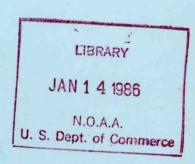
SH 11 .A2 N6 no.94



NOAA Technical Memorandum NMFS F/NWC-94

Data Report: 1983 Bottom Trawl Survey of the Eastern Bering Sea Continental Shelf

By Wendy A. Hirschberger

December 1985

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Marine Fisheries Service

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information, and has not received complete formal review, editorial control, or detailed editing.

DATA REPORT: 1983 BOTTOM TRAWL SURVEY OF THE # EASTERN BERING SEA CONTINENTAL SHELF

by

Wendy A. Hirschberger

Resource Assessment and Conservation Engineering Division
Northwest and Alaska Fisheries Center
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
7600 Sand Point Way N.E.
Seattle, Washington 98115

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

ABSTRACT

The 1983 data report is one in a series describing results of annual eastern Bering Sea resource assessment surveys. The report is divided into three sections: survey methods, results, and appendices. The methods section describes survey procedures, vessels and gear, the data collected, and procedures for its analysis. The results section presents a list of fish species taken during the survey and abundance estimates for fish and invertebrate families. Also included are rank orders of abundance of individual fish species, and geographic distributions, size and age compositions, and abundance estimates of principal groundfish species. The appendices contain computer listings of station and catch data, rank order of abundance for fish and invertebrates, population and biomass estimates by survey strata, population estimates by sex, age, and size groups, and age-length keys.

1,1607

CONTENTS

			Page
Introduct	ion		1
Survey Me	tho	ods	2
-		rea	2
		and Fishing Gear	2
		ection and Sampling Methods	9
Data A	nal	ysis	ç
Results			11
Haul a	nd	Catch Data	11
Enviro	nme	ental Conditions	11
Specie	s I	aken	13
Overal	1 A	abundance and Distribution of Fish and Invertebrate Groups.	13
Relati	ve	Importance of Individual Fish Species	22
Abunda	nce	e, Distribution, and Size and Age Composition of	
Prin	cip	oal Fish Species	22
Reference	s		86
Appendix	Α.	Station and Catch Data, 1983 Eastern Bering Sea Trawl	
		Survey	89
Appendix	в.	Rank Order of Relative Abundance for Fish and	
		Invertebrates	123
Appendix	c.	Population and Biomass Estimates for Principal Species	
		of Fish	135
Appendix	D.	Population Estimates by Sex and Size Groups for Principal	
		Species of Fish	189
Appendix	E.	Age-Length Keys for Principal Species of Fish	213
Appendix	F.	Estimated Age Composition for Principal Species of Fish	221

INTRODUCTION

The 1983 eastern Bering Sea survey, conducted by the Resource Assessment and Conservation Engineering (RACE) Division of the Northwest and Alaska Fisheries Center (NWAFC), was the 13th annual survey in a series which was begun in 1971 to assess crab and groundfish stocks in the region. Through 1974, survey effort was limited to the southeastern Bering Sea. In 1975, the survey area was broadened to include a major portion of the eastern Bering Sea continental shelf (Pereyra et al. 1976). The 1976-78 surveys were again more limited in scope. Since 1979, the survey area covered in 1975 has been sampled annually and is the standard area for interannual comparisons of survey results. However, every third year starting in 1979, the survey has included the shelf region between St. Matthew Island and St. Lawrence Island, and in Norton Sound. In addition, the slope has been surveyed by Japanese researchers in cooperation with U.S. efforts. Also included in these comprehensive triennial surveys is the assessment of off bottom concentrations of walleye pollock using hydroacoustic and midwater trawling techniques. Reports describing these post-1975 surveys are as follows: for 1978, Bohle and Bakkala 1984; for 1979, Bakkala et al. 1982 and Bakkala and Wakabayashi 1985; for 1980, Umeda and Bakkala 1983; for 1981, Sample et al. 1985; and for 1982, Bakkala et al. 1985.

The 1983 survey, conducted in June-August, was one of the less extensive surveys, encompassing the approximate area of the 1975 baseline survey. Two vessels fishing bottom trawl gear, the NOAA ship Chapman and the chartered vessel Alaska, were used to assess the condition and relative abundance of demersal fish and invertebrates on the eastern Bering Sea continental shelf. This report describes the methods used during the survey and data analyses, and gives survey results in terms of abundance, distribution, and biological

features (size and age) of the fish sampled. Survey information, relative to the crabs and other invertebrates sampled in 1983, has been presented by Otto et al. (1983). The report also contains appendices with computer listings of station and catch data and data analyses.

SURVEY METHODS

Survey Area

Sampling, during the 1983 eastern Bering Sea survey, included continental shelf waters from about 20 to 200 m, extending north from Unimak Island and the Alaska Peninsula to St. Matthew and Nunivak Islands. The station pattern of each vessel is illustrated in Figure 1. Also shown are survey subdivisions, which are similar to those established for the 1975 baseline survey (Pereyra et al. 1976).

Table 1 shows the total area of each subarea and the actual and planned sampling density. Sampling effort was uniform (one station per 400 nmi) throughout the survey area with the exception of two regions around the Pribilof and St. Matthews Islands (Fig. 1), where sampling density was increased to provide more precise regional estimates of crab abundance and distribution. In the data analyses, the high density areas were considered as separate strata to prevent biases in abundance estimates from nonuniform sampling densities.

Vessels and Fishing Gear

Vessel characteristics of the NOAA ship <u>Chapman</u> and the chartered vessel

<u>Alaska</u> are given in Table 2. Both vessels were equipped with a modified 83-112

eastern trawl (Table 3).

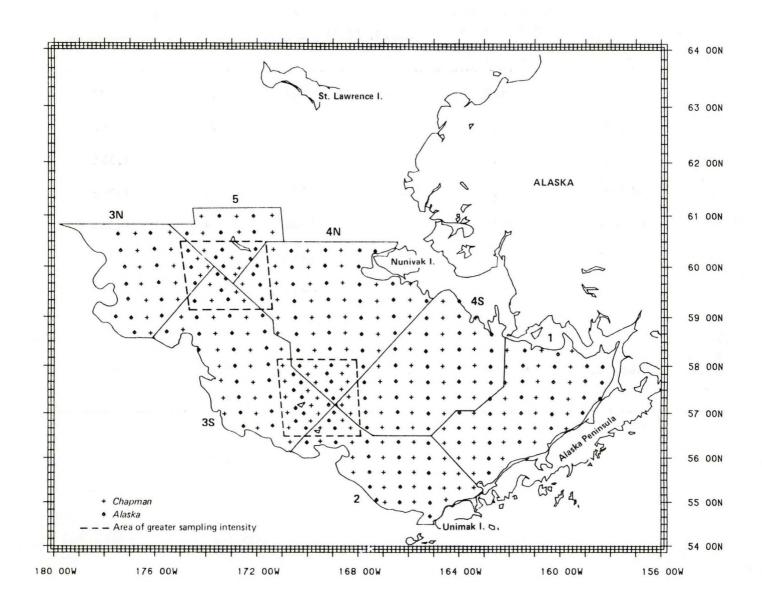


Figure 1.--Sampling stations and survey subareas used in the analysis of the 1983 survey data. Sampling density was increased in the vicinity of the Pribilof and St. Matthew Islands to improve the sampling of crab stocks in these areas.

Table 1.--Size of subareas and planned and actual sampling densities by subarea for the 1983 bottom trawl survey.

Area	Proportion of total area			Actual sa densi	
(km ²)		No. stns.	km ² /stn.	No. stns.	km ² /stn.
78,694	0.169	59	1,334	58	1,357
60,864	0.131	47	1,295	45	1,353
48,013	0.103	46	1,044	32	1,500
80,917	0.174	61	1,327	67	1,208
91,678	0.197	68	1,348	74	1,239
81,503	0.175	57	1,430	58	1,405
22,843	0.049	33	692	20	1,142
464,512	1.000	371	1,252	354	1,312
	(km ²) 78,694 60,864 48,013 80,917 91,678 81,503 22,843	Area (km ²) 78,694 0.169 60,864 0.131 48,013 0.103 80,917 0.174 91,678 0.197 81,503 0.175 22,843 0.049	Area (km²) total area densimo stns. 78,694 0.169 59 60,864 0.131 47 48,013 0.103 46 80,917 0.174 61 91,678 0.197 68 81,503 0.175 57 22,843 0.049 33	Area (km²) total area density No. stns. km²/stn. 78,694 0.169 59 1,334 60,864 0.131 47 1,295 48,013 0.103 46 1,044 80,917 0.174 61 1,327 91,678 0.197 68 1,348 81,503 0.175 57 1,430 22,843 0.049 33 692	Area (km²) 78,694 0.169 59 1,334 58 60,864 0.131 47 1,295 45 48,013 0.103 46 1,044 32 80,917 0.174 61 1,327 67 91,678 0.197 68 1,348 74 81,503 0.175 57 1,430 58 22,843 0.049 33 692 20

Table 2. -- Vessels participating in the 1983 bottom trawl survey.

	Overall	Gross		Survey	period
Vessel	length (m)	tonnage	Horsepower	Start	Start Finish
R/V Chapman	38.7	429	1,165	3 June	3 June 13 Aug
R/V Alaska	30.5	193	009	3 June	3 June 13 Aug

Table 3. -- Description of bottom trawl used during the 1983 survey.

					W	esh sizes		Accessory gear	gear
	Headrope	Footrope	Ope	ning	Wing and	Belly and	Codend	Door width	Dandyline
Trawl	length	length	h Vert. Horiz.	Horiz.	body codend lin	codend	liner	and length	length
	(H)	(m)	(m)	(m)	(uu)	(mm)	(mm)	(H)	(H)
83-112	25.3	34.1	2.3	16.5	102	68	32	1.8 x 2.7	54.9

Relative fishing powers of the two vessels were determined by having the vessels fish alternate rows of stations throughout most of the survey area and then comparing catch per unit effort (CPUE) values. The method of Geisser and Eddy (1979) was used to determine whether the CPUE distributions from the two vessels were the same or different. If the tests indicated that they were the same for a given species or that there were insufficient data to test for differences, the vessels were considered to have equal fishing power for that particular species. If the tests revealed that the sampled CPUE distributions were significantly different, then the most efficient vessel was considered to produce the more representative population abundance estimates. For those species having significant differences, the less efficient vessel's catch rates were adjusted to those of the most efficient vessel by applying the mean catch rate ratios from Table 4.

Stations used for comparing fishing powers (Fig. 2) were selected by first removing all nonpaired stations and pairs of stations where one vessel fished bottom water <0°C while the other vessel fished water >0°C. These latter stations might reflect environmentally induced differences in catch rates rather than differences in catch efficiences of the vessels. The stations were then paired from east to west, which resulted in a maximum number of pairings. The tests were based on a comparison of catch rates from 310 stations (155 per vessel) and indicated that the Chapman had a significantly higher fishing power for seven individual fish species or species groups: yellowfin sole, rock sole, Greenland turbot, arrowtooth flounder, Pacific halibut, other flounders, and eelpouts. The Alaska was more efficient for two invertebrate groups: shrimp and octopus.

Table 4.--Comparison of relative fishing powers of the chartered vessel Alaska and the NOAA ship Chapman for the 1983 eastern Bering Sea survey.a

		tch rates	Ratio of catch rates Alaska/Chapman			
Species	Alaska	Chapman				
Walleye pollock	125.29	151.68	0.83			
Pacific cod	27.14	23.44	1.16			
Sablefish	0.58	0.17	3.50			
Pacific ocean perch	-	<0.01	3.50			
Pacific herring	1.87	1.33	1.40			
Yellowfin sole	61.79	88.02	0.70b			
Rock sole	10.79	19.77	0.55b			
Flathead sole ^C	5.45	5.97	0.91			
Alaska plaice	12.00	15.14	0.79			
Greenland turbot	0.41	0.67	0.60b			
Arrowtooth flounder ^C	2.00	2.78	0.72b			
Pacific halibut	1.20	1.95	0.62b			
Rex sole	0.14	0.15	0.93			
Other flounders	0.58	1.37	0.43b			
Smelts	0.10	0.15	0.65			
Sculpins	5.69	6.73	0.85			
Snailfish	0.04	0.06	0.74			
Poachers	0.29	0.33	0.88			
Eelpouts	1.11	2.36	0.47 ^b			
Skates	3.17	3.82	0.83			
Other fish	0.04	0.08	0.55			
Shrimp	0.08	0.04	0.48 ^b			
Octopus	0.04	0.01	0.24b			

^aComparison based on 155 pairs of stations from alternate row fishing during the 1983 survey.

 $^{^{\}mathrm{b}}$ Geisser and Eddy (1979) procedure indicates that the sampled CPUE distributions were significantly different.

^CFlathead sole includes Bering flounder; Arrowtooth flounder includes Kamchatka flounder.

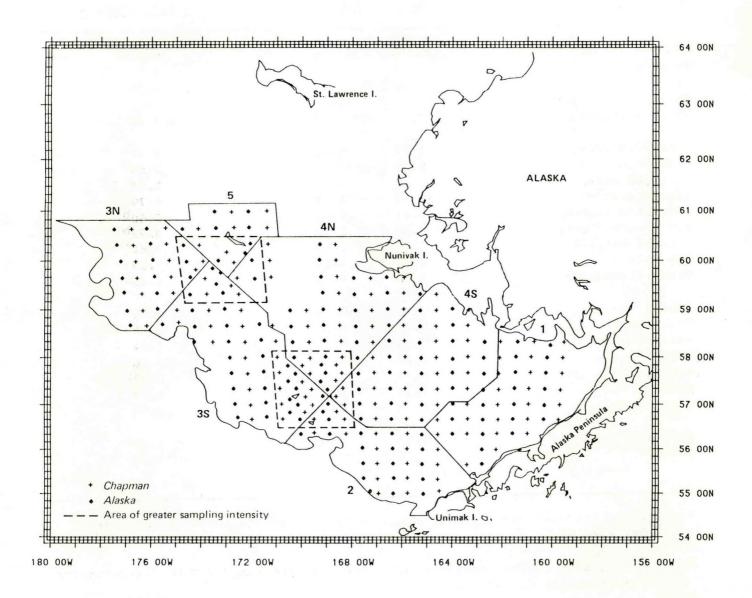


Figure 2.--Sampling stations (155 pairs) used for determining relative fishing powers of the vessels Alaska and Chapman during the 1983 eastern Bering Sea survey.

Data Collection and Sampling Methods

Sampling procedures established for the 1975 baseline survey (Pereyra et al. 1976) have formed the basis for the collection of catch and biological data on all subsequent surveys. Descriptions of these methods can also be found in Smith and Bakkala (1982) and Wakabayashi et al. (1985). Tow durations were 30 min unless circumstances required that the gear be retrieved sooner. Catches up to 2,500 lb (1,150 kg) were completely processed, while larger catches were processed according to methods established by Hughes (1976) which involves processing a subsample and expanding the subsampled weights and numbers of each species to the entire catch. The fish and economically important invertebrates captured (or subsampled) were sorted to the species level in most cases; other invertebrates were sorted to the lowest taxonomic level practicable within time constraints of the survey.

A random sample of up to 300 walleye pollock and up to 200 other commercially important fish species were measured according to sex at most stations where they appeared in the catches. Table 5 lists the number of fish measured and the number of age samples obtained. Scales were taken from Pacific cod <65 cm and from Pacific herring; scales and otoliths were collected from Pacific cod >65 cm. Otoliths were collected from all other species. Age structures were stratified by sex and size class.

Data Analysis

Detailed descriptions of analytical methods are given by Smith and Bakkala (1982) and Wakabayashi et al. (1985). At each station catches were standardized to a basic sampling unit of kilograms per hectare (ha = $10,000m^2$). These values were then used to compute mean CPUE values by species and strata. Mean strata CPUE values were weighted by strata areas to obtain mean catch

Table 5.--Numbers of fish measured and age structures collected during the 1983 bottom trawl survey in the eastern Bering Sea.

Species	Number measured	Number of age structures collected
Walleye pollock	78,033	1,989
Pacific cod	11,353	747
Yellowfin sole	33,924	739
Flathead sole	17,284	590
Rock sole	16,285	452
Alaska plaice	11,624	369
Arrowtooth flounder	6,889	593
Pacific halibut	996	
Greenland turbot	951	335
Pacific herring	2,202	154
Sablefish	155	To years.
Rex sole	82	 1
Longhead dab	157	-
Saffron cod	135	
		· ·
Total	180,070	5,968

aLengths were measured from the anterior tip of the head to the end of the midcaudal rays; this represented measurements of total length (TL) or fork length (FL), depending on the shape of the tail (TL: yellowfin sole, flathead sole, rock sole, Alaska plaice, longhead dab, and rex sole, FL: remaining species).

bOtoliths were collected from all species with the following exceptions: scales were collected from Pacific herring and Pacific cod <65 cm, and scales and otoliths were collected from Pacific cod >65 cm.

rates, by species, for the overall survey area. The "area swept" method of Alverson and Pereyra (1969) was used to calculate biomass (standing stock) estimates.

Length frequency subsamples were expanded to the total catch per standard sampling unit in order to obtain the number of individuals within sex and size classes for each station. These estimated length compositions at individual stations were then expanded to the total strata and summed over strata to obtain length composition estimates for the total survey area. Age composition was estimated by using age-length keys, stratified by sex and size group, to apportion the computed population distribution to ages. To date, only three 1983 age structure collections have been aged: walleye pollock, yellowfin sole and rock sole.

RESULTS

Haul and Catch Data

Appendix A lists the haul and catch data for each survey vessel (Alaska and Chapman). Station data include the vessel name, cruise and haul number, date, location, distance fished, and tow depth and duration. Catch data include weights (kg) of fish and invertebrate species encountered at each station.

Environmental Conditions

Bottom temperatures during the June-August survey period ranged from -1.0° to 9.0°C (Fig. 3). Residual cold water (<2.0°C) from winter cooling was found in the north central shelf area. Warmest water was found near the Alaska mainland and temperatures were progressively cooler toward the middle shelf, then slightly warmer near the shelf edge.

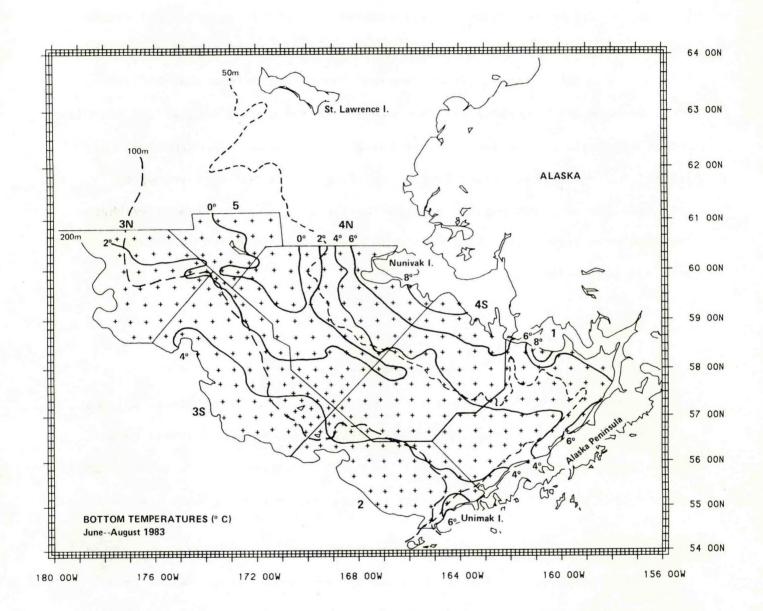


Figure 3.--Distribution of bottom water temperatures observed during the 1983 eastern Bering Sea survey.

Surface water temperatures observed during the survey ranged from 4.5° to 11.6°C (Fig. 4). Most of the surface water over the shelf ranged between 8° and 9°C. A warmer cell (10°C) appeared in the Pribilof and St. Matthew Islands regions. A cooler cell (6-7°C) extended southeast of Nunivak Island.

Figure 5 compares annual mean bottom water temperatures in the southeast Bering Sea in 1963-83. Mean temperatures for 1963-73 (Coachman and Charnell 1979) were collected in June by the Japanese research vessel Oshoro

Maru between depths of 50 and 100 m and from a line connecting Nunivak Island and the Pribilof Islands to the Alaska Peninsula. The mean temperature data from 1972-83 NWAFC surveys (June-August) were collected at sampling stations from depths of about 30 to 200 m, and between lat. 58°N and the Alaska Peninsula. The 1983 mean bottom temperature of 3.6°C was moderately warm in relation to those observed in other years which have ranged from 1.2° to 4.8°C.

Species Taken

A list of fish species encountered during the survey is presented in

Table 6. A total of 85 different species were taken, representing 20 families.

Additionally, some specimens were taken which were only identified to genus.

Overall Abundance and Distribution of Fish and Invertebrate Groups

Biomass estimates for the major taxonomic groups of fish and invertebrates from the 1983 survey are listed in Tables 7 and 8. The estimate for the overall survey area was 16.1 million metric tons (t), with fish accounting for 87.4% (14 million t) of the total biomass and invertebrates accounting for the remaining 12.6% (2 million t). Over half (61%) of the total biomass was distributed throughout the three inshore subareas (1, 4S, 4N).

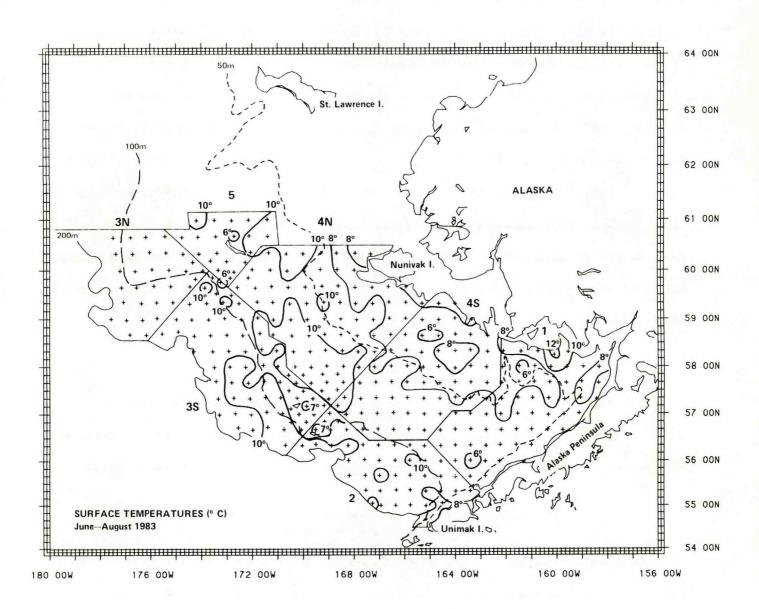


Figure 4.--Distribution of surface water temperatures observed during the 1983 eastern Bering Sea survey.

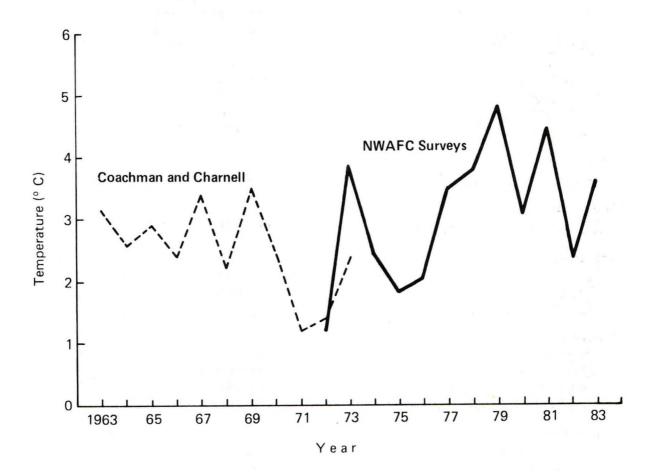


Figure 5.--Mean bottom water temperature in the southeastern Bering Sea 1963-83, based on data from a Japanese research vessel (Coachman and Charnell 1979) and from NWAFC annual survey data.

Table 6.--List of fish species identified during the 1983 eastern Bering Sea trawl survey.

Family and species ^a	Common name ^a
Squalidae	
Squalus acanthias	Spiny dogfish
Rajidae	
Bathyraja interruptab	Bering skate
Bathyraja kincaidib	Sandpaper skate
Bathyraja rosispinisb	Flathead skate
Bathyraja smirnovi ^C	Golden skate ^C
Raja sp.	Skate unid.
Raja aleutica	Aleutian skate
Raja binoculata	Big skate
Raja parmifera	Alaska skate
Raja stellulata	Starry skate
The state of the s	
Salmonidae	
Oncorhynchus keta	Chum salmon
Clupeidae	
Clupea harengus pallasi	Pacific herring
Osmeridae	
Osmerus mordax	Rainbow smelt
Mallotus villosus	Capelin
Thaleichthys pacificus	Eulachon
Gadidae	
Boreogadus saida	Arctic cod
Eleginus gracilis	Saffron cod
Gadus macrocephalus	Pacific cod
Theragra chalcogramma	Walleye pollock
Zoarcidae	Chart Str. 12.3
Lycodes brevipes	Shortfin eelpout
Lycodes mucosus	Eelpout
Lycodes palearis	Wattled eelpout
Lycodes raridens ^d	Sparse toothed lycod ^d
Lycodes turneri	Polar eelpout
Scorpaenidae	
Sebastes aleutianus	Rougheye rockfish
Sebastes alutus	Pacific ocean perch
Sebastes polyspinis	Northern rockfish

Table 6.--Continued.

Family and speciesa

Common namea

Hexagrammidae

Hexagrammos sp.

Hexagrammos decagrammus
Hexagrammos lagocephalus
Hexagrammos stelleri
Pleurogrammus monopterygius

Anoplopomatidae
Anoplopoma fimbria

Cottidae

Cottidae sp. Dasycottus setiger Enophrys lucasi Gymnocanthus galeatus Gymnocanthus pistilligerd Gymnocanthus tricuspis Hemilepidotus hemilepidotus Hemilepidotus jordani Hemitripterus bolini Icelus sp. Icelus canaliculatusd Icelus spiniger Malacocottus kincaidi Malacocottus zonuruse Melletes papilio Myoxocephalus sp. Myoxocephalus jaok Myoxocephalus polycanthocephalus Myoxocephalus verrucosus^d Triglops sp. Triglops forficata Triglops pingeli Triglops scepticus

Agonidae

Agonopsis vulsa
Agonus acipenserinus
Anoplagonus inermis
Aspidophoroides bartoni
Bathyagonus sp.
Bathyagonus alascanus
Ocella dodecaedron
Ocella verrucosa
Sarritor frenatus

Greenling unid.
Kelp greenling
Rock greenling
Whitespotted greenling
Atka mackerel

Sablefish

Sculpin unid. Spinyhead sculpin Leister sculpin Armorhead sculpin Threaded sculpind Arctic staghorn sculpin Red Irish lord Yellow Irish lord Bigmouth sculpin Sculpin unid. Sculpin Thorny sculpin Blackfin sculpin Darkfin sculpine Butterfly sculpin Sculpin unid. Plain sculpin Great sculpin Warty sculpind Sculpin unid. Scissortail sculpin Ribbed sculpin Spectacled sculpin

Northern spearnose poacher Sturgeon poacher Smooth alligatorfish Aleutian alligatorfish Poacher unid. Gray starsnout Bering poacher Warty poacher Sawback poacher

Table 6.--Continued.

Family and species ^a	Common namea
Cyclopteridae	
Careproctus sp.	Snailfish unid.
Careproctus rastrinusd	Snailfish
Careproctus scottaed	Snailfish
Cyclopteridae sp.	Snailfish unid.
Eumicrotremus orbis	Pacific spiny lumpsucker
Liparis sp.	Snailfish unid.
Trichodontidae	
Trichodon trichodon	Pacific sandfish
Bathymasteridae	1.50
Bathymaster signatus	Searcher
Anarhichadidae	
Anarhichas orientalis	Bering wolffish
Stichaeidae	
Lumpenella longirostris	Longsnout prickleback
Lumpenus maculatus	Daubed shanny
Lumpenus sagitta	Snake prickleback
Lumpenus fabricii	Slender eelblenny
Poroclinus rothrocki	Whitebarred prickleback
Zaproridae	
Zaprora silenus	Prowfish
Ammodytidae	
Ammodytes hexapterus	Pacific sand lance
Pleuronectidae	
Atheresthes evermanni	Kamchatka flounder
Atheresthes stomias	Arrowtooth flounder
Glyptocephalus zachirus	Rex sole
Hippoglossoides elassodon	Flathead sole
Hippoglossoides robustus	Bering flounder
Hippoglossus stenolepis	Pacific halibut
Isopsetta isolepis	Butter sole
Lepidopsetta bilineata	Rock sole

Table 6.--Continued.

Family and speciesa

Common namea

Limanda aspera
Limanda proboscidea
Platichthys stellatus
Pleuronectidae sp.
Pleuronectes quadrituberculatus
Psettichthys melanostictus

Reinhardtius hippoglossoides

Yellowfin sole
Longhead dab
Starry flounder
Flatfish unid.
Alaska plaice
Sand sole
Greenland turbotf

a Nomenclature from Robins (1980), unless noted.

bEschmeyer et al. (1983).

CShiino (1972).

dQuast and Hall (1972).

eKessler (1985).

fMarket name.

Table 7.--Summary of apparent biomasses of major fish species and species groups taken during the 1983 bottom trawl survey.

	Estimated biomass for total survey	Proportion of total	n 		Estima	ted biomass	by subare	a (t)	
Taxon	area (t)a	biomassb	1	2	3N	35	4N	45	5
Gadidae (cods)									
Walleye pollock	5,986,265	0.373	1,034,708	1,135,696	422,146	1,820,614	711,202	514,617	347,282
Pacific cod	1,177,086	0.073	259,878	79,023	120,331	205,406	282,825		86,057
Other cods	5,117	<0.001	0	0	0	0	4,133	The second secon	3
Total cods	7,168,467	0.446	1,294,587	1,214,719	542,476	2,026,019	998,160	659,164	433,342
Pleuronectidae (flatfishes)									
Yellowfin sole	3,971,871	0.247	1,452,518	168,294	29	46,644	948,052	1,337,118	19,216
Rock sole	922,433	0.057	580,461	48,120	2,574	51,310	80,195	155,106	4,667
Flathead sole	278,130	0.017	53, 167	73,517	48,122	53,836	16,718	22,957	9,813
Alaska plaice	650,551	0.040	67,965	26, 165	362	30,121	272,977	220,656	32,305
Greenland turbot	31,241	0.002	13	1,994	15,652	11,628	1,139	208	608
Arrowtooth flounde	r 137,853	0.009	5,505	69,684	12,236	43,714	2,219	4,490	5
Pacific halibut	96,455	0.006	33,907	20,138	2,164	10,955	14,940	12,492	1,860
Other flatfishes	77,034	0.005	42,461	8,574	100	1,641	11,560	12,451	247
Total flatfish	6, 165, 569	0,384	2,235,998	416,487	81,237	249,850	1,347,800	1,765,478	68,720
Anoplopomatidae (sablefish)	18,247	0.001	0	6,217	0	12,030	0	0	C
Clupeidae (Pacific herring)	72,770	0.005	26,994	1, 180	110	22,144	20,169	1, 173	999
Cottidae (sculpins)	284,621	0.018	17,418	35,196	3,370	39,629	74,867	54,815	59,325
Zoarcidae (eelpouts)	136,967	0.009	212	2,464	40,944	7,108	46,698	1,209	38,331
Osmeridae (smelts)	5,617	<0.001	253	3,357	5	6	581	798	618
Agonidae (poachers)	14,424	0.001	1,706	277	40	222	8,823	3,353	3
Scorpaenidae (rockfis	h)								
Pacific ocean perc	h 27	<0.001	0	27	0	0	0	0	0
Other rockfish	619	<0.001	70	550	0	0	0	0	0
Total rockfish	646	<0.001	70	577	0	0	0	0	0
Cyclopteridae (snailfish)	2,109	<0.001	1	1	399	8	440	43	1,217
Hexagrammidae (greenlings)	490	<0.001	29	68	0	87	253	52	0
Rajidae (skates)	165,749	0.010	6,819	51,716	17,803	47,827	20,545	14,546	6,493
Other fish	11,487	0.001	39	6,369	190	2,835	1,912	135	6
Total fish	14,047,163	0.874	3,584,126	1,738,628	686.575	2,407,764	2 520 246	2 500 760	600 055

aRounding accounts for minor discrepancies between sums by subareas and total survey area and between sums of

taxonomic subgroups and major groups.

bProportion of total estimated biomass, fish and invertebrates combined, for the total survey area. Total estimated biomass = 16,068,330 t.

Table 8.--Summary of apparent biomasses of major invertebrate groups taken during the 1983 bottom trawl survey.

1 Page 4	Estimated biomass for	Proportio of	n		Estimate	ed biomass	by subare	ea (t)	
Taxon	total survey area (t) ^a	total biomass ^b	1	2	3N	3S	4N	4 S	5
Porifera (sponges)	86,385	0.005	35,134	48,754	0	492	69	530	1,407
Coelenterata (coelenterates)	75,849	0.005	9,709	17,810	712	23,869	7,669	14,835	1,245
Mollusca									
Gastropoda (snails)	264,114	0.016	20,840	25,695	23,519	49,558	68,979	69,954	5,570
Pelecypoda (bivalves Cephalopoda		<0.001	321	61	30	18	528	586	30
Squids	108	<0.001	0	1	82	24	0	0	0
Octopuses	10,579	0.001	0	8,493	433	1,572	0	0	82
Other mollusks	2	<0.001	0	0	0	0	0	0	2
Total mollusks	276,377	0.017	21,161	34,250	24,064	51,171	69,508	70,539	5,683
Crustacea									
Chionocetes sp. (Tanner crab)	412,057	0.026	22,086	34,275	49,604	126,567	108,309	49,000	22,216
Paralithodes sp. (king crab)	78,197	0.005	40,903	430	1,509	18,608	2,659	6,776	7,312
Other crab ^C	139,480	0.009	18,021	13,095	1,354	8,102	37,615	57,094	4,199
Total crab	629,735	0.039	81,010	47,800	52,467	153,277	148,583	112,871	33,728
Total shrimp	3,714	<0.001	32	51	3,029	310	123	84	85
Other crustaceans	115	<0.001	10	106	0	0	0	0	0
Total crustaceans	633,564	0.039	81,051	47,957	55,496	153,586	148,706	112,955	33,813
Echinodermata									
Asteroidea (starfish)	642,883	0.040	186,816	13,492	36,330	49,393	169,016	184,169	3,666
Ophiuroidea (brittlestars)	94,166	0.006	2,852	16,996	13,491	36,727	10,107	13,748	245
Echinoidea (sea urchins)	25,373	0.002	4,734	20,139	228	229	10	23	9
Holothuroidea (sea cucumbers)	6,582	<0.001	6,433	83	0	46	0	2	19
Total echinoderms	769,004	0.048	200,835	50,711	50,050	86,395	179,132	197,942	3,939
Ascidiacea	127,944	0.008	20,700	327	13	58,076	20,961	26,159	1,707
Other invertebrates	52,044	0.003	0	4	216	7,352	41,352	15	3,105
Total invertebrates	2,021,167	0.126	368,591	199,813	130,551	380,942	467,396	422,976	50,899

^aRounding accounts for minor discrepancies between sums by subareas and total survey area and between sums of taxonomic subgroups and major groups.

bProportion of total estimated biomass, fish and invertebrates combined, for the total survey area. Total estimated biomass = 16,068,330 t.

CMajor species included in other crab category: Korean horsehair crab, hermit crabs, and hyas crabs.

Figures 6-14 show the distributions and relative abundance of total fish and major families of fish during June-August 1983. Most of the larger CPUE values for total fish were documented from inner Bristol Bay stretching north along the inner Bering Shelf in subareas 1 and 4S (Fig. 6). The highest CPUE value (exceeding 1500 kg/ha) was found east of St. George Island (Pribilof Islands group).

Relative Importance of Individual Fish Species

Table 9 presents the top 20 fish species ranked in order of relative abundance for the total survey area, and Tables 10-16 show the ranks by subarea. Appendix B lists the rank order of abundance for all species of fish and invertebrates taken in the survey area.

For the overall survey area, the top 20 fish species represented 86% of the total catch; walleye pollock and yellowfin sole comprised greater than half of the total catch. Walleye pollock was the highest ranking species in the outer shelf subareas (2, 3S, 3N) and the northern most inner shelf subarea (5), while yellowfin sole dominated catches from inner shelf subareas (1, 4S, 4N). Yellowfin sole also ranked second in subarea 2, while Pacific cod ranked second in subareas 3S, 3N, and 5. Walleye pollock was the second most abundant species in subareas 1, 4S, and 4N. Mean CPUEs for walleye pollock in the outer shelf areas ranged from 88 to 225 kg/ha, while inner shelf values ranged from 63 to 132 kg/ha. Yellowfin sole mean CPUE values ranged from 103 to 185 kg/ha in the inner shelf areas.

Abundance, Distribution, and Size and Age Composition of Principal Fish Species

Abundance estimates (CPUE, biomass, and population numbers), geographical distributions, and size composition for principal species of fish taken during the 1983 eastern Bering Sea survey are shown in Figures 15-44 and Tables 17-31.

Age composition data are also presented for the three species from which age structures have been read: walleye pollock, yellowfin sole, and rock sole (Figs. 17, 26, 29). Listings of the computer analyses of abundance and biological data for the individual species, summarized in the above tables and figures, are contained in Appendices C-F.

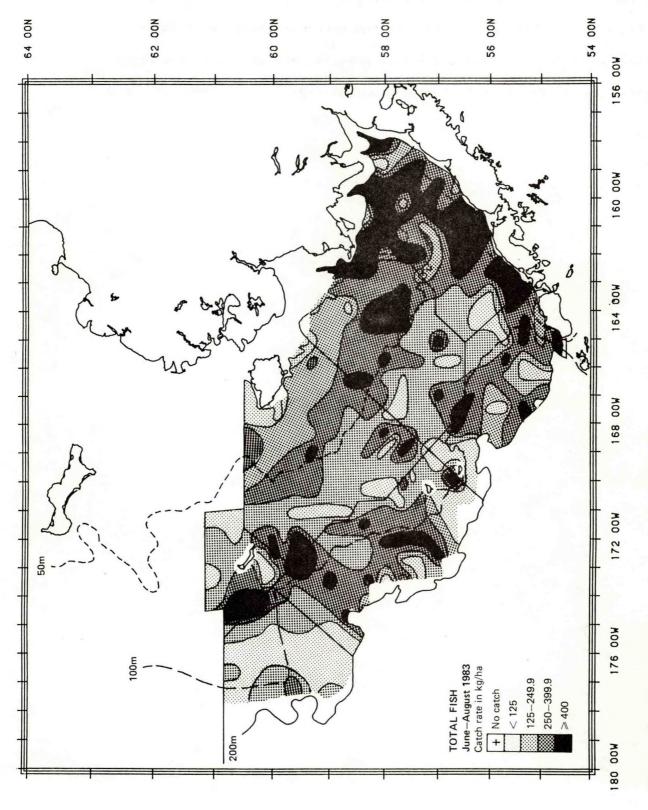


Figure 6.--Distribution and relative abundance of total fish taken during the 1983 survey.

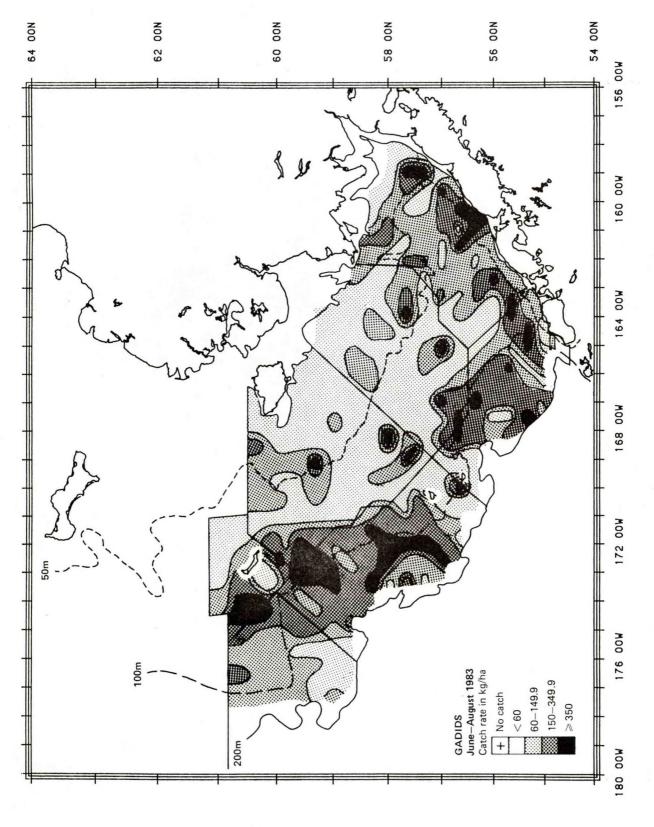


Figure 7.--Distribution and relative abundance of total gadids (codfishes) taken during the 1983 survey.

