO. OF DISINTEGRATED 01-99 na na

-200

MARMAP PLANKTON SURVEY DATA

PAGE __3_ OF 3__

RECORD CONTENT PLANKTON SORTERS WORKSHEET RECORD CODE ___na MARMAP INFORMATION SYSTEM MAXIMUM WORD LENGTH LOGSHEET DATUM TYPE MASTER FILE RECOMMENDED DATA FIELD DATA ANTICIPATED REQUIRED CODE CATEGORY DEFINITION UNITS RANGE ACCURACY DEFINITION EGGS REMOVED 000001-999999 No master file format has ad vet/been develope REMARKS GEAR ID NUMBER 001-999

-201

6.2.10.2 Comments on: Plankton Sorters Worksheet

A. Footnotes

1) GMT = Greenwich Mean Time

B. Items

- 6. Currently the MIS stores only 3 character data for mesh aperture. The units are microns. One net has been used, however, with mesh of 1800 microns. It will be found in master files as a 3 character word, but its units are millimeters. Work is underway to standardize all mesh apertures to units of microns.
- C. General: Data from this log form are not exposed to automatic data processing.

MARMAP PLANKTON SURVEY DATA

PAGE _1_ OF 3__

REC	ORD CONTENT ICHTHYOPLANKTON SORT	ING RECORD					RECO	RD C	ODE _	na-	
	L O G	SHE	ЕТ		JP NO.	MARMAP INFORMATION MASTER FILE					TYPE
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO.	MAXIMUM WORD LENGTH	DATUM 1
1	PAGEOF	na	na	na							
2	OPERATIONAL UNIT	na	na	na							
3	VESSEL	na	21 char	na	ANTONIO TURBO						
4	CRUISE	year (GMT) 1	year:00-99	±0.5 min	C. C. C. C. C. C. C. C. C. C. C. C. C. C		ļ	.			
			hyphen:na		All designs		<u> </u>				
			cruise:001-999					ļ			
5	GEAR/MESH	na	ccc	na	- N			<u> </u>			
	(mesh aperture)	micron	0005-1800	±0.5 micron	NOT	 	yet	been	deve	lope	<u>. </u>
	(mouth diameter)	meter	0.10-2.00	±0.005 m							
	(mouth height)	meter	0.1-2.0	±0.05 m				<u> </u>			
	(mouth width)	meter	0.1-2.0	±0.05 m							
6	STATION	na	001-999	na							
7	HAUL	na	01-99	na							
8_	SAMPLE DATE	day (GMT)	01-31	±0.5 min					-denough-		
		month (GMT)	01-12	±0.5 min					<u> </u>		
		year (GMT)	00-99	±0.5 min							

PAGE 2 OF 3

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT _____ ICHTHYOPLANKTON SORTING RECORD RECORD CODE na _____ MARMAP INFORMATION SYSTEM MAXIMUM WORD LENGTH LOGSHEET MASTER FILE GROUP WORD NO. RECOMMENDED REQUIRED LINE DATA FIELD DATA ANTICIPATED CODE Σ CATEGORY DEFINITION UNITS RANGE ACCURACY DEFINITION 9 NO. OF JARS na 1-9 na 10 ALIQUOT FACTOR 0001-4096 na пa 11 DATE START day (local) 01-31 ± 0.5 min month (local) 01-12 +0.5 min year (local) 00-99 ±0.5 min 12 | EGGS REMOVED .000001-999999 na na 13 NO. OF VIALS 1-9 na na 14 LARVAE REMOVED 0001-9999 na NOTE: No master file format has a 15 DATE FINISHED day (local) 01-31 ±0.5 min month (local) 01-12 ±0.5 min year (local) 00-99 ±0.5 min 16 SORTER na na na_ 17 REMARKS na na na CHECKED BY na na 19 DATE day (local) 01-31 ±0.5 min month (local 01-12 ±0.5 min

MARMAP PLANKTON SURVEY DATA

PAGE _ 3 OF _ 3

RECORD CONTENT ICHTHYOPLANKTON SORTING RECORD MARMAP INFORMATION SYSTEM MAXIMUM WORD LENGTH LOGSHEET DATUM TYPE MASTER FILE . 0 2 LINE NO. RECOMMENDED DATA FIELD DATA ANTICIPATED REQUIRED TEM CODE CATEGORY DEFINITION UNITS RANGE ACCURACY DEFINITION year (local) | 99-99 19 DATE ±0.5 min GEAR ID NUMBER 001-999 na na na na na

-205

6.2.11.2 Comments on: Ichthyoplankton SortinO Record

A. Footnotes

1) GMT = Greenwich Mean Time

B. Items

- 5. Currently the MIS stores only 3 character data for mesh aperture. The units are microns. One net has been used, however, with mesh of 1800 microns. It will be found in master files as a 3 character word, but its units are millimeters. Work is underway to standardize all mesh apertures to units of microns.
- C. General: Data from this log form are not exposed to automatic data processing.

-207-

MARMAP PLANKTON SURVEY DATA

	LOGSHEET			GROUP NO.	MARMAP INFORMATION		YSTEM		M ()	(2)(2)	
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GRO	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUM WORD LENG	11111111
1	PAGE 0F	na · · ·	na	na	na	na	na	na	na	na	na
2	OPERATIONAL UNIT	na	na	na	na	na	na	na	na	na	na
3	VESSEL		21 char	na	35	VESSEL:	002	01	na	21	С
.4	CRUISE	year (GMT) 3)	year:00-99	±0.5 min	na	CRUISE (YY-CCC):	004	01	01	6	С
			hyphen:na								_
			cruise:001-999		_ _						_
5.	GEAR/MESH	na	3 char	na	2	GEAR:	400	01	01	(See Comm	ent
	(mesh aperture)	micron	0005-1800	±0.5 micron	3	GEAR:	400	01	03	(See	ent
	(mouth diameter)	meter	0.10-2.00	±0.005 m	4	GEAR:	400	01	04	(See Comm	ent
	(mouth height)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	0.4		1
	(mouth width)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	05	(See Comm	ent
6	STATION NUMBER	na.	001-999	na	na	STATION NUMBER:	100	01	្សា	:3	N
7	HAUL NUMBER	na	01-99	na	na	HAUL NUMBER:	301	01	01	2	N
8	SAMPLE DATE	day (GMT)	01-31	±0.5 min	na	EXP DATE (DD MM YY)(GMT):	305	01	01	2	N
		month (GMT)	01-12	±0.5 min			305	01	03	2	N
7		year (GMT)	00-99	±0.5 min	Ī		305	01	03	2	N

PAGE 2 OF 4

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT ICHTHYOPLANKTON DATA RECORD - LARVAE RECORD CODE __IDL MAXIMUM 1) WORD LENGTH MARMAP INFORMATION SYSTEM LOGSHEET MASTER FILE RECOMMENDED. ANTICIPATED REQUIRED DATA - FIELD DATA CATEGORY UNITS RANGE ACCURACY DEFINITION DEFINITION 1-9 VIALS, SORTED LARVAE 0001-9999 10 TOTAL WHOLE LARVAE na 514 01 01 01 - 40ALIQUOT FACTOR: (Order/Other) 11 ALIOUOT CODE 544 01 01 (Family) 574 01 (Genus) 01 635 01 01 (Species) 100000000-.. TAXON NUMBER 199399999 ORDER / OTHER CODE & NAME: 510 01 01 23 FAMILY CODE & NAME: 540 01 01 01 23 GENUS CODE & NAME: 570 01 SPECIES CODE & NAME: 600 01 01 9 TAXON NAME 60 char 23 ORDER / OTHER CODE & NAME: 510 01 02 na 23 FAMILY CODE & NAME: 540 01 02 na 23 GENUS CODE & NAME: 570 01 02 na 23 SPECIES CODE & NAME: 600 01 02 na VIAL NO. 01 - 99na VIAL NUMBER: (Order/Other) na 513 | 01 (Family) 543 01 01

PAGE _3__ OF _4__

MARMAP PLANKTON SURVEY DATA

and provided to		SHE	E T		P NO.						TYPE 2)
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRE D ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUM I) WORD LENGTH	DATUM T
14	VIAL NO.	na	01-99	na	na	VIAL NUMBER: (Genus)	573	01	01	2	N
					_	(Species)	604		01	2	N
15	STANDARD LENGTHS	millimeter	000.1-999.9	±0.05 MM	na	ORDER/OTHER LENGTH (.1 MM):	534	01- 99	01 13	<4	N
	Anglement one of the control of the					FAMILY LENGTHS (.1 MM):	564	01- 99	01· 13	<u>≤</u> 4	N
: ,						GENUS LENGTHS (.1 MM):	594	01- 99	01	<u>~</u> 4	N
	But the second of the second o					SPECIES LENGTHS (.1 MM):	606	01-	01		
1						ORDER/OTHER FREQUENCIES:	536	01-	01	3	
						FAMILY FREQUENCIES:	566	01- 99	01 13	3	N
	and the second of the second o					GENUS FREQUENCIES:	596	01 - 99	01 13	3	N
1						SPECIES FREQUENCIES	608	01- 99	01	3	N
16	NUMBER NOT MEASURED	na	0000-9999	na	na	NUMBER NOT MEASURED: (Order/	525	01	01	4	N
)) ()						(Family)	555	01	01	4	N
1						(Genus)	585	01	01	4	N
ż						(Species)	636	01	01	4	N
17	NUMBER OF HEADS	na	00-99	na	na	NUMBER OF HEADS:(Order/Other)	528	01	01	2	N
3 6						(Family)	558	01	01	2	N