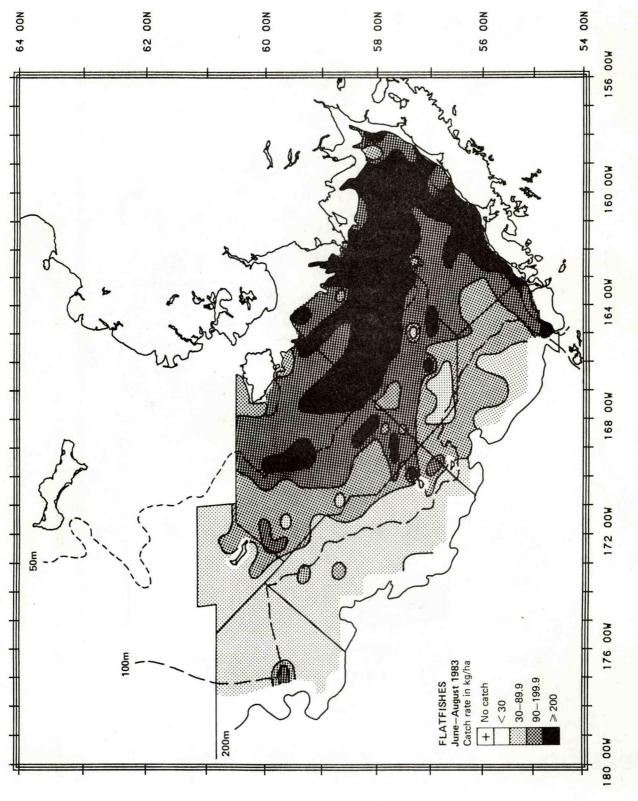


Figure 8. -- Distribution and relative abundance of total flatfishes taken during the 1983 survey.

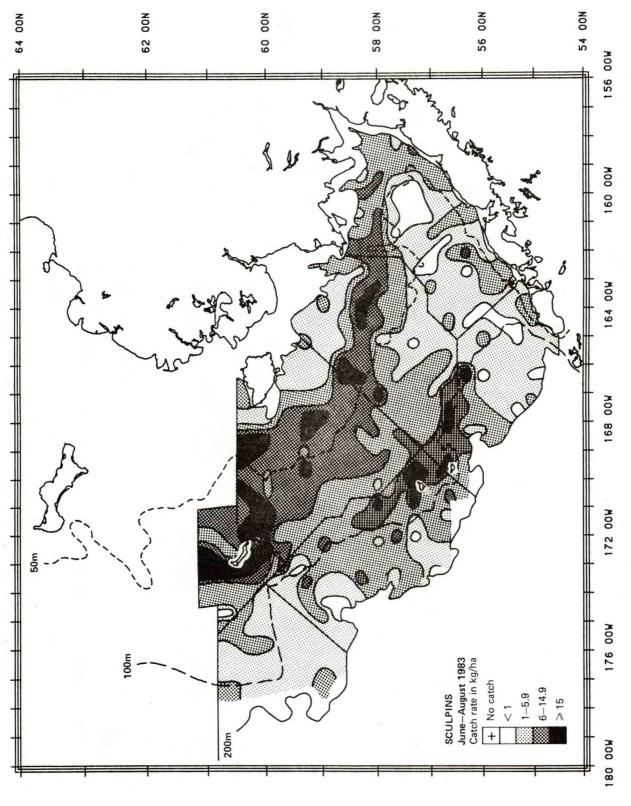


Figure 9. -- Distribution and relative abundance of total sculpins taken during the 1983 survey.

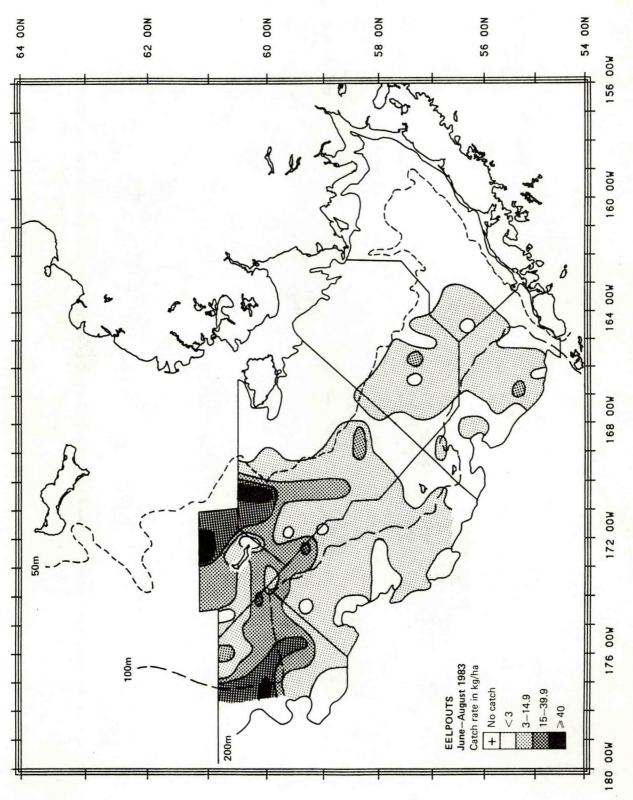


Figure 10. -- Distribution and relative abundance of total eelpouts taken during the 1983 survey.

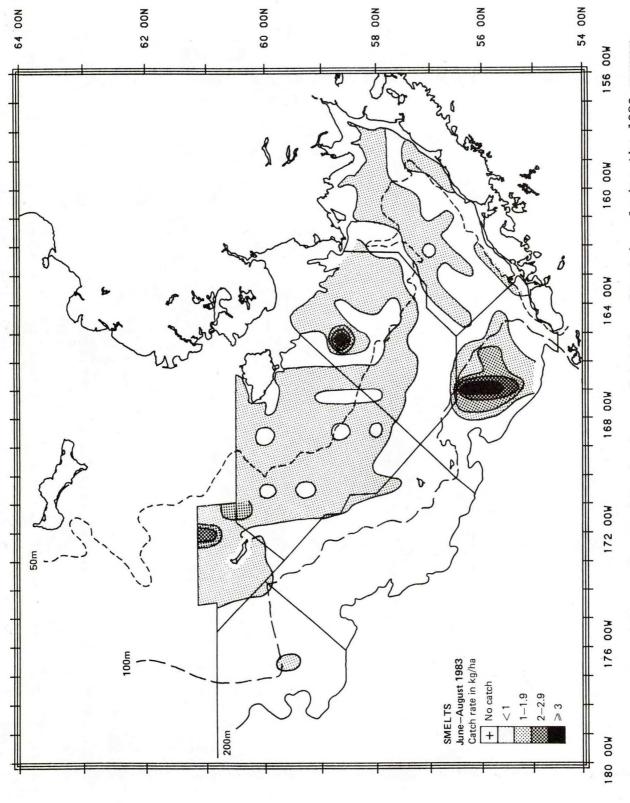


Figure 11, -- Distribution and relative abundance of total smelts taken during the 1983 survey.

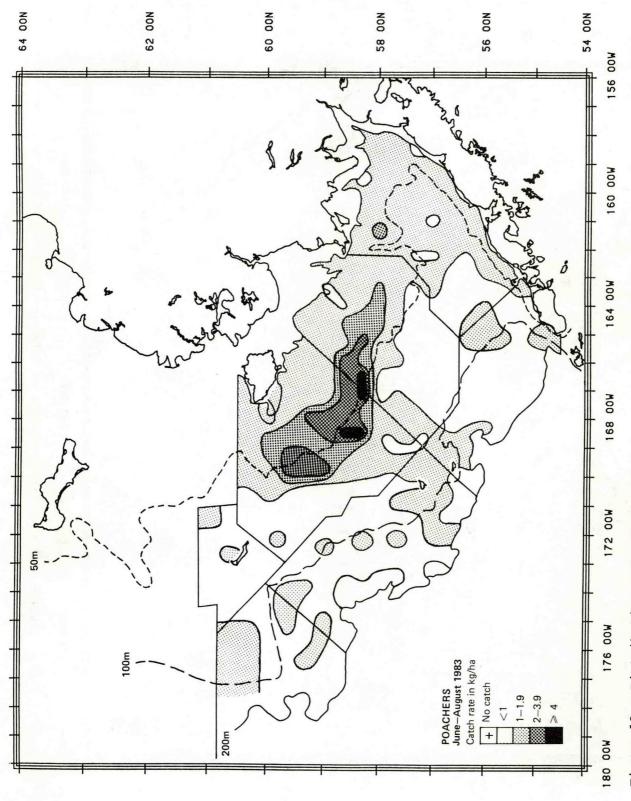


Figure 12. -- Distribution and relative abundance of total poachers taken during the 1983 survey.

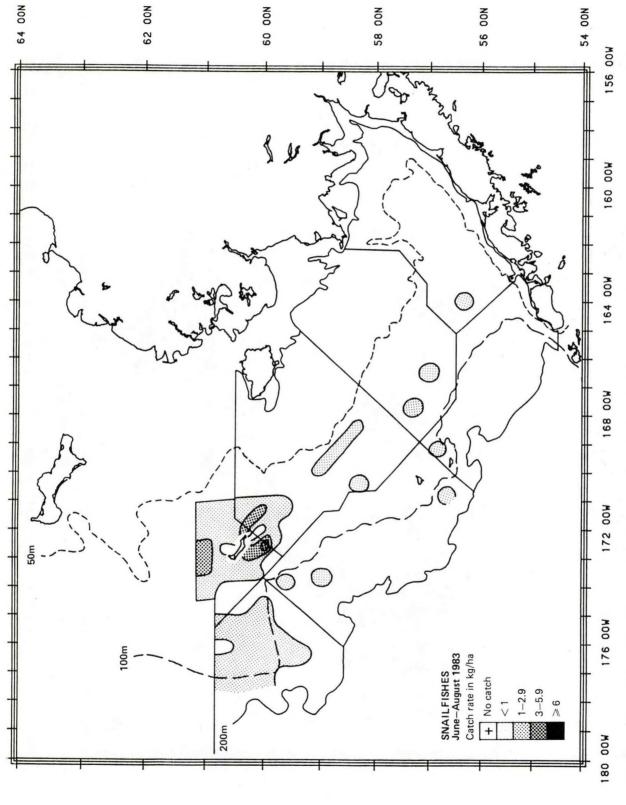


Figure 13. -- Distribution and relative abundance of total snailfishes (includes lumpsuckers) taken during the 1983 survey.

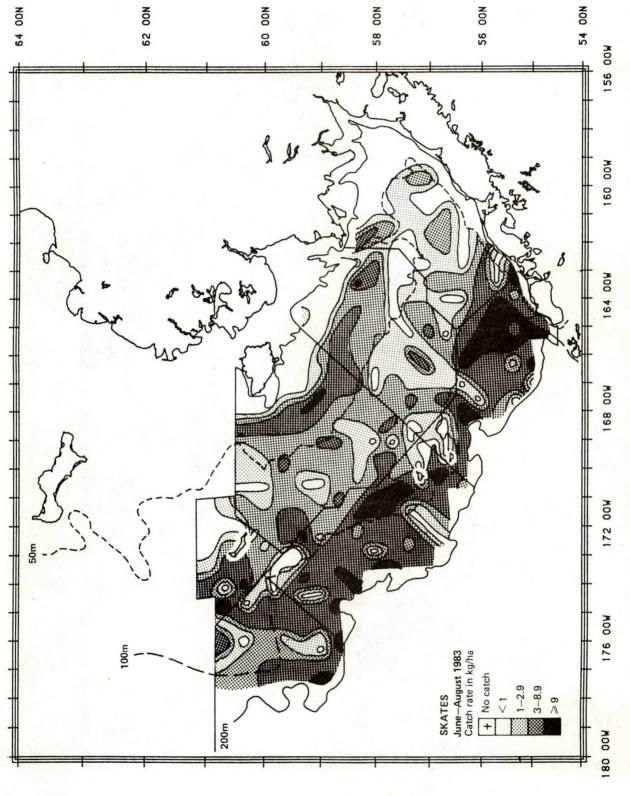


Figure 14. -- Distribution and relative abundance of total skates taken during the 1983 survey.

Table 9.--Rank order of abundance of the 20 most abundant species of fish taken during the 1983 bottom trawl survey, total area.

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion
1	Walleye pollock	128.85	0.373	0.373
2	Yellowfin sole	85.50	0.247	0.620
3	Pacific cod	25.34	0.073	0.693
4	Rock sole	19.86	0.057	0.750
5	Alaska plaice	14.00	0.040	0.791
6 - 6 - 0	Flathead sole ^C	5.99	0.017	0.808
7	Arrowtooth flounder ^C	2.97	0.009	0.817
8	Pacific halibut	2.08	0.006	0.823
9	Sparse toothed lycod	1.82	0.005	0.828
10	Plain sculpin	1.70	0.005	0.833
11	Pacific herring	1.57	0.005	0.837
12	Starry skate	1.21	0.003	0.841
13	Longhead dab	1.13	0.003	0.844
14	Alaska skate	1.07	0.003	0.847
15	Myoxocephalus sp.	1.02	0.003	0.850
16	Butterfly sculpin	0.98	0.003	0.853
17	Yellow Irish lord	0.90	0.003	0.856
18	Shortfin eelpout	0.87	0.003	0.858
19	Skate (unidentified)	0.85	0.002	0.861
20	Great sculpin	0.76	0.002	0.863

aTotal effort = 1565.2 ha.

bProportion of total CPUE, all fish and invertebrates combined. Total CPUE = 345.87 kg/ha.

^CFlathead sole combined with Bering flounder; arrowtooth flounder combined with Kamchatka flounder.

Table 10.--Rank order of abundance of the 20 most abundant species of fish taken during the 1983 bottom trawl survey, Subarea 1.

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion
1	Yellowfin sole	184.56	0.367	0.367
2	Walleye pollock	131.47	0.262	0.629
3	Rock sole	73.75	0.147	0.776
4	Pacific cod	33.02	0.066	0.842
5	Alaska plaice	8.64	0.017	0.859
6	Flathead sole ^C	6.76	0.013	0.872
7	Pacific halibut	4.31	0.009	0.881
8	Longhead dab	4.09	0.008	0.889
9	Pacific herring	3.43	0.007	0.896
10	Starry flounder	1.21	0.002	0.898
11	Great sculpin	1.12	0.002	0.901
12	Plain sculpin	0.97	0.002	0.903
13	Arrowtooth flounder ^C	0.70	0.001	0.904
4	Starry skate	0.56	0.001	0.905
5	Sturgeon poacher	0.21	<0.001	0.906
16	Aleutian skate	0.12	<0.001	0.906
17	Yellow Irish lord	0.12	<0.001	0.906
18	Alaska skate	0.12	<0.001	0.906
9	Rex sole	0.07	<0.001	0.906
20	Skate (unidentified)	0.06	<0.001	0.907

aTotal effort = 263.2 ha.

bProportion of total CPUE, all fish and invertebrates combined.

Total CPUE = 502.22 kg/ha.

^CFlathead sole combined with Bering flounder; arrowtooth flounder combined with Kamchatka flounder.

Table 11.--Rank order of abundance of the 20 most abundant species of fish taken during the 1983 bottom trawl survey, Subarea 2.

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion
1	Walleye pollock	186.56	0.586	0.586
2	Yellowfin sole	27.65	0.087	0.673
3	Pacific cod	12.98	0.041	0.713
4	Flathead sole ^C	12.08	0.038	0.751
5	Arrowtooth flounder ^C	11.45	0.036	0.787
6	Rock sole	7.90	0.025	0.812
7	Alaska plaice	4.30	0.013	0.826
8	Starry skate	4.27	0.013	0.839
9	Yellow Irish lord	3.40	0.011	0.850
10	Pacific halibut	3.31	0.010	0.860
11	Alaska skate	1.95	0.006	0.866
12	Aleutian skate	1.29	0.004	0.870
13	Bigmouth sculpin	1.08	0.003	0.074
14	Sablefish	1.02	0.003	0.877
15	Armorhead sculpin	0.98	0.003	0.880
16	Searcher	0.98	0.003	0.883
17	Rex sole	0.81	0.003	0.886
18	Sand sole	0.59	0.002	0.888
19	Eulachon	0.55	0.002	0.889
20	Skate (unidentified)	0.52	0.002	0.890

aTotal effort = 193.3 ha.

bProportion of total CPUE, all fish and invertebrates combined. Total CPUE = 318.43 kg/ha.

^CFlathead sole combined with Bering flounder; arrowtooth flounder combined with Kamchatka flounder.

Table 12.--Rank order of abundance of the 20 most abundant species of fish taken during the 1983 bottom trawl survey, Subarea 3N.

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion
1	Walleye pollock	87.91	0.517	0.517
2	Pacific cod	25.06	0.147	0.664
3	Flathead sole ^C	10.02	0.059	0.723
4	Shortfin eelpout	7.84	0.046	0.769
5	Greenland turbot	3.26	0.019	0.788
6	Arrowtooth flounder ^C	2.55	0.015	0.803
7	Alaska skate	1.50	0.009	0.812
8	Starry skate	1.07	0.006	0.818
9	Wattled eelpout	0.64	0.004	0.822
10	Rock sole	0.54	0.003	0.825
11	Aleutian skate	0.53	0.003	0.828
12	Skate (unidentified)	0.49	0.003	0.831
13	Pacific halibut	0.45	0.003	0.834
14	Bigmouth sculpin	0.20	0.001	0.835
15	Bering skate	0.13	0.001	0.835
16	Great sculpin	0.13	0.001	0.836
17	Thorny sculpin	0.12	0.001	0.837
18	Icelus sp.	0.09	0.001	0.837
19	Warty sculpin	0.08	<0.001	0.838
20	Alaska plaice	0.08	<0.001	0.838

aTotal effort = 141.0 ha.

bProportion of total CPUE, all fish and invertebrates combined.
Total CPUE = 170.17 kg/ha.

^CFlathead sole combined with Bering flounder; arrowtooth flounder combined with Kamchatka flounder.

Table 13.--Rank order of abundance of the 20 most abundant species of fish taken during the 1983 bottom trawl survey, Subarea 3S.

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion
1	Walleye pollock	224.97	0.653	0.653
2	Pacific cod	25.38	0.074	0.727
3	Flathead sole ^C	6.65	0.019	0.746
4	Rock sole	6.34	0.018	0.764
5	Yellowfin sole	5.76	0.017	0.781
6	Arrowtooth flounder ^C	5.40	0.016	0.797
7	Alaska plaice	3.72	0.011	0.807
8	Pacific herring	2.74	0.008	0.815
9	Skate (unidentified)	2.58	0.007	0.822
10	Yellow Irish lord	1.90	0.006	0.828
11	Alaska skate	1.66	0.005	0.833
12	Sablefish	1.49	0.004	0.837
13	Greenland turbot	1.44	0.004	0.842
14	Starry skate	1.42	0.004	0.846
15	Pacific halibut	1.35	0.004	0.850
16	Myoxocephalus sp.	1.24	0.004	0.853
17	Bigmouth sculpin	0.93	0.003	0.856
18	Wattled eelpout	0.48	0.001	0.857
19	Armorhead sculpin	0.46	0.001	0.859
20	Sparse toothed lycod	0.31	0.001	0.860

aTotal effort = 293.6 ha.

bProportion of total CPUE, all fish and invertebrates combined. Total CPUE = 344.59 kg/ha.

^CFlathead sole combined with Bering flounder; arrowtooth flounder combined with Kamchatka flounder.

Table 14.--Rank order of abundance of the 20 most abundant species of fish taken during the 1983 bottom trawl survey, Subarea 4N.

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion
1	Yellowfin sole	103.40	0.317	0.317
2	Walleye pollock	77.57	0.238	0.555
3	Pacific cod	30.85	0.095	0.650
4	Alaska plaice	29.78	0.091	0.741
5	Rock sole	8.75	0.027	0.768
6	Plain sculpin	4.93	0.015	0.783
7	Sparse toothed lycod	4.72	0.014	0.798
8	Pacific herring	2.20	0.007	0.805
9	Flathead sole ^C	1.82	0.006	0.810
10	Myoxocephalus sp.	1.81	0.006	0.816
11	Pacific halibut	1.63	0.005	0.821
12	Alaska plaice	1.16	0.004	0.824
13	Sturgeon poacher	0.96	0.003	0.827
14	Longhead dab	0.95	0.003	0.830
15	Skate (unidentified)	0.92	0.003	0.833
16	Butterfly sculpin	0.63	0.002	0.835
17	Saffron cod	0.45	0.001	0.836
18	Great sculpin	0.39	0.001	0.838
19	Wattled eelpout	0.34	0.001	0.839
20	Starry flounder	0.31	0.001	0.840

aTotal effort = 329.5 ha.

bProportion of total CPUE, all fish and invertebrates combined.

Total CPUE = 325.84 kg/ha.

CFlathead sole combined with Bering flounder.

Table 15.--Rank order of abundance of the 20 most abundant species of fish taken during the 1983 bottom trawl survey, Subarea 4S.

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion
1	Yellowfin sole	164.04	0.457	0.457
2	Walleye pollock	63.13	0.176	0.633
3	Alaska plaice	27.07	0.075	0.709
4	Rock sole	19.03	0.053	0.762
5	Pacific cod	17.61	0.049	0.811
6	Plain sculpin	3.09	0.009	0.820
7	Flathead sole ^C	2.82	0.008	0.827
8	Great sculpin	2.55	0.007	0.835
9	Pacific halibut	1.53	0.004	0.839
10	Longhead dab	1.41	0.004	0.843
11	Starry skate	0.97	0.003	0.845
12	Arrowtooth flounder ^C	0.55	0.002	0.847
13	Bigmouth sculpin	0.44	0.001	0.848
14	Aleutian skate	0.41	0.001	0.849
15	Sturgeon poacher	0.41	0.001	0.850
16	Alaska skate	0.34	0.001	0.851
17	Yellow Irish lord	0.31	0.001	0.852
18	Warty sculpin	0.17	<0.001	0.853
19	Pacific herring	0.14	<0.001	0.853
20	Saffron cod	0.12	<0.001	0.854

a_{Total} effort = 259.7 ha.

bProportion of total CPUE, all fish and invertebrates combined.

Total CPUE = 358.68 kg/ha.

^CFlathead sole combined with Bering flounder; arrowtooth flounder combined with Kamchatka flounder.

Table 16.--Rank order of abundance of the 20 most abundant species of fish taken during the 1983 bottom trawl survey, Subarea 5.

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion
1	Walleye pollock	152.01	0.526	0.526
2	Pacific cod	37.67	0.130	0.657
3	Butterfly sculpin	17.13	0.059	0.716
4	Sparse toothed lycod	16.53	0.057	0.773
5	Alaska plaice	14.14	0.049	0.822
6	Myoxocephalus sp.	8.44	0.029	0.851
7	Yellowfin sole	8.41	0.029	0.880
8	Flathead sole ^C	4.30	0.015	0.895
9	Rock sole	2.04	0.007	0.902
10	Skate (unidentified)	1.65	0.006	0.908
11	Alaska skate	1.15	0.004	0.912
12	Pacific halibut	0.81	0.003	0.915
13	Snailfish (unidentified)	0.53	0.002	0.917
14	Pacific herring	0.44	0.002	0.918
15	Capelin	0.27	0.001	0.919
16	Greenland turbot	0.27	0.001	0.920
17	Wattled eelpout	0.14	<0.001	0.921
18	Great sculpin	0.11	<0.001	0.921
19	Plain sculpin	0.11	<0.001	0.921
20	Polar eelpout	0.10	<0.001	0.922

aTotal effort = 84.8 ha.

bProportion of total CPUE, all fish and invertebrates combined.

Total CPUE = 288.87 kg/ha.

^CFlathead sole combined with Bering flounder.

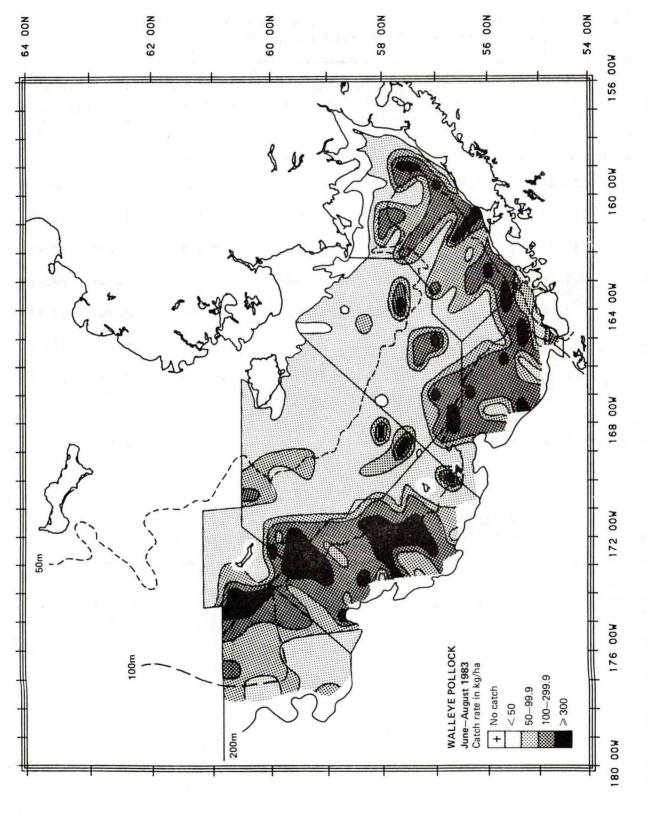


Figure 15. -- Distribution and relative abundance of walleye pollock taken during the 1983 survey.

WALLEYE POLLOCK

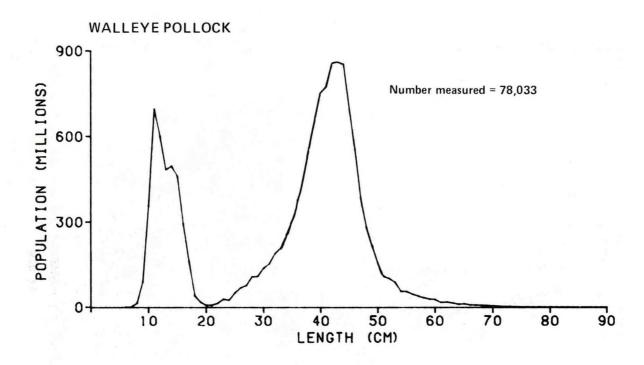
Table 17.--Abundance estimates and mean size of walleye pollock by subarea and for subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total		ize per
Subarea	CPUEa (kg/ha)	biomass (t)	estimated biomass	population (10 ⁶)	estimated population	Weight (kg)	Length (cm)
1	131.45	1,034,708	0.173	1,496	0.142	0.692	45.16
2	186.54	1,135,696	0.190	1,834	0.174	0.619	43.15
3N	87.90	422,146	0.071	1,731	0.164	0.244	27.88
3 s	224.94	1,820,614	0.119	4,929	0.466	0.144	34.81
4N	77.56	711,202	0.058	2,812	0.266	0.124	23.07
4S	63.12	514,617	0.086	991	0.094	0.519	35.72
5	151.99	347,282	0.304	772	0.073	0.450	39.03
All subareas combined ^b	128.84	5,986,265		14,567		0.567	34.12
, ombined	,20,04	3,300,203		14,307		0.367	34.12
95%							
confidence interval		5,023,787 - 6,948,742		12,391- 16,742			

aCPUE = catch per unit effort.

bMinor discrepancies between sums over subareas and totals due to rounding.

WALLEYE POLLOCK


Table 18.--Estimated population size of walleye pollock age groups by subarea and for all subareas combined (millions of fish).

Year	Ş.			Subarea				All subareas	Proportion
class	-	2	3N	38	4N	4S	r.	combineda	of total
1982	31.91	6.76	669.35	753.74	1,877.83	287.29	43.43	3,670.32	0.2520
1981	8.18	7.68	179.90	351.97	9.21	9.34	6.13	572.42	0.0393
1980	29.03	47.50	261.04	784.32	14.52	26.36	82.63	1,245.41	0.0855
1979	139.57	298.36	259.27	1,038.13	87.99	97.30	221.15	2,141.77	0.1470
1978	803.88	1,104.71	264.76	1,519.17	511.78	339.73	297.19	4,841.23	0.3324
7	311.63	300.62	71.78	393.10	186.18	131.52	88.14	1,482.98	0.1018
9	66.10	44.33	11.85	55.53	44.43	34.10	15.22	271.56	0.0186
Z.	46.86	10.37	5.45	12.82	33.66	29.03	7.73	145.92	0.0100
1974	20.08	4.25	2.56	5.81	16.26	13.46	3.72	66.16	0.0045
1973	16.28	5.23	2.17	7.93	13.17	9.73	2.89	57.39	0.0039
1972	14.08	3.03	1.88	4.29	9.48	7.49	2.44	42.68	0.0029
1971	4.97	0.81	0.58	1.49	3.49	2.90	0.93	15.17	0.0010
1970	1.47	0.13	0.42	0.25	1.95	1.34	0.40	5.95	0.0004
6961	1.77	0.34	0.20	0.43	1.13	0.91	0.23	5.02	0.0003
1968	0.18	0.03	0.08	0.07	0.52	0.38	0.12	1.38	0.0001
1	0.03	0.01	0.03	0.04	0.83	0.18	90.0	1.18	0.0001
All ages combined ^a 1	1,496.02	1,834.17	1,731.33	4,929.08	2,812.43	991.06	772.44	772.44 14,566.53	1.0000

AMinor discrepancies between sums by subareas and age groups and totals due to rounding.

WALLEYE POLLOCK Inner shelf subareas Outer shelf subareas 3N MEAN LENGTH = 39.0 MEAN LENGTH = 27.9 30-PERCENT 120-PERCENT 120-121 **4N** MEAN LENGTH = 23.1 MEAN LENGTH = 34.8 30-25-MEAN LENGTH = 35.7 MEAN LENGTH = 43.2 30-20-PERCENT All subareas combined MEAN LENGTH = 34.1 MEAN LENGTH = 45.2 PERCENT 12 12 12 40 50 LENGTH (CM) 40 50 60 LENGTH (CM)

Figure 16.--Size composition, by subarea, of walleye pollock (sexes combined) taken during the 1983 survey.

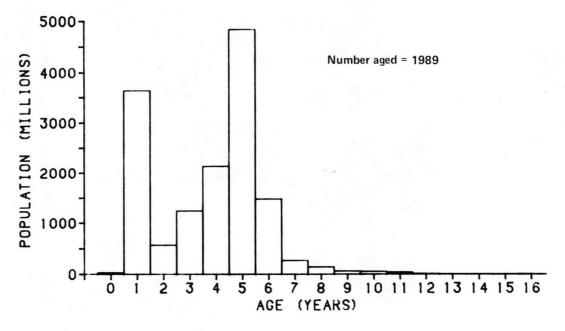


Figure 17.--Population estimates, by length and age group, for walleye pollock (sexes combined) from the 1983 survey area.

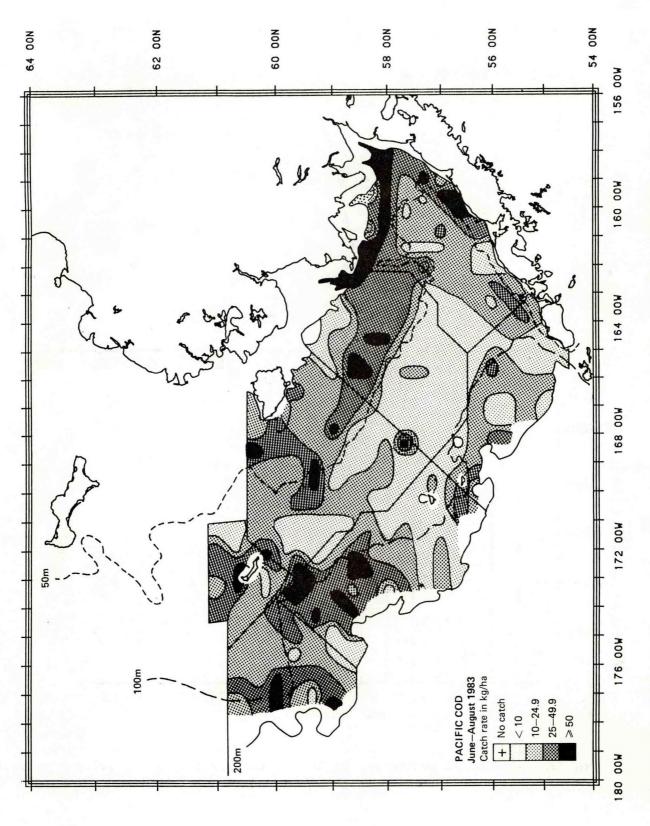


Figure 18. -- Distribution and relative abundance of Pacific cod taken during the 1983 survey.

PACIFIC COD

Table 19. -- Abundance estimates and mean size of Pacific cod by subarea and for subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean si	
Subarea	CPUE ^a (kg/ha)	biomass (t)	estimated biomass	population (10 ⁶)	estimated population	Weight (kg)	Length (cm)
1	33.02	259,878	0.221	180	0.248	1.444	39.83
2	12.98	79,023	0.067	29	0.040	2.725	57.11
3N	25.06	120,331	0.102	34	0.047	3.539	63.49
35	25.38	205,406	0.175	79	0.109	2.600	56.30
4N	30.84	282,825	0.240	270	0.371	1.048	35.10
4S	17.61	143,566	0.122	76	0.105	1.889	47.16
5	37.66	86,057	0.073	59	0.081	1.459	47.31
all subareas combined ^b	25.33	1,177,086		727		1.619	43.04
5%							
onfidence nterval		938,984 - 1,415,187		570 - 885			

 $^{^{\}rm a}_{\rm CPUE}$ = catch per unit effort. $^{\rm b}_{\rm Minor}$ discrepancies between sums over subareas and totals due to rounding.

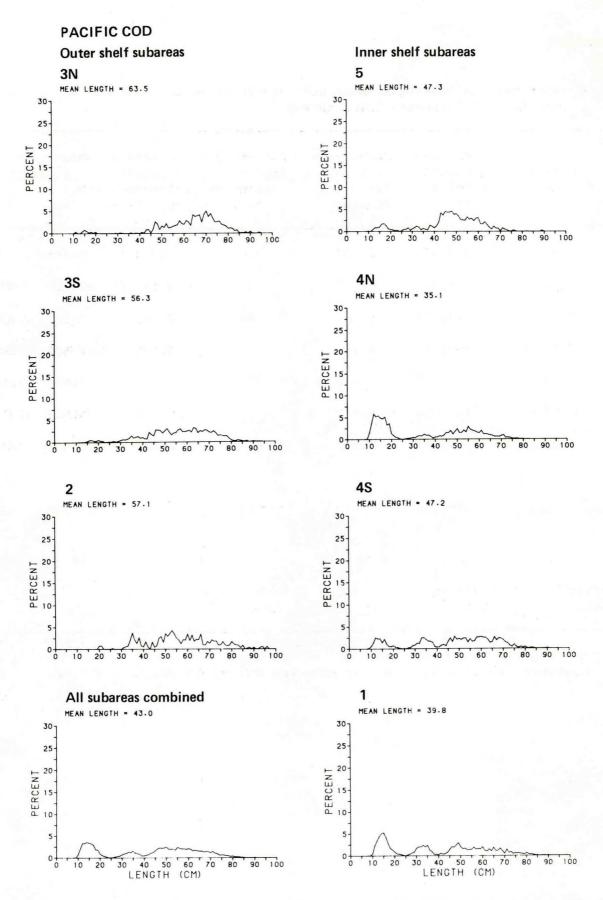


Figure 19.—Size composition, by subarea, of Pacific cod (sexes combined) taken during the 1983 survey.

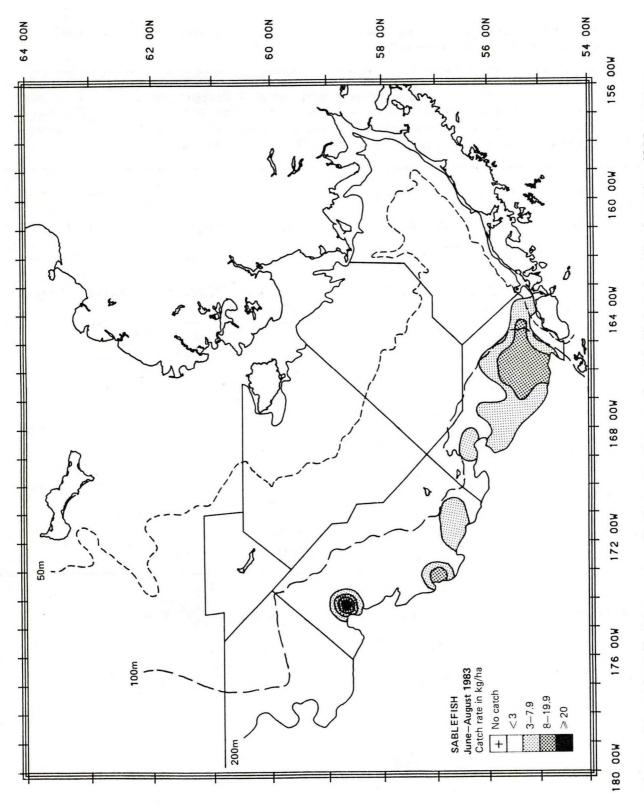


Figure 20. -- Distribution and relative abundance of sablefish taken during the 1983 survey.

SABLEFISH

Table 20.--Abundance estimates and mean size of sablefish by subarea and subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total		ize per vidual
Subarea	CPUE ^a (kg/ha)	biomass (t)	estimated biomass	population (10 ³)	estimated population	Weight (kg)	Length (cm)
1		<u>-</u> -					
2	1.02	6,217	0.341	5,595	0.607	1.111	44.13
3N				H			
3S	1.49	12,030	0.659	3,621	0.393	3.322	63.23
4N		() :					
4S			- 4	T			
5	1	- <u>-</u>	1				
all Subareas							
combined ^b	0.39	18,247		9,216		1.980	51.61
5%							
onfidence nterval		0- 40,818		1,969 - 16,463			

 $^{^{\}rm a}_{\rm CPUE}$ = catch per unit effort. $^{\rm b}_{\rm Minor}$ discrepancies between sums over subareas and totals due to rounding.

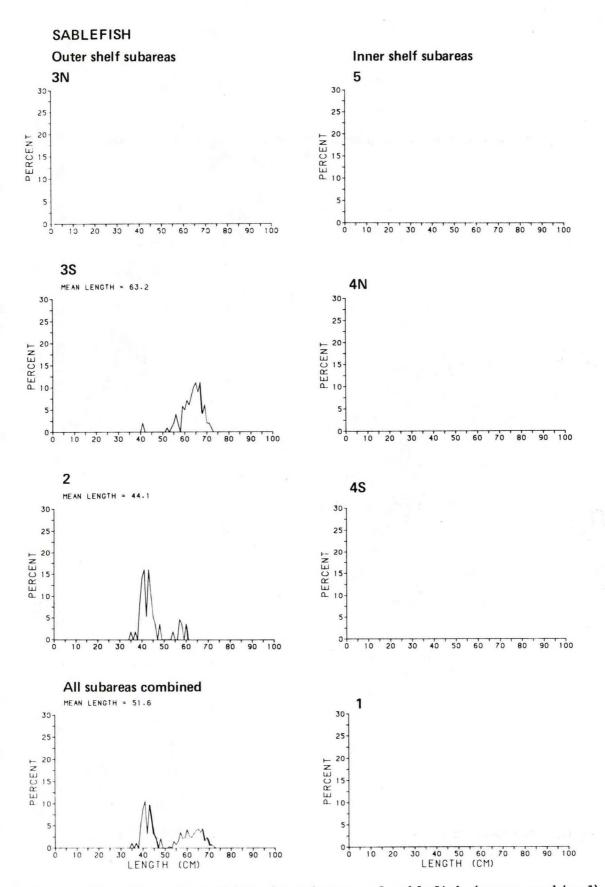


Figure 21.——Size composition, by subarea, of sablefish (sexes combined) taken during the 1983 survey.

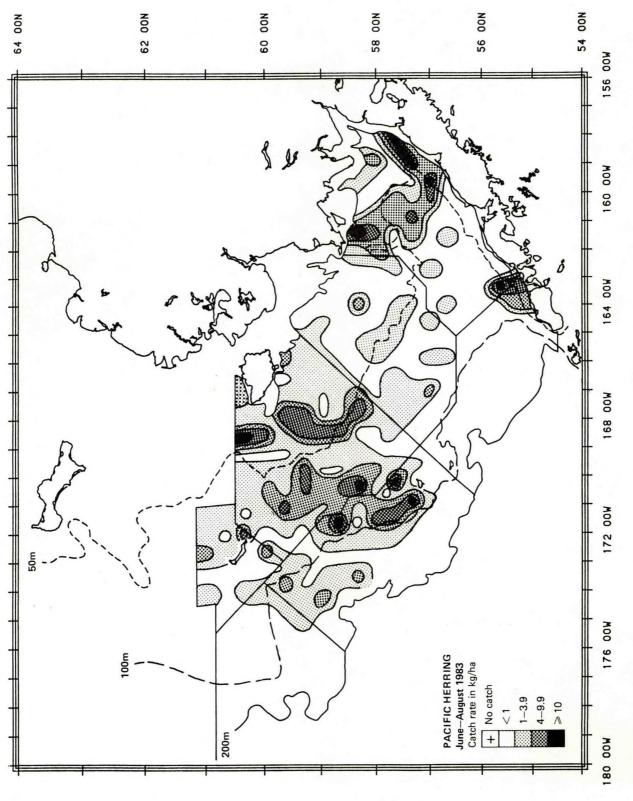


Figure 22. -- Distribution and relative abundance of Pacific herring taken during the 1983 survey.

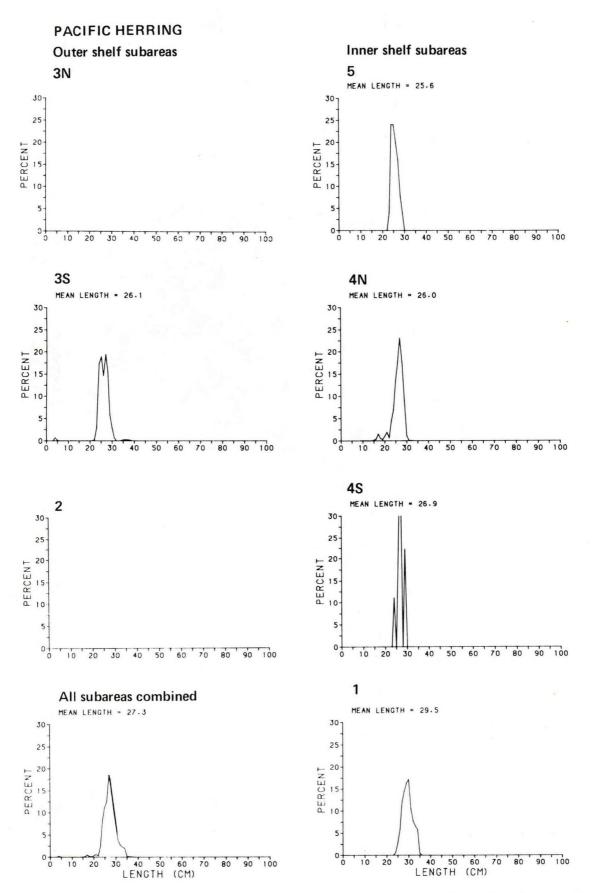


Figure 23.--Size composition, by subarea, of Pacific herring (sexes combined) taken during the 1983 survey.

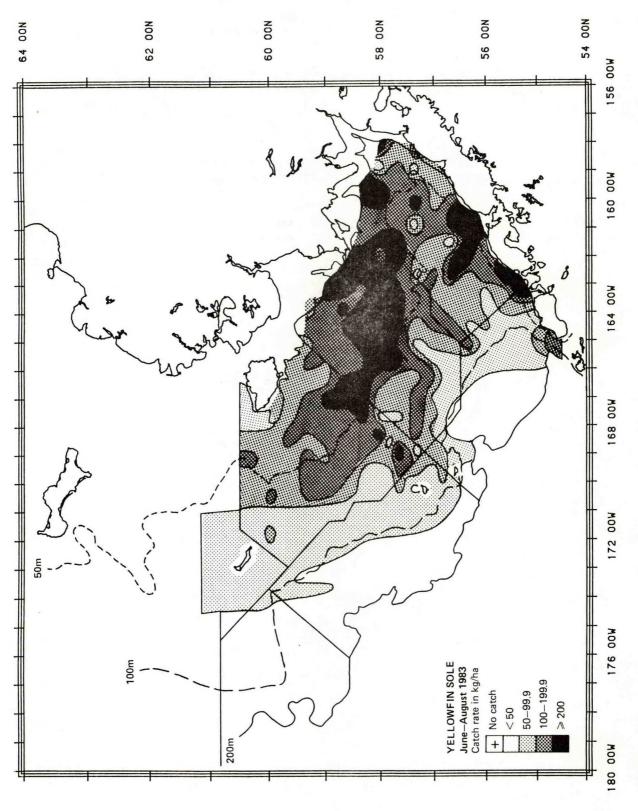


Figure 24.--Distribution and relative abundance of yellowfin sole taken during the 1983 survey.

YELLOWFIN SOLE

Table 21.--Abundance estimates of yellowfin sole by subarea and for subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean si	ize per idual
Subarea	CPUE ^a (kg/ha)	biomass (t)	estimated biomass	population (10 ⁶)	estimated population	Weight (kg)	Length (cm)
1	184.53	1,452,518	0.366	7,129	0.374	0.204	25.94
2	27.64	168,294	0.042	674	0.035	0.250	27.23
3N	0.01	29	<0.001	<1	<0.001	0.029	
38	5.76	46,644	0.012	153	0.008	0.305	29.17
4N	103.38	948,052	0.239	4,097	0.215	0.231	26.19
4 S	164.02	1,337,118	0.337	6,969	0.365	0.192	25.23
5	8.41	19,216	0.005	53	0.003	0.363	30.56
All Subareas							
combinedb	85.48	3,971,871		19,075		0.208	25.82
95%							
confidence interval	9	3,490,394- 4,453,347		16,543- 21,606			

a CPUE = catch per unit effort.

b Minor discrepancies between sums over subareas and totals due to rounding.

YELLOWFIN SOLE

Table 22.--Estimated population size of yellowfin sole age groups by subarea and for all subareas combined (millions of fish).

Age c]	20010			Subarea	rea				subareas	Proportion
0 6 4	222	-	2	3N	38	4N	4S	5	combineda	of total
М ч	1981		•	1	1	1	0.62	•	0.62	0.0000
	1980	2.01	0.01	1	1	2.11	2.48	0.03	6.64	0.0003
*	1979	36.00	0.02	1	0.17	43.40	66.61	0.03	146.23	0.0077
2	1978	108.71	0.55	1	0.09	93.48	184.89	0.01	387.73	0.0203
9	1977	514.24	23.77	i	3.40	384.88	776.32	0.36	1,702.98	0.0893
7	1976	1,340.42	112.30	1	15.05	698.44	1,373.21	3.22	3,542.65	0.1857
ω	1975	700.61	64.27	1	10.83	386.56	705.00	2.55	1,869.82	0.0980
6	1974	920.84	86.14	1	16.19	501.26	907.87	4.31	2,436.60	0.1277
10	1973	693.59	72.80	1	18.08	396.64	628.95	5.70	1,815.74	0.0952
11	1972	651.47	66.50	1	15.91	330.47	555.75	5.18	1,625.28	0.0852
12	1971	818.73	89.74	1	26.18	478.28	689.86	9.40	2,112.19	0.1107
13	1970	607.65	79.19	1	25.90	373.62	505.93	10.08	1,602.37	0.0840
14	1969	309.80	36.64	1	11.01	177.46	245.24	5.11	785.24	0.0412
15	1968	322.94	31.43	1	6.88	155.46	244.48	3.76	764.95	0.0401
16	1967	58.52	5.79	1	2.36	41.88	46.23	1.57	156.35	0.0082
17	1966	32.70	2.93	1	0.76	18.01	24.91	0.68	79.99	0.0042
18	1965	9.55	1.37	•	0.63	10.48	80.6	0.52	31.64	0.0017
. 61	1964	•	1	1	1	1	•	1	•	0.000
>20	1	06.0	60.0	1	0.07	4.58	1.54	0.21	7.39	0.0004
All ac	ages									
	neda	7,128.69	673.54	•	153.49	4,097.00	6,968.98	52.72	52.72 19,074.42	1.0000

Aminor discrepancies between sums by subareas and age groups and totals due to rounding.

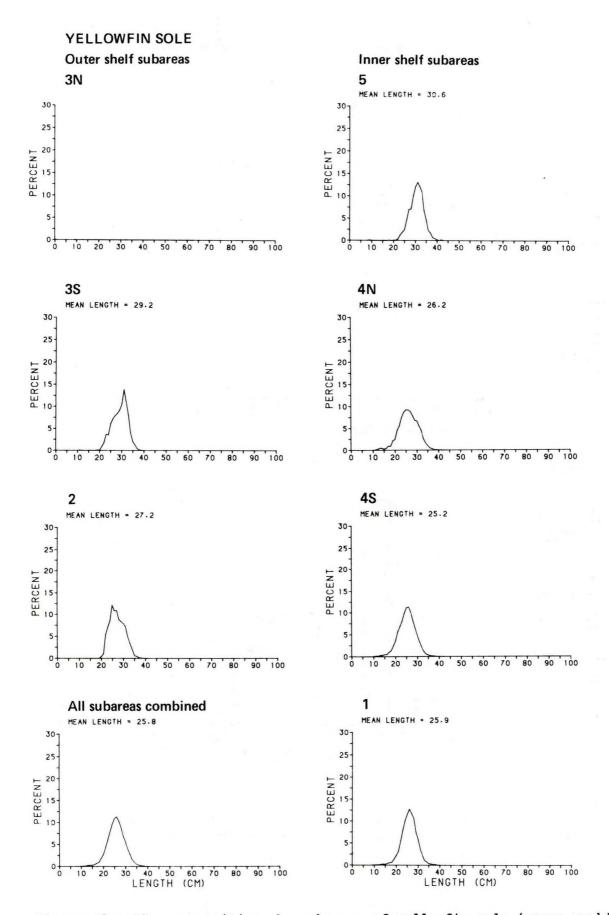


Figure 25.--Size composition, by subarea, of yellowfin sole (sexes combined) taken during the 1983 survey.

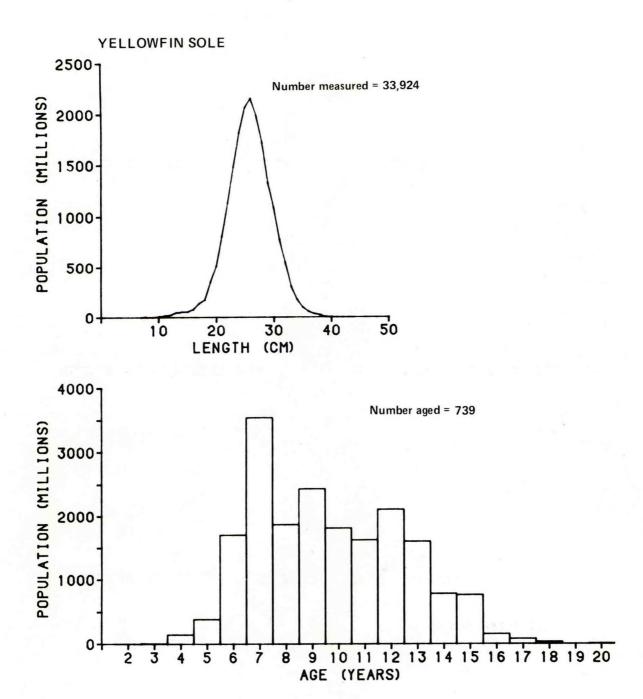


Figure 26.--Population estimates, by length and age group, for yellowfin sole (sexes combined) from the 1983 survey area.

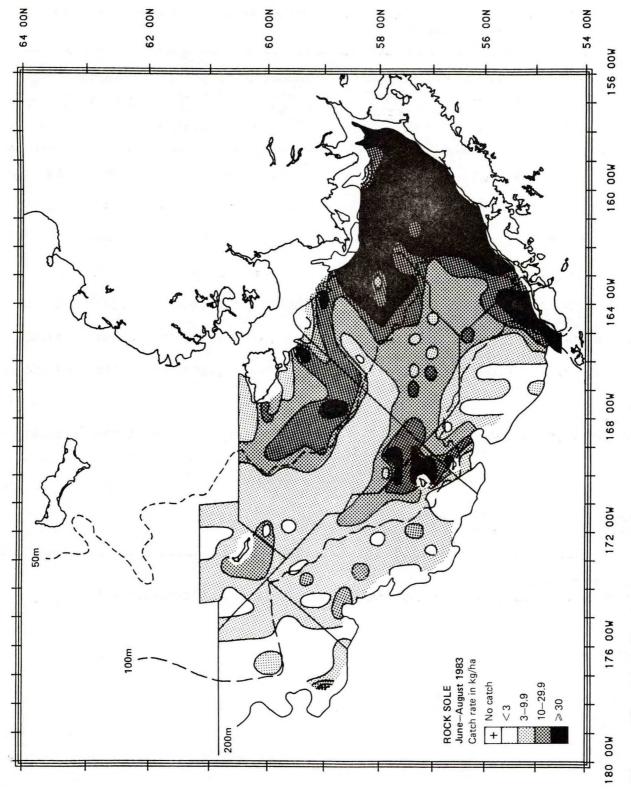


Figure 27. -- Distribution and relative abundance of rock sole taken during the 1983 survey.

ROCK SOLE

Table 23.--Abundance estimates of rock sole by subarea and for subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean si	ize per idual
Subarea	CPUE ^a (kg/ha)	biomass (t)	estimated biomass	population (10 ⁶)	estimated population	Weight (kg)	Length (cm)
1	73.74	580,461	0.629	3,034	0.620	0.191	24.77
2	7.90	48,120	0.052	193	0.039	0.249	25.89
3N	0.54	2,574	0.003	3	<0.001	0.858	
3S	6.34	51,310	0.056	170	0.035	0.302	26.71
4N	8.75	80,195	0.087	612	0.125	0.131	18.86
4S	19.03	155,106	0.168	864	0.177	0.180	23.46
5	2.04	4,667	0.005	16	0.003	0.292	24.56
11							
ubarea <mark>s</mark> ombined ^b	19.85	922,433		4,892		0.203	23.91
95%							
confidence interval		721,776- 112,309		3,894- 5,890			

aCPUE = catch per unit effort.

bMinor discrepancies between sums over subareas and totals due to rounding.

ROCK SOLE

Table 24.--Estimated population size of rock sole age groups by subarea and for all subareas combined (millions of fish).

Age class <a href="</th"><th></th><th></th><th></th><th>Subarea</th><th>Ti.</th><th></th><th></th><th>subareas</th><th>Proportion</th>				Subarea	Ti.			subareas	Proportion
<2 3 198 4 197	1	2	3N	38	4N	4S	S	combined ^a	of total
3 198	- 45.43	0.87	1	1.99	48.20	28.95	0.51	125.96	0.0258
4 197	30 349.53	5.40	1	17.09	347.66	219.70	90.9	945.45	0.1935
	79 535.84	33.12	1	32.28	35.68	112.92	0.72	750.56	0.1536
5 1978	78 642.94	42.06	1	23.92	37.51	115.15	0.55	862.11	0.1764
6 1977	77 318.94	22.21	ı	10.93	20.88	50.22	0.37	423.55	0.0867
7 1976	76 299.74	20.87	1	14.45	23.25	63.60	0.82	422.74	0.0865
8 1975	75 316.43	26.28	•	17.46	27.02	93.00	1.14	481.33	0.0985
9 1974	74 145.94	11.62	1	7.20	11.75	39.37	96.0	216.84	0.0444
10 1973	73 112.33	10.56	ı	8.31	12.39	40.20	0.89	184.68	0.0378
	72 46.16	3.21	1	3.39	5.40	13.34	0.41	71.91	0.0147
12 1971	71 58.72	4.76	1	5.20	8.03	21.20	0.57	98.48	0.0202
13 1970		5.68	ı	11.59	11.92	26.02	1.09	133.94	0.0274
14 1969	59 35.32	2.75	1	6.23	8.02	16.80	0.59	69.72	0.0143
15 1968	58 24.12	2.13	1	4.37	6.19	12.67	0.44	49.91	0.0102
16 1967	57 17.98	0.41	ı	2.97	4.98	7.11	0.32	33.76	0.0069
17 1966	3.27	0.03	1	0.62	1.14	1.22	0.03	6.30	0.0013
18 1965	55 1.47	00.0	ı	0.65	0.65	0.62	00.0	3.39	0.0007
219	- 2.49	0.84	ı	0.23	1.22	1.49	0.05	6.32	0.0013
All ages									
combined ^a	ld 3,034.29	192.78	1	168.87	611.88	863.59	15.54	4,886.96	1.0000

aMinor discrepancies between sums by subareas and age groups and totals due to rounding.

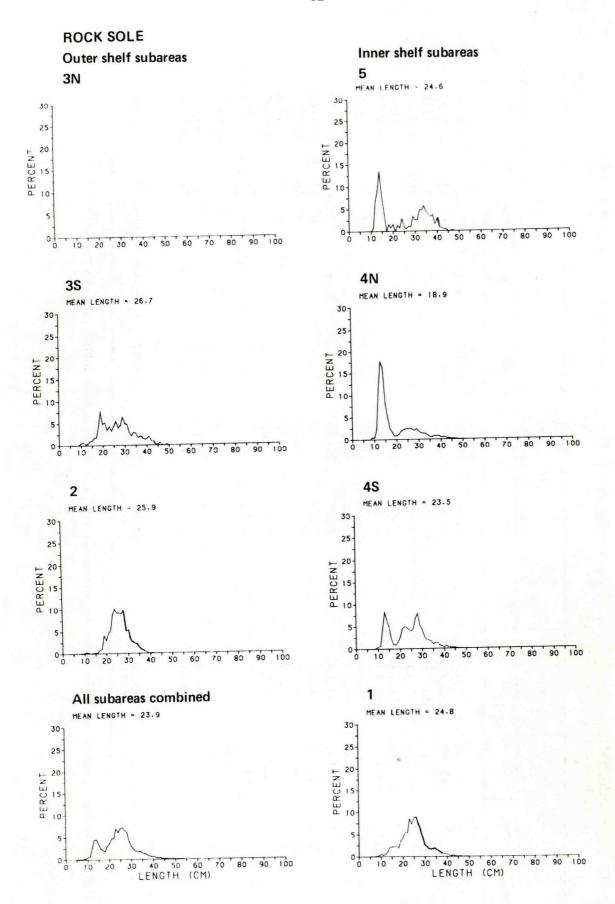


Figure 28.--Size composition, by subarea, of rock sole (sexes combined) taken during the 1983 survey.

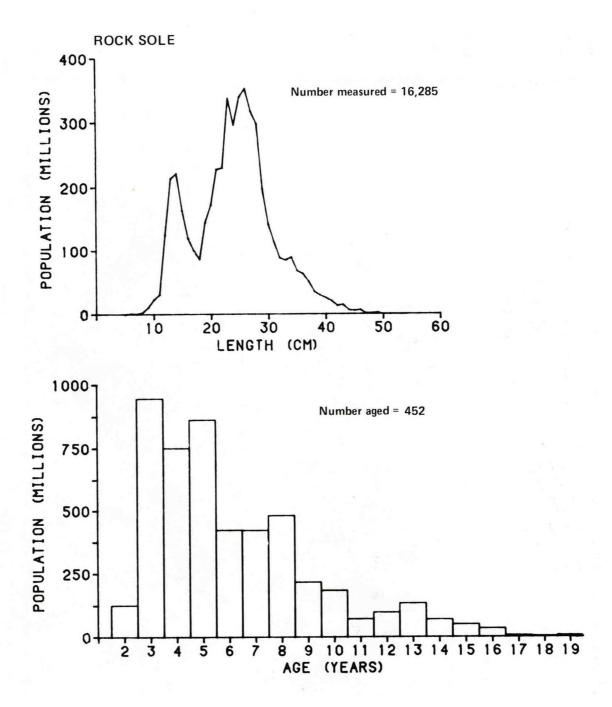


Figure 29.--Population estimates, by length and age group, for rock sole (sexes combined) from the 1983 survey area.

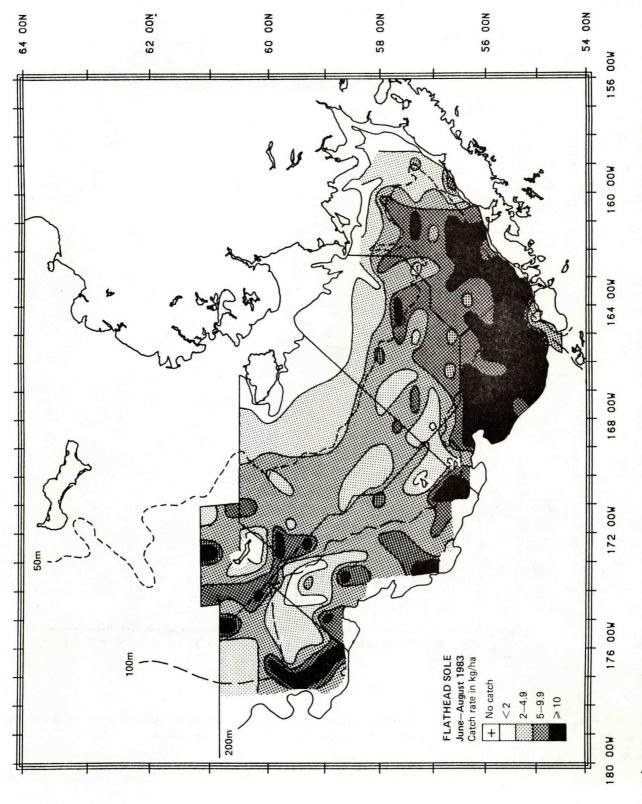


Figure 30. -- Distribution and relative abundance of flathead sole and Bering flounder taken during the 1983 survey.

FLATHEAD SOLE

Table 25.--Abundance estimates of flathead sole^a by subarea and for subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total		ize per
Subarea	CPUE ^b (kg/ha)	biomass (t)	estimated biomass	population (10 ³)	estimated population	Weight (kg)	Length (cm)
1	6.75	53,167	0.191	243,402	0.163	0.218	26.50
2	12.08	73,517	0.264	450,346	0.302	0.163	24.54
3N	10.02	48,122	0.173	188,476	0.126	0.255	28.25
35	6.65	53,836	0.194	267,049	0.179	0.202	24.18
4N	1.82	16,718	0.060	136,923	0.092	0.122	20.26
4 S	2.12	22,957	0.083	165,282	0.111	0.139	22.43
5	4.29	9,813	0.035	39,187	0.026	0.250	26.77
ll ubareas							
ombined ^C	5.99	278,130		1,490,665		0.187	24.70
5%							
onfidence nterval	е	214,407- 341,854		1,279,468- 1,701,862			

a Includes Bering flounder.

bCPUE = catch per unit effort.

^CMinor discrepancies between sums over subareas and totals due to rounding.

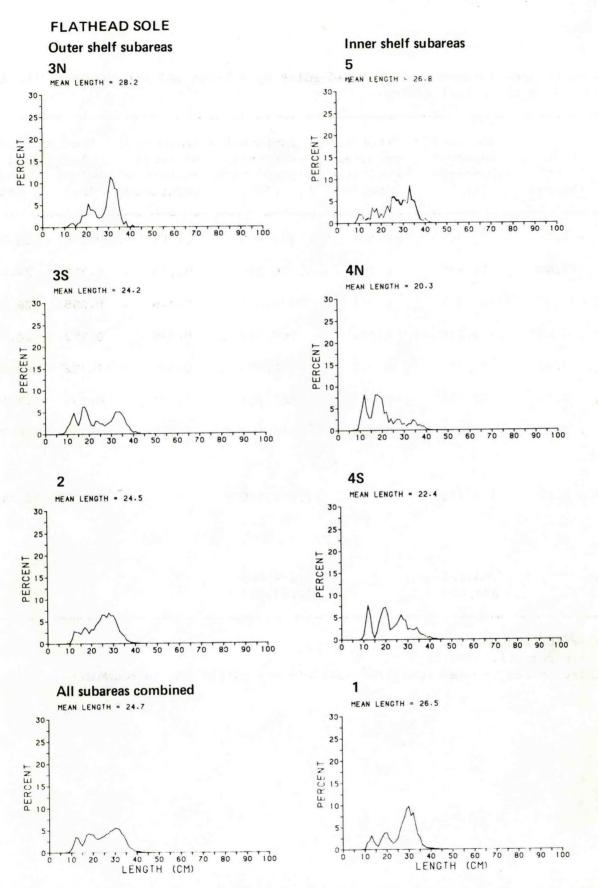


Figure 31.--Size composition, by subarea, of flathead sole (sexes combined) taken during the 1983 survey.



Figure 32. -- Distribution and relative abundance of Alaska plaice taken during the 1983 survey.

ALASKA PLAICE

Table 26.--Abundance estimates for Alaska plaice by subarea and for subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean s	ize per idual
Subarea	CPUE ^a (kg/ha)	biomass (t)	esti <mark>mate</mark> d biomass	population (10 ³)	estimated population	Weight (kg)	Length (cm)
1	8.63	67,965	0.104	135,363	0.109	0.502	35.69
2	4.30	26,165	0.040	47,608	0.038	0.550	33.46
3N	0.08	362	<0.001	412	<0.001	0.879	
3 s	3.72	30,121	0.046	36,490	0.029	0.825	37.13
4N	29.77	272,977	0.420	540,477	0.433	0.505	33.40
4 S	27.07	220,656	0.339	447,596	0.359	0.493	33.10
5	14.14	32,305	0.050	39,265	0.031	0.823	37.61
All subareas							
combined ^b	14.00	650,551		1,247,211		0.522	33.78
95%							
confidence interval		540,217- 760,885		1,040,281- 1,454,140			

 $^{^{\}rm a}_{\rm CPUE}$ = catch per unit effort. $^{\rm b}_{\rm Minor}$ discrepancies between sums over subareas and totals due to rounding.

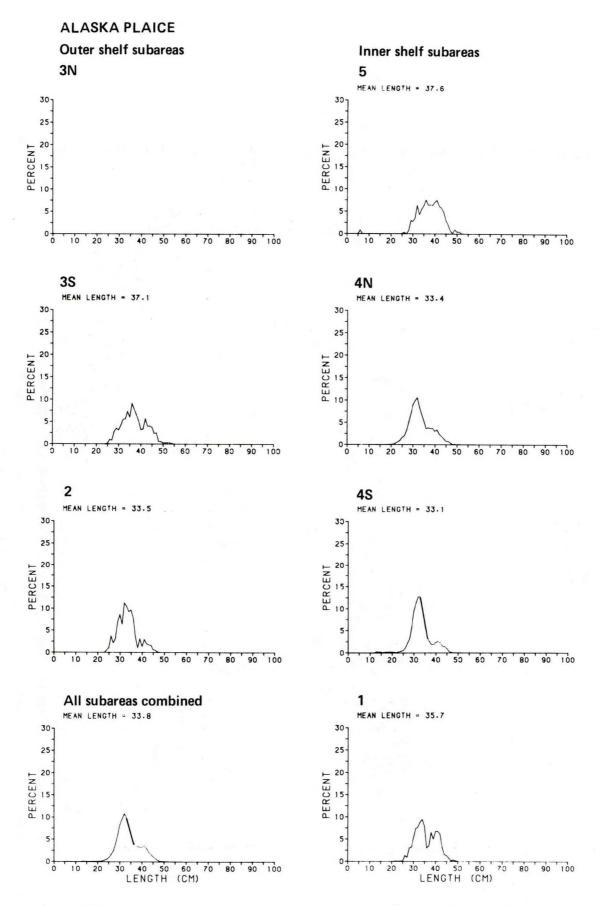


Figure 33.--Size composition, by subarea, of Alaska plaice (sexes combined) taken during the 1983 survey.

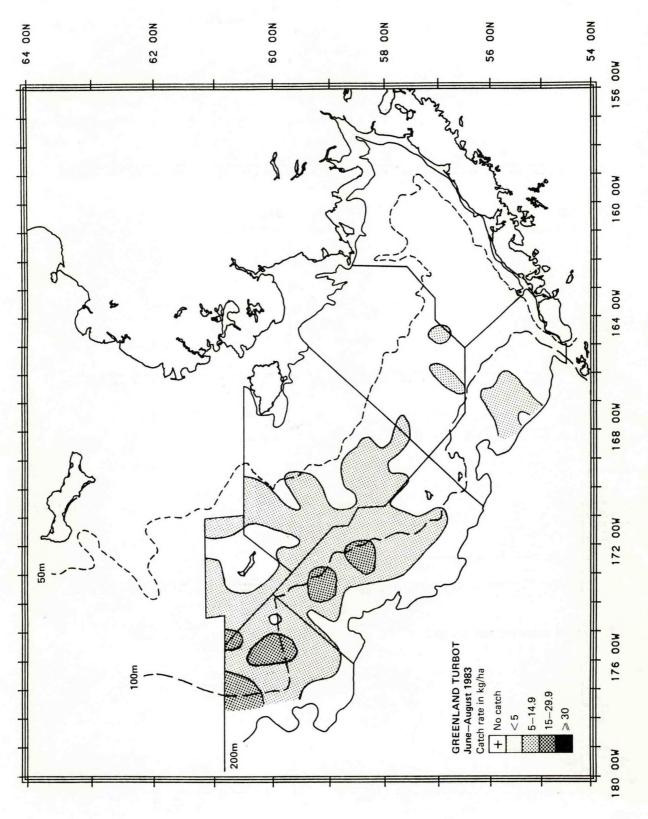


Figure 34. -- Distribution and relative abundance of Greenland turbot taken during the 1983 survey.

GREENLAND TURBOT

Table 27.--Abundance estimates and mean size of Greenland turbot by subarea and subareas combined, 1983 bottom trawl surveys.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean si	ize per idual
Subarea	CPUE ^a (kg/ha)	biomass (t)	estimated biomass	population (10 ³)	estimated population	Weight (kg)	Length (cm)
1	<0.01	13	<0.001	29	<0.001	0.448	
2	0.33	1,994	0.064	518	0.009	3.849	85.00
3N	3.26	15,652	0.501	32,432	0.541	0.483	34.94
38	1.44	11,628	0.372	19,920	0.332	0.584	38.43
4N	0.12	1,139	0.036	3,165	0.053	0.360	38.68
4S	0.03	208	0.007	304	0.005	0.684	
5	0.27	608	0.019	3,601	0.060	0.169	13.63
ll ubareas ombined ^b	0.67	31,241		59,970		0.521	35.59
5%							
onfidence nterval		23,818- 38,664		45,197 74,743			

 $^{^{\}mathrm{a}}_{\mathrm{CPUE}} = \mathrm{catch}$ per unit effort. $^{\mathrm{b}}_{\mathrm{Minor}}$ discrepancies between sums over subareas and totals due to rounding.

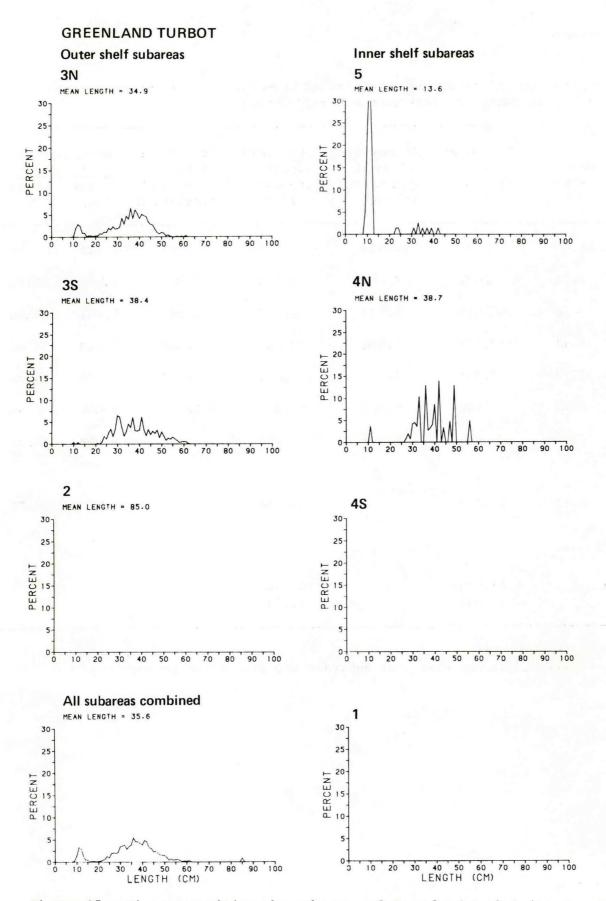


Figure 35.--Size composition, by subarea, of Greenland turbot (sexes combined) taken during the 1983 survey.

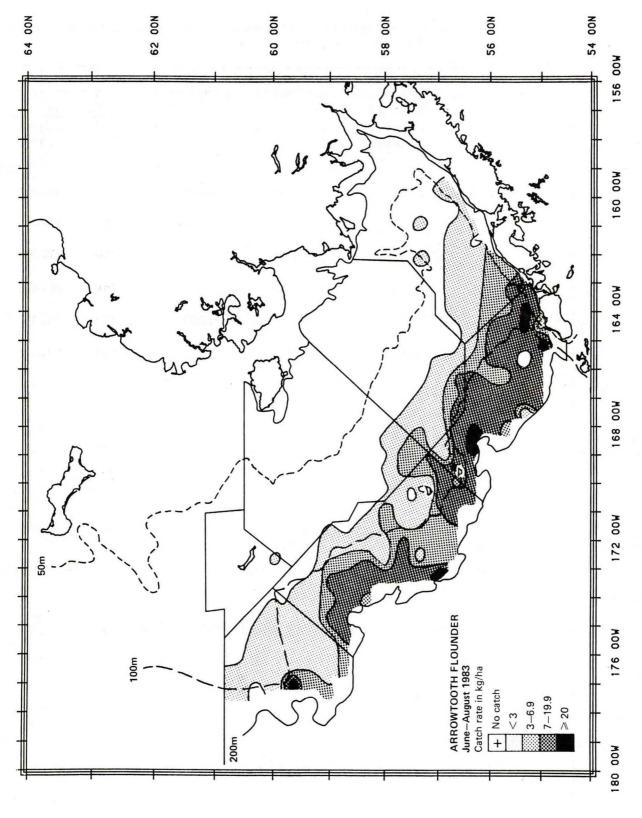


Figure 36. -- Distribution and relative abundance of arrowtooth and Kamchatka flounders taken during the 1983 survey.

ARROWTOOTH FLOUNDER

Table 28.--Abundance estimates and mean size of arrowtooth flounder by subarea and subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean s indiv	ize per idual
Subarea	CPUE ^b (kg/ha)	biomass (t)	estimated biomass	population (10 ³)	estimated population	Weight (kg)	Length (cm)
1	0.70	5,505	0.040	19,649	0.035	0.280	34.98
2	11.44	69,684	0.505	296,649	0.529	0.235	27.23
3N	2.55	12,236	0.089	20,591	0.037	0.594	37.92
35	5.40	43,714	0.317	179,198	0.320	0.244	26.40
4N	0.24	2,219	0.016	12,882	0.023	0.172	24.34
45	0.55	4,490	0.033	31,739	0.057	0.141	23.08
5	<0.01	5	<0.001	60	<0.001	0.083	
All							
subareas combined ^C	2.97	137,853		560,769		0.246	27.42
95%							
confidence interval		116,610- 159,097		459,417- 662,120			

a Includes Kamchatka flounder.

bCPUE = catch per unit effort.

CMinor discrepancies between sums over subareas and totals due to rounding.

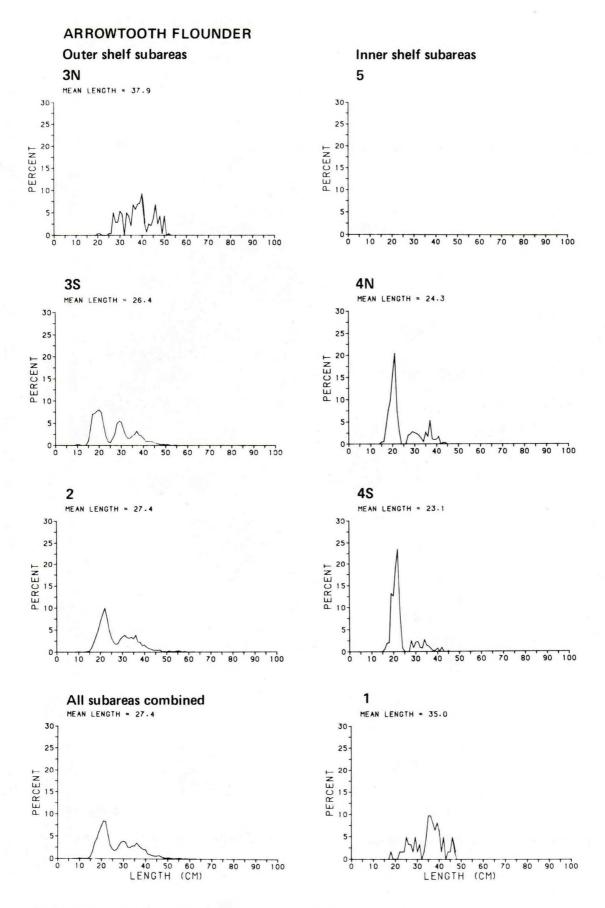


Figure 37.--Size composition, by subarea, of arrowtooth and Kamchatka flounders (sexes combined) taken during the 1983 survey.

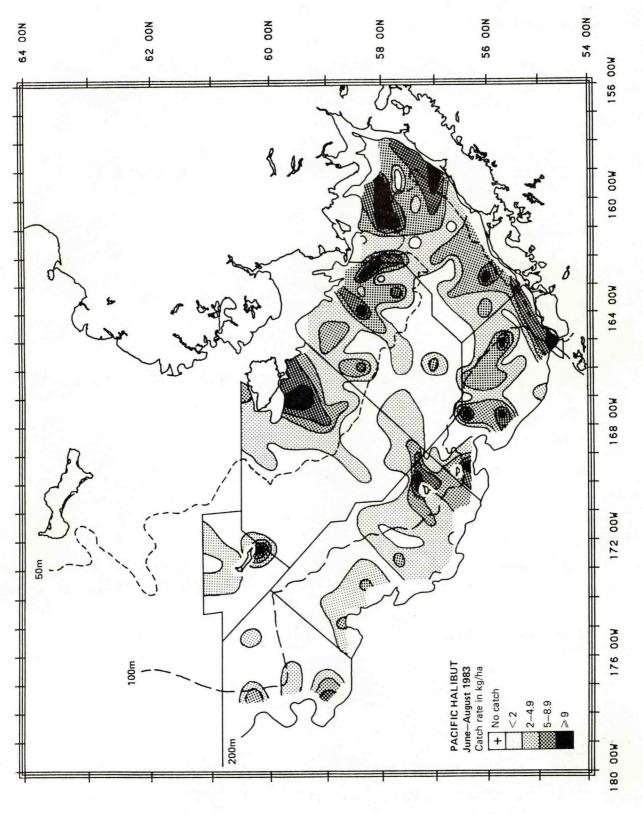


Figure 38. -- Distribution and relative abundance of Pacific halibut taken during the 1983 survey.

PACIFIC HALIBUT

Table 29.--Abundance estimates and mean size of Pacific halibut by subarea and for subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean s	ize per idual
Subarea	CPUE ^a (kg/ha)	biomass (t)	estimated biomass	population (10 ³)	estimated population	Weight (kg)	Length (cm)
1	4.31	33,907	0.352	17,108	0.361	1.982	53.47
2	3.31	20,138	0.209	5,518	0.117	3.650	60.72
3N	0.45	2,164	0.022	945	0.020	2.290	57.70
38	1.35	10,955	0.114	7,560	0.160	1.454	46.50
4N	1.63	14,940	0.155	10,605	0.224	1.409	48.72
48	1.53	12,492	0.130	5,066	0.107	2.466	57.14
5	0.81	1,860	0.019	554	0.012	3.357	55.18
All subareas							
combinedb	2.08	96,455		47,355		2.037	52.64
95%							
confidence interval		74,716- 118,195		35,218- 59,492			

 $^{^{\}rm a}_{\rm CPUE} = {\rm catch}$ per unit effort. $^{\rm b}_{\rm Minor}$ discrepancies between sums over subareas and totals due to rounding.