TOWNS OF ENDANGER LOST FORESES DISCON

-60

PAGE ___4_ OF __4__

MARMAP PLANKTON SURVEY DATA

RECO	RD CONTENT ICHTHYOPLANKTON DAT	A RECORD - LAR	/AE	_		R	ECOR	D CO	DE	IDL
	LOG	SHE	E T		UP NO.	MARMAP INFORMATION MASTER FILE		· · · · · ·	v [N () ENGTH
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD N	MAXIMUM () WORD LENGTH
17	NO. OF HEADS	na	00-99	na	na	NUMBER OF HEADS: (Genus)	588	01	01	2 N
<u>L</u>						(Species)	637	01	01	2 N
18	NO. OF TAILS	na	00-99	na	_na_	NUMBER OF TAILS: (Order/Other)	531	01	01	2 N.
						(Family)	561	01	الما	2 N
						(Genus)	591	01_	01	2 N
						(Species)	638	01	01	2 N
19	ID BY	na	na	na	na	na	na	na	na	na na
20	REMARKS	na	na	na	na	ANALYSIS REMARKS:	441.	01 - 99	na	na C
7a	GEAR ID NUMBER	na	001-999	na	na		na		_na_	
					1			1		
						·				
-					-					
-					<u>i </u>					
					<u> </u>		· 			
			<u> </u>			[L	

6.2.12.2 Comments on: Ichthyoplankton Larvae Data

A. Footnotes

1) Word length for data resulting from a code group substitution is, in fact, the maximum length of the substitution element rather than the length of any word(s).

Control about the Control of the

2) Datum Type

<u>Code</u>	<u>Meaning</u>
Α	Strictly an alphabetic field
N	Strictly a numeric field
C	A field that can contain any combination
	of characters.

3) GMT = Greenwich Mean Time

B. Items

- 1 2. These log sheet fields are not exposed to automatic data processing.
- 3 4. Vessel and cruise would already exist in the master file to which the larval data were to be merged. However, some master files may contain data from several vessels and/or cruises. In these latter circumstances "super category" information about which vessel and cruise has to be supplied when running the MIS program SETUPMRG (See MIS Documentation Vol. 2, STM p. Ø1-13 and Vol. 1, Aiv p. 13a and 33a).
 - 5. Currently the MIS stores only 3 character data for mesh aperture.

 The units are microns. One net has been used, however, with

 mesh of 1800 microns. It will be found in master files as a

 3 character word, but its units are millimeters. Work is

underway to standardize all mesh apertures to units of microns.

- 9 10. These log sheet fields are not exposed to automatic data processing. Rather they provide a means for accounting for all specimens as the samples change hands.
 - 11. The master file contains a decimal equivalent of the inverse of the aliquot factor, e.g., an aliquot factor of 2 is stored in a master file as 0.50000. For researchers more accustomed to aliquot <u>fractions</u> the values found in the master file are decimal equivalents of the aliquot fraction. See MIS Documentation Vol. 6, SDT p. 11, INST Code 2 and p. 12, TRNS Code 6.
- 12 13. These log sheet fields receive special processing.
 - entered. Through special processing (See MIS Documentation Vol. 6, SDT p. Ø9, Mnemonic Code COPY) this number appears twice in the MIS Intermediate File. The MIS program LOGLIST is used to list this file for editing purposes. One occurrence of the number is listed as is, but the taxonomic name is substituted in the listing for the other occurrence of the number. During verification of data entry, only the listed name need be compared to the taxonomic name on the log sheet. Spelling need not be checked since LOGLIST has provided the taxonomic name from the System Code Table. Any errors must be corrected for both Intermediate File occurrences, i.e., in fields TAX and TXC.
 - b. When these data are merged into a master file more special processing takes place. The taxon is assigned to a different

master file category depending on its taxonomic level (Order = category 510; Family = category 540; Genus = category 570; Species = category 600). See MIS Documentation Vol. 6, SDT p. Ø2 and Ø3, Mnemonic Code CFLD. Also through TRNS Code 4 (MIS Documentation Vol. 6, SDT p. 12) both the number and name are placed in words 1 and 2, respectively, of the appropriate category of the master file.

- c. Taxonomic levels other than the above four "standard" levels have been accommodated and are all treated as "Order/Other" by the MIS. These have thus far resulted in the following types:
 - 1. Special Fish Name Type 1 Taxonomic Levels Intermediate to the Four Standard Levels, e.g., Sub Family. The "taxonomic name" is composed of two words -- the first is the taxonomic name itself, e.g., Serraninae, and the second is the 9-digit taxonomic code of the next higher "standard" level to which this name belongs. The purpose of the second word is to allow inclusions of, for example, subfamily specimens in family summaries. Due to the special processing of TRNS Code 4 described above a master file with data about the taxon Serraninae would have data in category 510 as follows:

Programme and the second

Master File Word	Word Content	Word <u>Meaning</u>
1	100000007	Taxonomic number
2	SERRANINAE	Subfamily name
3	170020000	Taxonomic number of
		"standard" level
		(Family) to which
		Serraninae belongs

Special Fish Name Type 2 - Multitaxa which are indistinguishable from each other, e.g., Labridae and Scaridae. The "taxonomic name" is composed of two words -- the first consists of the two or more scientific names connected by slashes (so as to appear to the MIS as one word); and the second is the 9-digit taxonomic code of the next higher "standard" level to which these names belong. Due to the special processing of TRNS Code 4 described above a master file with data about the taxa Labridae and Scaridae would have data in category 510 as follows:

	Master F Word	File Word Content	Word <u>Meaning</u>
	1	100000002	Taxonomic Number
	2	LABRIDAE/SCARIDAE	Multitaxa Name
	3	170000000	Taxonomic Number of
			"standard" level (Order)
,			to which <u>Labridae</u> and
			Scaridae belong.

S ~

nti-

to

ier)

3. Special Fish Name Type 3 - Disintegrated (unidentifiable) Specimens. Due to special processing of TRNS Code 4 described above a master file with data about disintegrated specimens would have data in category 510 as follows:

Master File Word	Word Content	Word <u>Meaning</u>
1	100000001	Taxonomic Number
2	DISINTEGRATED/FISH/EGGS	Specimen Name

4. Special Fish Name Type 4 - Recurring Unknown Specimens which are Expected to Eventually be Identified.

If specimens of a single taxon cannot be identified, but the investigator desires to distinguish them from any other unknowns and expects eventually to identify them, a "taxonomic name" and number can be assigned. Since it is common that such unknowns are assigned letters or numbers until they are identified and that, e.g., unknown #1 at one institution may not be the same taxon as unknown #1 at another institution, the assignment of "taxonomic name' and number must account for these situations. The method used by the MIS is as follows:

Each separate institution identifying plankton and using the MIS for data processing must maintain one list of in-house unknowns preferably labeled numerically and including sufficient descriptions (narrative and/or graphic) to keep each unknown separate. All

investigators at the institution will use this list.

The "taxonomic name" assigned to each unknown is composed of two words -- the first word identifies the kind of unknown, e.g., UNKNOWN/FISH/14; and the second is the initials of the institution from which the unknown originated, e.g., HL = Highlands Laboratory;

ZSOP = Polish Sorting Center; NA = Narragansett Laboratory. Due to the special processing of TRNS Code 4 described above a master file with data about temporarily unknown specimens would have data in category 510 as follows:

Master File Word	Word <u>Content</u>	Word <u>Meaning</u>
1	100000023	Taxonomic Number
2	UNKNOWN/EGG/106*	Specimen Name
3	HL	Initials for Highlands
		Laboratory

*No unknown larvae have been assigned codes as yet.

5. Special Fish Name Type 5 - "Preferred" vs "Secondary"

Names. Disputes over the naming of organisms are

constantly occurring and affect some of the names to

which the MIS has assigned codes. The determination

of preferred names is a process which is taxonomist
dependent and isn't compatible with stable and efficient

data processing. Thus the MIS has somewhat arbitrarily

determined "preferred" vs "secondary" status for taxa

names. In the large majority of cases only the preferred name is used by the MIS. In cases where a second name is also in common use the MIS contains both names. Using <u>Lophius americanus</u> as an example of a preferred name, <u>Lophius piscatorius</u> as a secondary name, the MIS will contain the following:

The System Code Table (SYSCODES) group No. 23 will contain the nine digit code of 195010202 and the code substitution of AMERICANUS (PISCATORIUS).