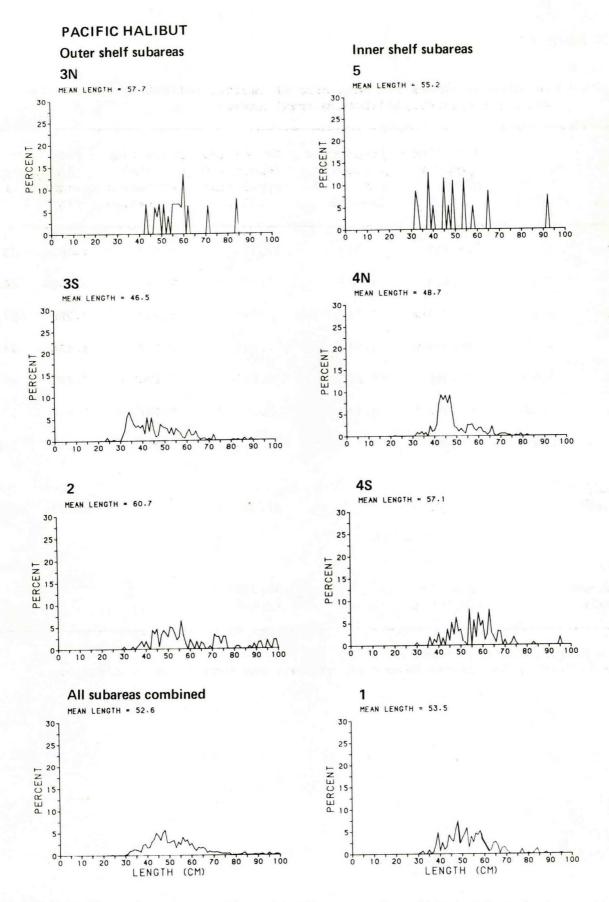


Figure 39.--Size composition, by subarea, of Pacific halibut (sexes combined) taken during the 1983 survey.

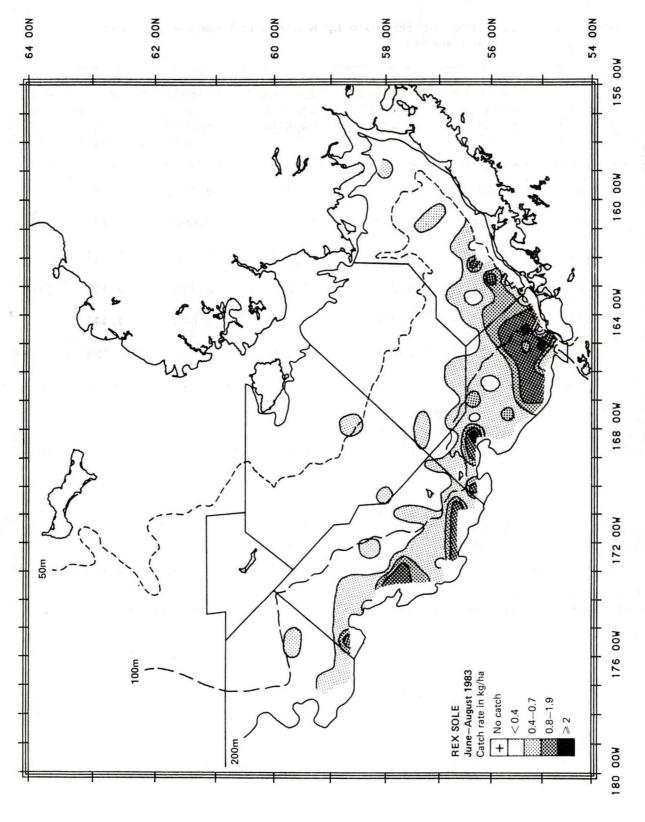


Figure 40. -- Distribution and relative abundance of rex sole taken during the 1983 survey.

REX SOLE

Table 30.--Abundance estimates of rex sole by subarea and subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean s	ize per idual
Subarea	CPUE ^a (kg/ha)	biomass (t)	estimated biomass	population (10 ³)	estimated population	Weight (kg)	Length (cm)
1	0.07	574	0.078	1,760	0.068	0.326	
2	0.81	4,936	0.672	15,651	0.600	0.315	38.82
3N	0.02	100	0.014	614	0.024	0.163	
35	0.20	1,641	0.223	7,616	0.292	0.215	30.03
4N	<0.01	12	0.002	83	0.003	0.145	
4S	0.01	81	0.011	345	0.013	0.235	
5							
All subareas							
combinedb	0.16	7,345		26,070		0.282	36.04
95%							
confidence interval	9	4,756- 9,934		19,207 32,932			

 $^{^{}a}_{\text{CPUE}}$ = catch per unit effort. $^{b}_{\text{Minor}}$ discrepancies between sums over subareas and totals due to rounding.

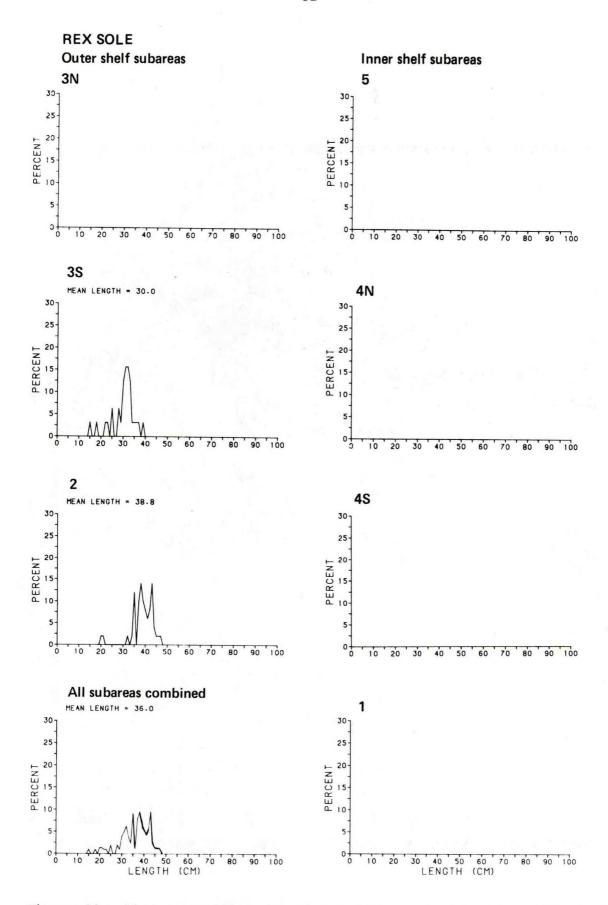


Figure 41.--Size composition, by subarea, of rex sole (sexes combined) taken during the 1983 survey.

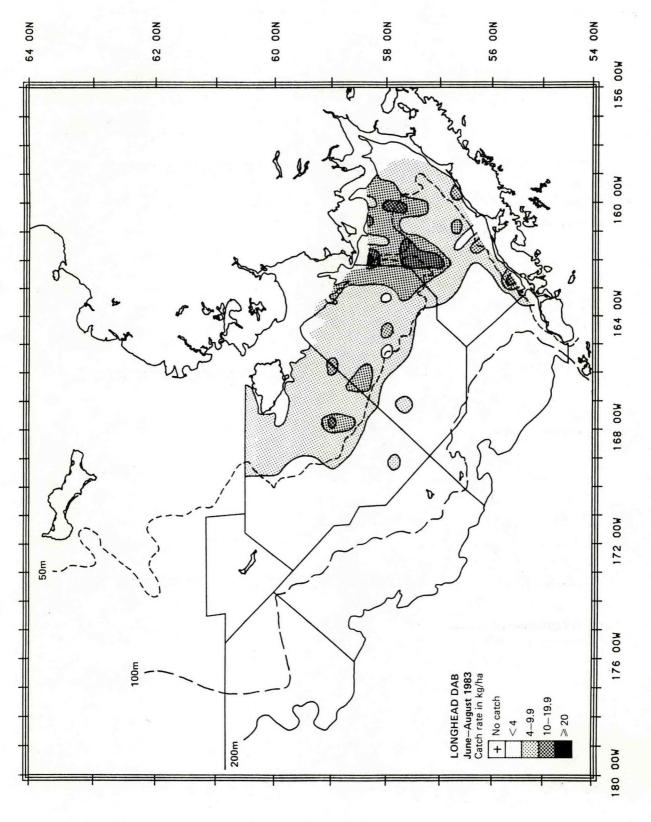


Figure 42. -- Distribution and relative abundance of longhead dab taken during the 1983 survey.

LONGHEAD DAB

Table 31.--Abundance estimates of longhead dab by subarea and for subareas combined, 1983 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean siz	
Subarea	CPUE ^a (kg/ha)	biomass (t)	estimated biomass	population (10 ³)	estimated population	Weight (kg)	Length (cm)
1	4.09	32,177	0.614	192,455	0.510	0.167	26.59
2	<0.01	19	<0.001	152	<0.001	0.125	
3N							
35							
4N	0.95	8,714	0.166	87,992	0.233	0.099	
4S	1.41	11,455	0.219	96,446	0.256	0.119	
5		,					
ll ubareas							
ombined ^b	1.12	52,365		377,046		0.139	26.59
			a.				
5% onfidence	9	39,417-		271, 167-			
nterval		65,314		482,924			

 $^{^{\}mathrm{a}}\mathtt{CPUE} = \mathtt{catch}$ per unit effort. $^{\mathrm{b}}\mathtt{Minor}$ discrepancies between sums over subareas and totals due to rounding.

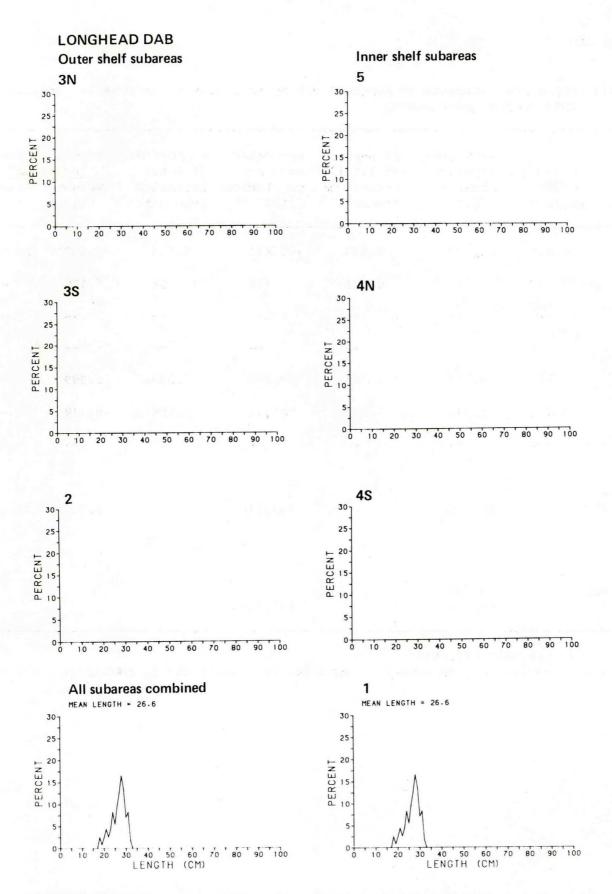


Figure 43.--Size composition, by subarea, of longhead dab (sexes combined) taken during the 1983 survey.

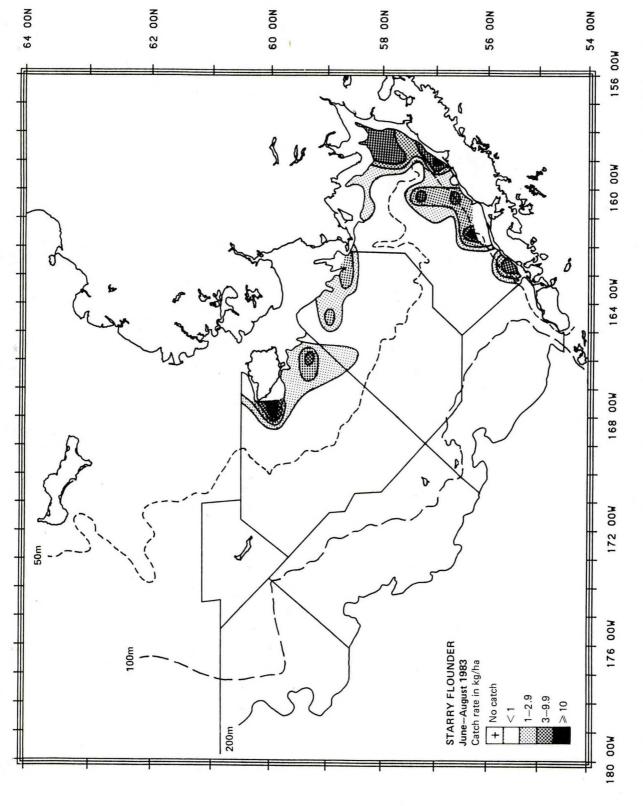


Figure 44.--Distribution and relative abundance of starry flounder taken during the 1983 survey.

REFERENCES

- Alverson, D. L., and W. T. Pereyra. 1969. Demersal fish explorations in the northeastern Pacific Ocean -- an evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Board Can. 26:1985-2001.
- Bakkala, R. G., and K. Wakabayashi (editors). 1985. Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979. Int. North Pac. Fish. Comm., Bull. 44, 252 p.
- Bakkala, R. G., T. M. Sample, M. S. Bohle, J. A. June, A. M. Shimada, and Y. Umeda. 1982. Data report: 1979 demersal trawl survey of the eastern Bering Sea continental shelf and slope. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-30, 200 p.
- Bakkala, R. G., J. J. Traynor, K. Teshima, A. M. Shimada, and H. Yamaguchi. 1985. Results of cooperative U.S.-Japan groundfish investigations in the eastern Bering Sea during June-November 1982. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-87, 448 p.
- Bohle, M. S., and R. G. Bakkala. 1984. Data report: 1978 bottom trawl survey of eastern Bering Sea groundfish. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-55, 164 p.
- Coachman, L. K., and R. L. Charnell. 1979. On lateral mass interaction—a case study, Bristol Bay, AK. J. Phys. Oceanogr. 9:278-297.
- Eschmeyer, W. N., E. S. Herald, and H. Hammann. 1983. A field guide to Pacific coast fishes of North America. Houghton Mifflin Co., Boston, MA, 336 p.
- Geisser, S., and W. F. Eddy. 1979. A predictive approach to model selection.
 J. Am. Stat. Assoc. 74(365):153-160.
- Hughes, S. E. 1976. System for sampling large trawl catches of research vessels. J. Fish. Res. Board Can. 33:833-839.
- Kessler, D. W. 1985. Alaska's saltwater fishes and other sealife.
 Vol. 1., Alaska Northwest Pub., Edmonds, WA, 350 p.
- Otto, R. S., R. A. MacIntosh, K. L. Stahl-Johnson, and S. J. Wilson. 1983.

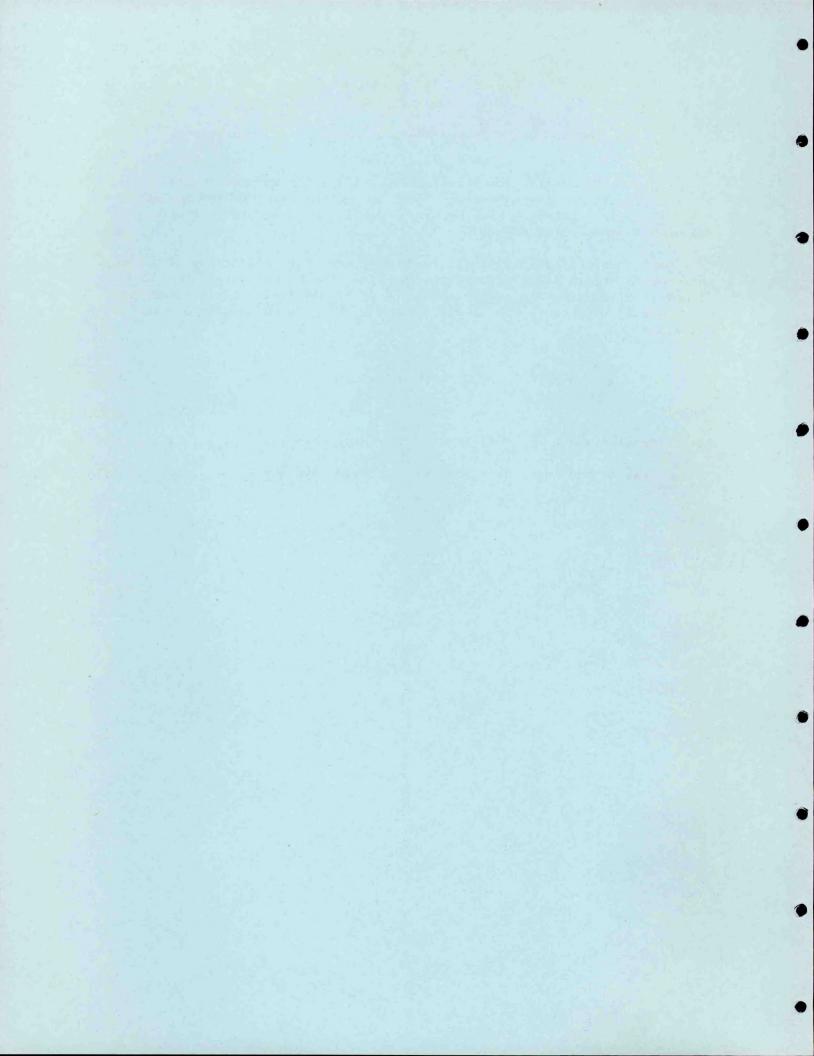
 Report to industry on the 1983 eastern Bering Sea crab survey. NWAFC

 Processed Rep. 83-18, 62 p. Kodiak Facility. Northwest and Alaska Fish.

 Cent., Natl. Mar. Fish. Serv., NOAA, P.O. Box 1638, Kodiak, AK 99615.
- Pereyra, W. T., J. E. Reeves, and R. G. Bakkala. 1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Processed Rep., 619 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

- Quast, J. C., and E. L. Hall. 1972. List of fishes of Alaska and adjacent waters with a guide to some of their literature. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-658, 47 p.
- Robins, C. R. (Chairman). 1980. A list of common and scientific names of fishes from the United States and Canada. Am. Fish. Soc., Spec. Pub. No. 12, 174 p.
- Sample, T. M., K. Wakabayashi, R. G. Bakkala, and H. Yamaguchi. 1985. Report of the 1981 cooperative U.S.-Japan bottom trawl survey of the eastern Bering Sea continental shelf and slope. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-88, 332 p.
- Shiino, S. M. 1972. List of English names of Japanese fishes with a proposition of new names. Sci. Rep. Shima Marineland, No. 1, 210 p.
- Smith, G.B., and R. G. Bakkala. 1982. Demersal fish resources of the eastern Bering Sea: spring 1976. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-754, 129 p.
- Umeda, Y., and R. Bakkala. 1983. Data report: 1980 demersal trawl survey of the eastern Bering Sea continental shelf. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-49, 175 p.
- Wakabayashi, K., R. G. Bakkala, and M. S. Alton. 1985. Methods of the U.S.-Japan demersal trawl surveys. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979, p. 7-29. Int. North Pac. Fish. Comm., Bull. 44.

Appendix A


Station and Catch Data, 1983 U.S. Bering Sea Trawl Survey

Appendix A contains computer listings of station and catch data for all successfully completed stations used in the analysis of 1983 Bering Sea survey data. Missing haul numbers indicate unsatisfactory or non-research (comparative) tows.

Latitudes and longitudes are in degrees, minutes, and tenths of minutes. Gear depths are in meters. Tow duration is in tenths of hours; distance fished in kilometers. A performance code of 0 indicates a satisfactory tow. Gear code 37 represents the 83-112 eastern trawl. Catch weights are in kilograms.

List of Tables

Table										Page
A-1.	Station	and	catch	data	for	the	NOAA	ship	Chapman	91
A-2.	Station	and	catch	data	for	the	chart	ered	ship Alaska	107

11 6/10/83 57 160 57.5 160 57.5 33429.60 46448.50 33438.00 46449.10 0.50 777.1 343.3 33.9 49.4 0.0 0.0 16.5 5.9 5555.2 163.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 6/10/33 5/20.4 160 56.8 5/13.9 160 56.8 33.16.10 46436.70 33.327.80 46440.20 46440.20 2.30 343 - B 52 - 6 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 215.5 199.1 3.6 0.0 0.5 9.5 15.6 1226.7 6/10/43 57 40-7 160 52-9 57 39-2 160 52-9 33188-70 46404-30 33197-20 46402-60 6402-60 2-89 755-1 497-7 36-8 24-5 0-0 46-4 14-7 375-2 2633.0 32.7 0.0 0.1 0.0 1.6 6.2 6.5 1.6 6.7 1.8 6/10/83 58 0-7 160 51-4 57 59-8 160 51-8 33059-80 46389-30 46389-30 46392-40 46392-40 46392-40 827.8 653.9 0.0 0.0 10.6 0.0 38.7 38.7 752.3 532.6 0.9 38.7 0.0 76.1 38.7 0.0 3668.3 6/ 9/33 56 19.8 160 44.0 53 19.2 1160 46.4 32917.40 46337.90 46337.90 46353.30 46353.30 174.2 174.2 0.0 0.7 0.0 11.8 47.2 0-0 2808.0 0.0 89.2 0.0 29.5 39.7 6/ 9/33 58 18-9 159 32-4 58 20-2 159 33-7 3277-3-70 45875-80 45876-60 45884-60 60-50 0-50 0-50 3168.9 1240.1 1371.9 0.0 2.2 0.0 135.4 26.8 2776.4 6/9/33 57 59.4 159 35.3 58 0.3 159 35.5 32908.40 45891.69 45891.69 45891.69 6.50 0.50 0.50 227-9 0-0 0-0 0-0 0-0 42-5 0-0 576-0 0.0 3226.6 6/ 8/33 57 39-6 159 37-0 57 40-9 159 38-3 33029-40 45901-00 33024-10 45909-10 45909-10 6500-10 75.7 0.0 1.8 0.2 0.0 10.7 0.0 154.3 0.0 22.7 27.5.0 334-3 4-5 2-3 0-0 0-0 13-5 305-4 2804.7 679.5 470.6 5.1 0.0 0.0 0.0 9.0 98.5 29.00 29.00 29.00 20.00 20.00 20.00 30.00 30.00 1529.9 8 00 470.4 470.4 0.0 0.0 256.7 0.0 3.4 0.0 3.4 2.9 6/ 6/63 56 59.6 159 42.5 57 0.9 159 42.5 33261.50 45945.90 45945.90 45945.30 45945.30 45945.30 45945.30 45945.30 369.0 298.2 6.2 6.2 0.0 0.0 1.5 57.3 741.5 4455.6 6/8/83 56/8/83 56/8/83 56/6/09 159/450 33389-30 45974-00 33381-00 45970-40 45970-40 30C.0 167.4 36.0 36.0 C.4 C.4 36.1 535.8 2.5 0:3 1558.0 HAUL F HONTH/DAY/YEAR LATITUDE STAKT LONGITUDE END LONGITUDE END LORAN START LORAN START LORAN START LORAN END LORAN END GEAR DEPTH DURATION IN HOURS DISTANCE FISHED PERFORMANCE / GEAR BAIRDI GPILIO HYBRID YELLOW SOLE RCCK SOLE FLATHEAD SCLE ALASKA PLAICE GREENLAND IBT ARROWTOOTH FL RED KING CRAS OCTCPUS OTHER INVERTS TCTAL INVERTS PCLLJCK PAC COC PAC OC PERCH CTHER RCKFISH SABLEFISH EELPOUTS CTHER RNDFISH TOT RCUNDFISH PAC HALIBUT OTHER FLTFISH TCT FLATFISH SKATES TCT ELASMOBPH PAC HERRING ATKA MACKEREI CA TCH TANNER HYB OTHER CRAB SNAILS SHRIMP STARFISH SCUID SCULPINS TANNER TANNER TOTAL DTHER

Chapman

ship

NOAA

the

for

data

catch

and

A-1.--Station

rable

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

163 23.2 163 2 56 1 56 3 2 39.3 56 1 153 2 3.6 1 163 2 33910.50 34010 47431.20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
57 18.7 56 59.1 163 24.3 163 22.7 33692.90 33810.00 47421.43 47433.20
7 21.6 163 22.8 1 7 21.6 163 22.8 1 7420.90 33561.80 4 381.60 47398.60 4
3 22.8 163 26.7 163 118.80 33271.70 334 336.40 47363.50 473 130.80 3327.90 334
3311847336
235 11.50 155 09.57/55.00 254/55.00

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

77	/13	7 19.	164 36.0	57 20.	64 38.	901-3	7903.1	3 8 00 - 2	7915.4	5	5	6.	2	1	•	•	•	•		•					165-3	,	•	:		9		•			•	0	10.4	,		0	0. 54	0	3.2	11.1	0.1	19.7	0.0	0.0	0.00	0.00	0.0	300.4	
5 7	/18	55 59.	2	27 0	64 37.	010.0	7310.2	4022.3	7925.7	1	5	.0	' 7	,											43.4					70 0	•				•		9.0	8	•				0.	•					0.0	•	0.0	1017.6	
42	/18	56 39	164 35.4	26 40	64 37	124.	7914.	4126.	1929.		0.50				-						0					11			40	:	•		000			2.0	•		•						0				127 8	,	0.0	1020.3	
1.7	6/18/33	56 19.	4 34.	56 18.	64 32.	214.1	1.9061	4212.1	7893.6	6		.3	M	,	36.2	;	0.0	0.0	0.0	0-0	0-0	0.0	0.0	0.2	46.5	4	ם ני		; .	: 0			000			7.3						0	35.	1					198.7		0-0	525.1	
04	5/17/83	55 59.	4 34.	26 0.	64 34.	294.3	6.068/	4289-3	1897 -3	0	0.50	5.9	2		4 6		•									-	2 4		; 0				2.5			23.1	P.												124.2	-	0.0	512.7	
39	6/11/93	55 39.	4 34.	55 40.	64 35.	366.4	5.465	4564.9	1892.9	13	0	2.1	~		67 2	: .						•		0			1 4		-		•		7 9			2.99	2					0		5					87.5	•	0.0	1392.7	
3	6/11/33	55 19.	34.	• 37 66	64 55.	1.124	001001	4463.8	10/1-4	2	0	2.9	M	u			•	5	•	•			•	0	•	2 6	•	200			•		32.3			306.0	90		•	•	3.	ö	•		•			•	2.0		10.9	4796-3	
2	6/17/33	55 5.	4 50.	• > > CC	54 51.	40%	0.000	4407.0	1836.3	ں م	0.00	5.5	3		13		•	•						0		2		-					0.1			24.0	4.											77	531.2		2.3	1213.1	
Š	/16/	26 0.		1 00	0 40	175.0	0 - 1 - 1 - 1	7-1614	0.0101	2 1		2.3	~	4	66.2	0	•		•					0	•	2	8 3	1	7			0	3.2			38.6		4.5	•						0.0				119.9		0.0	647.8	
19	5/15/53	33 58.	000		.2 40	7. 4.	1.000	7676 6	0.0101	ע ע	0000	7.7	~	c		6	•	•	•					0	2600.0	67.	181.1	53.	2			0	3.0			77.8			0.0			0	37.4		0.0						0.0	3263.1	
2		27 50	200		7 7 7 7	1, 2, 1	0 722 7	7655 2		טט	0 0	7.7	~	2 6	167.4				;					٠	•	92.		6 2			-	24.	0.1					0.0	0.0	0.0	6.5	0.0	6-0	0.0	2 2 2	: .		6-3	21.3		0.0	1268.4	
		CASTIGOE STAIN	-	ONGITUDE	CEAN STA	ATA NAM	NA SO	5 -		IEATION I	TOTANCE ETCHEN	TOTAL LIGHT	ENTURBANCE	POLLOCK	PAC CCD	RC	UTHER ACKETSH		2	STATE OF STA	-	EEI BOILTS	27000	TONK T	KU UN DE 1	YELLOW SULE	RCCK SOLE	FLATHEAD SOLE	ALASKA PLAICE	GREENLAND TBT	ARROWTOOTH FL	PAC HALIBUT	CTHER FLIFISH	TOT FLATFISH	1	2073	5	CRA	ING CRA	A BAI	OF ILI	THERT	CKA.	O T L C L C L C L C L C L C L C L C L C L	STARFISH	2	CCTCPUS	INVERT	TOTAL INVERTS		CTHER	TOTAL CATCH	

55 6/21/83 58 21.0 165 55.3 58 19.5 165 55.3 33622.0 48322.0 48322.0 48325.7 46 0.50 2.80 236-3 236-3 20-0 0-0 0-0 55-0 55-0 55-0 55-0 23.4 23.4 1016.3 12.2 1718.5 54 6/21/83 58 40.5 165 57.5 56 39.3 165 56.1 33498.40 48282.90 33506.20 37 0.50 2.65 7.37 547.5 44.9 0.0 0.0 0.0 0.0 0.0 0.0 36.7 1515.0 53 6/21/83 59 0.8 165 56.9 58 56.9 31305.30 48216.70 33314.90 48223.80 0.50 10.0 18-5 18-5 0-3 235-3 0-3 2-7 30-2 740-4 52 6/21/83 59 20.7 165 56.5 165 57.2 33096.90 48154.60 33113.80 3.50 2.6 0.50 2.87 48.4 48.4 15.0 15.0 15.2 20.9 0.0 0.0 0.0 0.0 0.0 2.0 2.0 107.1 0.0 1592. 51 67 20 783 59 39-7 165 55-8 165 58-4 32895-50 48102-10 32895-20 48102-10 24 0.50 0.1 0.0 0.0 0.0 0.0 5.9 0.0 3.9 13.9 0.0 0.0 0.0 0.0 0.3 0.1 192.3 193.9 653.0 50 6/20/83 59 19.1 164 38.5 59 19.8 164 41.1 32945.30 47720.90 47720.90 47734.01 67734.01 0.50 0.50 919-9 0-0 0-0 0-0 0-0 5-6 1-4 1114.7 601.5 103.2 0.0 0.0 6/20/83 56 59.2 164 38.4 59 0.7 164 39.0 33131.80 47764.20 33119.20 47764.30 47764.30 67764.30 21.3 1079.4 0.0 277.1 0.0 17.6 4.5 48 6/19/83 58 59-4 164 39-5 58 40-8 164 39-2 3311-90 47812-30 33258-50 47807-20 0.50 43.1 101.6 0.0 0.0 0.0 0.0 17.0 5.1 5.0 24.9 1830.8 6/19/83 58 20.3 164 39.5 58 20.1 164 39.5 164 37.0 13473.0 33467.30 47832.10 1666.3 14.4 11.4 63.0 0.0 0.0 0.0 2.7 1747.8 45 0.50 2.87 / 37 3218.9 46 6/19/3 57 59.8 164 39.1 57 59.9 164 36.4 33633.10 47878.50 33624.80 47860.80 46 0.50 2.76 7.37 201.4 5.9 152.3 0.0 17.6 25.9 29.4 368.7 0.0 0.0 0.0 0.0 55.4 401.5 4.5 0.0 0.0 13.2 13.2 218.1 0.0 143.7 0.0 0.0 0.0 0.0 10.4 3350. R 0.0 45 5/19/33 5/19/33 57 35-4 164 36-4 57 46-9 164 37-10 3377 3-00 47837-10 33766-70 55 0.59 2.89 165 C - 8 67 - 9 4 E - 8 32 3 - 7 C - 0 C - 0 C - 0 HALL #
MONTH/DAY/YEAK
LATITUDE START
LONGITUDE START
LATITUDE END
LCAGITUDE END
LCAN START
LORAN START
LORAN START
LORAN END
LCRAN END
L RED KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, OPILIO TANNER, HYBRID YELLON SOLE ROCK SOLE FLATHEAD SOLE ALASKA PLAICE GREENLAND 18T ARRCWTOOTH FL PAC COD PAC OC PERCH OTHER RCKFISH SABLEFISH EELPOUTS CTHER RNDFISH TCT RCUNDFISH OTHER FLTFISH TOT FLATFISH OTHER INVERTS PAC HERRING ATKA MACKEREL SKATES TOT ELASMOBRH PAC HALIBUT CATCH OTHER CRAB SHRIMP STARFISH SQUID SCULPINS PCLLOCK CCTCPUS TOTAL

(cont'd)

Chapman

for the NOAA ship

catch data

Table A-1. -- Station and

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

	į						,	;		į	į
4	000	2000	2000	1001	1201	51261	9	1261	101	101	1361
ט ני	227	100	7 20	7 661 5	200	2000	2 6 2 6	2 6 7 6	5 23	2	7 50
165	5 1	2 2	5 5 7	25. 72	4	5 47	5 47	5 47	5 46		7 11.
) V	, 5	502	57 10	56 50	76 39	26 19	55	27 40	55 20	65 75	58 0
2	2		55 57	65 50	55 50	67 59	65 50.	63 69	65 48	5 45	67 8
) M	11		41 71 1	1,71,7	4745	0 9077	4503.2	0.542	4612		7-1207
7 0	27	2 55	8414	8623.5	8412.3	9385	8374.5	2 5728	P 71 5 2		8852.3
. ~		7. 6	6 5217	1.21.3 1	4255 0	7777	6512	0 0 957	6200		4065.9
1 8 7	2 10	48394-20	10.9	48612.30	48417.50	48401-20	48390-BD	48356-60	68325-30		48834-70
)		4	7	7	1	0	10	12		~	
		0.50	. 2	. 15	2	5	1	15	1 5	2	5
		2.69	2	3	0	1	3	6	00	6	1
•	0 / 37	0 / 37	0 / 37	1	, M	0 / 37	0 / 37	M	~	0 / 37	M
	36.5	173.4	~	0	00	9	62	9	a	_	
	7 2 2 2	,		•	•		•	2	100	7.7	
	1	000	000	0.0		0.00			0.00		10
			•	•	•	•			•	•	•
					•	•			;	•	
			•	•	•					•	
					•				•	•	
	2	0.0			· .						
	16.5	1.9		•	•	•				•	
	3	0.1		•					5		
	3.6	-	0	0	•	0	ສໍ	4 3.	32.	•	0
	84.3	227.8		•	•	•		æ	~		•
	-	1003.8	-	6	0						
	34.4	16.8	20.	12.	7	9		4.			0
	7	15.4	22.			9.					~
	1.	135.1	9	-	2			0		4.	
	0.0		0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0
	0.0	0.0			•						
	0.0				•	0	2				
	8.3	0.0		0	0	0	-	1:		-	0
	1751.7	1172.7	709.9		•						
			L.			7	α	6	Ġ	6	•
	4.1	1.0	15.9	4.1	5.4	24.0	4.8.1	69.2	7.97	19.5	0.0
	0.0	1.4									
		0.0						· .			•
	0.0	0.0	0	0	•			•			-
	1 - 4	21.2									•
	٠	0.0		0		0.	0				0
	2 - 58	9-11			0	54.	•				•
	. 4	102.3	-	0		9	-				55
	:	0.5	0	0	0	0					
	30-3	172.4									
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	000	•
	٠.			•	•	•			5		ע
	7 226	10									•
	. 7 5	97.0	0	•		000	ò	:	-	•	•
	0-3	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0
						;		100		0 . 7	
	2082.8	1734.0	1413.2	601.5	448-0	971-2	1078.0	2398.3	506.1	1339.2	2140.

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

HAUL *	19	68	6.9	70	7.1	72				1	1
MCNTH/DAY/YEAP	8	25/E	12512	125/8	12618	12613	12618	127/8	1211	1 2/8	1 213
LATITUCE STAXT	.:	20-	C	6 41.	5 20.	0 9	2 40.	5 20.	0	53 19.	58 39.
LONGITUDE START		7	4.	7 2.	7 2.	-0 2	6 28.	6 58.	95 9	7 10.	7 12.
LATITUDE END	57 35.2	57 19.	56 59.	56 40.	56 19.	55 59.	55 59.	55 20.	54 58.8	53 20.	
		67 8	67 6.	67 1.	67 2.	67 0.	66 59.	E7 0.	15 99	67 11.	67 15.
18	5	4372.4	4487.4	4579.7	4657.7	4714.5	4760.7	1.797.	8240.	3838.9	3701.2
I CRAN START	9	8911.0	8911.5	3897.1	8873.8	8832.3	8783.5	8735.8	8677.	8783.5	8724.3
LORAN END	N	82.2	4 . 4	579.3	1.499	719.6	765.4	801.9	231.	885.9	699.3
L OR AN END	7	8918. L	9026.9	8 8 8 5 . S	7.9788	8831.3	8788-8	8749.3	8683	8784.5	8735.1
CEAR OFPIH	71				,	,					
11	. u	. 4	. U	15		, 0	10	5		5	C
DUNALLUN IN HOUSE	00.00	0.00	0.00	00.0	1	7 0	1 0	1 1	200		
LISHED	7	7.0	2.0	1.7	7.			. ,	•		
PERFORMANCE / GEA?	~	~	~	~	2	2	2	2			2
300		00		43	-	4	1	27	6	,	2
2000		200	-	101	72	717	7 6		36.		
				;	, ,					-	-
٠ د		0.0			•	•	•		•	•	•
CINER ACAT AN		0.0			•				•	•	•
	0.	0.0						;	•	;	•
9	4-1	4.1			•					•	•
	0.0	0		0	0				•	5	
SCULPINS	7.		2.5	28.5	24.5	0.2	4.0	2.0	5.0	40.0	1.10
EELPOUTS	0.1				0	0	2			•	0
IS	C - 2		0	0	13.	15.	16.	15.	0	35.	11.
TOT ROUNDFISH	17.6				•	3.	7.	~		-	0
YELLOW SOLE	306.9	567.9	28.8	2.1	0.0	0.0	0 0	0	0 0	1114.1	5.5011
RCCK SOLE		152.0	.,	•	÷,		00	;			
FLATHEAD SCLE	3.2	35.8				71.2					- 1
ALASKA PLAICE	2.39	196.4		0	0	0		0			•
GREENLAND 18T	0.0			0		20.4	-		0		
AFFOWTOOTH FL	0.0	0.1				2		5		•	0
PAC HALIBUT	3.3	0.0			•	5.2				•	
OTHER FLIF I SH				0	3	•	-	'n			n ,
TOT FLATFISH	383.8	932.3			•	174-1	•		•		•
3	11.3	4-1				2	5	3			9
TCT ELASHOERH	11.3	4.1	3.3	9.0	0.0	17.2	15.9	33.1	0.0	17.7	26.0
CRAB	0.0	3.6	8.2								•
G CRA	0.0	0.0	0.0		•			0			
BAIRD	:	0.1	0			•					
TANNER UPILLU	2.0	10.9	21.8		•						
Tue		2.00	2 52	;	•					m	7
SNATLS	70.7	60.6	7.7	100.7	5.3	6.2	80	4	9.8	32.7	34.6
SHRIMP	3	0.1	0.0	0						0	
STAFISH	£1.2	56.2	57.5		•						
SGUID	0.0	0.0	0.0								
	0.0	0	0.0		•	0	0	0	0	0	0
ERT	63.	59.0	0.0	0	4.						15.
VE S	462.6	2.	130.8	•	•	4.	2	2	2.	6	~
ОТНЕЯ	0.0	0.0	0.0	0.0	0-0	0.0	0-0	0-0	0.0	0.0	0.0
TOTAL CATCH	4.278	1326.4	2627.9	1552.9	2465.4	1228.7	1390.1	1176-0	1309-7	1971.3	2281.5

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

62 58 0.5 58 0.5 168 24.4 57 59.5 1168 26.8 34.283.30 34.303.40 49.311.10 0.50 0.50 0.50	2592-9 52-7 52-7 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0	2047.6 10.9 51.5 0.0 0.0 0.0 0.0 0.0 0.0	64.00.00.00.00.00.00.00.00.00.00.00.00.00	
37 47 93 53 20.2 168 27.2 53 19.6 168 27.6 54083.40 49216.30 492216.30 49223.20 6.50 6.50	233.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	472.9 23.1.7 205.7 205.7 205.7 205.0 704.3	0.0 0.0 0.0 74.2 66.6 66.6 66.6 67.9 0.0 0.0	
86 77 4/43 58 40.7 168 30.5 58 39.9 168 32.8 33855.20 49133.00 49148.30 49148.30 49148.30 6.50	12.5 0.0 0.0 37.1 37.1 5.8.4 19.2 137.3	707-1 12-5 12-5 12-5 12-5 0-0 0-0 0-0 0-0 4-3 857-5	0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
95 77 4/33 59 0.5 168 30.5 168 33.3 33639.5 49033.0 49049.40 49049.40 49049.40	45.1 100.7 0.0 0.0 33.6 0.0 65.9 10.6 255.9	630.0 51.2 51.2 297.2 0.0 0.0 0.9 4.9 989.1	0.0 0.0 0.1 0.5 86.9 86.9 86.9 0.0 117.6	
34 77 3/83 59 20.6 166 32.4 59 19.5 168 34.6 334 03.00 48937.20 48952.00 48952.00 48952.00	61.7 90.7 0.0 0.0 45.6 0.0 78.6 0.0	471-1 81-6 176-1 176-1 6-3 6-5 742-5	0.0 0.0 0.0 0.5 0.0 155.8 155.8 221.4 0.0	
33 77 3/83 59 40.9 168 36.9 59 39.4 168 37.1 33167.20 48852.90 48862.00 48862.00	138.4 128.6 0.0 0.0 0.0 1.0 38.9 38.9	718.7 54.9 14.4 0.0 0.0 3.4 6.1 858.6 33.6	0.0 0.0 0.0 0.0 113.4 19.6 212.5 212.5 25.7 25.7 25.7 25.7 25.7 25.7 25.7 2	
42 60 0.9 168 39.3 59 59.4 168 35.3 32930.10 48764.50 48764.50 48771.50 48771.30 0.50	113.5 123.4 0.0 0.0 21.1 144.9 410.9	435.2 32.0 90.9 0.0 0.0 7.5 565.7	0.0 0.0 0.0 0.0 11.3 11.3 11.3 183.4 0.0 0.0 0.0	
51 7 3/83 60 20.0 168 41.0 60 18.6 168 39.8 32701.40 48679.30 43671.50 43681.50 6.50 2.80	110.7 670.0 0.0 0.0 179.4 0.0 82.3 20.6 1062.9	367.5 10.7 80.1 80.3 60.3 7.4 7.5 16.9	0.0 0.0 0.0 0.0 13.6 1.8 1.8 0.0 26.9 118.9	
80 77 2783 59 39.0 167 16.7 59 40.5 167 16.9 33057.20 48495.90 48495.90 48495.90 48495.90	111-8 92-33 0-0 0-0 0-0 1-4 1-4 1-4 1-4 1-8 1-8	383-1 10-0 48-1 0-0 42-6 21-5 510-4	326.8 326.8 326.8	
77 2/c3 59 19-1 167 15-4 59 20-6 167 15-1 33276-90 48577-70 48570-30 48570-30 48570-30 48570-30	7.00 0.00 0.00 0.00 0.00 0.00 0.00	550.9 27.9 0.1 60.6 0.0 179.2 2.8 821.5	0.0 0.0 0.0 0.0 0.0 154.4 0.0 155.0	
78 2783 58 55.2 167 13.7 59 16.7 13.4 8651.00 48651.00 48651.00 48651.00 48643.60 48	11.17	1044-3 17-7 76-3 76-3 10-0 10-0 1148-7 46-7	1451-8	
HAUL F HCNIH/DAY/YEAP LATITUDE STAAT LCNGITUDE STAAT LATITUDE END LCRAN STARI LORAN STARI LORAN END LCRAN END GEAR DEPTH DURATION IN HCURS DISTANCE FISHED	POLLOCK PAC CCD PAC CCD CAC DC PERCH OTHER RCKFISH SABLEFISH ATKA HACKEREL SCULPINS EELPCUTS OTHER RNDFISH	YELLOW SOLE ROCK SOLE FLATHEAD SOLE ALASTA PLAICE GREENLAND 18T ARROWTGOTH FL PAC HALIBUT CTHER FLTFISH TOT FLATFISH SKATES	RED KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, OPILIO TANNER, HYBRID OTHER CRAB SNATLS SHRIMP STARFISH SQUID CCTCPUS OTHER INVERTS TCTAL INVERTS	

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

107 77 7/83 55 40.5 163 11.3 163 10.1 139 0.50 0.50	995.8 155.0 0.0 0.0 4.1 0.0 16.1 1171.1		35 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
77 77 83 50 0.8 168 12.9 55 59.3 163 13.1 13458.00 49266.70 49266.70 49266.70 2.93	542.3 174.9 0.0 0.0 0.0 0.0 0.0 1.7	01000000	115.3 115.3 115.3 11.2 12.3 12.3 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13
77 6/33 56 20.4 163 14.1 56 19.0 168 14.9 154 0.50 2.35	865.5 75.1 0.0 0.0 2.3 0.0 0.7 1.1 1.1	000000m	999.7 999.7 999.7 999.7 999.7 11.1 11.1
77 6783 56 40.4 168 17.8 56 39.2 168 16.6 100.50	6231.9 0.0 0.0 0.0 0.0 63.6 0.0 63.6		0.0 0.0 0.0 0.0 2.6.7 21.6 0.0 0.0 0.0 0.0 0.0
77 6783 56 50.7 168 37.0 168 37.0 34.858.7 49.530.0 49.530.0 6.50	771.2 20.4 0.0 0.0 0.0 53.3 846.0		179.2 179.2 179.2 129.3 120.0 111.3 120.0
95 77 6/83 56 59.6 168 17.8 57 0.7 168 19.4 34749.00 49399.00 49410.80 49410.80 49410.80	261.5 24.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 32.8 0.0 125.1
93 77 5/83 57 10-7 168 38-4 168 37-0 34750-30 49532-70 34763-70 49524-10 49524-10	165.3 13.4 0.0 0.0 0.0 10.2 10.2 0.0 18.9		7.5.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
92 77 5783 57 21-1 168 22-1 57 20-0 158 20-4 34631-00 49403-40 34633-10 49399-10 49399-10	159.5 6.3 0.0 0.0 0.0 0.0 6.3 6.3		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
77 5783 57 30.8 168 39.5 57 29.5 168 37.9 34615.20 49491.30 49491.30 49491.30	7114.8 96.5 0.0 0.0 0.0 46.7 46.7 7258.5		57.9 0.0 0.0 0.0 0.0 0.0 50.3 0.0 571.2 690.4
90 77 5783 57 40.3 168 25.1 57 39.5 168 22.7 34484.30 49376.30 34483.80 49376.30 49364.10	367.0 339.2 0.0 0.0 0.0 0.3 28.9 0.0 736.4	× 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25.3 0.0 13.1 0.0 26.1 50.1 13.7 0.0 227.2 425.1
89 57 5 6 - 7 168 3 8 - 4 57 45 - 7 166 46 - 6 34427 - 30 49417 - 80 4943 - 60 4943 - 60 4943 - 60 2 - 89	27.7.7 27.7.3 27.7.3 27.7.3 27.7.3 27.7.3 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	(1 (1 () () () () () () () ()	15.4 10.0
HAUL # MCNTH/DE START LCASTTUDE START LCAGTTUDE START LCAGTTUDE END LCAGTTUDE END LCAN START LCRAN START LCRAN START LCRAN START LCRAN END CGAR DEPTH DURANTON IN HOURS DISTANCE FISHED	PCLLOCK PAC COD PAC COD CTHER ECKFISH SABLEFISH PAC HERRING ATKA MACKEREL SCULPINS ELLPOUTS OTHER RNOFISH	ELLANCE PREE	TOT ELASMOBRH RED KING CRAB BLUE KING CRAB TANNER, BAIRD I TANNER, HYBRID DTHER CRAB SNAILS SNAILS SHEIMP STARFISH SCUID CCTOPUS CCTOPUS CTTRE TOTAL INVERTS

113 7/10/83 58 19-3 169 43-2 58 20-3 169 44-50 49580-70 34232-40 49584-80 49584-80 71 0-50 2255.9 3.4 3.2.7 76.7 0.0 0.0 315.7 7.10/53 57 59-3 169 40-8 53 60-8 169 42-1 34482-10 49700-70 49700-70 4969-20 4969-20 4969-20 73 73.0 0.0 0.0 0.0 0.0 5.2 5.2 31.5 31.5 9.0 6.7 11.3 10.4 10.0 10.0 10.0 10.0 368.5 197.3 15.0 3.8 73.5 1.4 2.7 2.7 0.0 16.6 111 77 9/33 57 49-7 169 59-5 57 50-3 170 100 34625-80 49841-60 34621-20 49846-40 75 0 75 39.5 39.5 2.3 2.3 0.0 0.0 13.2 110 57 9/33 57 39-3 169 40-7 169 40-8 34716-40 34700-10 49622-30 34700-10 49616-30 49616-30 16.6 1.2 1.2 19.3 0.0 16. 109 77 9/33 57 29-1 169 59-5 170 10-6 170 34-87 170 49977-50 170 49977-50 170 6-50 170 0-50 34.7 34.7 3.9 131.3 0.0 126.4 1.6 0.0 16.5 0.0 0.0 722.1 27.9 20.6 0.0 0.0 15.8 11.0 0.0 119.2 20.3 44.3 6.0 6.0 6.0 0.0 0.0 1515.4 108 77 9/83 57 19-5 169 35-9 169 35-8 34911-60 49901-10 49839-80 64 0 7 37 42.7 43.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 229-2 229-2 12-7 109-7 0-0 28-8 51-5 0-0 661-2 7/ 8/33 57 16-3 169 51-4 57 11-3 169 51-4 35040-53 50021-50 35034-40 50024-20 50024-20 50024-20 71-5 0-0 0-0 0-0 0-0 8 0-0 1-0 8 33.7 247.7 0.0 0.0 0.0 3.6 31.3 316.2 0.0 527.0 106 56 59.3 169 34.5 57 0.7 169 33.5 18714.30 35027.90 2.5 34.5 113.2 113.2 11.5 11.5 71.2 71.2 0.0 0.0 0.0 0.0 0.0 178.9 173.3 173.3 1.4 4.5 0.0 0.0 0.0 0.0 0.50 2.82 7.37 105 77 8783 56 49.7 159 52.6 56 50.8 169 52.6 35102.7 49985.50 35107.70 50001.90 1431.1 79.2 0.0 0.0 0.0 0.0 0.0 203.2 0.0 0.0 75 0.50 2.82 / 37 376.5 39.9 3.9 6.4 6.4 0.0 4.2.8 18.4 32.1 2443.9 104 77 87.3 56 40.4 169 30.3 56 40.6 169 29.5 35055.10 49826.30 26.0 0.0 0.0 0.0 0.0 332.7 359.4 80 0-17 0-91 / 37 1255.8 00 102 7/7/83 56 21-8 169 25-9 56 21-8 169 25-0 49757-30 49757-30 49751-50 49751-50 49751-50 49751-50 12.0 HAUL #
MCNTH/DAY/YEAR
LATITUDE START
LONGITUDE END
LONGITUDE END
LORAN START
LORAN START
LORAN END
LORAN E REC KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, OPILIO YELLOW SOLE RCCK SOLE FLATHEAD SOLE CTHER RCKFISH SABLEFISH PAC HERRING ATKA MACKEREL ALASKA PLAICE GREENLAND TBT ARROWTOOTH FL PAC HALIBUT OTHER FLTFISH TGT FLATFISH INVERTS PCLLOCK PAC COD PAC OC PERCH SKATES TCT ELASMOBRH CTHER RNDFISH CATCH TANNER, BAI TANNER, OPI TANNER, HYB TANNER, CRAB CTHER CRAB SNAILS SNAILS STAAFISH SCUID SCULPINS OCTOPUS OTHER IN TOTAL IN TCTAL

(cont'd)

Chapman

NOAA

for

data

catch

and

A-1.--Station

Table

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

124 7/12/83 59 40.4 171 13.9 59 39.6 171 16.5 171 16.5 0.50	222 222 220 240 250 350 350 350 350 350 350 350 350 350 3	4000000 NIU	191000 1911400 11131143 2775 2775 2700 000 000	
123 7712/43 60 0-5 171 17-1 59 59-6 171 17-4 17944-00 33085-90 17938-70 33085-90 2-70	80. 26.3 0.0 0.0 0.0 0.0 72.0 72.0	44 900000	424.5 424.5 0.0 22.6 34.1 6.0 6.0 5.0 5.0 6.0 6.0	
1712/83 60 20.6 171 21.2 60 19.2 171 20.7 17878.50 32839.60 17833.50 32655.50 32655.50	137-0 68-5 0-0 0-0 0-0 67-1 162-5 462-0	WOO BOO O N N O O	31 8-5 0-0 31 8-5 0-0 17-9 17-9 10-2 0-0 0-0 0-0 1141-3	
1712783 60 40.5 60 40.5 60 40.0 171 23.5 171 25.8 171 25.8	443-131-13-13-13-13-13-13-13-13-13-13-13-1	NN NN 00 00 00 00 00 00 00 00 00 00 00 0	60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0	
7/12/83 61 C-2 171 24-4 61 0-1 171 27-4 32371-60 48983-60 32374-70 48996-40 2-69	34.7 43.1 0.0 0.0 0.0 30.0 116.8 225.8	N 0 0 4 0 0 0 4 4 0 0	16 7. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
119 7/11/83 60 19-2 170 0-0 60 20-9 170 4-3 32797-50 48958-90 48958-90 48963-60 48963-60 7.50	25.4.6 57.2.9 0.0 0.0 0.0 0.0 15.6 15.6 35.0	50 00 00 00 MM	155.4 95.5 152.6 0.0 152.6 475.4 1413.7	1
1119 7711/33 59 59.2 169 57.3 60 0.5 33039.90 49056.70 49056.70 49048.40 69048.40	135-1 77-9 0-0 0-0 0-0 0-0 0-0 26-3 7-3 7-5	2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	10-0 36-0 36-0 79-0 79-0 40-0 109-0 391-8	
7/11/33 59 39.6 169 54.5 59 40.9 169 55.7 33276.30 49152.30 49149.00 49149.00	163.0 99.7 0.0 0.0 0.0 49.3 15.2	6 t H0000 N N N 00	129-1 79-5 45-5 45-5 44-6 298-7	
7/11/3 59 19.3 169 51.4 59 20.3 169 51.5 33521.2 49256.0 49247.6 0.50 2.83	261.7 253.1 0.0 0.0 21.9 76.2 3.6 17.7	44 69000009 44	0.0 0.0 0.0 114.3	
7/10/83 53 59.3 169 49.9 169 49.9 59 0.7 169 50.6 33764.4 49361.20 49361.20 49361.20 2.78	68 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	463.8 111.4 275.6 0.0 752.3	0.0 0.0 28.6 0.0 107.1 44.8 13.9 0.0 238.8 1190.4	
7/10/33 58 35.4 169 46.4 58 4C.6 169 47.9 34074.20 49472.40 33990.50 49472.40 2.82	45.8 62.7 6.0 6.0 6.0 6.0 6.0 12.7 17.2	776.9 116.9 118.4 10.0 10.0 11.6	69.5 69.5 69.5 69.5 6.0 15.0 15.0 15.0 15.0 15.0 15.0 13.0 13.0 13.0 13.0	
HAUL # MCNTH/DAY/YEAR LATITUCE START LONGITUDE START LATITUCE END LCATITUCE END LCAN START LCRAN END LORAN END CEAR CEPTH CEAR END CEAR CEPTH CEAR END CEAR CEPTH CEAR	PCLLOCK PAC COD PAC COD CTHEH MCKFISH SABLEFISH PAC HEKRING ATKA MACKEREL SCULPINS EELPOUTS GTHER RNDFISH	SOL ND S PLA NND 10TH 116U 17FI	REG KING CRAB BLUE KING CRAB TANNER, BAIRD TANNER, HYBRID TANNER, HYBRID CTHER CRAB SNAILS SHRIMP STARME SQUID OCTOPUS OTHER INVERTS UTHER	

135 7/15/83 56 40 • 1 171 58 • 7 171 58 • 7 17957 • 10 34992 • 50 17951 • 40 34997 • 30 130 0 • 50 555.0 321.5 154 7/14/83 56 20.7 173 41.7 56 19.6 173 39.8 55.8 55.8 55.8 55.8 55.8 123 0.50 2.83 / 37 17.9 652.2 133 7/14/33 56 40.5 170 45.0 56 39.6 170 43.5 18393.00 35126.30 18398.10 35128.50 157.5 0.0 0.0 0.0 30.0 17.8 000 000 1100 000 000 000 360 360 0.5 0.0 0.0 0.0 0.0 12.7 12.7 29.0 39.5 516.9 132 7/14/93 57 0.7 170 49.1 56 59.5 170 48.6 170 48.6 18504.30 18508.30 97 0-50 2-76 7 37 37.9 37.9 0.0 0.0 0.0 0.7 0.7 0.0 1.4 1.4 605.6 264.3 15.3 0.0 0.0 0.0 65.1 0.0 126.5 0.0 131 7/14/83 57 20.9 170 52.7 57 20.5 170 50.1 18507.50 34945.10 34945.10 34945.10 34945.10 34945.10 34945.10 34954.00 34954.00 223.9 23.9 14.0 0.0 10.3 19.4 19.4 46.0 130 7/14/83 57 40.9 170 53.8 57 35.8 170 54.2 170 54.2 170 54.2 18461.20 34753.00 34753.00 34753.00 84.8 0.0 0.0 0.0 0.0 0.0 5.2 0.0 32.4 0.6 1180-11 118-11 118-11 12-2 13-4 14-11 14-11 15-11 16-1 7.9 7.9 11.3 140.5 2.8 324.2 0.0 8.8 8.8 149.1 1031.4 7/13/83 58 0.4 170 59.3 170 57.9 170 57.9 183 72.0 345 14.10 345 14.10 345 14.10 345 14.10 31-0 36-5 36-5 88-3 4-4 37-2 1-1 1-1 242-22 0-0 111-7 73-9 30-3 31-7 568.3 59.0 59.0 0.1 32.8 352.5 0.0 0.0 6.0 128 7/13/53 58 20.6 171 2.4 58 19.4 171 0.7 187 18267.90 18305.60 34282.90 230.2 69.4 0.0 0.0 0.0 2.3 7.5 7.5 86 0.50 2.76 / 37 105.5 19.1 119.1 7.3 0.0 0.0 0.0 9.6901 519.0 23.6 23.6 0.0 0.0 6.4 0.0 19.6 6.5 73.7 1.1 24.9 1.9 0.0 0.0 0.0 19.5 126 7/13/83 55 59.1 171 10.0 56 57.8 171 8.4 1814.60 49606.50 18154.40 80 0.50 2.78 7.37 55.7 55.7 55.7 0.1 0.0 7.0 37.5 17.7 0.0 0.0 0.0 0.0 0.0 0.0 11.8 111.8 111.8 7/13/83 59 20-7 171 11-6 19 15-4 171 10-4 18074-30 33550-50 33550-50 33555-70 0 50 1.9 767.2 HAUL #
MONTH/DAY/YEAR
LAIITUDE START
LCNGITUDE START
LCNGITUDE END
LCATTUDE END
LCAN START
LCRAN END
LCRAN END
LCRAN END
LCRAN END
LORAN RED KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, UPILIO TIANNER, HYERID OTHER CRAB SNAILS SHRIMP FLATHEAD SCLEALASKA PLAICE GREENLAND TBT ARROWTCOTH FL PAC HALIBUT OTHER FLTFISH UCTOPUS OTHER INVERTS TOTAL INVERTS PCLLOCK PAC COD PAC OC PERCH JTHER RCKFISH SABLEFISH PAC HERRING ATKA MACKEREL SCULPINS EELFOUTS OTHER RNDFISH SKATES TOT ELASHOBRH YELLOW SOLE ROCK SULE CA TC H TOTAL SCUID TOT

(cont'd)

Chapman

ship

NOAA

for

data

catch

A-1. -- Station and

Table

Table A-1Station	and	catch data	for the	NOAA ship	Chapman	(cont'd).					
HAUL #		137	13	13	4	4	3	3	-4	4	4
MCNTH/DAY/YEAR	7/15/83	7/15/83	7/15/83	7/15/53	7/16/83	7/16/93	7/16/33	7/16/33	-	7/17/33	7
LAILIUDE SIARI		25	1 59.	57 59.	19.	8 39.	58 59.	59 19.	59 29.	59 39.	59 50.
LATITION PNO		2 00 25	0 0	. 13	12	2 21.	2 25	2 30.	2 4 8	*	72 51.
I ONGITUDE END				72 17	72 18	72 10	72 27	32 20	22 57	72 40.	37 49.
		18351-40	035.0	985.0	55.7	391.1	376.5	778 3	675.2	71. 2	626 0
LORAN START			616.4	4419.5	4218-1	40007	3780-5	1554.9	3435	7.777	3200.0
LOFAN END			020.0	7.4667	7940.3	7896.9	7841.9	7776.3	7678-2	7715.3	7620.7
LCRAN END			605.8	4414.5	4208.9	3989.8	3768.3	3542.5	3421.1	3316.6	3212.7
	121	112	11	10	10	10	10	•	6	000	, ac
I		0.50	S	.5	.5	5	1	5	10	5	2
ED	2.80		2.7	2.7	2.8	~	1	2.78	2.87	2.72	2.12
2		0 / 37	2	~	3	m	~	17	~	~	~
_	-	000	ı	010		;					
	2 0	;	•	•	•						
PAC OC PERCH	200	1	200	7.00	5.0		10201	36.7		292.3	, 3.3
TAKE OF TAKE		•			•				•		
CARTERICH AND			•	•	•						•
ONLACTH DAG			•	•	•						•
ATKA NACKEDEL									•		•
ACHI DINA					· .	5		5.			
FEI POUTS	, a		÷.					.;	0		0
					•			;			•
TOT BOUNDEISH	1 2 7 7 2		•	200	5 5				0.0		0
	*	010	533.	020							
YELLOW SOLE	0.5	0.0	0.0						22.7	-	-
	8.5	25.3					-		1 **		
FLATHEAD SOLE	34.7	17.7			•	0			7-4		
_	0.0	1001	0	0	6		6		2-2	, ,	•
GREENLAND TBT	0.0	4.2			8	7		9	2-8	15	·
AFRONTCOTH FL	23.9	24.4	38.5	4	13.6		10				•
	6.3	0.0	0		0				6-0		
CTHER FLIF ISH	4.0	1.4						9	S		,
TOT FLATFISH	65.3				4-39	57-7	20.4	235.4	64.3	9-144	575.7
3	•		,	ι							
TET ET ASMORBH		14.5	55.2	55.7	12.2	31.8	2.3	43.2	0-0	39.2	12.9
,	•	•	•	•	•	-		•			
REC KING CRAB	0.0	0.0									
BLUE KING CRAB	0.5	0.0									•
TANNER, BAIRDI	0 · 3 9	32.5							0		
TANNER, OPILIO	122.0	196.1									
DANNERS HTBRID	0.5	0.0			•			0		0	0
CHER CRAB	4. H	3.0		8	5	8	4.				•
SAPILS		0.5						9		3	0
LETELO				0	•	0	0	0		0	
SOUTH	C-17	16-9									
SUGITOR											
>	7-0										
TOTAL INVERTS		249.0	239.7	144.3	111.3	104-0	109.7	166.0	47.5	154.0	273.3
N 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		0-0	0.0	0.0	0-0	0-0	0.0	0-0	0-0	0-0	0.0
TOTAL CATCH	1636.3	2962.9	3575.6	3258.6	1029.3	1062.9	692.0	3607.5	3163.3	3055.4	1758.5

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

7728/83 58 59.2 173 42.1 59 0.5 173 43.4 17470.90 33715.20 17463.20 17463.20 17463.20 17463.20	1687.2 336.9 0.0 0.0 0.0 1.2 0.0 1.0 0.0 2.3 20.3	0.8 1.0 21.5 28.2 25.7 25.7 25.7 37.3 115.6	0.0 0.0 1.4 15.1 0.0 0.3 61.8 61.8 61.8 0.4 15.1 0.0	
156 58 39-6 173 37-7 58 40-8 173 39-1 17505-10 33512-60 17493-20 33699-30 130	813.9 6513.9 00.0 00.0 00.0 00.0 00.0 00.0 00.0 0	3 2 2 3 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	31.3 49.0 6.0 34.7 34.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	
7/27/33 58 19-6 173 32-7 58 20-7 173 34-5 17540-50 34107-20 34094-20 34094-20 34094-20	2855.9 201.8 0.0 0.0 11.2 62.7 42.7 11.2	37.4 34.9 34.9 6.2 0.0 27.4 9.3 127.5	6.9.4 8.6.6 0.0 4.1.8 0.0 5.0 0.1 5.0 0.3 12.6.0	
7/27/83 57 59.4 173 29.0 58 0.8 173 29.5 173 29.5 17559.50 34289.90 17557.10 34276.50 121 0.50 0.50	83.0 43.5 43.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	17.2 17.2 17.2 0.0 0.0 30.8 10.8 10.8 79.6 49.9	80.0 80.3 80.3 9.9 9.9 11.5 11.5 0.0 0.0	
7/27/83 57 41.7 173 24.7 57 43.1 1173 24.2 117572.30 34439.40 11577.00 34429.30 34429.30	2239.5 116.1 0.0 0.0 0.0 0.0 0.3 0.3	115.5 115.5 0.0 0.0 0.0 113.9 57.2 88.2	0.0 0.0 0.0 0.0 0.1 3.4 0.0 0.0 0.0 101.6	
7/27/33 57 19.5 173 19.4 57 20.8 173 20.4 17571.5 34606.2 17567.6 17567.6 34595.5 0.5 0.5 0.5 0.5	24.9 24.9 0.0 0.0 0.0 113.2 0.2	148.8 148.8 0.0 0.0 15.9 191.2	0.0 83.0 0.0 0.0 0.0 0.1 0.1 0.0 109.4 413.7	
151 7/27/83 56 59.1 173 16.7 57 16.7 173 14.5 17535.80 34729.50 17553.20 34729.70 143	434.5 92.5 0.0 0.0 0.0 0.0 0.0 0.0	120.0 120.2 120.2 78.0 237.0 231.1	0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0	
150 7/18/33 50 40.7 172 40.7 50 39.3 172 42.1 17567.30 32637.90 17570.70 32654.50 2.80	624.4 624.3 0.0 0.0 0.0 4.3 7.0 7.0	13.2 14.7.0 14.7.0 0.0 10.9 196.7	0.0 0.0 0.0 0.0 17.3 14.3 14.3 16.0 0.0 0.0 0.3 3.4.0	
149 7718/33 60 58.9 172 48.3 61 0.4 172 47.3 17513.80 32435.30 17513.00 32416.90 32418.90 63	110.7 156.3 0.0 0.0 4.5 75.3 377.4	12.5 0.0 0.0 0.0 0.0 59.3 81.7	0.0 17.5 17.5 10.0 10.0 10.0 88.2 88.2 88.2 88.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
143 60 10.6 172 59.7 60 10.6 172 59.7 60 10.0 175 59.6 175 59.6 329 75.00 175 60.40 175 60.40 175 60.40 175 60.40 175 60.40	13.4 13.4 0.0 0.0 0.0 0.0 95.7 11.3	11.3 3.6 0.0 0.0 0.0 0.0 23.1	240.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
7/17/83 59 56-1 172 42-6 59 57-3 172 44-9 17647-50 33119-00 17640-00 33128-10 68 0-50 2-65	1605.2 117.0 10.0 10.0 110.7 219.4 21.3	155.6 22.6 436.2 436.2 6.0 16.0 4.0	134.7 134.7 134.7 10.0 48.3 17.0 17.0 12.3 236.2 13.3 236.2	
HAUL # HCNTH/DAY/YEAR LATITUEE START LCNGITUDE START LATITUEE END LCNGITUDE END LCRAN START LCRAN START LCRAN START LCRAN END LORAN END PERFORMANCE / GEAR	POLLOCK PAC COD PAC GC PERCH GTHEN NCKFISH SABLEFISH PAC HERRING ATKA MACKEKEL SCULPTNS ELPOUTS GTHEN KNOFISH	YELLOW SOLE RCK SOLE FLATHEAD SOLE ALASKA PLAICE GREENLAND 1BT ARROWTOOTH FL PAC HALIBUT OTHER FLTFISH ICT FLATFISH SKATES	RED KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, HYBRID OTHER CRAB SNAILS SNAILS STAFISH SGUID OCTOPUS CTHER INVERTS ICTAL INVERTS	

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

		5		J		. (5 0					
HAUL #	15	15	160	0	3	9	9	0	9	.0	သ
MCNIH/DAY/YEAR	12818	124/3	128/8	12918	12913	12918	12918	12918	130/3	130/8	/30/8
LATITUDE START	9 15.	38.	6 46	9 59.	0 9.	0 19.	0 39.	0 59.	-040	0 20.	0 0
LCAGITUDE START	173 46.8	173 51.1	174 13.3	173 55.7	174 19.7	174 5.0	174 7.4	174 11.2	175 25.4	175 23.0	175 16.0
LAILIUDE END	9 26.	9 38.	29 50.	0 09	60 10.	60 20.	e0 40.	61 0.	60 39.	60 19.	59 59.
LONSII UDE END	2 49.	5 5 3.	74 15.	73 58.	74 22.	74 2.	74 7.	74 11.	75 28.	75 23.	75 16.
LUAN SIAKI	450.5	5 91.9	285.7	349.7	2 39 . 4	290.4	528.6	224.3	952.2	966.7	000 - 9
LUNEN SIAH	1. 100	500.9	\$185.5	3087.3	2976.7	2876.9	2660.4	2462.6	2655.4	2347.1	3043-1
LCKAN END	417.7	379.5	7274.4	7337.4	7228.3	7297.4	7256.5	7221.5	6941.3	6965.4	7000-8
LCRAN END	9-164	201-7	3173.9	3078.8	2968-6	2887.6	2653.0	2447.4	2001.7	2360.3	3057.2
	7	2 1	=	2	10	0	6	0	=	=	12
DH V	2	0.50	5	5	2	0.50			5	10	S
ISHED	2.1	2.8	2.1	2.1	2.1	2.8	2.1	2.1	2.1	2.5	7.7
F /	~	~	~	~	M	M	~	2	~	2	2
200					,		;	,	,		
FULLUCA	•	512.5			•	2820-0				•	
	1 4.	. 4	:	•	55.	71.5	0	10.	3	6	6
PAC UC PERCH	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CTHER KCKF ISH		0.0				0.0					
SABLEFISH						0.0					
PAC HERRING		4.5				3.3					
ATKA MACKEREL		0.0				0.0					
			,			0 0	•		•		
STILL PULLS		200		•	•	7 2 1					
-	•	; <		•	• <	1 0	•				
TOT COMMETTER	טיני		5		0 !	0	0		:	•	.0
-		6-065		•		2917.0					
103 10											
PUCK SELE	1.7	9 6	0 0	0-1	0 0	4.57	3.0				•
1000	, (
THE AU SUL	7										
SKA PLAIC	Y	•		:	0				0		
ENLAND	e	10-4			3						
HIDDIM	£.4	0.5									
HALIBUT	0.0			0	0	0	6				•
ER FLIF	9					4.	4	2.	4		
FLATFIS	27 6.2	12.2		8	0	16.4		56.2	85.8	33.2	54.7
	86.7	0.7	0.0	0-4	2.3	45.0	0.0	37.0		35.4	27.7
13	ů					3		2	4.0	in	-
ن	•		•								
ING CRA			13.2		•				•		•
BATRD	1.4	1			, .	•	•	•	•	•	•
I II I	37 6.6	•	•	•	•	•					
Ή	, 0	0	. 6				, 0				
CRAB	C-1				, ,						
	107.6		122.0								, M
SHRIMP	w	4.	4.		-				2		
STARFISH	12.5	2.0.5	57.1	0.8	19.3	0.0	1.4	2.0	12.5	22.1	65.2
SOUID	5								0	0	0
	0.0		0.0				0				
2	i	-	5	0							
INVERT	496.9		219.8				-				
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL CATCH	2107.8	697.5	1560.6	1913.0	2624.4	3046.2	2571.4	751.2	914.7	733.4	658.4

Table A-1. -- Station and catch data for the NOAA ship Chapman (cont'd).

HAUL #				•		17				17	17
TTHOE CIANT	2/06/	2073	151/3	51/8	51/3	/31/3	11/8	11/8	11/	11 6	1 1/8
GITINE START	11.	0,0	, v v	***	-3 * BC	76 78	59 19.	29 59.	50 50	60 19.	0 39.
200	59 35-2		20 65	7 8 6 7		VC	59 21.0		60 05	50 20 E	1.15 41.1
GITUDE END	5 12.	5	75 0.	74 52.	76 13.	76 17.	76 20.	76 32.	6 35	75 41.	76 46
AN START	022.1	9.94	7084.9	7 099.5	5681-3	6659.5	6572-3	6633.6	6635	6622	6614.5
AN STARI	238.1	1.12	628-1	770.1	37 01.2	538.9	3364-2	188.0	3011	2331-0	2651.0
AN END	019.5	9.65	7071.7	7109-8	5667.2	6671.3	6678.2	6.0 493	6641.	6629.6	6613.3
AN END	250.0	41.5	3619.7	3780.8	3695.2	3531.7	353.6	3178.0	2999.	2819.0	635.8
	12	13	13	15	14	13	13	13	1	14	13
2.	2	0.50		5	5	5	5	2	0.50	5	.5
ISHED	2.7	2.1	1.	-	9.	00		~	•	8	1.
u	M	3	M	2	~	M	M	M		~	~
	u 7		00					,			
		000		•					•		•
700	,				7	+	4	0	\$29	æ	31.
DC FENCH		0.0									
ER ALAF 13H		0.0		•							
11201110	0.0	0.0		•							
A MACKED	3	4.0									
PINC	:.		;								
SCOLLINS FELENITS	1.10	0 . 0	16.4	0.0	0.0	1.5	2.8	3.2	0.6	9.0	2.0
101 1010	, L										•
DOLLAND T SH	7 70		:	.1.0	2 6		5	0	0	2	-
אנים שנין אנים או	100 20 3	18.3								•	
YELLCH SULE	•	0.0		0				0.0			
SULE		1.0	0		2			0.0			
THE AD SCLE		7.0	109.3	3.				1.8	•		
SKA PLAICE	٠.	0.0	0.0					0-0		0	0
INCAND IN	•	S. 5	0	0	0			2.9			
PAC HALTBUT		8 0	18.1	0.74	15.9	0.0	0.0	0.0	0.0	0.0	0.0
R FI TF I SH		2 4						7.7			
FLATFISH								100			
	:		2	,	,	•		7 • 7 •	•	•	
TES FLASMOFRH	16.4	16.3	38.6	67.0	63.5	0.0	0.0	13.4	11.3	9.5	1.4
		•	,	•	•	•	•		:		•
IG CRAB	0.0	0.0	0.0	0.0	•	0.0			0.0		
	0.0	0.0	0.0	•	ċ				0.0		•
COLLED	-	0	5.2		•				0-1	0	
UVEOT	7-41	9-14	2.5	•	•				9.1		•
TUDIO.		0 0			•	•			0.0		
	101				•	0	-	:	0	0	0
2 1	7	1 2	0.40		•	•		•	1.01	•	•
FISH	27.6		20.0		•	•			2.0		: .
	0.0		0	0-0	0.0	100		1	0.00	0	
	C-1		1.4						0.0		
<u>×</u>		-	4.6						0.5		
NVERT	595.9		107-7		•				114.5	•	122.0
нея	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0
TOTAL CATCH	1421.5	6.446	678.5	1833.1	260.6	328.5	7111.7	582.6	762.3	709.8	861.8

Table A-2. -- Station and catch data for the chartered ship Alaska.