The pertinent section of the output of the application program A9SRT (See MIS Documentation Vol. 6, A9S, p. 01-10) which alphabetically lists the taxa names preceded by their codes, will appear as:

195010200 LOPHIUS

195010202 LOPHIUS AMERICANUS

195010201 LOPHIUS GASTROPHYSUS

LOPHIUS PISCATORIUS - See LOPHIUS AMERICANUS

170070200 LOPHOLATILUS

en og trender og en forske forske skriver og en far en en en fill state af træfte i 18

Skara in Light Basa na Erika in Libra in Landina (basa sa sa Palabasansa)

Thus the person using the secondary name can find it when scanning A9SRT, but instead of finding a code, will be referred to the "MIS preferred name" where the 9-digit code is given.

The pertinent section of the output of the applications program CDGPLIST (See MIS Documentation Vol 6, CDL, p. Ø1-Ø9) will appear as:

Bionumeric Code	Order/Other	Family	<u>Genus</u>	Species
195000000	LOPHIIFORMES			
195010000		LOPHIIDĀE	•	
195010100			LOPHIOMU	S
195010200			LOPHIUS	
195010201				GASTROPHYSUS
195010202				AMERICANUS (PISCATORIUS)

NoTE: The important factor to remember about Special

Name Type 5 is that if a user believes that a

preferred and secondary name(s) really represent

more than one taxon, that the user immediately

request a separate code for the additional

name(s). For those who disagree with this

splitting the MIS can summarize what they may

consider to be synonymous taxa. But, without

separate codes the MIS cannot provide data

except for the lumped taxon.

The Master File category 510, 540, 570 or 600 (depending on the taxonomic level of the name) will appear as:

Master File Word	Word <u>Content</u>	Word Meaning
1	195010202	Taxonomic Number
2	AMERICANUS	Preferred Name
3 & 5	()	Cue to Secondary Name
4	PISCATORIUS	Secondary Name

d. Taxonomic Numbers for the unknown larvae (not expected to be eventually identified) and for larvae of the four "standard" HYSUS

NUS ORIUS)

al.

sent

1y

taxonomic levels are assigned according to Bullis, Roe and Gatlin (1972). Assignments for non-"standard" specimens described in c. 1-4 above are made from a block of numbers, 100000001-100999999, and are assigned consecutively as requested. The non-"standard" numbers have no taxonomic "sense" as compared to the "standard" numbers.

Insertions, deletions, and changes to the 9 digit bionumeric code are under strict System control. Any such requests should be directed as indicated in Section 3.5.3.1.1.

The following programs are available for displaying or listing the codes: CODECHK, CODELIST, CDGPLIST, and A9SRT.

These are all described in MIS Documentation Vol. 6.

15. Standard length data for fish larvae in an MIS master file are unusual compared to most other scalar data. Larvae length data are stored to the nearest 0.1 millimeter but the decimal point is implied -- for most other scalar data the decimal point is explicitly stored.

This data log field receives special processing. During data entry a variety of lengths may be entered along with their corresponding frequencies. During the merge into a master file the frequencies for similar lengths are summed. Each resulting pair of values is stored in identical words of adjacent master file categories, e.g., if species standard lengths are involved, the first length is stored in word one of category 606 and the frequency of that length is stored in word one of category 608. The pair of values for the second occurring length would be stored in words two of the respective categories. For a complete

description of the special processing done on these data, see MIS Documentation Vol. 6, SDT, p. Ø1-17, Mnemonic Codes ADPN, REPT, INCD, RGRP, NGRP, GRPD, GETR, SLIN, INST, and MORA.

- 16-18. These log sheet fields receive special processing. See MIS Documentation Vol. 6, SDT, p. 10-11, Mnemonic Code INST.
 - 20. Narrative data about this analysis currently must be entered into master file category 441 using the MIS program UPDATE (See MIS Documentation, Vol. 2, UPD p. Ø1-18).

C. General.

Items 11-18 all receive special processing described in MIS Documentation Vol. 6, SDT p. Ø2-Ø3, Directory Syntax Code CFLD.

MARMAP PLANKTON SURVEY DATA

PAGE 1 0F 4

REC	RD CONTENT ICHTHYOPLANKTON DATA RECORD - EGGS						RECO	RD C	ODE .	IDE .	
:	LOG	SHE	E T		JP NO.	MARMAP INFORMATION	N SY	YSTEM		C L	7 (2)
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUM ()	DATUM T
1	PAGE OF	na	na	na	na	na	na	na	na	na	na
2	OPERATIONAL UNIT	na	na	na	<u>na</u>	na	na	na	na	na_	na
3	VESSEL	na	21 char	na	35	VESSEL:	002	01_	na	21	С
4	CRUISE	year (GMT) 3)	year:00-99	±0.5 min	na na	CRUISE (YY-CCC):	004	01	01	6	c_
			hyphen:na				_				
	·		cruise:001-999		,						
5	GEAR/MESH	na	3 char	na	2	GEAR:	400	01	01	(See Comm	ents
	(mesh aperture)	micron	0005-1800	±0.5 micron	3	GEAR:	400	01	03	(See Comm	ents
_	(mouth diameter)	meter	0.10-2.00	±0.005 m	4	GEAR:	400	01	04	(See Comm	ents
	(mouth height)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	04	(See	ents
	(mouth width)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	05	(See Comm	
: 6	STATION NUMBER	na	001-999	na	na	STATION NUMBER:	100	01	01	3	N
7	HAUL NO.	na	01-99	na	na	HAUL NUMBER:	301	01	01	2	N
8	SAMPLE DATE	day (GMT)	01-31	±0.5 min	пa	EXP DATE (DD MM YY)(GMT):	305	01	01	2	N
		month (GMT)	01-12	±0.5 min			305	01	02	2	N
		year (GMT)	00-99	±0.5 min	1		305	01	03	2	N

PAGE 2 OF 4

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT ICHTHYOPLANKTON DATA RECORD - EGGS RECORD CODE IDE

	LOGSHEET				JP NO.						TYPE 2)
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRED ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUM I) WORD LENGTH	DATUM T
9	VIALS SORTED EGGS	na	1-9	na	na -	na	na_	na	na_	na	na
10	TOTAL WHOLE EGGS	na	0001-9999	na	na	na	na	na	na	na	na
11	AL IQUOT CODE	na	01-40	na	6	ALIQUOT FACTOR: (Order/Other)	514	01	01	7	C
						(Family)	544	01	<u> or</u>	z	C
		:				(Genus)	574	01	01	7	C
					_ _	(Species)	635	01	01	7	С
12	TAXON NUMBER	na	100000000- 199999999	na	23	ORDER / OTHER CODE & NAME:	510	01	01	9	Ν
					<u>23</u>	FAMILY CODE & NAME;	540	01	01	9	N ·
					23	GENUS CODE & NAME:	570	01	01	9	N
					23	SPECIES CODE & NAME:	600	01	01	9	N
13	TAXON NAME	na	60 char	na	23	ORDER / OTHER CODE & NAME:	510	01	02	na	A
					23	FAMILY CODE & NAME:	540	01_	02	na	А
					23	GENUS CODE & NAME:	570	01	02	na	А
				·	23	SPECIES CODE & NAME:		01	02	na	Α
14	NO. NOT ANALYZED	na	000000-999999	na	na	NUMBER NOT ANALYZED:(Order/Oth	526 ur)	01	01	6	N
				3		(Family)	556	ดา	01	6	N

PAGE 3 OF 4

MARMAP PLANKTON SURVEY DATA

ICHTHYOPLANKTON DATA RECORD - EGGS RECORD CONTENT_ RECORD CODE IDE MARMAP INFORMATION SYSTEM MAXIMUM 1)
WORD LENGTH LOGSHEET MASTER FILE GROUP o Z DATUM RECOMMENDED WORD DATA FIELD DATA ANTICIPATED REQUIRED LINE TEM CATEGORY UNITS RANGE ACCURACY DEFINITION DEFINITION 14 NO. NOT ANALYZED 000000-999999 na INUMBER NOT ANALYZED: (Genus) 586 01 (Snecies) 15 VIAL NO. 101-199 VIAL NUMBER: (Order/Other) (Family) (Genus) 573 01 (Species) 604 01-STAGE 16 001-999 EGG STAGE CODE: (Order/Other) 519 12 na-01-549 99 01-(Family) 12 01-12 01-579 (Genus) 99 Ν от- (Species) 670 12 EGG DIAMETER millimeter 0.01 - 9.99±0.005 mm EGG DIAMETER (MM):(Order/Other)520 99 С 12 550 99 С 12 (Family) 01-01-(Genus) 580 01-01-(Species) 674 99 12 OIL GLOBULE DIAMETER millimeter 0.01-9.99 $^{\pm}0.005~{\rm mm}$ OIL GLOBULE DIAMETER (MM): 01-12 521 (Order/Other)

-223

PAGE _4_ OF _4_

MARMAP PLANKTON SURVEY DATA

RECC	RD CONTENT ICHTHYOPLANKTON DATA	RECORD - EGGS				- R	ECOR	D CC	DE _	ID	<u> </u>
	LOGSHEET			GROUP NO.	MASTER FILE	SYS	o z	NO N	MAXIMUM I) WORD LENGTH	2)	
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATE D RANGE	REQUIRED ACCURACY	CODE GF	RECOMMENDED CATEGORY DEFINITION	CAT. N	LINE	WORD	MAXIM WORD	DATUN
18	OIL GLOBULE DIAMETER	millimeter	0.01-9.99	0.005 mm	па	OIL GLOBULE DIAMETER (MM):		01-	01-		
					<u> </u>	(Family)	551	99	12	4	С
						(Genus)	581	99	01- 12	4	С
						(Snecies)	676	01- 99	01- 12	4	С
19	ID BY	na	na	na	na	na	na	na	na	na	na
7a	GEAR ID NUMBER	na	001-999	na .	na	na	na ·	na	na	na	na
										·	
							L				
			,								
					1			-			
					1						
							7				
i					<u> </u>						
					-					-	

6.2.13.2 Comments: Ichthyoplankton Egg Data

A. Footnotes

- Word length for data resulting from a code group substitution is, in fact, the maximum length of the substitution element rather than the length of any word(s).
- 2) Datum Type

Code	<u>Meaning</u>
Α	Strictly an alphabetic field
N	Strictly a numeric field
. C	A field that can contain any combination
	of characters.