						1					
			2	4		\$	7	30	•	10	11
NIH/DAY/	17/3	7/8	1 7/3	1 7/3	113	8/8/	1 3/8	8/3	18 /	1813	1 213
CNGITUDE STAPI	158 25.2	158 20.8	158 19.5	1-0 85	150 67	150 2 2	150 75	26 40.0	56 58.7	57 19.8	57 40 -1
LATITUDE END	57 20.	57 43	57 59	58 0.	57 46	57 19	56 56.	56 39	7	200	10.
LONCITUDE END	8 22.	2.3.	8 22.	58 59.	58 59.	59 4.	59 8	24.	60 19	60 20	60 15
LORAN STARI	2996.3	2877.2	2759.6	826.2	945.8	6.990	177.4	3448.7	349.	233.1	109.7
DRAN START	5422.0	5394.7	5339.3	5637.7	5659.7	5677.2	5705.0	6212.5	6194.	6180.5	6159.5
CHAN END	2985.3	2369.3	2765.4	2831.7	2948-2	3074.3	3186.9	3456.7	3341.	3231.0	3101.2
OR AN END	2407.4	53 94.1	5410.2	5656.3	5649.8	5686.9	5719.0	6232-1	6192.	6190.8	5157.4
	7	۲,	M	4	4	4	33	5	49	55	5
4	0.50	5	2	2	.5	.5	.5	.5		.5	.5
ISHED	3.2	2.5	.5	3	5	.3	1.	0		4.	4
	~	3	~	2	3	M	M	0 / 38		M	~
CLLUCK	C		~	12	1	1542.9	0	1346.6			0
AC COD				3.		35.		82.	00		•
AC OC PERCH			0.0				0.0	0.0	0.0	0.0	0.0
CTHER KCKF I SH								0-0			
SABLEFISH								0.0			
AC HERRING								0.0			
KA MACKE	ં							0.0	6		6
SCULPINS								0.8			, ,
ELPOUTS			0		0	6	6	0.0			•
HER FNOF IS									•	•	•
TOT ROUNDFISH								2000		•	•
						• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •	.0.	•	
TELLOW SOLE		152.9	1171.7	3	50.	0.60	26.	17.	99	8	3.4
CK SULE	35.	114.3			•				4	130.	2
A THE	ċ	0	0	0	0	4	0	-	20-		8
A SKA PL	C-2	0.0	2.0	0.0	0.0	0.0			2		,
EENLAND T		0.0									
RONTOO		0.0									
C HALIBUT		18.1	10.6				0		5		-
HER FL	3	4.	2.				4.		-	~	0
I FLATFIS	•	233.9	1394.5				961.0	1614.2	514.5	3209.6	534.1
-											
CT ELASMOFRH	, ,	0	0.0	0.0			5	0.0	0	0.0	
			•	•	•	•	•	•	•		
KING CR	0.0	7.0			0.7						1
KING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NER, E	0.0	0.0			0.0				•		•
NE.S.	0.5				0.0					. M	
NER. H	0.0				0.0				•		
ER CR	5.9				0.0						
-	C-1				0.0				•		
N N	0.	•	·		0.0		0				
4	94.3				6.44				•		
200	0.0				0.0						
TO TANE CT			0.0		0.0	0		0	•	0	0
-	C	10	•		2	25.	5	8	1.		
AL INVERI	101-4	ċ	146.5		48.5	œ		6	2	2	
THER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0
GIAL CATCH	1235.2	765.0	1787 0		u	200	0			;	,
1	36.	ů	1187.9	401.	4505-1	2962	1499.5	3764.5	1630.3	3433.2	2.829

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

HALL .	12	14		16	17	13			77	22	23
MONTHICAY/YEAR	3	6/10/63	6/11/93	/11	/11	/11/	/111	112	112	112	/13
LATITUDE START	55.	1 4.	6	8 O.	7 41.	7 20.	0 2	.04 9	6 20.	.04	5 59.
CNGITUE	13.	5.	1 23.	1 28.	1 29.	1 31.	1 32.	1 35.	1 35.	-64 7	-64 2
ATITUDE	58 C.	53 13.	8 19.	57 59.	57 39.	£7 19.	56 59.	56 39.	56 19.	5 39.	56 0.
DNGITUD	60 13.	9 09	61 26.	61 29.	51 30.	61 33.	61 34.	£1 36.	61 37.	62 51.	52 50.
LCRAN START	5.3	9.6	05.0	2.4	2.0	8.	0.1	6.1	1.0	9.2	5.2
OFAN ST	6139.0	4-1809	6594.6	6630.1	6645.8	6666.1	6681.8	6707.3	6717.6	7105.0	7207.5
ORAN EN	2977.1	2581.5	3012.1	3153.8	3283.5	3411.6	3526.3	3634.5	3730.4	4088.4	4002.7
LCFAN END	6139.C	6093.2	6514.2	6639.6	6553.3	6580.4	6695.0	6714.2	6728.3	7221.2	7214.0
GEAR CEPTH	4	N	~	5	5.	2	10	•	9	10	m
URALICA		10	5	.5	5.	5	5	5	2	5	5
CHRIS SINKISI	-	0	0		a		1	1	-	0	4
MANCE			14) M) M	JM	. M	82 / 0	. ~	N ~	1 "
CAL CHARACE A GEN	,	•	•	•		•	2	1			1
20110	"	0-0		5	7		6	1	a	0	67
000 000	6 306			11	•	u		70	1	, ,	111
	, .	,	,								
THE OF LENCH		•	•			0.0					
ULHER RUNF ISH	3	0.0			•						•
	0.0	0.0		•							
9	0:										
	0.0	0.0									
	11.2										
FFI POUTS	•	C	0	0							d
HER GNEET			•	•	•				•	•	•
10000		10		0 0							
KUUNUL 1	0.50	505.3			•						
VELLOW SOLE	731.1		0	2	-	~	75	~	90	70	v
RICK SOLF	7 3 1 1	::	1 0	200	2	200	2000	71.0	6.654	2 - 271	
1100 CT 1111 TO 111	27 6			10				-			•
FLAIREAD SULE	~ r	0.0	0.0	• ,		٠,	•	;		· ·	
ALASNA PLAICE	2.	0.0	5.0		,		5				٠,
GREENLAND 181	2.	0.0	0.0								0
ARKUMINDIH FL	9	0	0.0		•					0	•
AC HALIBUI	26.5		0.0		2		•		•		0
K FLIF	77				29.	14.		*	67	31.	2
TOT FLATFISH	P)	1885.7	651.7	•	3				3	8	
3				,							
		0.0	0.0	0.01	3.	0.0				0.0	10.0
5				•	•						9
AAR O SATA SEE	0 72	4		1		2 59			4		-
GCRA		0.0		0		0	6		0.0		
01	0.5	0.0			-			-	80		
OPILI	C.1	0.0				3			5.7		
HYERI	0.0	0.0			0				0.0		0
AB	6.7	10.8		5					14.1		
SNAILS	1-0	0.0	0						1.1	1	4
SHRIMP	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
STAFFISH	37.3	26.9							21.3		
Sauro	0.0	0.0							0-0		
	0-3	0.0				0	0	0	0.0		
VERT	32.7	7.4		97.	. 9 4				23.4		1.
TOTAL INVERTS	105.5	51.9		0	9.	26.	-	8	0		•
LTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0
TOTAL CATCH	1391.6	2140-8	1989-7	2229.6	1226-5	1776-8	662.0	2252.3	1395-2	3359.5	3254.9
						5					

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

43.8 164
62 43.6 162 43 3135-80 33037- 7106-10 47085-
162 47.5 162 33337.00 331 47138.50 471 33331.20 331
162 46.4 33469.93 47146.69 33465.00
162 47.2 33602.70 47171.20 33594.70 47174.90
0.50 33713.00 47179.30 33716.00 47197.70 60 60 60 60 60 60
40.50 33817.60 33817.60 47189.30 47189.30 47189.30 73 0.50
162 45.2 33912.00 47193.59 33914.30 47206.30 0.50
E END ARI ARI D D IN HOUTS FISHED

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

	3	M	37	~	3	4	7	4	4	4	.7	
IGN TH/ DAY/ YEAR		6/15/83	6/16/83	6/16/33	6/16/83	6/16/33	6/16/33	6/11/33	6/11/33	6/11/33	6/17/33	
TITUDE START	58 26.	57 53.	27 40.	57 21.	57 C.	-04 95	56 20.	24 40	54 59.	55 19.	55 39.	
NEILUDE	65 55.	29.	0	63 59.	3 58.	64 0.	3 59.	62 8	65 9.	6	65 12.	
1110DE	58 16.	57 56.	57 39.	57 19.	56 59.	56 33.	56 18.	54 42.	55 0.	55 20.	25 40	
NOT LUE	55 55.	65 59.	65 59.	65 59.	24 0.	63 59.	65 58.	65 9.	65 9.	65 5	65 10.	
DARN SIAR	30/.6	50.6	65.3	780.1	2-506	016.3	109.3	606.4	556.3	200.1	468.0	
KAN SIAK	1394.5	1054.9	1040-0	7.250)	1664.5	1611.5	10/4.5	8029-4	6054.5	8080- 3	2125.3	
A	3380.0	3548.2	3670.2	3795.9	3914.4	4021.7	4113.7	4603.6	4.564.0	4513.6	4451.1	
4	1396.7	1023.9	1645.0	7661.1	16/4.8	1672.6	7669.1	1032.4	8057.7	8083.6	3111.4	
AR DEPTH	4	4	2	9	-	-	a)	œ	1	=	=	
Y			0.50		0.50				2	2	2	
SIANCE FISHED	5.2	2.1	2.1	2.4	2.3	2.3	5.6	5.0	2.1	9.	2.5	
RFORMANC	M	M.	2	2	~	M	~	~	~	.0	~	
U	.5 4	27.	24.	9		4	4.	8	å	4	•	
AC COE					0	13.		41.		25.	10	
C PERC	3	0	0	0		d	0	6	6	6		
02												
FISH	0.0											
RRIN										6		
5	ئ											
INS				•	•			, ,				
ELPOUTS		0	0.0	0.0	0.0	0-1	0.0	0.0	0-0	0.0	0-0	
THER RNDF ISH					•					, ,		
CUNDFIS												
						1	;				,	
ELLOW SOLE	10	*		296-2	283.0	311.6	163.7	542.8		21.0		
LA SULE			20.	5	5		:	15.	·	0	0	
-		0	36.	ci	20.	24.	0	6	9			
LASKA PLAICE	•		106.9	2	-	5	0				•	
1									0	0	•	
	٠.	0.0	0.0		•				57.1	15.6	21.5	
בנ								* 1	9			
T L. T. T. T.	•					6	,	200	. 47		13	
FLAIFI	1006.9	1094.2	1007.2					:	6	-	6	
KATES	2							0		6	5	
CT ELASMOBRH	12.3	1-4	0.0	3.4	6.0	0.0	0.0	1.07	0.84	59.1	65.3	
ن							c					
NG CRA	: :			0			0					
BA		0.2	0.2				1.4					
OPILI							11.1					
HYBRI				0			0	0				
Œ	2		1.94		•	α,	5					
NAILS		5	-	6	-		16.0					
		0	0.	0	•		2.0	0	0		•	
LAKFISH			•		•		1.0		•		•	
CIUPUS											•	
NVFRT	•		•	•					•			
CTAL INVERTS	27 (-0	20002	115.5	107.9	72.4	20.07	54.9	163.7	37.4	1.4	46.5	
THER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	
			1						1			
CAICH	2380.4	1586.1	2375.0	2.009	677.5	982.5	363.5	2487.0	685.2	2355.5	372.1	

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

UL .	46	25	2	6.4	50		52		3.6	5	5
NTH/DAY/	17/8	13/3	/18/8	113/3	19/8	11978	119/3	11978	161/	/ 20/ B	12013
ITTO LE SI	55 55	56 19.	56 39.	56 53.	5/ 19.	57 59.	66 16	5 1 2 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	56 59	50 50	65 17
	56 (-9	56 20.7	56 40.5	57	57 20.2	57 39.8	58 0.5	58 19.4	58 40-7	59 0.1	59 19.7
NGITUDE	65 11.	65 13.	65 14.	65 14.	65 16.	65 16.	65 16.	65 17.	65 18.	65 13.	65 21.
HAN STAR	398 - 8	6. 12	238.3	131.5	16.3	883.4	739.2	595.9	7-604	226.0	023.1
NAN UNAN	3154.1	20012	5166.0	8162-2	201016	20007	3113.2	2501.3	240400	1.0001	7 4505
NA NA CA	4270.0	4563.0	4636.0	4130-1	90171	5152 0	8116 2	2001000	9708	7695 9	795111
A P DEP	6	8	7	7	9	9	7	3	4	(2)	2
RATION IN H	.5	5	.5	5	5	.5	.5	.5	2	.5	.5
STANCE FISHED	2	5	8	9	7.	5	9.	1.	-	7.	.2
REOPHAN	12	1 1	3	3	~	M	M	. M	1	3	17
CLLUCK	254.0	18.6	7.7	2314.7	425.5	32.7	66.1	102.7	159.3	- 1	0
0000	٠,	9-6	3.6		5		2	.04	65		•
•		0.0	0.0		•						•
HER KCKF I		0-0	5 0	•	•						
BLEF ISH		0.0	0.0		•						•
DERAING V. H. O. T.		0.0	0.0		•					•	•
NA MACKE	•	0.0	0.0		•			;			•
J.		2.3	3.5							•	
Lrouis		7.0	0.0		•				.	•	
_ '	٠٠	0	0	0			-	11.	12	5	•
I ROUNDE I		28.5	15.2	2333.4					-	•	0
FLLON SOLF	u,	1	7	5		d	ý			2	
OCK SULE	4	22.	13	12	0	12.	25.	6	9	01.	7
LATHEAD SGLE	-	22.9	0	-		1.				0	
LASKA PLAICE	4.	3					2				
REENLAND TBT	ċ	0.0			•						
RROWTOOTH FL	20.9	1.8	0.0	0.0	0.0	0-0	0.0	0.0	0-0	0.0	0.0
AC HALIBUT	4.	0.0			•						
THER FLIF I SH		4	ò	0	ċ	ċ	0	יא	0	2.	2
OT FLATFISH	ü	472-0		840.8	•						•
~	-	9		5			0		5		
CT ELASMOBRH	47.8	26.3	0.0	15.7	0.0	3.2	10.7	5.3	25.8	0.0	0.0
F.C. KTAG CAAB		0-0	0.0		•		2.6				
IG CRA			0.0				0.0				
BAIRD		0	1.4				0.0				
ANNER, OPILIO		10.0	4.2		•		5.5			•	
HY BRI	:	0	0.0			0	0	0	•	•	
	•	25.	0	ci.	•		81.				
NAILS	33.6	166.0	29.9	11.4	8.0	46.1	114.4	32.1	40		0.0
TABLISH	•	20.02		•	•					•	•
127 137		, 0	10	0 0		, 0	: 0	; 0			
CTOPUS		0-0	0-0				0-0				
VERT			2				75.				
OTAL INVERTS			8 * 66		•		2000 6				
THER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0-0	0.0
CTAL CATCH	594.7	777.5	639.4	3287.2	570.7	896-0	1727.7	1430.5	1472.5	745.3	416.2

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

6/23/87 56 20.9 166 23.8 56 19.3 166 25.0 34549.20 48625.33 34549.20 48639.60 106 0.50	846.4 55.8 65.8 0.0 0.0 0.0 0.0 1.7 80.8 0.2 1.0	29.4 5.8 1.2 28.6 30.0 30.0 20.0 19.0 19.0 19.0 19.0 19.0 19.0	3.4. 3.4. 3.7. 3.7. 16.5.	1414.8
66/23/33 56/40-4 165/40-4 165/39-4 166/39-4 34461-50 48650-30 34472-00 48651-40 6611-40 0.50 0.50	23.6 23.6 23.6 00.0 00.0 00.0 00.0 00.0 00.0	4600 00 146 4600 00 046 6600 00 00 00	0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	764.9
6/22/93 57 1-6 166 26-1 57 0-5 166 26-1 34354-00 48651-60 34364-30 48661-23 48661-23	17.5 16.3 00.0 00.0 16.0 16.1 7.6	281.7 22.2 320.2 320.2 0.0 0.1 677.4	44.7.4.7.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	861.0
6/22/83 57 20.4 166 28.9 57 19.7 166 28.9 57 19.7 166 31.1 34247.90 48655.90 34260.10 48671.80 68671.80	68.9 34.0 0.0 0.0 0.0 11.5 0.0	2 90.3 3.6 94.8 94.8 94.8 94.8 3 90.0 3 90.0 4.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	818.0
6/22/83 57 40.9 166 30.3 57 39.5 166 31.4 34107.20 48635.00 34121.00 48644.50 68 0.50	568.1 38.8 0.0 0.0 0.0 11.9 72.4 11.4	193.5 7.9 129.7 0.0 0.0 3 3 8.1 3.8	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	583.2
672783 58 0.8 165 31.1 57 59.3 166 31.4 32949.50 48597.00 33963.60 48602.90 62	47.3 31.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	614.3 14.0 160.4 0.0 0.0 794.7	23. 40. 40. 60. 23. 60.	14 40-0
6/22/83 58 21.0 166 32.0 56 22.3 166 32.0 166 33.5 33772.90 46547.60 33786.50 48559.80 48559.80	109.2 149.4 0.0 0.0 0.0 0.0 260.0 17.3	995.0 42.5 2.0 99.3 99.3 1146.9	5 0 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1907.1
6/21/83 58 40.5 156 42.3 156 32.3 156 32.3 156 32.3 158 4.5 33587.20 434 88.30 33595.90 48502.50 48502.50	35.9 118.8 0.0 0.0 0.0 0.6 55.5 14.1	836.3 25.1 0.2 41.9 0.0 0.0 7.5 961.7	2000 0000 0000 0000 0000 0000 0000 000	1566.0
59 6/21/53 59 1-0 166 35-5 166 35-3 33387-30 48436-00 33403-60 48450-20 48450-20 48450-20 48450-20	21.8 70.9 0.0 0.0 0.0 0.1 0.0 3.9 3.9	282.4 24.6 137.0 137.0 0.0 3.2 4.4 451.5 3.2	0000 H 0000 4 0	2-149
58 6/21/83 59 20.8 166 36.5 59 13.2 166 37.5 33180.10 48369.40 33199.60 48380.90 48380.90 48380.90	58.1 58.1 0.0 0.0 0.0 0.0 1.1 71.2	215.4 22.2 22.2 0.0 45.8 45.8 10.0 35.7 330.6	000000000000000000000000000000000000000	431-3
6/21/63 59 4(-0 166 37-9 166 37-9 166 35-8 166 35-8 32973-90 43306-00 32990-60 48319-00 48319-00	15.6 224.5 224.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	20C.9 C.0 C.0 C.0 19.0 C.0 2.6 2.6 2.6 C.0 C.0		6-590
HAUL # HONTH/DAY/YEAR LATITUDE START LCNGITUDE START LATITUDE END LONGITUDE END LORAN START LCRAN START LCRAN START LCRAN END GEAR DEPTH DURATION IN HOURS DISTANCE FISHED	POLLOCK PAC COD PAC COD CTHEN KCKFISH SABLEFISH PAC HERSING ATKA MACKEREL SCULPINS ELLFOUTS CTHEN KNDFISH	YELLOW SOLE ROCK SOLE FLATHEAD SOLE ALASKA PLAICE GRENLAND 18T ARROWTODTH FL PAC HALIBUT OTHER FLYFISH TOT FLATFISH SKATES	RED KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, OPILIO TANNER, HYBRID OTHER CRAB SNAILS SHRINS STARFISH SQUID CCTCPUS OTHER INVERTS TOTAL INVERTS	וחואר נאונה

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

77	204-1 2471-3 20-6 30-2 0-0 0-0 2-4 5-3 0-0 0-0 3-4 0-0 3-4 0-0 3-4 0-0 3-5 2556.7	0.0 0.0 0.0 0.0 0.0 1.4 15.9 55.1 11.7 4.3	21.8 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.1 0.0 1.1 0.0 0.0 0.0 0.0 0.0 7.9 19.0 19.7 38.4
76 6/25/83 56 1.9 167 34.9 167 34.9 167 36.2 167 36.2 167 36.2 34811.00 348 49047.73 489 49053.73 489 49053.73 489 6.50	103.9 13.5 0.0 0.0 0.0 0.0 3.9 0.0 130.6	0.0 93.4 0.0 0.0 28.8 146.2	20 00 00 00 00 00 00 00 00 00 00 00 00 0
6/25/83 56 21.8 167 38.7 56 20.2 167 40.6 34770.60 49108.10 49118.30 49118.30 69118.30	791.8 58.2 11.8 11.8 0.0 31.3 5.1	0.0 80.8 0.0 0.0 19.9 25.3	688 688 600 600 600 600 600 600 600 600
6/25/83 56 40.8 167 38.9 56 39.5 167 40.9 34701.00 49134.40 34712.60 49145.00 49145.00 3.06	2788.5 34.7 0.0 0.0 0.0 90.7 0.0 2913.9	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	333.6 333.6 0.0 0.0 11.0 11.0 57.4 51.9 14.5 166.2 3172.6
67.5/83 57 1.2 167 42.0 56 59.9 167 43.5 34614.20 49160.70 49160.70 49170.90 60 60 60 60 60 60 60 60 60 60 60 60 60	229.7 5.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 6.4 241.2	204.4 23.6 5.9 10.9 0.0 5.5 0.0 3.4 253.7	11.8 11.8 11.8 0.0 0.0 0.0 10.1 17.1 17.1 17.1 17.1 17
6/25/83 57 19.4 167 43.9 57 18.1 167 43.9 34508.50 49157.40 49157.40 69159.20 69159.20	13.6 0.0 0.0 0.0 11.1 11.5 3 4.3	293.5 17.9 25.9 15.0 0.0 1.5 1.0	18.4 18.4 00.0 00.1 5.4 69.1 00.0 22.6 00.0 00.0 36.9 164.1
71 6/24/83 54 50.0 166 20.9 55 0.8 156 19.5 34742.20 43472.10 43473.10 49473.10 0.50	12.2.2 5.8.5 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 43.1 0.0 17.7 12.7 73.5	29.9 29.9 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
70 6/24/83 55 20.9 166 19.6 55 19.7 166 20.7 34698.90 48512.10 34704.40 48516.90 48516.90	229.5 45.8 0.0 0.0 12.2 0.0 3.6 4.3	0.0 0.0 0.0 0.0 1 0.0 1 6.8 2 1.3	WW 00000000000000000000000000000000000
69 6/23/83 55 40.6 166 21.4 55 39.9 166 23.1 166 23.1 34657.90 48568.30 48567.20 0.50 0.50	661.3 46.7 60.0 0.0 11.8 0.0 1.3 3.4 730.7	0.0 0.0 26.8 0.0 1.1 12.2 7.1 7.1	13.4 13.4 13.4 13.4 13.4 13.4 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10
68 6723783 56 C.8 166 22.6 55 55.8 166 24.6 34603.60 48603.60 48607.10 49607.10 6.50	1156.9 109.8 109.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	C.0 25.4 C.0 C.0 11.7 15.2	22.2 22.2 22.2 2.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
HAUL F MONIH/DAY/YEAR LATITUDE START LCNGITUDE START LATITUDE END LORAIN START LORAN START LORAN END LCRAN END GEAR DEPTH DURATION IN HOURS DISTANCE FISHED	POLLOCK PAC CGD PAC CCD PAC OC PERCH OTHER RCKFISH SABLEFISH PAC HERING ATKA HACKEFEL SCULPINS EELPOUTS OTHER RNDFISH	YELLOW SOLE RCCK SOLE FLATHEAD SOLE ALASKA PLAICE GREENLAND IBT ARROWTODTH FL PAC HALIBUT OTHER FLIFISH	SKATES ICT ELASMOERH RED KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, BAIRDI TANNER, HYERID GTHER CRAB SNAILS SHRIMP STARFISH SQUID CCTCPUS CCTCPUS CTTRER TOTAL INVERTS

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

726/83 7/ 1/83 7
5.0 57 39.3
5 2-0 57 40 6 58
7 14.7 167 46.0 167
354.70 34363.50 34194
195. CO 2775. CO 2756.
34.50 49127.10 49077.7
183 70 6
.50 0.50 0.
39 0 / 38 0 / 3
2.6 27.7 26.
.9 11.1 7.
0 0.0
.0 0.0 0.
.2 0.0 0.
1.6
0.0
.8 19.4 11.
0.0
0.5
.0 60.1 50.
127.
13.6 2.
11.8
.0 (9.6 36.
7 0.1
1.2
4.3
.8 233.6 198.
7 7.4 7.
6.0
.0 1.4
0.0
.2 0.1 0.
.5 79.8 105.
0.0
1.3 0.
-2 28.9 14.
0.0
.5 15.2 43.
0.0
0.0
.4 15.1 4.
5.4 141.8 170.
0.0 0.0
678.2 443.0 426.3

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

2/83 7/6/83 40.3 5/83 5/7 6/83 40.3 5/7 6/83 6/83 6/83 6/83 6/83 6/83 6/83 6/83	94.0 15.8 9.0 0.0 0.0 0.0 0.0 10.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	56.3 84.5 15.8 15.8 15.8 15.0 16.2 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	5.2 3.2 0.1 54.1 0.2 3.2 0.1 54.1 0.0
77 4733 77 57 50-7 57 169 14-0 169 57 49-4 57 169 15-1 169 34524-40 3460 49619-00 4961 49632-00 4962 64 0-50	349.5 33 22.6 0.0 0.0 0.0 0.0 45.0 0.0 418.3 34	7372 710 710 710 710 70 70 70 70 70 70 70 70 70 70 70 70 70	1
97 77 4/83 58 4/83 169 3.9 57 59.6 169 3.5 34386.7 49511.10 3400.60 49515.90 49515.90 6.50 6.50	128.5 55.7 0.0 0.0 0.0 0.0 7.6 193.0	100000 H	23.8 0.0 0.0 0.0 0.0 7.7 7.7 18.6 0.0 0.0 0.0
7	84.5 28.2 0.0 0.0 0.0 2.5 2.5 13.7	0000004	0000 1000 1000 1000 1000 1000 1000 100
77 4/83 58 40.9 169 8.9 58 39.5 169 39.1 33933.30 49320.30 49320.30 644 0.50 2.57	79.9 30.9 0.0 0.0 0.0 0.0 7.4 4.2 4.2 16.8 16.8	58. 67. 67. 67. 117.	0.0 19.9 19.9 7.4.7 7.4.7 59.7 59.7 155.0
7/ 4/33 59 C.5 169 9.7 58 59.5 169 11.3 33700.40 49204.30 33715.80 49218.90 49218.90	1957 7 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 M M 00000 M M M	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93 7 3 / 83 59 21-11 169 11-0 59 19-3 159 12-3 33453-70 49103-00 49103-00 69103-00	272.4 3403.2 0.0 0.0 0.0 1.2 20.9 0.0 12.5	0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 7.3.7 7.3.
92 7/3/63 59 40.63 169 15.1 59 39.4 169 16.1 33222.0 49006.40 33238.70 49016.70 49016.70 6.50 6.50	250-0 74-0 0-0 0-0 0-0 32-9 39-9	257-C 26-5 6-6 273-0 0-0 0-0 0-0 563-1	0.0 0.0 0.0 0.0 3.9.8 3.9.8 3.9.8 5.2.9 0.0 0.0
7/ 3/83 60 1-1 169 19-0 59 59-7 169 19-0 32975-50 48913-40 32993-30 48920-50 46920-50	402-2 94-3 0-0 0-0 0-0 0-0 51-4 11-4	196.4 23.1 1.2.7 1.2.7 8.9.1 0.0 0.0 2.2 2.2 3.25.6	2.3 0.0 0.0 0.0 1.0 4.6.9 99.1 0.0 164.8 314.4
90 7/3/63 60 2C.0 169 17.9 60 15.6 159 21.0 52744.50 48827.20 48827.20 48827.20 48827.20 48827.20	237.2 76.1 76.1 76.1 7.0 77.9 77.9 8.8	521.9 11.1 4.9 135.9 135.9 1.0 6.0 1.7 6.7 5.4	27 5.1 27
HAUL # RCNTH/DAY/YEAS LATITUDE STAXT LCNGITUDE START LCNGITUDE END LCNGITUDE END LCNAN START LORAN START LORAN END LCRAN END LCRAN END CGEAR DEPTH DURANICN IN ACURS DISTANCE FISHED	PCLLUCK PAC CCD PAC DC PERCH CTHER KCKF ISH SABLEF ISH PAC HERRING ATKA MACKEREL SCULPINS EELPOUTS CTHER KNDF ISH	YELLOW SULE RCCK SOLE FLATHEAD SOLE ALASKA PLAICE GREENLAND TBT ARKCWTOOTH FL PAC HALIBUT CTHER FLTFISH TOT FLATFISH SKATES	RED KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, HYBRID OTHER CRAB SNAILS SHRINP STAFFISH SGUID OCTOPUS OTHER INVERTS TOTAL LATCH

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

UL .	101	132	0	0	0	0	0	0	0	-	-	
N TH/ CAY	1 613	3/9/	8/9/	1 6/8	113	1 7/8	1 7/3	8/8	1 8/3	213	1 8/3	
TITUDE S	7 15.	7 10.	57 0.	56 50.	9 40.	56 20.	5 20.	.04 9	6 4 9	59.	7 5.	
NGITUDE	8 59.	9 10-	8 57.	6 6	5 55.	8 53.	0 2.	. 4.	0 28.	6	0 2 3.	
TITUCE E	57 18.	25 9.	57 0.	26 49.	56 35.	56 19.	6 20.	56 4C.	26 50.	0	57 7.	
NGITUDE	e 6 6 C	69	68 55.	69 11.	68 52.	68 55.	0 4.	9 02	70 31.	70 7.	70 29.	
OF AN START	18756.30	34877-00	34686-40	34971-10	34955.70	34890-60	35124.30	35126.50	18542.53	18089-20	18652.00	
MAN SIAN	0 - 1114	2.4416	1.4996	97 52.5	9021.9	9556-1	830.7	2 6 6 6 5 5	0117.1	01111-1	5112.1	
5	T-0010	0-6104	7-7284	4980.5	4949.0	4998.6	126.3	5129.2	5131.5	8698-3	8047.1	
DAY CAN	0.001	71 31 06	7651.1	143.1	3001.3	25/100	4.706	0.000	0179.9	0106-5	2102.6	
EATTON IN	- 4	- 4	ט מ	ט ט	10	51	1	0 1	2 1	ום	4 5	
TOTAL TO HELD						0				0	?	
TOTALE FISHED	7.0	7.7	2.3	4.7	2.5	3.0	5.6	2.5	2.1	2.3	1.0	
AF UNKANCE / BEA	~	1	~	~	~	~	2	~	~	~	~	
1100		5.4			~	5		-	0	- 1		
PAC COD	6.4	3.7	13.7	8	11.3	57.4	21.5	158.8	53.1	9.60	000	
PERC		0.0	0		c	6	3	0	0	0		
OTHER FCKF ISH		0-0								, ,	,	
ABLEFISH	0.0	0.0										
AC HERRIN		0.0								•		
ATKA MACKEFEL		0.0										
CULPINS												
EE L POUTS	3	0	0	0	0	0		6	. 0	0		
THER KNDF I								3				
JUNE		33.8										
YELLOW SOLE	95.1	137.7	168.3		0	0						
CR SULE	7		2	2	0		0		0	26.		
LATHEAD S	-					9					•	
AI					2						•	
REENLAND	٠.				0	0	0	6	0			
H - 00 - M				0 0	54.1	94.3	22.5	11.6	23.9	34.6	0-5	
L CALLEO	101			•	•		:		•	•		
HER PLIF	:			0	•	5	:	0	0	0		
I PLAIF IS						•			•			
SKATES	0-3		0.2	4	0.0		å	2	0	61	•	
u		9.5		14.3		24.8	28.8	73.3	1.64	42.0	1.5	
KING C												
KING CRA		2.6								0 10		
BAI	2.1	1.0										
I OP ILI	93.9	14.6				. 5	6	6			•	
IN HYBRI	-	0	0	-	0				0	0	,	
CRA	20.2	10.0										
SNAILS	0.0											
. !	0.0						0			0	•	
STARFISH	6.2											
CTOBILS		0.0									•	
10000					•	0		0		0		
CLAL INVERTS	121.2	33.5	1155.7	117.6	0.0	172 2	2.00	27.6	0.0	7.50	0.0	
		•	•	• 17	•		•	•	:	• 10	•	
ЭТНЕ В	0-0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	
TOTAL CATCH	376.2	27 4-2	384.3	381.9	324.1	619.2	177.0	5415.6	326.0	632.3	62.2	
		,									ì	

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

						-					
נור ו	11	11	11	1.1		11	11	11	12	12	12
ATITUDE SI	2 7 7	200	20 02	9/8	100	110/5	110/3	0/3	110/3	/11/8	/11/8
LONGITUDE START	0 13.	33.	15.	0 34	0 1 6	0 22.	0 26.	28.	0 31.	34.	0 37
ATITUDE EN	57 21.	57 29.	57 39.	57 49.	58 1	58 20.	58 40.	59 0	59 20-	59 40.	60 00
ONGITUDE E	70 12.	70 36.	70 13.	70 31.	70 18	70 22.	70 26.	70 29.	70 32.	70 34.	70 38.
LCRAN START	18704.90	18592.10	18620.60	18515.90	13527.93	16443-80	18360.50	1 828 3.10	18209-40	13136.30	18068.30
Carl San Co	0.0000	4002-5	1.6314	40400	4515	4281.5	4041-8	1195.3	3556.9	5515.1	3071-2
CRAN END	V. CO15	2-1162	0-1298	4527-1	8524.	£438.5	8355.2	8275.3	8202.5	8132.3	8052.0
HI day OF BA		1000	7.003.7	0. 4404	***	4/2500	4024.9	7.777	3558.0	5295.5	3056.7
LISATTON IN	י ע	- 4	- 4	- 4		- 4	- 4	- 1	- '	0 1	0
ISTANCE FISHED	15.0		000	20.00	2 56	0.30	0.00	0.00	0.03	0.00	00.0
ESCHONANCE / CE	, ,			107		4.7	C• 7	6.7	7	0 1	4
ENTURBANCE / BER	2	~	3	~		~	~	~	2	2	m
OLLOC		6		2	9	α	4		70	07	4
PAC CCD		34.	0		200		200		•	•	0 00
AC OC PERC											
-		0.0							•		
ABLEFISH		0-0							•	•	•
AC HTRRIN			•		•			•	. L	•	•
=					•						
CHIPTNS		200			•			5 .		;	•
FEL POUTS		1.0	0.0	10.0	6.0		5 - 2 7	2 ** 2	6.10	0.04	
THER PROFIS	•	•	•		•				;		
ONLICE TO	:.				· .	6	0	0	0	•	0
OI ROUNDE IS		134.6	873.8								
YELLOW SOLE	0.0	*	9	00	0		•		•		
ROCK SOLE	32 8.3		67.	7		-	2	-	2	-	1
FLATHEAD SCLE	5	8	-	4	9			1 7	0		
ALASKA PLAICE									•	•	•
GREENLAND TRI		6						: 0			•
APRONTOOTH FL					•		•			•	
PAC HALIBUT	7 6.3	7-0	0					•			
K FI TF 1					•	•	•	•		•	
FIAT					•					5 6	5 9
, ,		• 10	0	0	•						
SKATES		9		2							
CI	12.1	86.2	9.5	25.3	5.9	0.0	5.0	0.0	0.0	4.	0.0
ING CRAB	0.0	0		5	•					0.0	
ING	4.1				•						
CA BAIRD	1.5	0	0		0	0	6	•	ċ	0	•
IN OF ILI					•					•	•
COLD COLD	0.										
5						· .	· .	3	0		0
CHETED									•		•
STABETSH	0.00	0.0		0.0	0.1	0.5	0	0.0		0.0	0.0
?	5		•		•						
CIUDIS					•						
INVERT	7 2 7				•				•		•
2	26431						5	٠.	٥	0	
TIME	•	•	*	0	•					•	•
OTHER	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0
TOTAL CATCH	3105.6	1609.4	1356.0	366.1	568.7	546.8	912.1	1060-2	1331.8	693.3	1044.9

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

134 7/13/83 58 42-1 171 41-5	1 41.	4000-4	4015.3	2 0	2.57	~		01			•	0.0			•	•	•			35.5				•	4.3	•				0				•	•		70-1	0-0	11.1.8	
133 7/13/83 59 1-6 171 45-7	1 47.	3773.6	3788.7	שים	2.78	m						0.0		0	0		•	.,		4 . 4				•	10.8	0				0						•	52.8	0.0	1402.0	
132 7/13/83 59 21-2 171 47-8	1 45	3545.	3552	1	2.43			2.		•	•	0-0		-	0	•			a;	0.49	•			•	16.3	9	0.0	0.0	6.0	7 0	0.0	11.3	0.0	3.5			5.65	0.0	397-0	
131 7/13/83 59 38.2 171 52.6	1 50-	3347-1	3359.5	אב ונ	יה נ	m	. 9	31.				0		0	•	4634.2				2.0					21.0	1.				. 6							39.0	0.0	1.5074	
129 7/12/83 59 50.9 172 9.0	2 10.	32 00 - 9	3211.3	- 4	1 4	3								2.	1.			-	45.	145.7					8.5					1 0				•			110.3	0.0	758.9	
128 7/12/83 60 0.9 171 59.7	1 58.	3084-0	3095-4	o u	. ~	1 1	46.						7	22.	0	•		6	-	4.98					9.3											5 1	65-5	0.0	1493.2	
127 7/12/83 60 9.5 172 15.9	14.	2987-3	2980-0	n n		4 M	a		•		•	0.0		0	0	•	36.7	7.3	0	101-1	0.0	32.9	10	228.0		m	0	25.4	0.0		3.2	3.3	0.1	1.0	0.0	9	50.1	0.0	1091.6	
126 7/12/83 60 21-1 172 3-5	2 1.57	2850.4	2860.7	ע פי	. 4	D 100	54.			•		0.0		0		5			0	74.4						0.0					2 .		0			5	235.2	0.0	1309-1	
125 7/12/83 60 40.9 172 6.9	6.4	22.5	37.8	15. 11	0.0	M C								0		•				18.5				32.3		0.0											20.3	0.0	211.9	
	2 3 3 41.	2409-	2424.		•	0 / 38	11.		0.0	0.0	0.0	0.0		112.5	o.	ci.			2	26.4	0.0			56.0		0.0	0.0	0.0	0.0	0 0	0.0	0.2	0.1	16.2	0.0	0.0	25.8	0-0	47 4-1	
5000	35.	831.2	315.2	2	י ע	m	7.	64.			•	7.0			-	334.8	165.7		1.					296.3		0-0	0.0	0.0	U	2.75		6.4	0.0	4-4	0.0		48.0	0.0	1173.1	
AUL # ONTH/DAY/ ONTH/DAY/ ATITUDE S	GITUD	CRAN STAR	CHAN	EAR DEPTH	DIANI	NCE /		PAC COD	PAC DC PERCH	CTHER KCKF I SH	SAGLEF ISH	PAC HERRING	SCIII PINS	EELPGUIS	OTHER RADFISA	TOT RCUNDF ISH	YELLOW SGLE	ROCK SGLE	FLATHEAD SOLE	ALASKA PLAICE	GREENLAND 181	DAC HALTELT	1 31 13 8:	FLATFI	KAT	TOT ELASMOBRH	NING	JE KING CRA	NER. BAIRD	NAER O	HER CRAR	5	SHRIMP	0	OIL	OPUS	OTHER INVERTS	UTHEK	TOTAL CATCH	

catch
daca 101 cin
136 137 13
14/63 7/14/33 7/14/
1.9 57 41.9 57 21.
33.3 171 51.1 171 28
0.6 57 40.8 57 1
171 29.6 171 2
05-50 18255-40 14285
54.00 3466/-20 34859
10.50 16263.40 18291
1846 06-000 5487
01 101
0.0
46.2 2.54
38 0 / 3
9.5 1125.
70.
0
0
0.0
.1 33.
.0
6 23.
, I.
.0 0.1
3 1252
*
0
. 7
16.
3.9 40.
1.7 5.
• •
0.0
74.1 81.1
7.2 42.
67.2 42.0
0.0
0
0
123
•
0.0
65.
9.
0
•
0
4.4
205
0.0
867.5 1581.2

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

				,							
*	146	11.7		671	0.00	U	U	L	15	U	U
A TH/ DAY/ YEA	1	16 /8	1 % / B	116/3	116/8	11718	11718	117/8	1171	11113	11713
TITULE SIAK	26	707	-	0 20	12 6	57 6	2 2 2	0	0 11	0 2 0	0 40
I ONGITUDE START	2 4	5 9	7	74 8-	3 24	73 14.	7 7 7	73 19.	3 37	173 22.5	3 . 5
TITHUE END	-	58 41		0 22	59 23	97 0	200		60 12	60 21	17 7
NETTUDE	2 1	72 59	7	73 8	73 23	73 15.	73 33	73 20-	73 36-	3 22	73 24
RAN STAR	7.4	6 70 22	21.0	7605.2	7519.3	1-6751	7454.7	77672	7410.4		7414
LCRAN START	6.9	39 55 0	22.5	3519.8	3395.4	3250-3	3185-1	3088.7	2967		2656-1
LORAN END	. 9	177 01-60	17650.70	17603.90	17519.90	17534-60	17453-50	17493.50	17413-70	7455.7	17415.70
LCRAN END	5.1	3938.9	16.1	3503.7	3381.6	3237.4	3171.2	3072.0	2953.2	0	2641.3
GEAR CEPTH	11	11	11	10	10	6	6	1	1	9	9
RATION I	5	5	.5	.5	5	.5	.5	.5	5	.3	.5
STANCE FISH	9.	3	6	100	5	5	9	m	8	43	.6
	M	0 / 38	0 / 38	0 / 38	0 / 38	1	0 / 38	M	M	1 / 38	M
311110	7 7	3	17.	12	20		00	1	-	ď	17.
PAC COD			137	675	462	159	261			7 7	•
AC OF PER		0							0		
THE											
ASLEFISH											
MI COUNTY	•		•	•	•		•		•	•	•
T K A				•	•					•	•
CHI PINS										•	•
E L P						0		7		,	2
THER KNDF IS					•		, ,			,	, ,
TCT RCUNDF ISH	336.6	634.4	1834.9	3831.3	2693.7	1687.5	1371.7	203.9	118.3	725.7	1150.3
	7.5						;		,	1	
YELLOW SULE			0.0	•				43.1	3		8
SOLE							0	2	-		
FLATHEAD SCLE	2	2								1.	-:
SKA PLAI	32.2	17.4	:	0.0	0.0	12.9	1.8	5	7.8.3	16.5	21-0
GREENLAND TBT		*		•					•		
HICOIN	.,	:	;	•			•				•
HALIBUI		•	•	•	•				•		•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠,		;		•		;	3			5,
FLAIFIS				•	•						•
KA TE		9	-					0	-		1
TOT ELASMOERH	32.0	36.2	17.6	0.0	0.0	0.0	0.0	10.2	11.2	9.5	21.9
Y THE P											
E KING CRA		•			•				•		
NF R	7.1	2.0				. 0					
NER. OPILI	9-7-	47.6							•		
NER, HYBRI	, 0		0	0				0	0		
ER CRAB	0.5	0.5									
ILS	82.0	51.2									
Z	C.4	9.	0								
STARFISH	3.4										
ID	0.0				•						•
JP US	0.0		•					0	0		•
CIREN INVERTS	(0	m (2	0.0	17.5	3.4	40.0	76.5	1.0	1.1
AL INVERI	104-1	106.9	•						*		•
СТНЕЙ	0-0	0.0	0.0	0.0	0.0	0-0	0.0	0-0	0.0	0.0	0.0
TOTAL CATCH	1060-4	831-8	1962.2	3897.7	2788.5	1769.3	1429.1	460-3	9.60%	902.€	1259.3

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

167 7/30/33 60 21-1 176 2-0 60 20-8 176 0-8 16800-50 32829-30 16805-40 32840-39 124 0-50	300.7 59.6 0.0 0.0 0.0 0.0 0.0 6.1 5.1 371.1		0.0 0.0 0.0 121.3 0.0 1.5.8 1.5.8 1.5.8 1.5.8 1.5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
166 7/30/83 60 39-5 175 11-4 60 31-2 175 10-8 16765-00 16765-90 32667-20 32667-20	262.6 50.1 00.0 0.0 0.0 0.0 2.6 7.0 332.9	000000mm	2
7/29/33 60 38-9 174 45-4 60 40-3 177 44-8 17112-40 32672-30 17113-80 32658-70 32658-70 0-50	4159.3 93.9 0.0 0.0 0.0 0.0 0.0 0.0	910000	52.7 52.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
154 60 19-0 174 42-6 60 20-4 174 42-5 1775 6-9 1775 6-9 32874-5 1775 6-9 32874-5 102 0-50 0-50 0-50	2445.2 61.7 0.0 0.0 0.0 0.0 0.0 5.1 4.9		0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
163 7/29/83 59 59.1 174 35.3 60 60.4 177 36.0 17130.60 33078.10 17176.50 33063.80 33063.80	798.9 125.6 0.0 0.0 0.0 0.0 0.0 22.9 22.9		255.9 25.9 20.0 26.0 30.9 30.9 30.9 11.3 11.3 10.0 69.4
162 7/29/33 59 40-2 174 26-2 59 41-6 174 26-5 17232-10 33272-10 17230-60 33257-80 0-50 0-50 0-50	643.3 73.7 73.7 00.0 00.0 00.0 00.0 00.7 3.6	WHO H & H 000	20.0 20.0 0.0 63.7 0.0 17.5 15.0 0.0 10.0 855.3
161 7/28/83 59 18-7 174 26-9 59 19-3 174 26-9 17240-00 33482-40 17241-70 33477-00 33477-01 113	104-1 163-1 0-0 0-0 0-0 0-0 0-0 6-6 6-6		300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
160 7728/33 58 59.3 174 21.7 59 0.7 174 21.7 59 0.7 17271.7 33673.90 17270.50 33660.00 33660.00	1030.8 134.0 0.0 0.0 12.3 0.0 1.0 1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 10.0 10.0 19.7 19.7 0.0 0.0 0.0 1283.7
159 7/28/83 58 39.0 174 15.9 58 40.3 174 16.2 17303.30 33863.40 17301.90 33855.70 159 0.50	378.3 531.2 0.0 309.1 0.0 0.0 0.0 1222.0	15.2 10.0 10.4 34.7 10.7 71.8	51.8 51.8 0.0 121.1 0.0 1.5 0.0 0.0 0.0 126.2 1451.8
158 77 28/63 58 19-7 174 16-8 172 50-60 340 35-20 340 35-20 340 25-20 340 24-10 340 26-10	4.50.4 170.3 0.0 0.0 0.0 0.0 0.0 0.0 6.0		52.6 52.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
157 7/17/83 60 59-4 173 25-0 61 C-8 173 25-3 17374-30 32446-30 17371-50 32431-30 32431-30 32431-30	25.2 62.7 62.7 6.0 6.0 6.0 105.1 27.1	1.0 1.0 0.1 0.0 1.0 1.0 1.0 1.0 1.0 1.0	30 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
HAUL # HONTH/DAY/YEAR LATITUDE STAAT LCNGITUDE STAAT LCNGITUDE END LCNGITUDE END LCNGITUDE END LCRAN STAAT LCRAN STAAT LCRAN END LCRAN END LCRAN END LCRAN END LCRAN END LCRAN END LORAN E	POLLOCK PAC CCD PAC OC PERCH OTHER RCKFISH SABLEFISH PAC HERING ATKA MACKEREL SCULPINS EELPJUTS GTHER RNDFISH	ELLO CCK LATH LASK ELASK REEN RRCW THER	SKATES TOT ELASHOBRH HED KING CRAD BLUE KING CRAB TANNER, BAIRDI TANNER, HYBRID OTHER CRAB SNAILS SNAILS SHRINP STARFISH SGUID OCTHER INVERTS TOTAL INVERTS

Table A-2. -- Station and catch data for the chartered ship Alaska (cont'd).