3) GMT = Greenwich Mean Time

B. Items

- 1-2. These log sheet fields are not exposed to automatic data processing.
- 3-4. Vessel and cruise would already exist in the master file to which the egg data were to be merged. However, some master files may contain data from several vessels and/or cruises.

 In these latter circumstances "super category" information about which vessel and cruise has to be supplied when running the MIS program SETUPMRG (See MIS Documentation Vol. 2, STM p. Ø1-13 and Vol. 1, Aiv p. 13a and 33a).
 - 5. Currently the MIS stores only 3 character data for mesh aperture. The units are microns. One net has been used, however, with mesh of 1800 microns. It will be found in master files as a 3 character word, but its units are milli-

- meters. Work is underway to standardize all mesh apertures to units of microns.
- 9-10. These log sheet fields are not exposed to automatic data processing.
 - 11. The master file contains a decimal equivalent of the inverse of the aliquot factor, e.g., an aliquot factor of 2 is stored in a master file as 0.50000. For researchers more accustomed to aliquot <u>fractions</u> the values found in the master file are decimal equivalents of the aliquot fraction. See MIS Documentation Vol. 6, SDT p. 11, INST Code 2 and p. 12, TRNS Code 6.
- 14-15. These log sheet fields receive special processing. See MIS Documentation Vol. 6, SDT p. 10 & 11, Mnemonic Code INST.
- 12-13. These log sheet fields receive special processing.
 - a. During data entry the 9 digit taxonomic number alone is entered. Through special processing (See MIS Documentation Vol. 6, SDT p. Ø9, Mnemonic Code COPY), this number appears twice in the MIS Intermediate File. The MIS program LOGLIST is used to list this file for editing purposes. One occurrence of the number is listed as is, but the taxonomic name is substituted in the listing for the other occurrence of the number. During verification of data entry, only the listed name need be compared to the taxonomic name on the log sheet. Spelling need not be checked since LOGLIST has provided the taxonomic name from the System Code Table.

 Any errors must be corrected for both Intermediate File occurrences, i.e., in fields TAX and TXC.

- b. When these data are merged into a master file more special processing takes place. The taxon is assigned to a different master file category depending on its taxonomic level (Order = category 510; Family = category 540; Genus = category 570; Species category 600). See MIS Documentation Vol. 6, SDT p. Ø2 and Ø3, Mnemonic code CFLD. Also through TRNS Code 4 (MIS Documentation Vol. 6, SDT, p. 12) both the number and name are placed in words 1 and 2, respectively, of the appropriate category of the master file.
- c. Taxonomic levels other than the four "standard" levels
 have been accommodated and are all treated as "Order/Other"
 by the MIS. These have thus far resulted in the following
 types:

6.

cu-

m

ırs

ST

ne

. Special Egg Name Type 1 - Taxonomic Levels Intermediate to the Four Standard Levels, e.g., Sub Family. The "taxonomic name" is composed of two words -- the first is the taxonomic name itself, e.g., Serraninae and the second is the 9-digit taxonomic code of the next higher "standard" level to which this name belongs. The purpose of the second word is to allow inclusions of, for example, subfamily specimens in family summaries. Due to the special processing of TRNS Code 4 described above a master file with data about the taxon Serraninae would have data in category 510 as follows:

Master File Word	Word <u>Content</u>	Word <u>Meaning</u>
1	100000007	Taxonomic number
2	SERRANINAE	Subfamily name
3	170020000	Taxonomic number of
		"standard" level
•		(Family) to which
		Serraninae belongs

2. Special Egg Name Type 2 - Multaxa which are indistinguishable from each other, e.g., Labridae and Scaridae. The "taxonomic name" is composed of two words -- the first consists of the two or more scientific names connected by slashes (so as to appear to the MIS as one word); and the second is the 9-digit taxonomic code of the next higher "standard" level to which these names belong. Due to the special processing of TRNS Code 4 described above a master file with data about the taxa Labridae and Scaridae would have data in category 510 as follows:

Master File Word	Word Content	Word <u>Meaning</u>
1	100000002	Taxonomic Number
2	LABRIDAE/SCARIDAE	Multitaxa Name
3	170000000	Taxonomic Number of
		"standard" level (Order)
		to which <u>Labridae</u> and
		Scaridae belong.

nti-

to

3. Special Egg Name Type 3 - Disintegrated (unidentifiable)
Specimens. Due to special processing of TRNS Code 4
described above a master file with data about disintegrated specimens would have data in category 510
as follows:

Master File Word	Word Content	Word <u>Meaning</u>
1	100000001	Taxonomic Number
2	DISINTEGRATED/FISH/EGG	Specimen Name

4. Special Egg Name Type 4 - Recurring Unknown Specimens which are Expected to Eventually be Identified.

If specimens of a single taxon cannot be identified, but the investigator desires to distinguish them from any other unknows and expects eventually to identify them, a "taxonomic name" and number can be assigned. Since it is common that such unknowns are assigned letters or numbers until they are identified and that, e.g., unknown #1 at one institution may not be the same taxon as unknown #1 at another institution, the assignment of "taxonomic name" and number must account for these situations. The method used by the MIS is as follows:

Each separate institution identifying plankton and using the MIS for data processing must maintain one list of in-house unknowns preferably labeled numerically and including sufficient descriptions (narrative

and/or graphic) to keep each unknown separate. All investigators at the institution will use this list. The "taxonomic name" assigned to each unknown is composed of two words -- the first word identifies the kind of unknown, e.g., UNKNOWN/EGG/14; and the second is the initials of the institution from which the unknown originated, e.g., HL = Highlands Laboratory; ZSOP = Polish Sorting Center; NA = Narragansett Laboratory. Due to the special processing of TRNS Code 4 described above a master file with data about temporarily unknown specimens would have data in category 510 as follows:

Master File Word	Word <u>Content</u>	Word <u>Meaning</u>
1	100000023	Taxonomic Number
2	UNKNOWN/EGG/106	Specimen Name
3	HL	Initials for High-
		lands Laboratory

5. Special Egg Name Type 5 - "Preferred" vs "Secondary"

Names. Disputes over the naming of organisms are constantly occurring and affect some of the names to which the MIS has assigned codes. The determination of preferred names is a process which is taxonomist-dependent and isn't compatible with stable and efficient data processing. Thus the MIS has somewhat arbitrarily determined "preferred" vs "secondary" status for taxa

i te

Ort.

1854

111

names. In the large majority of cases only the preferred name is used by the MIS. In cases where a second name is also in common use the MIS contains both names. Using <u>Lophius americanus</u> as an example of a preferred name, <u>Lophius piscatorius</u> as a secondary name, the MIS will contain the following:

The System Code Table (SYSCODES) group no. 23 will contain the nine digit code of 195010202 and the code substitution of AMERICANUS (PISCATORIUS).

The pertinent section of the output of the application program A9SRT (See MIS Documentation Vol. 6, A9S, p. Ø1-1Ø) which alphabetically lists the taxa names preceded by their codes, will appear as:

195010200 LOPHIUS

195010202 LOPHIUS AMERICANUS

195010201 LOPHIUS GASTROPHYSUS

LOPHUS PISCATORIUS _ See LOPHIUS AMERICANUS

170070200 LOPHOLATILUS

Thus the person using the secondary name can find it when scanning A9SRT, but instead of finding a code, will be referred to the "MIS preferred name" where the 9-digit code is given.

The pertinent section of the output of the applications program CDGPLIST (See MIS Documentation Vol. 6, CDL, p. $\emptyset1-\emptyset9$) will appear as:

Bionumeric Code	Order/Other	<u>Family</u>	<u>Genus</u>	Species
195000000	LOPHIIFORMES			
195010000		LOPHIIDA	E	
195010100			LOPHIOMU	IS
195010200			LOPHIUS	
195010201	• • • •			GASTROPHYSUS
195010202				AMERICANUS (PISCATORIUS)

Name Type 5 is that if a user believes that a preferred and secondary name(s) really represent more than one taxon, that the user immediately request a separate code for the additional name(s). For those who disagree with this splitting the MIS can summarize what they may consider to be synonymous taxa. But, without separate codes the MIS cannot provide data except for the lumped taxon.