87 17 35 59 59 4 177 12 4 60 1 0 167 11 9 16473 50 32935 70 15477 30 32935 10 32975 10 139 0 50 2 35	218.4 368.3 368.3 0.0 0.0 0.0 1.5 105.0	0.00	17.7 17.7 17.7 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
177 87 1/53 59 39-0 177 8-9 59 40-4 177 8-2 16464-90 33159-60 15469-60 33148-20 33148-20	76-5 76-5 76-5 00-0 00-0 00-0 10-2 00-2 00-2	732.0 732.0 732.0 732.0 75.1 36.2 36.2 85.2	39.11 37.11 60.0 60.0 72.7 72.7 72.7 72.7 72.7 72.7 72.7 7	
175 87 1/33 59 21-3 177 4-3 59 22-7 177 4-2 16462-00 333303-20 16464-50 333303-20 16464-50 333303-20 33296-90 33296-90	2.99.2 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 1.5 11.4	23.6 23.6 23.6 20.0 20.0 20.0 23.5 23.5 23.5 23.5 23.6	
7731/83 59 C-1 177 33-3 59 1-0 177 31-1 16276-30 3542-10 3542-10 3542-10 3542-10 3542-10 3542-10	305.7 282.6 00.0 00.0 00.0 7.0 7.0 7.0	180.0 190.0 190.0 100.0 100.0 100.3	76.11 76.11 76.11 30.0 11.9 11.9 11.9 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	l.
7/31/83 58 58.7 176 57.0 59 0.1 176 56.3 16452.80 33495.50 13495.80 33485.80 33485.80	100.4 129.3 0.0 0.0 0.0 21.3 21.3	0.0 0.0 0.0 0.0 0.0 0.0 6.8 104.7	222.7 222.7 22.7 20.0 20.0 20.0 20.0 20.	
7731/83 7731/83 58 40-7 176 49-0 58 42-0 16472-30 3543-40 35673-40 37673-40 37673-40 37673-40	114 10000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 17.11	14.3 14.3 13.0 13.0 10.0 10.0 10.0 10.0 10.0 10	
7/31/83 58 41-3 175 32-4 58 40-5 165 32-0 163 90-80 337 39-20 163 91-30 337 50-30 337 50-30	175.3 3.5 0.0 0.0 0.0 0.0 1.3 1.3	2000 2000 1000 11000 11000	910 W W W W W W W W W W W W W W W W W W W	
7730/83 59 11-2 175 44-1 58 59-9 1175 43-5 16846-50 33562-10 16848-60 33573-50 137 0-50	115.2 26.1 0.0 0.0 0.0 0.0 0.0 3.2 145.6	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
170 7730/83 59 20.5 175 45.0 59 19.1 175 45.1 16856.60 33393.90 137 0.50	145.1 94.8 0.0 0.0 0.0 0.0 0.0 2.1 51.9 0.6	00000000000000000000000000000000000000	17.0 17.0 0.0 0.0 0.0 176.0 176.0 176.0 2.3 2.3 2.6.2	
159 7/30/83 59 41-0 175 51-5 59 39-7 175 52-4 16831-20 33215-70 0-50 0-50 7-54	151.0 35.2 0.0 0.0 0.0 0.0 2.8 29.9 29.9	0.0 0.0 1.2 16.3 0.5 0.5 18.3	0.3 0.3 161.7 0.0 2.0 16.2 55.9 55.1 55.1 0.0 0.0	
7/30/83 60 1.2 175 56.2 59 55.9 175 56.2 16819.30 32017.20 16819.30 32017.20 16819.30 32017.20 16819.30	233.1 55.6 0.0 0.0 0.0 0.0 0.0 14.7	2 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	111.3 111.3	
HAUL # HCNTH/DAY/YEAP LATITUDE START LCNGITUDE START LCNGITUDE END LCRAN START LCRAN START LCRAN START LCRAN END LCRAN END GEAR DEPTH DUÑATIÓN IN HOURS DISTANCE FISHED	PCLLUCK PAC COD PAC UC PERCH CTHEH MCKFISH SABLEFISH PAC HERRING ATKA MACKEREL SCULPINS EELPOUTS CTHER RUDFISH	YELLOW SOLZ ROCK SCLE FLATHEAD SCLE ALASKA PLAICE GREENLAND TBT ARDWIDOTH FL PAC HALISUT CTHER FLTFISH	SKATES TCT ELASHOBRH REC KING CRAB BLUE KING CRAB TANNER, DAILED TANNER, HYBRID CTHER CRAB SNAILS SNAILS STAFFISH STAFFISH STAFFISH CTTAL INVERTS TOTAL CATCH	

Appendix B

Rank Order of Relative Abundance for Fish and Invertebrates

Appendix B contains a computer listing of all fish and invertebrates caught during the 1983 bottom trawl survey ranked in order of relative abundance (kg/ha).

List of Tables

Table		Page
B-1.	Rank order of fish and invertebrate taxa by relative abundance (kg/ha)	105
	abundance (kg/na)	125

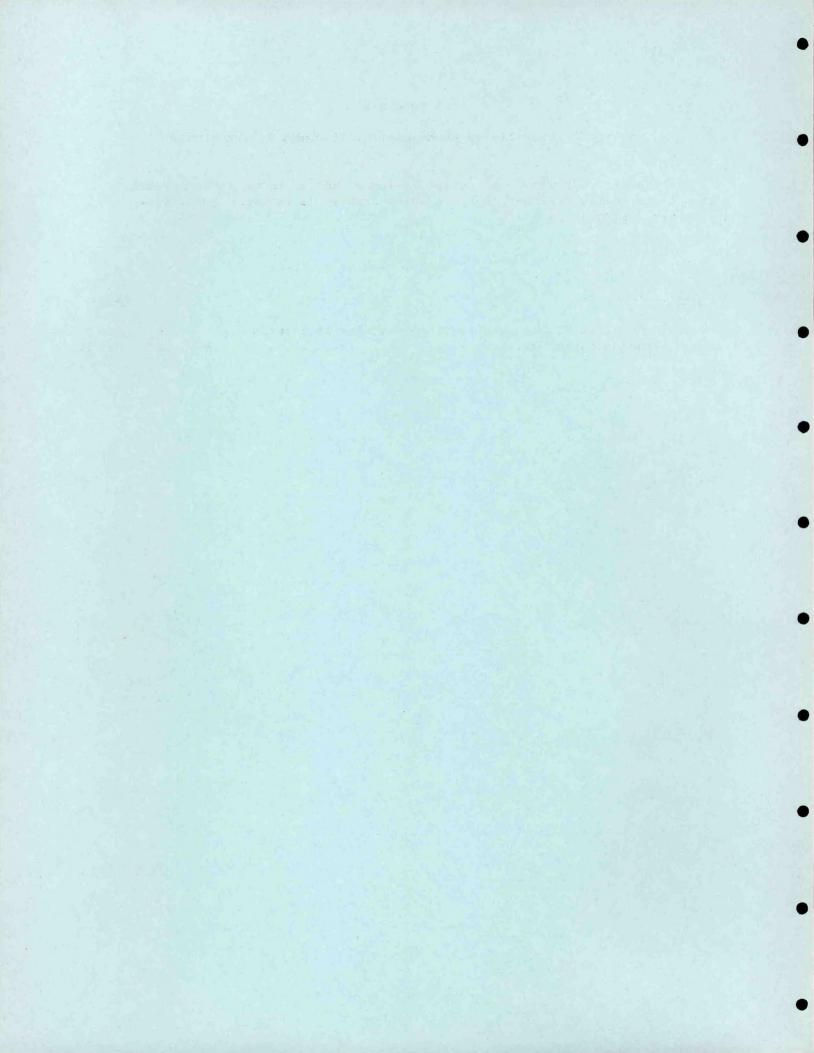


Table B-1. -- Rank order of fish and invertebrate taxa by relative abundance (kg/ha).

=	
565.2	
65	
5	
-	
23	
EFFURI	
W	
FOTAL	
=	
10	
Series .	
263	
2	
S	_
i.i	4
2	5
PE	×
SPECIES	BY MEAN CPLE CKG/HA
DIAL	M
=	٩
=	_
	Z
	¥
	_
in	8
-	C
S	KE
7	4
*	~
ICTAL TRANLS	SPECIES RANKE
_	IE
×	EC
2	SP

NAME	WALLEYE POLLOCK	YELLUWFIN SOLE	PACIFIC COD	ROCK SCLE	ALASKA PLAICE	PURPLE-DRANGE SEASTA?	TANNER CFAB COPILIE)	FLATHEAD SOLE & BERING FLUUIDER	ARROWIDOTH & KAMCHATKA FLUGICEPS	STARFISH UNIDENT	HERMIT CRAB UNIDENT	NEPTUNEA HEROS	PACIFIC HALIBUT	BASKET STARF ISH UNIDENT	SP CN GE UNIDENT	SPARSE TOOTHED LYCOD	PLAIN SCULPIN	PACIFIC HERRING	TUNICATE UNIDENT	TANNER CRAB (BAIRDI)	STARTY SKATE	NEPTUNEA PRIBILLFFERNS	SEA ANEMONE UNIDENT
CUMULA TI VE PROPORTICA	0.37254863	0.61973733	0.69299356	0-15040150	0.79088725	0.81903074	0.84057387	C.85788254	0.86646206	0.87428187	C-88204406	0.88906118	0.39506410	C-90075573	0.90613132	0.91138910	0.91631678	0.92084571	0.92537191	6-92942593	0-93292260	0.93533846	0.93972994
PROPORTION	0.37254863	0.24718369	0.07325623	0-05740794	0-04048576	0.02814348	0.02154313	0.01730908	0-00857911	0-00731982	0-00776218	0-00701712	0.00600293	0.00569163	0.00537559	0.00525777	0.00492769	0.00452892	0.00452620	0.00405403	0.00349667	0.00341586	0-00339147
NI LIMITS*	145.77829	94-17367	29.62905	23.45612	15.99132	11.63746	8-67467	7.10958	3.33599	3.45778	3.22700	2.87158	2.46807	2.84952	3.67079	2.51805	2.20363	2.25499	3.62308	1.69731	1-61324	1-44077	1.86019
90 PERCENT *CONFIDENCE LIMITS*	111.92908	76.81702	21.04533	16.25534	12-01436	7.83055	6-22761	4.86373	2.59854	1.95152	2.14243	1.98245	1-68440	1-08761	0-04773	1-01897	1.20505	0.87785	0000000	1-10653	0.80555	0.92212	0.48583
MEAN CPUE (KG/HA)	128.85369	85.49535	25-33719	19-85573	14.00284	9-73401	7-45114	5.98670	2.96726	2.70465	2-68471	2.42702	2.07624	1.96857	1.35926	1-81851	1-70434	1.56642	1.56548	1-40217	1.20940	1.18145	1-17301
RANK SPECIES	21740	10210	21726	10260	10285	81742	68590	10130	10110	60003	69010	71834	10120	83010	91000	24184	21371	21110	98000	29589	00450	71820	4300C
NA NA	1	2	۳1	4	2	9	~	m	6	10	11	12	13	14	15	16	11	18	13	20	21	22	53

Table B-1. -- Rank order of fish and invertebrate taxa by relative abundance (kg/ha).

LONGHEAD DAB	INVERTEBRATE UNIDENI	ALASKA SKATE	RED KING CRAB	NY OX OCEPHAL US SP	BUTTERFLY SCULPIN	YELLOW IFISH LORD	SAURTFIN EELPOUT	SKATE UNIDENT	NEPTUNEA LYRATA	GREAT SCULPIN	GREENLAND TURBOT	BLUE KING CRAB	NEPTUNEA VENTRICOSA	SAND DCLLAR UNIDENT	JELLYFISH UNIDENT	SEA POTATO UNIDENT	COMMON MUD STAR	BI GROUTH SCULPIN	SABLEFISH	ALEUTIAN SKATE	STURGE ON POACHER	STARRY FLOUNDER	EVASTERIAS ECHINDSOMA	CTENDDISCUS SP	ARMORHEAD SCULPIN	WATTLED EELPOUT	LEPTASTERIAS POLARIS	
 0-94298887	0.94620838	0-94928862	0.95233487	0.95528216	0.95811520	0.96072021	0.96323399	0.96569586	0.96803389	0.97024401	0.97218826	0.97400842	C-97566162	0.97710563	0.97836862	0-97963047	0.98085427	0.98201022	0.98314588	0-98420316	0-98507405	0-98589760	0.98669206	0.98745397	0.98817932	0.98889545	0.98958941	
0-00325893	0.00321952	0.00308023	0.00304626	0.00294728	0.00283305	0-00260500	0.00251379	0.00246187	0.00233803	0.00221013	0-00194425	0.00182016	0-00165320	0.00144401	0.00126299	0.00126185	0.00122380	0.00115595	0-00113566	0.00105728	0.00087088	0.00082355	0-00079446	0.00076191	0-0007 2585	0-00071563	0.00069396	
1.35964	1.66991	1-29661	1-39402	1-35021	1-53486	1-49880	1.25304	1.04936	1.10828	1.16289	0-80507	1-04671	0.68302	1.18596	0.56550	0.72516	0.78426	0.54981	0-79099	0-49195	0.36620	0.41568	0.58899	0.48190	0-40135	0.30380	0-42914	
0-89470	0.52736	0.83411	0.71320	0.68855	0.42488	0.30319	0.48585	0.65362	0.50903	0.36595	0.53985	0.21437	0.46057	000000-0	0.30817	0-14772	0.06230	0.24981	0 0 0 0 0 0 0	0.23941	0.23623	0-15400	0 0 0 0 0 0 0	0.04515	0.10075	0-19124	0-05089	
1-12717	1-11354	1-06536	1.05361	1-01938	18616-0	56006-0	7,86944	0.85149	0.80866	24492	0.67246	0.62954	52175	77667-0	0-43683	0-43644	0.42328	0.39981	0.39275	0.36568	0-30121	0.28484	0-27478	0.26352	0.25105	0-24752	0.24002	
10211	06666	00471	69322	21375	21348	21347	24191	00400	71870	21370	10115	69323	71882	82730	40500	98200	81780	21420	20510	00472	20040	10220	80020	81779	21316	24185	80590	
42	25	56	22	28	53	30	31	32	33	3.6	35	36	37	38	39	0 4	1,	75	43	*	5 %	9 4	24	84	64	20	51	

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha).

RANK	SPECIES	MEAN CPUE	93 PERCENT	ENT LIMITS*	PROPORTION	CUMULATIVE	NAHE
52	98105	0.23980	0.12286	0.35674	0.00069332	0.99028273	BOLTENIA GVIFERA
53	98082	0.20664	0.00000	0.51695	97 26 5000 -0	0.99088019	STYELA RUSTICA
24	20720	0.18708	0.06380	0.31037	0-00054090	0-99142110	SEARCHER
52	78403	0.18283	0 0 0 0 0 0 0 0	0.48594	0-00052860	0-99194970	OCTOPUS COFLEINI
99	98100	0.17795	0.07174	0.28417	0.00051451	0-99246420	SEA ONION UNIDENT
23	10200	0.15810	0.11217	0.20403	0.00045709	C-99292130	REX SOLE
58	80595	0.1527 8	0.08421	0.22135	0.00044172	0-99336302	LEPTASTERIAS SP
88	72500	0.13589	0.09127	0.18050	0.00039288	0.99375589	FUSITRITON OREGONENSIS
09	00769	0.11326	0.08398	0.14255	0.00032748	0.99408337	KOREAN HORSEHAIR CRAB
61	21735	0.11000	0.01905	0.20096	0.00031805	0.99440142	SAFFRON COD
62	85200	0-10404	0.02539	0.18269	0.000300 81	0.99470223	CUCUMARIA SP
63	72740	0.10357	0.06403	0.14312	0.00029946	0-99500169	BUCCINUM SP
49	10250	0-08245	0000000	0.21118	0.00023838	0.99524007	SAND SOLE
65	23010	0-07399	0.04192	0.10607	0.00021393	00954566-3	EULACHON
99	98205	0.07332	0.00000	0.14985	0-00021200	0-99566600	HALDCYNTHIA (TETHYUM) AURANIIUM
29	18789	0-07073	0.03902	0.10244	0-00020450	0.99587050	TELNES SUS CRAB
6.8	66031	96690.0	0.04597	00 96000	0.00020234	0.99607284	PINK SHRIMP
69	68577	0.06616	0.04201	0.09031	0.00019128	0.99626412	HYAS CFAE (ROUNDED SPINED)
0.2	83000	0.05816	0-00458	0.11175	0.00016817	0.99643229	BRITTLESTARFISH UNIDENT
7.1	98310	0.05448	0.00915	0.09981	0.00015751	0.99658979	APLIDIUM SP
12	72752	0.05264	0-03520	0.07007	0.00015218	0-99674197	SITKW WHELK
73	72751	0.05250	0.02153	0.08348	0-00015180	0.99689377	LYRE WHELK
14	00430	0.04505	00000	0.09188	0.00013026	0-99702404	SANDPAPER SKATE
15	71800	56440-0	0-01476	0.07514	0.00012996	0.99715399	NEPTUNEA SP
91	78010	0-04490	0.01533	257200	0.00012983	0.99728382	OCTOPUS UNIDENT
11	21379	0.04236	0000000	0.08982	0-00012248	0-99740630	HYCKOCEPHALUS VERRUCOSUS (SYN. M. GROEN
8.2	23041	0.04216	0.02108	0-06324	0-00012189	0.99752819	CAPELIN
6.2	71764	0-04181	0.03005	0.05356	0.00012088	10649166-0	VOLUTOPSIUS MIDDENDORFFII

Table B-1. -- Rank order of fish and invertebrate taxa by relative abundance (kg/ha).

										MAGNA																		
NAME	HYAS SP	BERING WCLFFISH	SNAILFISH UNIDENT	BUCCINUM ANGULOSUM	SEA CUCUMBER UNIDENT	PYRULOFUSUS DEFORMIS	SEA URCHIN UNIDENT	VOLUTOPSIUS SP	PTERASTE & SP	CLINOPEGMA (ANCISTROLEPIS)	FUSITRITON SP	BERINGIUS BERINGII	NUDI BRANCH UNI DENT	TANNER CRAB (HYBRID)	THORNY SCULPIN	VOLUTOPSIUS FRAGILIS	PLICIFUSUS KROYERI	BERING SKATE	ALASKA SURF CLAM	PARHA SAND DOLLAR	SCULPIN UNIDENT	SPINYHEAD SCULPIN	SNAIL UNICENT	POLAR EELPOUT	ICEL US SP	PAGURUS CCHOTENSIS	SOFT CORAL UNIDENT	BIG SKATE
CUMULATIVE PROPORTION	0.99776739	0.99788471	0.99799877	0.99811091	0.99821871	0.99832606	6.99842160	0.99848970	0.99855225	0.99860730	0.99865960	0.99870930	0.99875886	0.99880529	0.99885129	0.99889455	0.99893365	0.99897164	0.99900915	774 7065 6-0	0.99907925	0.99911200	0.5991 4446	0.99917643	0.99920739	0.99923661	0.99926413	0.99929115
PROPORTION	0.00011832	0.00011732	0.00011406	0.00011215	0-000107 60	0-00010734	0.00009555	0-00006809	0.00006256	0.00005505	0-00005230	0.00004970	15640000-0	0-00004643	0 - 00 00 46 00	0-00004326	0-00003910	0.00003798	0.00003751	0.00003529	0-00003480	0.00003275	0-00003246	0-00003197	0.00003096	0.00002922	0.00032752	0-00002702
NI LIHITS	0.05614	0.06693	0.05672	0.04957	0.05891	0.07242	0.05917	0.03288	0.04865	0.02751	0.03366	0.02223	0-02694	0.02559	0.02206	0.02551	0.01989	0.02263	0.01808	0-03074	0.02681	0.01713	0.01806	0.02373	0.01504	0.02422	0.01507	0-02484
90 PERCENT	0.02571	0-01422	0.02218	0.02801	0.01565	0.00184	0.00693	0-01423	0-00000	0-01057	0.00251	0.01214	0-00735	0-00653	0.00977	0-00442	0.00716	0-00365	0.00787	000000-0	0000000	0-00553	0-00439	000000	0.00638	000000-0	0-00397	00000 00
MEAN CPUE	0-04092	0.04058	0-03945	0.03879	0.03728	0.03713	0.03305	0.02355	0.02164	0.01904	0.01809	0.01715	0-01714	0.01606	0.01591	0.01496	0.01352	0.01314	0.01298	0.01221	0-01204	0-01133	0.01123	0-01106	0-01071	0-01011	0.00952	0-00935
SPECIES	69520	20322	22200	72743	85000	71753	82500	11750	81310	71961	10521	71172	71010	68590	21438	71756	16812	00435	75111	82740	21300	21390	71500	24189	21446	06069	41100	00450
RANK	3	81	82	83	8	85	86	18	80	6.9	06	91	9.5	93	76	9.5	96	26	9 8	66	100	101	102	103	104	105	106	107

PT	b b-1rk	Table B-1Rank order of	fish and		taxa by relative abundance	ive abundanc	e (kg/ha).
S	RANK SPECIES	(KG/HA)	*CONFIDENCE LIMITS*	LINI TS	PROPORTION	PRCPORTION	NAME
	30050	0.00914	00000-0	0.02335	0-00002643	0-99931758	ROUGHEYE ROCKF ISH
	00310	0.00855	000000-0	0.02029	0-00002471	0.99934229	SPINY DOGFISH
	06700	0.00808	00000-0	0.01827	0-00002336	0.99936565	GOLDEN SKATE
	21314	0.00768	0- 00 360	0.01175	0.00002219	48181665-0	THREADED SCULPIN
	72063	0-00766	90200-0	0.01027	0.00002214	0-99940998	AFORIA CLEUCOSYRINX) CIRCINATA
	71835	0-00761	0-00397	0.01125	0.00002200	0.99943198	NEPTUNEA BOREALIS
	71001	1 7 2 0 0 0	0.00229	0.01265	0.00002160	0.99945358	SNAIL (GASTROPOD) EGGS
	81355	0.00728	0-00303	0.01153	0-00002106	79727656-0	PTERASTER OBSCURUS
	82589	0.00705	0.00370	0.01041	0-00002039	0.99949503	HYAS CRAB (SHARP SPINED)
	75260	0.00685	0.00000	0.01494	0.00001991	0-99951494	BUTTER CLAH
	75285	0.00681	0-00286	0.01076	0-00001970	0-99953464	GREENLAND COCKLE
	71030	0.00593	0.00112	0.01074	0.00001715	0.99955178	DIONEDES* TRITON
	98069	0.00590	0000000	0.01367	0.00001705	0.99956884	PAGURUS TRIGONOCHETRUS
	41201	1 2500-0	9,000-0	0.01109	0-00001669	0.99958553	EUNEPHTHYA (GERSEHIA) SP
	20006	7 2500 0	0.00351	16200.0	0.00001659	0.99960213	SANBACK POACHER
	20160	0-00564	0.00105	0.01022	0-00001630	0.99961843	SEA MOUSE UNIDENT
	23235	0-00562	00000-0	0.01275	0.00001626	0-99963469	CHUN SALMGN
	72755	26 700 0	0.0000	0.01009	0.00001423	0-99964892	BUCCINUM POLARE
	19990	0-00488	0.00 00 -0	0.01197	0-00001411	0.99966303	FLATFISH UNIDENT
	23055	92400-0	0.00015	0.00937	0.00001376	6292966600	RAINBOW SMELT
	80010	0.00452	0.00000	0.01014	0.00001307	0.99968985	EVASTERIAS SP
	22219	0.00451	0.00031	0.00872	0.00001305	0.99970291	CAREPRCCTUS SP
	30420	0.00419	0000000	0.00931	0.00001212	0.99971503	NORTHE PN ROCKFISH
	81095	0.00402	0.00015	0-00791	0.00001165	0-99972668	CROSSASTER PAPPOSUS
	21934	0.00392	000000	0-01021	0.00001135	0.99973803	ROCK GREENLING
	60200	0.00361	00000-0	0.00761	0-00001043	0.99974846	LETHASTE RIAS NANIMENSIS
	42000	0-00346	00000000	0-00720	0-00001001	0.99975846	SEA PEN UNIDENT
	000044	0.00335	000000-0	0.00768	19600000-0	0.99976814	CORAL STONY UNIDENT

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha).

NAME	WHITESPOTTED GREENLING	PLICIFUSUS SP	BERINGIUS SP	PYRULOFUSUS SP	BLACKFIN SCULPIN	ROSSIA PACIFICA	BALANUS (CHIRGNA) EVERMANSI	WOLUTOPSIUS MELONIS	COLUS HERENDEENII	PROWFISH	HUMPY SHRIMP	LEPTASTERIAS ARCTICA	CRANGONID SHRIMP UNIDENT	RIBBED SCULPIN	DAUBED SHANNY	LYCODES MUCOSUS	GRAY STARSNOUT	GREENLING UNIDENT	ATKA MACKEREL	POLINICES PALLIDA	CRANGON DALLI	DECORATOR CRAS	GREEN SEA URCHIN	ARGIS SP	RED BAT STAR	HUSSEL UNIDENT	CAREPROCTUS SCOTTAE	CLAM UNIDENT	
CUMULATIVE PROPORTION	4422266-0	0-99978591	0.99979363	0.99980098	0.99980827	0.99981498	0.99982156	0.99982811	0.9998 3437	0.99984043	0.99984645	0.99985211	0.99935761	0.99986306	0.99986834	0.99987354	0.99987862	0.99988358	0.99988829	0.99989270	0.99989691	0-99990100	0.99990501	0.99990893	0.99991276	0.99991646	0.99992016	0.99992377	
PROPORTION	0.000000000	0.00000847	0.00000772	0.00000736	0.00000729	0.00000670	0.00000658	0-00000655	0.00000627	0.00000000	0-00000602	0.00000567	0.00000549	0-00000545	0.00000528	0.00000519	0-00000508	96 30 00 00 00	0.00000471	0-0000041	0.00000421	0-00000409	0-00000-0	0.00000392	0-00000382	0-00000371	0-00000370	0-000000-0	
LIMITS*	0.00548	0.00543	97900-0	62900-0	0-00433	0.00363	50900-0	0.00486	0-00328	95500-0	0.00271	90500-0	0-00268	0.00303	0.00229	0.00477	0-00433	95,0000	0.00348	0.00247	0.00200	0-00209	0.00261	0.00193	0.00351	0.00287	0.00293	0-00222	
90 PERCENT ************************************	9 0000 0	0.00043	000000	0.00030	0.00072	0-00100	0000000	0 0 0 0 0 0 0	0.00105	000000	0.00145	000000	0.00112	72000-0	0.00137	0000000	000000	0000000	0000000	0.00058	0.00091	\$2000°0	0.00017	0.00078	00000000	000000	000000	0-00028	
MEAN CPUE	0-00322	0.00293	0-00267	0.00254	0.00252	0.00232	0.00228	0.0022€	0.00217	0-00209	0-00206	0.00196	0-00190	0.00135	0.00183	0.00180	0.00176	0.00171	0.00163	0.00153	0-00146	0.00141	0-00135	0.00136	0-00132	0.00128	0.0012E	0-00125	
SPECIES	21932	71890	11769	11754	21340	79020	65203	11761	11211	24001	5 9099	96509	00599	21355	23805	24186	20035	21900	21921	71580	66530	68510	82510	02599	80729	05072	22232	24000	
RANK	136	137	138	139	140	141	142	143	144	145	146	141	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	

Table	B-1Ranl	K order of	fish and	ebrate	taxa by relative	ve abundance	(kg/ha).
X X X X	SPECIES	CALL HAD			TOTAL OUT OF THE	100 COC COC COC COC COC COC COC COC COC C	
164	71726	0-00118	0.00021	0.00215	0. 00000 341	0.9992718	COLUS SPILLBERGENSIS
165	66580	2 600000	0.00061	0.00125	0.00000269	0.99992987	ARGIS DENTATA
166	11774	0.00083	0 00 00 00	0.00181	0.00000239	0.99993226	BERINGIUS STIMPSONI
167	26300	0.00079	0.00024	0.00134	0.00000229	0-9993454	SCALEWORN UNIDENT
168	10270	0.00077	0-00020	0.00135	0.00000224	0.99993678	BUTTER SCLE
169	20050	0.00076	0.00041	0.00111	0.00000220	0.99993898	ALEUTIAN ALLIGATORFISH
170	11760	0.00073	0000000	0.00194	0.00000211	0-99994109	VOLUTOPSIUS CASTANEUS
171	75266	0.00073	0.00018	0.00128	0.00000211	0.99994320	PACIFIC FAZOR CLAM
172	45004	0.00063	00000-0	0.00130	0.00000183	20546656-0	SLEWDER SEAWHIP
173	21354	0-00063	0000000	0.00141	0.00000183	0.99994686	SPECTACLED SCULPIN
174	74120	0.00062	00000 0	0-00156	0.00000180	0-99994867	WEATHERVANE SCALLOP
175	69121	0.0006	00000-0	0.00159	0_00000173	0-95995040	ELASSOCHIRUS CAVINANUS
176	74080	0-0006	0000000	0.00158	0.00000172	0.95995212	BAY MUSSEL
177	21341	0.00058	0000000	0.00124	0.00000167	0.99995379	MALACOCOTTUS ZONURUS
178	30060	0.00058	00000 0	0.00153	0.0000167	0.99995545	PACIFIC CCEAN PERCH
179	21592	95000-0	00000-0	0.00115	0.00000162	101566660	PACIFIC SANDFISH
180	71710	0.00055	00000-0	0-00114	0-00000160	0.99995867	COLUS SP
181	66611	0.00055	0.00025	0.00085	0.00000158	0.99996025	ARGIS LAF
182	71530	0-00055	50000-0	0-00104	0-00000158	0.99996182	NATICA CLAUSA
183	71731	0-00054	0-00024	0-00084	0.00000156	0.99996338	COLUS HALLI
184	20061	0-00052	0.00002	0.00102	0.00000150	0.99996488	BERING POACHER
185	66515	0.00045	0.00024	9900000	0.00000130	0.99996618	CRANGON COMMUNIS
186	75284	0 00043	00000 0	26000 0	0.0000123	0.99996742	SERRIPES SP
187	71575	0.00042	00000-0	0.00101	0.00000121	0.99996863	POLINICES SP
188	68020	0.00042	00000	0.00111	0.00000120	0.99996983	DUNGENESS CRAB
189	81090	0 000 ¢ C	00000 0	0-00105	0-00000114	16016666-0	CRUSSASTER SP
190	20202	0.00039	0-00014	0.00063	0.00000112	0.99997209	PACIFIC SAND LANCE
161	21315	0-00036	0000000	0.00102	0-00000111	0.99997320	ARCTIC STAGHORN SCULPIN

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha).

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha).

. (5)	NAME	PANDALUS TRIDENS	FLATHEAD SKATE	TROPHONOPSIS (BOREOTROPHON) DALLI	PINK SNA 11.F ISH	SLENDER EELBLENNY	HACOHA SP	BRYDZDAN UNIDENT	FLUSTRA SERRULATA	WARTY POACHER	LEECH UNIDENT	NORTHERN SPEARNOSE POACHER	CRANGON SEPTEMSPINDSA	BUCCINUM TENELLUN	SHRIMP UNIDENT	TROPHON DALLI	CHLAMYS ISLANDICA	COLUS HYPOLISPUS	HENRICIA SP	TRITONIA SP	SILIQUA SP	POLYCHAETE HORM UNIDENT	KELP GREENLING	ECHIURDID MORM UNIDENT	LONGSNOUT PRICKLEBACK	LEISTER SCULPIN	SCISSORTAIL SCULPIN	GORGONOCEPHALUS CARTI	TANK SHRIMP	
	CUMULATIVE PROPORTION	0.99999268	0.99999301	0-99999332	0.99999362	0.99999392	0.95999421	0.59999448	0.99999473	86766666"	0.99999523	0.99999546	0.99999570	0-99999593	0.99999616	0-99999638	0-99999659	0.99999678	96966666*0	11266666*0	0-99999731	0.99999748	1926666600	0.99999780	962666660	0.99999812	0.99999826	0-99999840	0.99999852	
T	PROPORTION	0-00000033	0.00000032	0.00000031	0-00000000	0- 00000030	0.00000000	0-00000027	0.00000025	0.00000025	0-00000024	0.00000024	0.00000024	0.00000023	0.00000023	0.00000022	0.00000021	0.000000000	0-0000018	0.00000017	0.00000017	0.00000017	0.00000016	0.00000016	0.00000016	0.00000016	0-00000014	0-00000014	0.00000012	
	LIMITS*	0.00023	0-00030	0-00020	0.00028	0.00019	0.00020	0.00025	0.00023	0.00023	0.00022	0.00022	0.00022	0.00022	0.00021	0.00017	0.00015	0.00015	0.00014	0.00016	0.00016	0.00013	0-00015	0.00015	0.00015	0.00014	0.00013	0-00013	0.00011	
	93 PERCENT *CONFIDENCE LI	000000-0	0000000	0.00001	0000000	0-00002	00000000	00000000	0000000	0000000	000000-0	00000-0	0000000	00000-0	00000-0	00000-0	00000-0	0000000	00000-0	00000-0	00000-0	00000-0	0000000	00000 -0	00000 -0	00000-0	000000	00000000	00000000	
	MEAN CPUE (KG/HA)	0.00011	0.00011	0.00011	0.00010	0.00010	0.00010	50000-0	50000-0	5000000	30000-0	0.0000	30000-0	0.0000	0.0000	20000-0	20000-0	2000000	9000000	€0000 0	90000-0	90000-0	90000-0	9000000	90000-0	50000-0	50000-0	0-0000	0.00004	
	SPECIES	66033	00415	12422	22236	23807	75240	95000	95030	20060	59100	20015	66548	12759	00099	72403	74105	11722	07508	71025	75264	20000	21935	94500	23836	21387	21352	83020	10999	
	RANK	220	122	222	223	224	225	526	227	228	622	230	231	232	233	234	335	38	237	38	33	0 %	141	745	£ 9:	44	545	9 %	24	

Table B-1. -- Rank order of fish and invertebrate taxa by relative abundance (kg/ha).

NAME	SP IRONTOCARIS SP	PACIFIC SPINY LUMP SUCKER	CHITON UNIDENT	NATICA ALEUTICA	SKATE EGG CASE UNIDENT	NATICA SP	ICELUS CANALICULATUS	ARETIC ROUGH MYA	WHITEBARRED PRICKLEBACK	TUBE WORM UNIDENT	EUNDE NOCOSA	LEPTASTERIAS HYLODES	BATHYAGONUS SP	NUCULANA FOSSA	EUALUS SP	LIPARIS SP	
CUMULATIVE	C-99999463	0-99999875	0.99999886	168666660	2066666600	1166666600	0.99999926	0.99999936	0.99999945	0.99999955	196666660	0.99999973	0.99999982	06666666-0	0.99999995	1.00000000	
PROPORTICN	0.00000012	0.00000012	0.00000011	0.00000010	0.00000000	0.00000010	0-00000010	60000000-0	60000000000	6000000000	60000000000	60000000-0	60000000000	0-0000000	0.00000000	9-00000000	
NI LI MI TS	0-00011	60000000	0.00011	6000000	6000000	6000000	6000000	60000-0	60000000	60000-0	60000-0	9000000	0.00008	80000-0	*0000-0	*0000*0	
CONFIDENCE LIMITS	0-00000	0-00000	0000000	0.00000	0 0 0 0 0 0 0	0000000	0.00000	00000-0	0000000	0.00000	00000	0000000	0.00000	0-00000	0-00000	0 0 0 0 0 0 0	
MEAN CPUE CKG/HA)	1000000	10000-0	0.00004	1000000	000000	20000-0	0.00003	20000-0	20000-0	0.00003	£ 0000° 0	20000-0	0000000	000000	0.00002	20000-0	345-87078
RANK SPECIES	66160	21463	70100	71535	00401	71525	21439	74320	23850	50010	56311	80112	20034	74439	66170	22201	TOTAL
RANK	248	642	250	251	252	253	254	255	556	257	258	652	260	261	262	263	

Appendix C

Population and Biomass Estimates for Principal Species of Fish

Appendix C presents estimates of population size in terms of number of individuals and biomass estimates in metric tons for the principal species of commercially important demersal fish. Estimates are given by stratum code. Stratum codes corresponding to subareas illustrated in Figure 1 are as follows:

Subarea Number	Stratum (Code
1	10	
2	20, 21	
3N	30, 32	
35	70, 71,	72
4N	40, 41,	42
45	60, 61	
5	50, 52	

Stratum codes 21, 32, 71, 72, 41, 42, 61, and 52 represent high density sampling areas around the Pribilof Islands and St. Matthew Island. Other less apparent heading definitions are as follows:

Samples refers to the number of sampling units in a stratum. One sampling unit equals the mean trawl path width times one nautical mile.

Method Used (Code 1) indicates that catch weights and numbers were available for each catch record.

Confidence Limits reflect sampling error only and do not incorporate other biases.

List of Tables

Ta	ble							Page
C	-1.	Population	and	biomass	estimates	for	walleye pollock	137
С	-2.	Population	and	biomass	estimates	for	Pacific cod	141
C	-3.	Population	and	biomass	estimates	for	sablefish	145
C	-4.	Population	and	biomass	estimates	for	Pacific herring	149
C	-5.	Population	and	biomass	estimates	for	yellowfin sole	153
C	-6.	Population	and	biomass	estimates	for	rock sole	157
C	-7.						flathead sole and Bering	161
C	-8.	Population	and	biomass	estimates	for	Alaska plaice	165

Table				Page
c-9.	Population and b	oiomass estimates	for Greenland turbot	169
C-10.			for arrowtooth and Kamchatka	173
C-11.	Population and b	oiomass estimates	for Pacific halibut	177
C-12.	Population and b	oiomass estimates	for rex sole	181
C-13.	Population and b	oiomass estimates	for longhead dab	185

Table C-1.--Population and biomass estimates for walleye pollock.