The Master File category 510, 540, 570 or 600 (depending on the taxonomic level of the name) will appear as:

Master File Word	Word <u>Content</u>	Word <u>Meaning</u>
1	195010202	Taxonomic Number
2	AMERICANUS	Preferred Name
3 & 5	()	Cue to Secondary Name
4	PISCATORIUS	Secondary Name

Taxonomic Numbers for the unknown eggs (not expected to be

eventually identified) and for eggs of the four "standard"

es taxonomic levels are assigned according to Bullis, Roe and Gatlin (1972). Assignments for non-"standard" specimens described in c. 1-4 above are made from a block of numbers, 100000001-100999999, and are assigned consecutively as requested. The non-"standard" numbers have no taxonomic OPHYSIK "sense" as compared to the "standard" numbers. CANUS Insertions, deletions, and changes to the 9 digit bionumeric ATORIUS) code are under strict System control. Any such requests ecial should be directed as indicated in Section 3.5.3.1.1. at a The following programs are available for displaying or listing present the codes: CODECHK, CODELIST, CDGPLIST, and A9SRT. ately These are all described in MIS Documentation Vol. 6.

> 16-18. These log sheet fields receive special processing. When an egg is analyzed for stage, egg diameter, and oil globule diameter the resulting triplet of values is stored in identical words of adjacent master file categories; e.g., if a specimen of egg is identified to genus, its stage is stored in word one of category 579, its diameter is word one of category 580, and its oil globule diameter in word one of category 581. The triplet of values for the second specimen would be stored in words two of the respective categories.

> > For a complete description of the processing done on these data see MIS Documentation Vol. 6, SDT Ø1-Ø7, Mnemonic Codes ADPN, REPT, INCD, RGRP, NGRP, GRPD, and GETR.

General. Items 11-18 all receive special processing described in MIS Documentation Vol. 6, SDT p. Ø2-Ø3, Directory Syntax Code CFLD.

may

PAGE ___L_ OF _2_

RECORD CONTENT ZOOPLANKTON DATA LOG

RECORD CODE _ZDL_

	LOGSHEET			UP NO.	MARMAP INFORMATION MASTER FILE		(I LI	rype ²⁾			
ITEM	DATA FIELD DEFINITION	DATA UNITS	ANTICIPATED RANGE	REQUIRE D ACCURACY	CODE GROUP	RECOMMENDED CATEGORY DEFINITION	CAT. NO.	LINE NO.	WORD NO	MAXIMUN WORD LE	DATUM TYPE
1	PAGE OF	na	na	na	na_	na	na	na	na	na.	na
2	OPERATIONAL UNIT	na	na	na	na	na	na	na	na	na	na
3	VESSEL	na	21 char	na	<u>35</u>	VESSEL:	002	01	na_	21	С
4	CRUISE	year (GMT) 3)	vear:00-99	.0.5 min	na	CRUTSE (YY-CCC):	004	01	01_	6	С
			hyphen:na]					<u> </u>	
			cruise:001-999				<u> </u>				
5	GEAR/MESH	na	3 char	na	2	GEAR:	400	01	01	(See Comm	ents)
i	(mesh aperture)	micron	0005-1800	:0.5 micron	3	GEAR:	400	01	03	(See Comm	ents)
	(mouth diameter)	meter	0.10-2.00	±0.005 m	4	GEAR:	400	10	04	(See Comm	ents)
	(mouth height)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	01	04	(See Comm	ents
	(mouth width)	meter	0.1-2.0	±0.05 m	5	GEAR:	400	10	05	(See Comm	
6	STATION NUMBER	na	001-999	na	na	STATION NUMBER:	100	01	QT	3	N
7	HAUL NO.	na ·	01-99	na	na	HAUL NUMBER:	301	01	01	2	N
8	SAMPLE DATE	day (GMT)	01-31	±0.5 min	na	EXP DATE (DD MM YY)(GMT):	305	01	01	2	N
		Month (GMT)	01-12	±0.5 min			305	õi	02	2	Ņ
		year (GMT)	00-99	±0.5 min			305	01	03	2	N

PAGE _2__ OF _2__

MARMAP PLANKTON SURVEY DATA

RECORD CONTENT ZOOPLANKTON DATA LOG RECORD CODE ZDL MARMAP INFORMATION SYSTEM MAXIMUM I)
WORD LENGTH
DATUM TYPE LOGSHEET MASTER FILE RECOMMENDED DATA FIELD DATA ANTICIPATED REQUIRED CATEGORY ACCURACY DEFINITION UNITS RANGE DEFINITION ALIQUOT FACTOR: 514 01 01 7 01-40 _ALIQUOT CODE na ORDER / OTHER CODE & NAME: 510 01 01 0001-9999 na TAXON NUMBER na ORDER / OTHER CODE & NAME: 510 01 102 Ina 11 TAXON NAME 60 char 01 | 01 NUMBER NOT ANALYZED: 001-999 NO. NOT ANALYZED na 01 | 01 VIAL NUMBER: 513 201-299 na. VIAL NUMBER ORDER / OTHER LENGTH (.1 MM): 534 99 | 12 ±0.05 min millimeter 00.1-99.9 LENGTH 99 12 1 SEX CODE: 1-4 SEX 01-01-519 99 12 3 LIFE STAGE CODE: LIFE STAGE na 000-999 na ANALYSIS REMARKS: 99 | na na REMARKS 17 na na RECORDED BY na na na na GEAR ID NUMBER 001-999 na

-235-

6.2.14.2 Comments on: Zooplankton Data

A. Footnotes

- 1) Word length for data resulting from a code group substitution is, in fact, the maximum length of the substitution element rather than the length of any word(s).
- 2) Datum Type

<u>Code</u>		Meaning		
A .		Strictly an alphabetic field		
N	* :	Strictly a numeric field		
С		A field that can contain any combination		
		of characters.		

3) GMT = Greenwich Mean Time

B. Items

- 1-2. These log sheet fields are not exposed to automatic data processing.
- 3-4. Vessel and cruise data would already exist in the master file to which the zooplankton data were to be merged. However, some master files may contain data from several vessels and/or cruises. In these latter circumstances "super category" information about which vessel and cruise has to be supplied when running the MIS program SETUPMRG (See MIS Documentation Vol. 2, STM, p. Ø1-13 and Vol. 1, Aiv p. 13a and 33a).
 - 5. Currently the MIS stores only 3 character data for mesh aperture.

 The units are microns. One net has been used, however, with

 mesh of 1800 microns. It will be found in master files as a

- 3 character word, but its units are millimeters. Work is underway to standardize all mesh apertures to units of microns.
- of the aliquot factor, e.g., an aliquot factor of 2 is stored in a master file as 0.50000. For researchers more accustomed to aliquot fractions the values found in the master file are decimal equivalents of the aliquot fraction. See MIS Documentation Vol. 6, SDT p. 11, INST Code 2 and p. 12, TRNS Code 6.
- 10-11. a. The "Four-Digit Interim Code for MARMAP Zooplankton Data"

 was inherited by the MIS. It is, in fact, a nine-digit

 code -- the first five characters being blanks. Thus it

 fits into the MIS format for the standard code also used for

 fishes. (See Bullis et al. 1972, in Section 3.5.3.1.1).

 Unlike the fish codes the zooplankton code numbers do not

 fit into a hierarchy which reflects the phylogenetic order.

 Rather, blocks of numbers have randomly been set aside for

 taxonomic groups as needed.

ome

ture.

NOAA's National Oceanographic Data Center has developed and satisfactorily tested a "universal" organism code.

Steps have been taken to get NODC code assignments for both the 9- and 4-digit MIS code organisms, but no conversion of the MIS to the NODC codes has begun. Non-MIS users should give serious consideration to the NODC code.

 b. During data entry the 9 digit taxonomic number alone is entered. Through special processing (See MIS Documentation Vol. 6, SDT p. Ø9, Mnemonic Code COPY) this number appears twice in the MIS Intermediate File. The MIS program LOGLIST is used to list this file for editing purposes. One occurrence of the number is listed as is, but the taxonomic name is substituted in the listing for the other occurrence of the number. During verification of data entry, only the listed name need be compared to the taxonomic name on the log sheet. Spelling need not be checked since LOGLIST has provided the taxonomic name from the System Code Table.

Any errors must be corrected for both Intermediate File occurrences, i.e., in fields TAX and TXC.

- c. Since the 4 digit codes make no phylogenetic "sense" zooplankton data could not conveniently be sorted into taxonomic levels. Master file category 510 contains all zooplankton names regardless of taxonomic level, hence the
 category definition "Order/Other Code & Name"
- d. When these data are merged into a master file more special processing takes place. Through TRNS Code 4 (MIS Documentation, Vol. 6, SDT p. 12) the number and name are placed in words 1 and 2, respectively, of category 510 of the master file.
- e. Special taxonomic names have received 4 digit code assignments. These have thus far resulted in the following types:
 - Special Zooplankton Name Type 1 Multitaxa which at some Life Stages are Indistinguishable from each other,
 e.g., "Paracalanus and Clausocalanus"; "Pseudocalanus minutus or Paracalanus parvus". The first example would appear in category 510 of a master file as follows:

2.

-	ter File ord	Word Content	Word Meaning
	1	4031	Taxonomic Number
	2	PARACALANUS	First of the multi- taxa names
	3	AND	Multitaxa indicator
	4	CLAUSOCALANUS	Second of the multi- taxa names
necial	7oonlankton	Name Type 2 -	Recurring unknown

Special Zooplankton Name Type 2 - Recurring unknown Specimens which are Expected to eventually be Identified. If specimens of a single taxon cannot be identified, but the investigator desires to distinguish them from any other unknowns and expects eventually to identify them, a "taxonomic name" and number can be assigned. Since it is common that such unknowns are assigned letter or numbers until they are identified and that, e.g., unknown #1 at one institution may not be the same taxon as unknown #1 at another institution, the assignment of "taxonomic name" and number must account for these The method used by the MIS is as follows: situations. Each separate institution identifying plankton and using the MIS for data processing must maintain one list of in-house unknowns preferably labeled numerically and including sufficient descriptions (narrative and/or graphic) to keep each unknown separate. All investigators at the institution will use this list. The "taxonomic name" assigned to each of these unknowns

OGLIST

name

of

he

the

has

<u>e</u>

00-

xo-

00-

e

cial

ign-

types:

ther,

at

nus

would

includes the unknown and institution name, as well as any taxonomic name which is known. An example of such data would appear in category 510 of a master file as follows:

<u>-</u>	Mord Word	Word <u>Content</u>	Word <u>Meaning</u>
	1	0208	Taxonomic Number
٠.	2 Sagitt	a/unknown/l*	Specimen Name
	3	NYOSL	Initials of Institution

- * The use of slashes to make the specimen name one word has not been consistently used in the MIS.
- 3. Special Zooplankton Name Type 3 "Preferred" vs

 "Secondary" Names. Disputes over the naming of organisms are constantly occurring and affect some of the names to which the MIS has assigned codes. The determination of preferred names is a process which is taxonomist-dependent and isn't compatible with stable and efficient data processing. Thus the MIS has somewhat arbitrarily determined "preferred" vs "secondary" status for taxa names.

 In the large majority of cases only the preferred name is used by the MIS. In cases where a second name is also in common use the MIS contains both names. Using Spiratella retroversa as an example of a preferred name, and Limacina retroversa as a secondary, the MIS will contain

the following:

The System Code Table (SYSCODES) group no. 23 will contain the four digit code of 0301 and the code substitution of SPIRATELLA RETROVERSA (LIMACINA RETROVERSA).

A listing of the MIS program A4SRT (See MIS documentation Vol. 6, A4S, p.Ø1-Ø8), which alphabetically lists the taxa names preceded by their codes, will appear as:

0446 LESTRIGONUS SP.

LIMACINA INFLATA - SEE SPIRATELLA INFLATA
LIMACINA RETROVERSA - SEE SPIRATELLA RETROVERSA

0303 SPIRATELLA INFLATA

0301 SPIRATELLA RETROVERSA

Thus the person using the secondary name can find it when scanning A4ST, but instead of finding a code will be referred to the "MIS preferred name" where a 4 digit code is given.

The Master File category 510 will appear as:

Master File Word	Word <u>Content</u>	Word Meaning
1 .	0301	Taxonomic Number
2 & 3	SPIRATELLA RETR VERSA	0- Preferred Name
4 & 7	()	Cues to Secondary Name
5 & 6	LIMACINA RETRO- VERSA	Secondary Name

NOTE: The important factor to be remembered about

Special Zooplankton Name Type 3 is that if a

user believes that a preferred and secondary

IS.

in

- names (s) really represents more than one taxon that the user immediately request a separate code for the additional names(s). For those who disagree with this splitting the MIS can summarize what they may consider to be synonymous taxa. But, without separate codes the MIS cannot provide data except for the lumped taxon.
- f. Insertions, deletions, and changes to the 4 digit interim code for zooplankton data are under strict System control. Any such requests should be directed as indicated in Section 3.6.4.1. The following programs are available for listing the codes: CODECHK, CODELIST, CDGPLIST, and A4SRT.
- 14-15-16. These log sheet fields receive special processing. During data entry a variety of lengths may be centered along with the corresponding sex and life stage for each specimen. The frequency of lengths is assumed to be one. Constant data (e.g., the adult life stage code or sex unknown code) or a no data value (e.g., when lengths were not measured) may be entered. Each resulting triplet of data is stored in identical words of adjacent master file categories, e.g., the first specimen's length would be stored in category 534, word 01, its sex in category 532, word 01, and its life stage in category 519, word 01. The triplet of values for second specimen would be sorted in words 02 of the respective categories. No substitutions are made for sex or life stage, nevertheless the list of these codes is stored in the MIS

Xon

ec-

SYSCODES for System security. For a complete description of the special processing done on these data, see MIS Documentation Vol. 6, SDT p. Ø1-17, Mnemonic Codes, ADPN, REPT, INCD, RGRP, NGRP, GRPD, GETR, AND MORA.

- 17. Narrative data about this analysis currently must be entered into master file category 441 using the MIS program UPDATE (See MIS Documentation, Vol. 2, UPD p. Ø1-18).
- 18. This log sheet field is not exposed to automatic data processing.

7. APPENDIX II - CALCULATIONS USED FOR MARMAP SURVEY I DATA

7.1 CABLE CAPACITY OF A WINCH DRUM

Figure 7.1 shows the dimensions of a winch drum which are necessary when calculating the drum's cable capacity.

Those dimensions are used in the formula below:

$$J = (d_d + M) \times M \times E \times K$$

WHERE:

J = drum capacity (in feet) for cable diameters
as determined by the value of K used.

 d_d = drum diameter (in inches)

M = depth of drum flange (in inches)

E = length between drum flanges (in inches)

K = factor to be applied for the cable size
 under consideration (see Table of Factors
 below):

Cable Diameter	(in)	Factor (K)
1/4 5/16 3/8 7/16 1/2 9/16 5/8 3/4 7/8		4.16 3.02 1.86 1.37 1.05 .828 .672 .465
1- 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8 2- 2-1/8 2-1/4 2-3/8 2-1/2		.262 .207 .167 .138 .116 .099 .085 .074 .066 .058 .052 .046

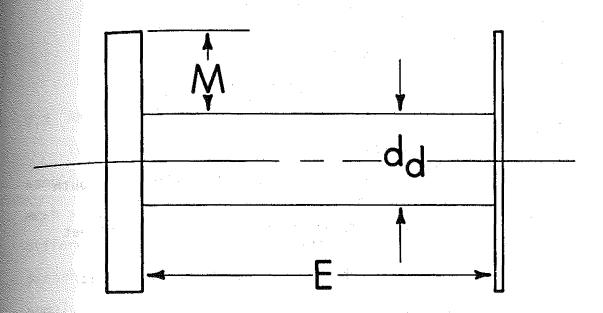


Figure 7.1 Winch drum dimensions necessary when calculating drum cable capacity

NOTE: To obtain chain length in place of cable length multiply cable length by .10 (applicable only when chain size = cable diameter. Example: 5/8" chain = 5/8" diameter cable.)

7.2 RATIO OF NETTING APERTURE AREA TO MOUTH AREA FOR A PLANKTON NET

7.2.1 MARMAP Bongo Net

$$I = \frac{\begin{bmatrix} d_c \times h_c + \frac{(d_1 + d_2)h}{2}h \end{bmatrix} P}{(r_m)^2}$$

WHERE:

I = ratio of netting aperture area to mouth area

d_c = diameter of cylindrical portion of net
 (in meters)

hc = height of cylindrical portion of net
 (in meters)

d₁= diameter of base of frustumal portion
 of net (in meters)

d₂= diameter of top of frustumal portion
 of net (in meters)

h_f= height of frustumal portion of net
 (in meters)

P = decimal equivalent of percent open area of netting, e.g., for NITEX333, P = 0.46

 $r_{\rm m}$ = radius of net mouth (in meters)

7.2.2 MARMAP Neuston Net

$$I = \underbrace{\left[\frac{d_1 + d_2}{2} \right] \quad h_f}_{h \times w} \quad P$$

WHERE:

I = ratio of netting aperture area to mouth
 area

d₁= diameter of base of frustumal net (in meters)

7.2.2 MARMAP Neuston Net (cont.)

 d_2 = diameter of top of frustumal net (in meters)

 h_f = height of frustumal net (in meters)

P = decimal equivalent of percent open area of netting, e.g., for NITEX505, P = 0.50

h = height of net mouth (in meters)

w = width of net mouth (in meters)

7 3 AMOUNT OF WIRE OUT FOR DESIRED MAXIMUM TOW DEPTH

The length of the towing wire is only one factor involved in the maximum sampling depth achieved by a plankton net. Also involved are towing speed, mesh size and net configuration, payout and retrieval rates, and vertical differences in subsurface currents. Thus, the formulae given below are presented only as an initial aid for determining wire length. After actual sampling depth measurements are examined appropriate adjustments must be made.

7.3.1 General Formula

$$L = \frac{Z}{\cos \theta}$$

WHERE:

L = wire length to achieve desired maximum
 tow depth (in meters)

Z = desired maximum tow depth (in meters)

cos θ = cosine of the anticipated wire angle at maximum wire out. Wire angle is measured between the towing wire and the vertical.

7.3.2 61 cm Bongo Array Formula

$$L = \frac{Z + 3.7}{0.756}$$

WHERE:

L = wire out to achieve desired maximum tow
 depth (in meters)

Z = desired maximum tow depth (in meters)

NOTE: This formula is the result of several hundred tows from a variety of ships and conditions during which actual maximum tow depths were measured. It should be used only for desired depth >50 meters (see Figure 2.5).

7.4 MAXIMUM DEPTH SAMPLED FOR A 61 CM BONGO ARRAY

Tow depths should be obtained from actual measurements. However, failure or loss of the recorders may occur. If so, tow depths may sometimes be calculated. Listed below is a heirarchy of formulae leading from the most preferred to the least preferred methods. Use of any of the calculations may affect data quality.

- 7.4.1 Measured Depth from Bathykymograph
- 7.4.2 <u>Cosine of the Average Arctangent Method</u> appropriate for tow depths >50 meters and in areas of no current gradient in the water column to be sampled.

$$Z = \{\cos \left[\arctan(\tan\theta_1 + \tan\theta_2 + ... + \tan\theta_n)\right] \} \{L\}$$

WHERE:

Z = calculated tow depth (in meters)

 $tan\theta_1$, $tan\theta_2$, etc. = tangent of wire angles measured during retrieval. Wire angles are measured between towing wire and the vertical.

n = number of wire angles measured during retrieval

L = maximum wire out (in meters)

7.4.3 Straight Cosine Law - appropriate for tow depths <50 meters and in areas of no current gradients in the water column to be sampled.

 $Z = L \cos \theta$

医病乳病 医多次性皮质 樂縣 催出的 医邻氏

Z = calculated tow depth (in meters)

L = maximum wire out (in meters)

cos Θ = cosine of the wire angle at maximum wire out. Wire angle is measured between towing wire and the vertical.

7.4.4 <u>Regression Equation</u> - appropriate for tow depths >50 meters and in areas of no current gradients in the water column to be sampled.

$$Z = \frac{-3.7 + 0.756}{L}$$

WHERE:

Z = calculated tow depth (in meters)

L = maximum wire out (in meters)

7.5 SAMPLER DESCENT OR ASCENT RATE FOR A DOUBLE OBLIQUE TOW

$$U = \frac{\{(L1) (\cos \Theta 1)\} - \{(L2) (\cos \Theta 2)\}}{t_2^2 - t_1}$$

WHERE:

U = descent (if negative) rate or ascent (if
positive) rate (in meters/second)

 L_1 = wire out at start of time increment (in meters)

cos ϑ_1 = cosine of wire angle at start of time increment. Wire angles are measured between the towing wire and the vertical.

 L_2 = wire out at end of time increment (in meters)

 $\cos \Theta 2$ = $\cos i$ of wire angle at end of time increment

 $t_2 - t_1 = duration of time increment (in seconds)$

7.6 FORMALIN CONCENTRATION

Formalin is a saturated aqueous solution of formaldehyde gas, about 40% formaldehyde by weight, i.e., 100% formalin § 40% formaldehyde.

Formalin Concentration (%) = $\frac{\text{volume of 100\% formalin}}{\text{volume of 100\% formalin}} \times 100$

7.7 FLOWMETER CALIBRATION

Since flowmeters may not exhibit a linear response to changing flow speeds, they must be calibrated at several different speeds within the range of intended use.

Some investigators calibrate flowmeters for a particular net so that the calibration factor has units of volume per revolution. The equation below yields a factor which has the units of length per revolution, and which must be multiplied by the area of the mouth of the net in which it is used in order to obtain volume per revolution.

$$F = \frac{D}{R}$$

WHERE:

- F = flowmeter calibration factor (in meters per revolution) at a specific flow speed
- D = distance necessary to produce one flowmeter impeller revolution (in meters)
- R = one flowmeter revolution

7.8 VOLUME OF WATER FILTERED

7.8.1 Standard MARMAP Neuston Net

The assumption is made that the net fishes with the mouth opening one-half submerged during the tow. Also the standard array does not include a flowmeter so distance towed is derived from tow speed and duration. Were a flowmeter to be employed, distance would be measured as in Sections 7.9.1.1 (1-3), below.

$$V = (0.5h) (w) \times (D/t) (t)$$

V = volume of water filtered (in meters cubed)

h = height of the mouth of the neuston net
 (in meters)

w = width of the mouth of the neuston net (in meters)

D/t = towing speed (in meters/second)

t = duration of tow (in seconds)

7.8.2 Circular Mouth Net for Water Column Sampling, e.g., Bongo.

Calculations of volume filtered should be based on calibrated flowmeter data. However, failure or loss of the meters may occur. If so, less preferred methods of volume calculation may sometimes be employed. Listed below is a hierarchy of formulae beginning with the most preferred and leading to the least preferred. Use of other than the first of these may affect data quality.

7.8.2.1 All Data Available

x 100

$$V = R \times F \times A$$

WHERE:

V = calculated volume of water filtered (in meters cubed)

R = number of flowmeter revolutions during tow

F = mean of the calibration factors determined
 before and after each cruise (in meters per
 revolution)

A = area of net mouth (in meters squared)

7.8.2.2 Current Flowmeter Calibrations Not Available - use factory calibration data

$$V = R \times F_f \times A$$

V = calculated volume of water filtered (in meters cubed)

R = number of flowmeter revolutions during tow

F_f = factory calibration factor (in meters
 per revolution)

A = area of net mouth (in meters squared)

7.8.2.3 Flowmeters Lost or Malfunctioned - derive distance towed from ship speed and duration of tow

$$V = A \times t \times S$$

WHERE:

V = calculated volume of water filtered (in meters cubed)

A = area of net mouth (in meters squared)

t = duration of tow (in seconds)

S = ship speed during tow (in meters per second).
 Speed is obtained from different methods
 listed below in order of preference:

(1) currently calibrated flowmeter data available from most other tows during the cruise

$$S_a = \frac{\frac{R_1 \times F_1}{t_1} + \frac{R_2 \times F_2}{t_2} + \ldots + \frac{R_n \times F_n}{t_n}}{n}$$

WHERE:

Sa = average speed calculated from other tows
 during the cruise where currently calibrated
 meters functioned properly (in meters per
 second)

 R_1 , R_n = revolutions for flowmeters 1-n used in the calculation

 F_1 , F_n = calibration factors for meters 1-n used in the calculation (in meters per revolution)

 t_1 , t_n = duration of tows 1-n used in the calculation (in seconds)

n = number of tows used in the calculation.

- (2) Factory calibrated flowmeter data available for most other tows during the cruise use equation in section 7.8.2.3 (1), above, where F_1 , F_n = factory calibration factors.
- (3) No flowmeter data available for the cruise use measured ship speed.
- (4) No flowmeter data available; no measured ship speed data available - use estimated ship speed.

7.9 STANDARD HAUL FACTOR

Plankton tows differ with respect to volume of water filtered and maximum tow depth. In order to make data values from them comparable these values must be normalized through the use of a standard haul factor:

7.9.1. Surface Tows

7.9.1.1 Factor for value/1000 m²

$$H = \frac{1000}{w \times D}$$

WHERE:

H = surface standard haul factor (for values
 per 1000 meters squared)

w = width of the mouth of the net (in meters)

D = distance towed (in meters). Distance is obtained from different methods listed below in order of preference:

$$(1) D = R \times F$$

WHERE:

R = number of flowmeter revolutions during the tow

F = mean of the flowmeter calibration factors determined before and after the cruise (in meters per revolution)

$$(2) D = R \times F_{+}$$

R = number of flowmeter revolutions during
 the tow

 F_f factory calibration factor (in meters per revolution)

$$(3) D = S \times t$$

WHERE:

S = speed of ship during tow (in meters per second) calculated according to Section 7.8.2.3 (1-4) above

t = duration of tow (in seconds)

7.9.1.2 Factor for value/ 1000 m^3

William Control

ti n Gastino de la Sila. La granda de Santo de Sila de Sila.

BATTLE TO BELLEVILLE

$$H = \frac{1000}{A \times D}$$

WHERE:

H = surface standard haul factor (for value per 1000 meters cubed)

A = area of the mouth of the net (in meters squared), which was actually sampling (only ½ total mouth area for a standard MARMAP neuston tow)

D = distance towed (in meters) calculated according to Section 7.9.1.1 (1-3) above

7.9.2 Water Column Tows

7.9.2.1 Factor for value/10 m^2

$$H = \frac{Z \times 10}{V}$$

WHERE:

- H = water column standard haul factor (for value beneath 10 square meters of sea surface)
- Z = maximum tow depth (in meters) calculated according to Section 7.4 above
 - V = volume of water filtered (in meters cubed) calculated according to Section 7.8 above

7.9.2.2 Factor for value/100 m³,

$$H = \frac{100}{V}$$

WHERE:

H = water column standard haul factor (for value per 100 meters cubed)

V = volume of water filtered (in meters cubed) calculated according to Section 7.8 above

7.10 NORMALIZED ABUNDANCE OF ORGANISMS

7.10.1 Total Organisms

$$N_{+} = C \times Q \times H$$

WHERE:

N_t= normalized abundance of total organisms (in number per 1000 meters squared, number per 10 meters squared, or number per 100 meters cubed--depending on the value of H used)

C = number of organisms counted in the aliquot

Q = Aliquot factor (usually = 1 for fish larvae)

H = standard haul factor--see Section 7.9 above

7.10.2 Organisms of Particular Length, Stage, etc.

$$N_i = [C_i + (\frac{C_t}{C} \times C_n)] \times Q \times H$$

WHERE:

N_i= normalized abundance of organisms of a particular length range, sex, stage, etc. (in number per 1000 meters squared, number per 10 meters squared, or number per 100 meters cubed--depending on the value of H used)

C_i = number of organisms in the aliquot which fell within the length, sex, stage, etc., range

 C_t = total number of organisms in the aliquot

 C_n = number of organisms in the aliquot, mot analyzed for length, sex, or stage, etc.

Q = aliquot factor (usually = 1 for fish larvae)

H = standard haul factor--see Section 7.9 above

7.11 NORMALIZED CONCENTRATION OF TAR OR PLASTIC

WHERE:

N_p= normalized concentration (in grams per 1000 meters squared. Use of other standard haul factors for this concentration would be inappropriate.)

G = combined weight of air-dried paper and tar
 or plastic in aliquot (in grams)

P = weight of air-dried paper (in grams)

Q = aliquot factor (usually = 1 for tar and plastics)

H = standard haul factor--see Section 7.9 above

7.12 NORMALIZED ZOOPLANKTON DISPLACEMENT VOLUME

$$N_{M} = (V_{C_1} - V_{f_1}) \times_{A} Q \times H$$

WHERE:

 N_V = normalized displacement volume (in milliliters per 1000 meters squared, ml per 10 meters squared, or ml per 100 meters cubed--depending on the value of H used)

V_c= combined volume of plankton and liquid (in milliliters)

V₁= volume of filtrate liquid (in milliliters)

Q = aliquot factor (usually = 1 for displacement volume)

H = standard haul factor--see Section 7.9 above

7.13 NORMALIZED DRY WEIGHT BIOMASS

$$N_d = [N_n - (B_f - B_i)(\frac{n}{T+1})] \times Q_n \times H$$

N_d = normalized dry weight (in grams per 1000 meters squared, grams per 10 meters squared, or grams per 100 meters cubed--depending on the value of H used) of the nth sample weighed when a large number of samples are being processed. See Section 3.4.3.2 above

N_n = dry weight (in grams), uncorrected for air exposure, for the nth sample weighed

 $B_f = \text{weight of the "blank" container (in grams)}$ measured after the final sample is weighed

B_i = weight of the "blank" container (in grams) measured at the initiation of sample weighing

T = total number of samples being weighed (excluding blank samples)

n = the nth sample sequence number (excluding blank samples)

 Q_n = aliquot factor for the nth sample

H = standard haul factor--see Section 7.9 above

7.14 NORMALIZED ASH-FREE DRY WEIGHT BIOMASS

ae)

ove

ove

iters

nding

nt

/e

$$N_f = \{ [N_n - (B_f - B_i)(\frac{n}{T+1})] \} - \{ Y_n - [(B_f - B_i)(\frac{n}{T+1})] \times Q_n \times H \}$$

WHERE:

- N_f = normalized ash-free dry weight biomass (in grams per 1000 meters squared, grams per 10 meters squared, or grams per 100 meters cubed--depending on the value of H used) of the nth sample weighed when a large number of samples are being processed. See Section 3.4.3.2 above
- {} = This bracketed expression, defined in Section 7.13 above is the dry weight (in grams) corrected for air exposure
- Y_n = ash weight (in grams) uncorrected for air exposure, for the nth sample weighed (excluding blank samples)

NOTE: Remaining terms are as defined in Section 7.13 above

7.15 NORMALIZED CARBON BIOMASS

$$N_{c} = \frac{0 \times F_{0}}{W} \times W_{c} \times Q \times H$$

WHERE:

N_C = normalized carbon concentration (in grams per 1000 meters squared, grams per 10 meters squared, or grams per 100 meters cubed-depending on the value of H used)

0 = carbon analyzer sensor output, e.g., thermocouple counts

F_o = carbon analyzer calibration factor based on known carbon dioxide standards, i.e., grams carbon per sensor output

W = weight of sample in crucible (in grams)

 W_{c} = constant weight of dried material in aliquot

Q = aliquot factor

H = standard haul factor--see Section 7.9 above

- 11. Proceedings of the Summer Flounder (Paralichthys dentatus) Age and Growth Workshop, 20-21 May 1980, Northeast Fisheries Center, Woods Hole, Massachusetts. By Ronal W. Smith, Louise M. Dery, Paul G. Scarlett, and Ambrose Jearld, Jr. December 1981. iv + 14 p., 10 figs., 6 tables. NTIS Access. No. PB82-174921.
- 12. Status of the Fishery Resources Off the Northeastern United States for 1981. By Resource Assessment Division, Northeast Fisheries Center. January 1982. iii + 114 p., 44 figs., 44 tables. NTIS Access. No. PB82-184946.

ters

rmo-

on

ams

quot:

bove

- 13. Gulf and Atlantic Survey for Selected Organic Pollutants in Finfish. By Paul D. Boehm and Pam Hirtzer. April 1982. vii + 111 p., 46 figs., 31 tables, 2 app. NTIS Access. No. PB82-254111.
- 14. Ecosystem Definition and Community Structure of the Macrobenthos of the NEMP Monitoring Station at Pigeon Hill in the Gulf of Maine. By Alan W. Hulbert, Kenneth J. Pecci, Jonathan D. Witman, Larry G. Harris, James R. Sears, and Richard A. Cooper. May 1982. xii + 143 p., 16 figs., 10 tables, 9 app. NTIS Access. No. PB83-112474.
- 15. Seasonal Phytoplankton Assemblages in Northeastern Coastal Waters of the United States. By Harold G. Marshall and Myra S. Cohn. July 1982. vi + 31 p., 8 figs., 2 tables. NTIS Access. No. PB83-116715.
- 16. Contaminants in New York Bight and Long Island Sediments and Demersal Species, and Contaminant Effects on Benthos, Summer 1980. By Robert N. Reid, John E. O'Reilly, and Vincent S. Zdanowicz, eds. September 1982. x + 96 p., 36 figs., 21 tables. NTIS Access. No. PB83-152116.
- 17. Summary of the Physical Oceanographic Processes and Features Pertinent to Pollution Distribution in the Coastal and Offshore Waters of the Northeastern United States, Virginia to Maine. By Merton C. Ingham (ed.), Reed S. Armstrong, J. Lockwood Chamberlin, Steven K. Cook, David G. Mountain, Ronald J. Schlitz, James P. Thomas, James J. Bisagni, John F. Paul, and Catherine E. Warsh. December 1982. vi + 166 p., 21 figs., 2 tables. NTIS Access. No. PB83-156364.
- 18. Stock Discrimination of Summer Flounder (Paralichthys dentatus) in the Middle and South Atlantic Bights: Results of a Workshop. By Michael J. Fogarty, Glenn DeLaney, John W. Gillikin, Jr., John C. Poole, Daniel E. Ralph, Paul G. Scarlett, Ronal W. Smith, and Stuart J. Wilk. January 1983. iii + 14 p., 2 figs., 3 tables. NTIS Access. No. PB83-168856.
- 19. Environmental Benchmark Studies in Casco Bay Portland Harbor, Maine, April 1980. By Peter F. Larsen, Anne C. Johnson, and Lee F. Doggett. January 1983. xi + 173 p., 39 figs., 12 tables, 2 app. NTIS Access. No. PB83-184069.
- 20. Annual NEMP Report on the Health of the Northeast Coastal Waters of the United States, 1981. Northeast Monitoring Program Report No. NEMP-IV-82-65. February 1983. xii + 86 p., 21 figs., 15 tables, 1 app.

INFORMATION & PUBLICATIONS OFFICE
NORTHEAST FISHERIES CENTER
NATIONAL MARINE FISHERIES SERVICE, NOAA
WATER ST.
WOODS HOLE, MA 02543

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE
COM-210
U.S.MAIL

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS—Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS—Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS—Presentation of analyzed data generally in the form of maps showing distirbution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mamals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS—Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS—Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS—Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

ENVIRONMENTAL SCIENCE INFORMATION CENTER (D822)
ENVIRONMENTAL DATA AND INFORMATION SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
U.S. DEPARTMENT OF COMMERCE

6009 Executive Boulevard Rockville, MD 20852