STANDARD TRAML FIDTH = 16.54000000 METERS

STRATUM	AREA	S0. MI.	SAMPLES	TOTAL	HAUL S NITH CATCH	HAULS WITH WUMS.	HAULS WITH L-F	CPUE KG/HA	VARIANCE CPUE KG/HA	CPUE NO/HA	YARTANCE CPUE NO/HA
10*		22,950.	. 2569 6849 2E+07	58	51	51	14	131.45031	.864111E+03	190.05555	-18849EE+04
SUBTOTAL		22,950.	.256968492E+07	58	51	51	14	131-45031	.864111E+03	190.05556	.1 88498E+04
20*		16.030.	. 179494262E+07	39	39	39	39	176-60898	.854681E+03	273-72336	-217442E+04
21*		1.720.	-192535328E+06	9	2	5	4	279-17456	.588727E+05	558-11733	-244074E+05
SUBTOTAL		17,750.	. 1987 4779 5E+07	45	77	7.7	£ 3	186-54494	-597274E+05	301-27 380	.24624 EE+ 06
404		12.721	2013051315671	36	36	0	36	72877 77	262 27 07 62 7	211 26669	7043757336
125		1-271	90+3860052671	3 4	2	ם ע	2 4	120.61039	70+3676767	857.54519	362547F+05
SUB TOTAL		14,002-	. 1567 8154 3E +07	32	32	32	32	87.90044	.478365E +C4	350-50325	. 369223E+05
*05		21,612.	. 241988960E+07	56	56	26	55	23.27748	-114172E+02	259.74719	.544 183E+04
41*		3,115.	.348771586E+06	13	12	12	12	248-60165	-162288E +05	437-16730	.395511E+05
45*		2,009.	. 224990002E+06	5	5	S	5	396-20101	-336514E+05	509.36042	.701937E+05
SUBTOTAL		26,736.	- 299365139E+07	14	7.3	7.3	72	77-55593	. 4 98 91 5E +05	306.69273	-113187E+06
20*		4,345.	-486525370E+06	=	11		11	155-43369	-891962E+04	374.90508	.58957 3E+ 05
52*		2.317	30+ 36 77 16 26 26 2	0	6	0	0	145.52760	- 482 47 9F + 04	268.94959	-17179EF+05
SUBTOTAL		6,662.	.745922819E+06	20	20	20	50	151.98881	-137 444E +05	338-05 866	.761371E+ 05
€0*		22,793.	. 255218538E+07	55	20	20	64	61-91059	-315461E+03	118-62623	-122245E+04
61*		975.	- 10921236 3E+06	8	~	8	2	91.49241	-323004E +04	190.27673	-199 030E+05
SUBTOTAL		23.769.	-266139775E+07	58	53	53	25	63.12450	- 354550E +04	121.56645	.211255E+05
10*		16,921.	- 189466687E+07	39	39	39	39	228-33485	.933171E+03	666.70383	.926585E+ 04
7.1*		40231.	. 473731238E+06	19	15	15	15	117.79081	-411196E+04	246-03616	.149356E+05
12*	.,	2.446.	- 27 39 03 61 8E + 0 6	6	6	0	6	386-73820	-7 1271 0E +04	837.53065	. \$00006E+05
SUBTOTAL		23,598.	-264230172E+07	19	63	63	63	224.93596	-121722E+65	608-98612	.541730E+05
TOTAL		135,466.	. 151682520E+08	354	336	336	329	128.83798	-144729E +06	313.50475	-549678E+06

Table C-1. -- Population and biomass estimates for walleye pollock (cont'd).

UPPER	.21 80 95561E+10	.202424642E+10 .107828116E+10 .278383794E+10	-132372164E+17 -579679595E+09 -222691713E+13	.279790336E+10 .930023414E+U) .926849592E+09 .392204213E+10	.1364974)4E+13 .460014254E+09 .150123938E+10	-147581810E+10 -256740663E+09 -158606193E+10	.500085905E+13 .730513919E+09 .133782629E+13	.157423416E+11
E LIMIS - POPULATION LOWER	-811081197E+09	.985770363E+09 0. .884456991E+09	.894566791E+09 .164698018E+09	-105291407E+10 -408061460E+07 0- -170281097E+10		.378991840E+09 0. .396058439E+09	.273791786E+10 0. .367569003E+09 .371946032E+10	-123910210E+11
C GNF I DENCE PERCENT	95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0	90.0	95.0
EFF. DEG. FREEDOM	57_00000	38-00000 5-00000 6-25049	25.00000 5.00000 23.79990	55.00000 12.00000 4.00000 14.82205	10-00000 8-00000 11-97388	54.00000 2.00000 14.24735	38.00000 18.00000 8.00000 57.03580	54.17267
METHOD USED	-							
VARIANCE POPULATION	.116793695E+18	.657350727E+17 .848975681E+17 .150632641E+18	.508606330E+17 .651318611E+16 .573738192E+17	.189118404E+18 .451433585E+17 .333409408E+17 .267602703E+18	.130948389E+18 .108468379E+17 .141795697E+18	.747177768E+17 .222748568E+16 .769452625E+17	.312140921E+18 .313881163E+17 .211192486E+17 .364648285E+18	.117579210E+19
POPULATION	-145601840E+10 -145601840E+10	.15C500839E+10 .325164074E+09 .183417247E+10	.135914421E+10 .372188806E+09 .173133302E+10	-192540872E*10 -467052014E*09 -415965821E*09 -281242655E*10	.55 £731685E+09 .213704212E+09 .772435897E+09	.927404970E+09 .636552140E+08 .991060184E+09	.38693846E+10 .356983722E+09 .702707604E+09 .492908478E+10	.145665313E+11
MEAN WT KG	0.691641	0.645210 0.500208 0.619187	0.207736 0.375622 0.243827	0.089616 0.563665 0.650192 0.252878	0.414595 0.541096 0.449593	0.521896 0.480839 0.519259	0.342493 0.478812 0.461750 0.369361	0.000411
STRATUR	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-1.--Population and biomass estimates for walleye pollock (cont'd).

STEATUR	BIOMASS MT	VARIANCE BIUMASS	EFF. DEG. FREEDOM	CONFIDENCE PERCENT	LIMITS - BIOMASS LUWER	UP. EA
10*	-103470839E+07	-535404846E+11	57.00000	95.0	.571203177E+06	-149521360:+07
SUBTOTAL	-103470839E+07	.535404845E+11	57-00000	95.0	.571203177E+06	-1 49321360E+07
*02	-971046071E+06	-258379447E+11	38.00000	95.0	.645511662E+0b	.1296580432+07
SUBTOTAL	-113569646E+07	-204/80241E+11 -463159683E+11	7-09437	95.0	0. -626721376F+06	. 532564207E+05
30*	-282343462E+06	.143436214E+10	25.00000	95.0	.204325136E+06	.360351788E+36
32*	-135802319E+06	.895258598E+09	5.00000	95.0	-628757567E+05	-216728882E+05
SUBTOTAL	-422145782E+06	-232962074E+10	9-13119	95.0	-312967762E+06	.531323801E+06
0	.1725472805+06	-627341153E+09	55.00000	95.0	-1 22 322225E+06	.222772334E+05
41*	-265596042E+05	-185233383E+11	12.00000		0.	.5651 53533E+06
42*	-27 3058237E+06	.159838779E+11	4-00000		.0	.524020594E+06
SUBTOTAL	.711201558E+06	.351346074E+11	7.87924	95.0	-2675C0572E+06	.115450254E+07
20*	-231647250F+06	-198111377F+11	10.0000	0.59		2043861536575
52*	90+312572911	304622612E+10			•	2 4 26 4 3 1 4 36 4 6 5
SUETOTAL	-347281780E+06	-228574158E+11	13.51517		-207185262F+05	-2457 00 15F+06
*09	.484009227E+06	-192807016E+11	54.00000	95.0	-205424509E+06	-7 625 9394 5F+06
61*	-306078883E+05	.361497147E+09	2.00000		0-	-2721 83052E+05
SUBTOTAL	-514617115E+06	. 196421987E+11	23.26974	95.0	.224645465E+06	-804588766E+06
7.0*	1325200405407	11,12558525411	00000 82	9	70 = 3 2 4 3 2 4 5 3 0	
	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	1143C70C7C41C	0000000		-962 (12212E+05	*1 564 56 56 5E + Uf
*7/	-17 (930639E+06	-865895586E+10	18.00000		.0	-3664 35065E+06
12.	-324482540E+06	.501720159E+10	8-00000	95.0	-161143470E+06	.487321611E+05
SUB TOTAL	-182061358E+07	-451087427E+11	49.04294	95.0	-1 39 338 412E+07	.224784304E+07
TOTAL	-598626466E+07	. 2249290395+12	36.99760	95.0	.5 02 3787 53E+07	.694874179E+07

Table C-1. -- Population and biomass estimates for walleye pollock (cont'd).

ON UPPER	. 159741124E+11 .163826915E+11 .167420416E+11
TOTAL POPULATION LOWER	.131589502E+11 .127503711E+11 .123910210E+11
UPPER	.650556231E+07 .678739621E+07 .694874179E+07
TOTAL BIONASS MT LOWER	.536696702E+07 .518513311E+07 .502378753E+07
	00 PERCENT 00 PERCENT 00 PERCENT
	388

Table C-2. -- Population and biomass estimates for Pacific cod.

STANDARD TRAML MIDTH = 16.54000000 METERS

STRATUM	AFEA	S2. HI.	SAMPLES	TOTAL	HAULS NI TH CATCH	HAULS HITH NUMS.	HAULS WITH L-F	CPUE KG/HA	VARIANCE CPUE KG/HA	CP UE NO/ HA	VARIANCE CPUE NOTHA
104		22,950.	. 256968492E+07	5.8	8 0	58	26	33-01519	.312232E +02	22-93383	.247252E+02
300 101 45		•056477	10132640867-	0	0	80	97	33-01519	• 312232E • UZ	22-93330	24/2222402
20*		16,030.	-179494262E+37	39	39	39	15	13.80268	-239490E+01	4.32776	.454911E+00
21*		1.720.	-192535328E+06	9	2	5	4	5.30984	-652 41 4E +01	3.55164	.692594E+01
SUETOTAL		17.750.	- 1987 4779 5E +07	45	7,	77	19	12.97994	-891904E+01	4-70414	.738085E+01
30*		12,731.	-142546450E+07	26	26	26	26	24.94076	-128485E+02	7-19327	.769328E+03
32*		1,271.	-14235092 BE+06	9	9	9	9	26-20532	-142782E +62	7.27217	-101959E+01
SUBTOTAL		1 4,002.	-156781543E+07	32	32	32	32	25.05557	-271267E +02	7.20043	-173372E+01
*07		21.612.	-241988980E+07	56	26	56	54	34-02409	•1 88546E +03	32-44183	-744066E+02
41*		3,115.	- 348771586E+06	13	13	13	12	12,76565	-259219E+02	16.45381	-554012F+02
424		2,009.	- 524990002E+06	2	2	2	2	24.63588	-124959E+03	16.98253	.44967 SE+ 32
SUBTOTAL		25,736.	-299365139E+07	12	12	7.4	11	30-84132	-339426E+03	29-41736	-174775E+03
50*		4.345.	-486525370E+36	11	11	11	11	37.17429	-150917E+03	22.53772	•118653E+03
52*		2,317.	-259397449E+06	6	6	6	6	38-58019	- 429763E+03	31.65331	.199700E+03
SUBTOTAL		6,662.	-745922819E+06	20	20	20	20	37.65320	-580680E+03	25.72075	-318353E+03
€0.		22,793.	. 255218538E+07	55	53	53	25	18-22963	.798757E+01	9.66522	.205229E+01
61*		975.	-109212363E+06	M.	~	m	m	3-13603		1-71582	.203675E+ 00
SUBINIAL		2 50 769.	- 2661 5977 5E+07	28	26	26	28	17-61026	.927243E +01	9-33901	.225297E+01
				;	,		;				
7.0		156 921-	. 18946668 /E+U (39	65 2	39	3.4	24.59920	-168781E +32	7-77503	-144228E+01
		11111	00-70-710-6-10-6-10-6-10-6-10-6-10-6-10-		0	07	0 1	76476-6	-0 50 50 50 F +01	1-32201	. 323/ BUE+ UI
*7/		2000	- 27 39 US 61 BE + U 6	,	6	,	6 1	58-36342	-111405E +03	27-17325	. 300896E+02
SUETUIAL		2 3r 3yd.	. c6 42 30 17 2E +07	19	9	9	56	25-37778	-134546E +03	9-74050	.347395E+02
TOTAL	-	135,466.	.151682520E+08	354	350	350	255	25-33355	-113119E+04	15.65204	.564065E+03

Table C-2. -- Population and biomass estimates for Pacific cod (cont'd).

LIMITS - PCPULATION LOWER UPPER	-102118594E+09 .258927260E+09	-190262744E+08 -340624796E+08 -608518328E+07 -201163462E+08 -371517530E+09	-235212767E+06 -392974338E+08 -203896392E+07 -430310135E+07 -266711634E+08 -424896124E+08	.112262316E+09 .368696713E+09 .251159603E+06 .349050260E+03 .245337043E+08 .140672286E+09 .398852419E+09	0. .510448424E+08 .171208109E+08 .100413714E+09	.530914368E+08 .930315423E+08 .121837175E+07 .536634353E+08 .986075639E+03	.310085600E+08 .592399131E+03 -541276662E+07 .164183599E+03 -121859112E+08 .334120364E+05 -606316244E+08 .970459779E+03	.569719354E+09 .884778206E+09
CONFIDENCE LIMITS PERCENT LOS	95.0	95.0	95.0	95.0	95.0	95.0	95.0 95.0 95.0	95.0
EFF. DEG. FREEDOM	57.00000	38.00000 5.00000 16.01376	25.00000 5.00000 27.49570	55.00000 12.00000 4.00000 65.22867	10.00000 8.00000 17.59427	54.00000 2.00000 54.33929	38.00000 18.00000 8.00000 21.18061	119.56657
METHOD	-							
VARIANCE POPULATION	.153198033E+16 .153198033E+16	.137524620E+14 .240908875E+13 .161615507E+14	.146624995E+14 .193883757E+12 .148563333E+14	.408842012E+16 .632344378E+14 .213588463E+14 .417301345E+16	.263537010E+15 .126034781E+15 .389621791E+15	.125434337E+15 .224590014E+11 .125456796E+15	.485311414E+14 .685985318E+13 .211818995E+14 .766228934E+14	.632771320E+16
POPULATION	.18C522927E+09	-265443770E+08 -205467262E+07 -236390496E+08	.31409353E+08 .317103264E+07 .345803879E+08	.24C479514E+09 .175785928E+08 .117042454E+08 .269762352E+09	.33f184130E+08 .251513496E+08 .587697626E+08	.755614895E+08 .574010079E+06 .761354996E+08	.451242391E+08 .109155633E+03 .227989968E+08	.727248780E+09
MEAN WT KG	1.439586	2.859025 1.495037 2.759253	3.467237 3.603599 3.479733	1.048770 0.775648 1.450656 1.048423	1. 64 7963 1. 21 88 36 1. 46 43 12	1.886106 1.827717 1.885666	3.163833 1.252333 2.147827 2.605389	0.001619
STRATUM	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTGTAL	40* 41* 42* SUBTOTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-2. -- Population and biomass estimates for Pacific cod (cont'd).

STRATUR	BIOMASS HT	VARIAHCE Bidmass	EFF. DEG. FREEDOM	CONFIDEN	CONFIDENCE LIMITS - BIOYASS PERCENT LOWER	UPPER
10* SUBTOTAL	.259878363E+06 .259878363£+06	.193459547E+10	57.00000	95.0	.171771740E+06 .171771740E+06	.347984945E+06 .347984926E+06
20* 21* SUBTOTAL	.75 E910482E+05 .313161404E+04 .79 C226623E+05	.724005801E+08 .226932614E+07 .746699062E+08	38.00000 5.00000 41.85692	95.0 95.0 95.0	.586589191E+35 0. .615679207E+05	.931231774E+55 .700464113E+04 .954774033E+05
36* 32* Subtotal	*10 8903667E +06 *114268431E+05 *12C330510E+06	_244972224E+09 _271486529E+07 _247687089E+09	25.00000 5.00000 27.14580	95.0 95.0 95.0	.766613948E+05 .719064544E+04 .880359749E+05	-14114594)E+06 -156630408E+05 -152625046E+06
40* 41* 42* SUBTOTAL	.252207810E+06 .136383114E+05 .169788302E+05 .282824952E+06	.103500306E+11 .295871038E+08 .593533987E+08	55.00000 12.00000 4.00000 60.27877	95.0 95.0 95.0	.481049719E+05 .1785E5246E+04 0.	.456310649E+06 .254907707E+05 .33365456E+05 .487265370E+06
50* 52* SUBTOTAL	.554013977E+05 .306553676E+05 .86C572654E+05	.335198311E+09 .271339530E+09 .606537841E+09	10-00000 E-00000 17-79839	95.0 95.0 95.0	-146107338E+05 0- -340922086E+05	.961930617E+05 .58640691EE+05 .138022322£+06
60* 61* SUBTOTAL	-142516991E+06 -104912807E+04 -143566119E+06	.488193505E+09 .143798501E+06 .488337303E+09	54.00000 2.00000 54.54184	95.0 95.0 95.0	.981675892E+05 0. .992301891E+05	-136846393E+05 -268085893E+04 -187902049E+05
70* 71* 72* SUBTOTAL	.142767813E+06 .13669595E+05 .489682977E+05 .205405706E+06	.5685161666E+09 .131883624E+08 .784247106E+08 .660129239E+09	38.00000 18.00000 8.00000 38.07319	95.0 95.0 95.0	.944798008E+05 .600696498E+04 .285468859E+05	.1)1055825E+06 .21332262E+05 .693897095E+05 .257439130E+06
TOTAL	.117708558E+07	-144609280E+11	126.45268	95.0	-938983895E+06	-141513726E+07

Table C-2. -- Population and biomass estimates for Pacific cod (cont'd).

ION UPPER	.859154046E+19 .859154816E+09 .834778206E+09
TOTAL POPULATION LOWER	.624703514E+09 .595342744E+09 .569719354E+09
NT UPPER	.133209231E+07 .137646576E+07 .141518726E+07
TOTAL BIOMASS NT LOWER	.102207884E+07 .977705399E+06 .938983895E+06
	80.000 PERCENT 90.000 PERCENT 95.000 PERCENT

Table C-3. -- Population and biomass estimates for sablefish.

STANDARD TRANL NIDTH = 16.54000000 METERS

STRATUR	AREA	SQ. MI.	SAMPLES	TOTAL	HAULS WITH CATCH	HAULS WITH NUNS.	HAULS WITH L-F	C P UE KG/HA	VARIANCE CPUE KG/HA	CPUE ND/HA	VARIANCE CPUE NO/HA
10* SUBTOTAL		22,950.	.256968492E+07	53 8	00	00	00	000000-0	0	0-00000	26
20* 21* SUBTOTAL		16.030.	.179494262E+07 .19253328E+06 .198747795E+07	39 6 45	21 0 21	21 0 21	NON	1-13073	.79835 &E -01 0. .79835 &E -01	1.01751 0.00000 0.91894	.105405E+00
30* 32* SUB TGTAL		12,731. 1,271. 14,002.	.142546450E+07 .142350928E+06 .156781543E+07	26 6 32	000	900	000	000000-0		00000 000000000000000000000000000000000	0.00
40* 41* 42* SUETOTAL		21,612. 3,115. 2,009. 26,736.	.241983930E+07 .348771586E+06 .224990002E+06	56 13 5 74	0000	0000	0000	000000000000000000000000000000000000000		000000	0000
50* 52* SUBTOTAL		4,345. 2,317. 6,652.	.486525370E+06 .259397449E+06 .745922819E+06	111 9 20	000	900	000	00000-0	•••	0-00000	000
60* 61* SUBTOTAL		22,793. 975. 23,769.	.255218538E+07 .109212363E+06 .266139775E+07	55	000	000	000	000000-0		000000-0	200
70* 71* 72* SUBTGTAL		16,921. 4,231. 2,446. 23,598.	.189466687E+07 .473731238E+06 .273903618E+06 .264230172E+07	39 19 9 67	* = 0 N	4-10N	MOOM	2-07031 0-00974 0-00000 1-48626	.362374E+01 .949049E-04 0. .362383E+01	0.62098 0.01193 0.00000	.2951572+00 .142369E-03 0. .295299E+00
TOTAL	-	135,466.	.151682520E+08	354	26	26	80	0.39271	.373367E+01	0-19835	-400703E+00

Table C-3. -- Population and biomass estimates for sablefish (cont'd).

IION UP,'ER		.920971645E+07 0. .920971645E+07				000	.9989653372+07 .538488359E+05 0.	-164526521E+03
CONFIDENCE LIMITS - POPULATION Percent Lower	••	.197944505E+07 0. 197944505E+07		0000		000		-196521243E+07
CONFIDENC	95.0	0 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0
EFF. DEG. FREEDOM	00000-0	38-00000 0-00000 38-00000	000000-0	000000000000000000000000000000000000000	0.00000	000000-0	38-00000 18-00000 0-00000 38-00470	60.09523
METHOD USED	-							
VARIANCE POPULATION	•••	.318649595E+13 0. .318649595E+13	• • •			•••	-994194142E+13 -299800160E+09 0-	-131287372E+14
POPULATION	•••	.555458076E+07 0. .555458076E+07				•••	.360403679E+07 .173147362E+05 0. .362135152E+07	-921593228E+07
MEAN WING	000000 -0	1.111258 0.000000 1.111268	0.0000000000000000000000000000000000000	000000 -0	0.0000000000000000000000000000000000000	000000 00 00000	3.333918 0.815464 0.000000 3.321631	0.001980
STRATUM	10* SUBTOTAL	20* 21* SUBTGTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SURTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUETOTAL	TOTAL

Table C-3.--Population and biomass estimates for sablefish (cont'd).

STRATUM	BIUMASS MT	VARIANCE BIOHASS	EFF. DEC. FREEDOM	CONFIDEN PERCENT	CONFIDENCE LIMITS - BIJ4ASS Percent Lower	UPPER
10* Sugtatal	• • 0	•••	0.00000	95.0	•••	•••
20* 21* SUBTGTAL	.621707845E+04 0. .621707845E+04	.241352405E+07 0. .241352405E+07	38-00000 0-00000 38-00000	95.0 95.0 95.0	.307062479E+04 .307062479E+04	.936333212E+04 0. .936333212E+04
30* 32* SUGTOTAL			000000	95.0 95.0 95.0	•••	
40* 41* 42* SUBTOTAL			000000	95.0 95.0 95.0	0000	•••• ••••
50* 52* SUBTOTAL		200	000000-0	95.0 95.0 95.0	000	•••
60* 61* SUBTOTAL	• • • •	• • • •	000000-0	95.0 95.0 95.0		•••
70* 71* 72* SUBTOTAL	.120155624E+05 .141368523E+02 0.	.122060514E+09 .199850594E+03 0.	38.00000 18.00000 0.00000 38.00026	95.0 95.0 95.0	0000	.343901746E+05 .439656109E+02 0.
TOTAL	-182467777E+05	.124474238E+09	39.50243	95.0	•0	-408181045E+05

Table C-3. -- Population and biomass estimates for sablefish (cont'd).

UPPER	.139118067E+08 .152705667E+08 .164626521E+08
TOTAL POPULATIOS LOWER	.452005782E+07 .316129784E+07 .196921243E+07
UPPER	.327919C09E+05 .370493367E+05 .408181045E+05
TOTAL BIOHASS MT LOWER	.370165454E+04 0. 0.
	30.000 PERCENT 90.000 PERCENT 95.000 PERCENT

Table C-4. -- Population and biomass estimates for Pacific herring.

STANDARD TRAML WIDTH = 16.54000000 METERS

VARIANCE CPUE NO/HA	.428552E+02	.651135E+ 00	.651135E+ 00	-719742E-04	-237 50 CE+ 00	-21444CE+02	.203214E+ 00	.6 47 4 3 4E+ 00	-22331 3E+02	-456015E+00	-150579E+02	-165139E+02	-992414E-01	0.	-992414E-01	.720542E+01	.255431E+04	-271651E+ 00	-25717 SE+ U4	.265445E+04
CPUE NO/HA	16-00721	1.01 559	0.00000	0.00848	00460-0	15.31452	C. 58439	0- 30463	12.50750	1.28970	5.82073	2-86537	0.94897		0.91003	5.45024	56.71785	1-14233	14-19532	8.08259
VARTANCE CPUE KG/HA	.205944E+01	-255086E-01	0. .255086E-01	.947732E-05	-133140E-01	.622683E+CO	.7 35 97 8E -02	-259268E-01	• 655 96 9E +00	-130665E-01	-308658E+00	. 321725E +00	.257653E-02	.0	.257653E-02	.254627E +00	.952902E+02	-108819E-01	.955557E+02	-986342E+02
CPUE KG/HA	3.42935	0.21468	0.00000	0-00308	0.02295	2-69143	0-10055	0-16102	2-19941	0.19918	0.88378	0-43725	0.15005	00000-0	0.14389	1-05814	10.91257	0.19921	2-73587	1.56617
HAULS WITH L-F	мм	0	00	0 0	0 0	10	0	0	10	1	0	1	1	0	1	9	m	0	6	5.4
HAULS WITH NUMS.	21 21	٣	0 M	-	\$ N	94	2	-1	53	9	7	10	19	0	19	15	Ø	9	29	140
HAULS WITH CATCH	21 21	٣	0 M	⊶ .	\$ IV	9 4	9	-	23	9	4	10	19	0	19	15	œ	9	53	140
TOTAL HAULS	5.8	39	45	56	32	26	13	ın	1.4	11	6	20	55	3	28	39	19	9	29	354
SAMPLES	.255968492E+07	. 17.94.94262E+07	.192535328E+06 .198747795E+07	-142546450E+07	- 14633096 8E + 0 B	. 241988930E+07	. 1487 71586E+06	- 2249 90 00 2E+0 6	. 299365139E+07	-48652537 0E+06	- 259397449E+06	.745922819E+06	- 25521853 8E+07	. 109212363E+06	-266139775E+07	.189466687E+07	. 473731238E+06	-273903618E+06	- 26 42 30 17 2E + 07	.1516825206+08
AFEA SO. MI.	22,950.	16,030.	17.750.	12,731.	14,002.	21,612.	3,115.	2, 309.	26,736.	4, 345.	2,317.	6,652.	. 22, 793.	975.	23.769.	16,921.	4,231.	2.446.	2 3, 598.	135,466.
STRATUR ARE	10. SUBTOTAL	20*	21* SUBTUTAL	30*	SUBTOTAL	*0 %	41*	*2*	SUBTOTAL	50*	52*	SUBTOTAL	€0*	€1.	SUBTOTAL	*02	71*	12*	SUBTOTAL	ICTAL

Table C-4. -- Population and biomass estimates for Pacific herring (cont'd).

UP?ER	.229222231E+09	.145592696E+03 0. .145692636E+03	.11 335545E+05 .956209032E+06 .957936869E+05	.1623855652409 .169091942E+37 .209395433E+37 .163544331E+09	.416434149E+07 .119675923E+08 .14100772?E+08	.12362682E+03 0. .123525822E+03	.632151406E+03 .236695736E+09 .196590031E+07 .272720241E+09	.57 5306200E+09
E LIMITS - POPULATION LCMER	_227765963E+08			.446486414E+03 0. .458475845E+08	••••	.247514447E+07 0. .247514447E+07	.4 86 106299 E+05	-175785149E+09
CONFIDENCE PERCENT	95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0	95.0	95.0	95.0	95.0
EFF. DEG. FREEDON	57.00000	38-00000 38-00000	5-07034	55.00000 12.00000 4.00000 55.41198	10.00000 8.00000 9.31148	54-00000 0-00000 54-00000	38.00000 18.00000 8.00000	28-45986
METHOD USED	-							
VARIANCE PGPULATION	.265531641E+16	.196845452E+14 0. .196845452E+14	.137227986E+10 .451445700E+11 .465168499E+11	.117828139E+16 .239594597E+12 .307520879E+12 .117882451E+16	.101284477E+13 .101384763E+14 .111513211E+14	.606554897E+13 0. .606554897E+13	.242704600E+15 .53999300BE+16 .191232004E+12	.951391877E+16
POP ULAT ION	.126000440E+09	.558401041E+G7 0. .558401041E+07	.37 C442 959E+05 .36 E385 328E+06 .40 2429 624E+06	.113517103E+09 .624333762E+06 .554545651E+06 .114695983E+09	.192207307E+07 .462505367E+07 .654714174E+07	.741891335E+07 0. .741891335E+07	.316318756E+08 .323053965E+03 .958485129E+06	.375545675E+09
MEAN HT KG	0.214233	0.211380 0.000000 0.211380	0.362873 0.264132 0.273198	0.175749 0.172057 0.203114 0.175847	0.154440 0.151834 0.152599	0.153116 0.000000 0.158116	0-194145 0-192401 0-174381 0-192731	0.000194
STRATUM	10* SUBTOTAL	20* 21* Subtotal	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SUBTGTAL	60* 61* SUSTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-4.--Population and biomass estimates for Pacific herring (cont'd).

UPZER	.496338444E+U5	.295878326E+04 0. .295873326E+04	.411336307E+02 .23646240E+03 .24411324E+03	.316860533E+05 .307134490E+03 .464085459E+03 .319013600E+05	.676403426E+03 .172022541E+04 .206942263E+04	.1 96963275E+04 0. .1 96953275E+04	.120783332E+05 .455973920E+05 .37413579?E+03 .525356486E+05	-11 2224 95 3E +06
CONFIDENCE LIMITS - BIOMASS PERCENT LOWER	.435433414E+04 .435433414E+04			.821507065E+04 0. .843605544E+04	000	.376471195E+03 0. .376471196E+03	.204C03758E+03	.333144454E+05
C ONFIDENC PERCENT	95.0	95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0
EFF. DEG. FREEDOM	57.00000	38.00000 0.0000 38.00000	25.00000 5.0000 5.16580	55.00000 12.00000 4.00000 55.54850	10.00000 8.00000 9.95013	00000°75 0°00000 0°76	38,00000 18,00000 8,00000 18,75655	29.59532
VARIANCE BIOHASS	.127603132E+09	.771152547E+06 0. .771152547E+06	.180697122E+03 .253152251E+04 .271221963E+04	.342145627E+08 .840039813E+04 .123148142E+05 .342352779E+08	.290217653E+05 .194377692E+06 .223899457E+06	.157475660E+06 0. .157475660E+06	.857674550E+07 .200661962E+09 .766042277E+04 .209246368E+09	.372240018E+09
BIOHASS MT	.26940893E+05	.11 E0 3479 EE +04 0. .11 E0 34 79 BE +04	.134423630E+02 .967739164E+02 .11C216279E+03	.195505645E+05 .107421108E+03 .11(972133E+03	.2968463442+03 .702242782E+03 .999089126E+03	.117305197E+04 0. .117305197E+04	.614117099E+04 .15835341E+05 .167141908E+03 .221439470E+05	.727696993E+05
STRATUM	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTGTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* 509 TOT AL	TOTAL

Table C-4. -- Population and biomass estimates for Pacific herring (cont'd).

UPPER	.503614801E+09 .541460057E+09 .575306200E+09
TOTAL POPULATION	.247476549E+09 .209631293E+09 .175785149E+09
UPPER	.980635076E+05 .105549394E+06 .112224953E+06
TOTAL BIONASS !	.474758911E+05 .399900043E+05 .333144454E+05
	80.000 PERCENT 90.000 PERCENT 95.000 PERCENT

Table C-5. -- Population and biomass estimates for yellowfin sole.

STANDARD TRAML MIDTH = 16.54000000 NETERS

VARIANCE CPUE NO/HA	.145492E+05	.300554E+34 .122951E+04 .423635E+04	.268186E-01	.224137E+04 .1555612+05 .615879E+03 .134134E+05	.305354E+01 .177653E+03	.813958E+04 .129199E+05 .210595E+05	.567438E+01 .50255E+03 .664531E+02 .574187E+03	.590131E+05
CPUE ND/HA	905-63548	113-92171 79-97560 110-63321	0.000000 0.25488 0.02314	483.75834 425.31731 82.25761 446.77467	6.95573 53.29926 23.07193	881.04069 242.45643 854.83593	5.02865 79.70635 10.29489 18.96327	410-52705
YARIANCE CPUE KG/HA	.554574E+03	-113437E+03 -122980E+03 -236417E+03	- -180741E-02 -180741E-02	.819660E+02 .114438E+04 .109023E+03	.349483E+00 .244757E+02 .248252E+02	.249495E+03 .671329E+03 .920324E+03	.602920E+00 .332093E+02 .994885E+01 .437611E+02	-311577E+04
CPUE KG/HA	184.52918	27.77.812 26.38692 27.64334	0.0000000	108.72388 112.63652 31.61080 103.38423	2.51589 19.46501 3.41001	168.29686 63.95231 164.01501	1.74279 22.86182 3.99748 5.76289	85.48367
HAULS WITH L-F	N N	17 5 22	000	13 13 72	8 9 17	54	30	256
HAULS WITH NUMS.	58	20 5 25	0 2 2 0	56 13 74	10	54	11 18 18 35	270
HAULS WITH CATCH	58	20 25 25	0 0 0	13	10	53	111 18 6 55	270
TOTAL	5.8	39 6 5	26 6 32	56 13 74	11 9	55	39 19 9	354
SAMPLES	.256968492E+07	.179494262E+07 .192535328E+06 .198747795E+07	.142546450E+07 .142350928E+06 .156781543E+07	-241988930E+07 -348771586E+06 -224990002E+06 -299365139E+07	.486525370E+06 .259397449E+06 .745922819E+06	.255218538E+07 .109212363E+06 .266139775E+07	-189466687E+07 -473731238E+06 -273903618E+06 -264230172E+07	.151682520E+08
AREA SO. MI.	22,950.	16,030.	12,731.	219612. 39115. 29009. 269736.	4, 345. 2, 317. 6, 662.	22,793. 975. 23,769.	16,921. 4,231. 2,446. 23,598.	135,466.
STRATUM AF	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SLB TGTAL	40* 41* 42* SUBTOTAL	50* 52* SUBTOTAL	60* 61* SUB TOTAL	70* 71* 72* SUBTOTAL	ICTAL

Table C-5. -- Population and biomass estimates for yellowfin sole (cont'd).

UPPER	.903159695E*13	.123693374E+10 .100336280E+09 .128426696E+10	0. -294735291E+06 -294735291E+06	.428963497E+10 .74474+392E+09 .104170815E+09 .485130668E+10	.161734222E+08 .657740265E+03 .778690979E+03	.330296064E+17 .244736485E+09 .838533543E+10	-571837222E+08 -183973812E+09 -244095088E+03 -227766848E+03	.21 6057587E+11
E LIHIIS - POPULATION LOWER	.522578506E+10	.158137481E+06 0. .628158695E+08	•••	-288220410E+10 -164039531E+39 -921161973E+07 -334269675E+10	.455936615E+07 .179279122E+08 .275656292E+08	.547277077E+10 0. .555256883E+10	-118651805E+07 -473500606E+08 0-	.165432973E+11
CONFIDENCE	95.0	95.0 95.0 95.0	95.0	95.0 95.0 95.0	95.0 95.0	95.0	90.0	95.0
EFF. DEG. FREEDOM	57.00000	38-00000 5-00000 40-07506	000000-5	55.00000 12.00000 4.00000 53.75709	10.00000 8.00000	54.00000 2.00000 55.64243	38.00000 18.00000 8.00000 24.55412	155.29758
NETHOD	-							
VARIANCE POPULATION	.901472604E+18	.908909948E+17 .427667759E+15 .913186626E+17	0. .509928709E+10 .509928709E+10	.123156432E+18 .177556457E+17 .292533181E+15 .141204611E+18	.679324801E+13 .112171220E+15 .118964468E+15	.497484333E+18 .144596230E+16 .493930295E+18	.191133520E+15 .105723639E+16 .467803466E+14 .129515026E+16	.163434029E+19
POPULATION	.712869101E+10 .712869101E+10	.626373746E+09 .471676671E+08 .673541413E+09	0. -111141999E+06 -111141999E+06	.35 8591954E+10 .454391962E+09 .56 6912172E+08 .409700271E+10	.103663942E+08 .423509694E+08 .527173635E+08	.68 E786 571E +10 .811114 202E +08 .69 E897713E +10	.291851201E+08 .115664436E+09 .863765431E+07 .153487211E+09	.19 C7 45 28 0E +1 1
MEAN HT KG	0.203757	0.243835 0.329937 0.249865	0.00000 0.259201 0.259201	0.224748 0.264829 0.384290 0.231401	0.361698 0.365202 0.364513	0-191021 0-263768 0-191867	0.345571 0.266827 0.383297 0.303897	0. 00 02 08
STRATUM	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUETOTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-5. -- Population and biomass estimates for yellowfin sole (cont'd).

UPPER	.1 82403323E+07	.271323724E+06 .323777064E+05 .237257246E+66	0. .764694933E+02 .764694983E+02	.940502316E+06 .199083078E+06 .417623667E+05 .110326610E+07	.571246341E+04 .245316935E+05 .285060853E+05	*156360451E*07 *131529505E*06 *158573903E+07	.192412844E+05 .507453473E+05 .945664902E+04	.445334781E+07
CONFIDENCE LIMITS - BIOMASS Percent Luher	.108100193E+07	.341351322E+05 0. .493313429E+05	•	.671356626E+06 .415846058E+05 .180940241E+04 .792837294E+06	.178 E55 5 0 3 E + 0 4 .6 40 1 6 4 7 8 5 E + 0 4 .992 627 4 4 9 E + 0 4	.106784364E+07 0. .108849776E+07	.9 E8159001E+03 -156059204E+05 0. -264780672E+05	.349039482E+07
CONFIDENC PERCENT	95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0	95.0 95.0 95.0	9999	95.0
EFF. DEG. FREEDOM	57.00000	38.00000 5.00000 42.29855	0.00000	55.00000 12.00000 4.00000 37.10999	10.00000 8.00000 8.65938	54.00000 2.0000 52.50660	38.00C00 18.0000 29.57977	155-12686
VARIANCE Biomass	.343614950E*11 .343614950E*11	.342933628E*10 .42766371E*08 .347211297E*10	0. -343660143E+03 -343660143E+03	.450378675E*10 .13061837E*10 .517844181E*08 .586175954E*10	.776229165E+06 .154532274E+08 .162294566E+08	.152439292E+11 .751332401E+08 .153240625E+11	.203085374E+08 .699322099E+08 .700360011E+07 .972443474E+08	.591329041E+11
BIOHASS HT	-145251761E+07 -145251761E+07	.1527319282+06 .155623666E+05 .168294295E+06	0. .286081131E+02. .286081131E+02	.805929471E+06 .12C335342E+06 .217858846E+05	.374950922E+04 .154666707E+05 .1921617992+05	.131572378E+07 .213946187E+05 .133711839E+07	.101147217E+05 .331756339E+05 .335397780E+04 .466443334E+05	_397187131E+07
STRATUM	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* 5UB TOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTGTAL	TOTAL

Table C-5. -- Population and biomass estimates for yellowfin sole (cont'd).

ON UPPER	.207223930E+11 .211941192E+11 .216057567E+11
TOTAL POPULATION LOWER	-174266630E+11 -169549367E+11 -165432973E+11
UPPER	-428531895E+07 -437504807E+07 -445334781E+07
TOTAL BIOMASS MT LOWER	.365842368E+07 .356859456E+07 .349039482E+07
	80.000 PERCENT 90.000 PERCENT 95.000 PERCENT

Table C-6.--Population and biomass estimates for rock sole.

STANDARD TRAML NIDTH = 16.54000000 METERS

STEATUR	AREA	SQ. MI.	SAMPLES	TOTAL	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	C PUE K G/H A	VARIANCE CPUE KG/HA	CPUE NO/HA	VARIANCE CPUE ND/HA
10*		22,950.	.256968492E+07	5.8	57	25	4.1	73-74230	-139038E+03	385.47841	.352996E+04
SUBTOTAL		22,950.	. 2569 6849 2E+07	58	25	25	4.1	73-74230	.139 G3 8E +03	385-47841	*352996E+ 34
20*		16,030.	- 179494262E+07	39	28	28		7-83340	-543633E+01	30-89601	-11378CE+03
*12		17.750	- 1925 35 32 8E + 06 - 1987 47 79 5F + 07	9 17	33	3 2	* :	7.96247	-20399 0E +02	38-84031	.581511E+03
				2)	3	:		J		
30*		12,731.	.142546450E+07	26	8	60	0	0.57046	-235176E+60	0.73653	.30837 3E+ 00
32*		1,271.	-142350928E+06	0	2	2	0	0.18969	- 483480E -02	0.52193	-230716E-01
SUETOTAL		14,002.	.156781543E+07	32	13	13	0	0.53589	.239981E+00	0.71704	-331445E+ 00
0		21,612.	-241988980E+07	26	55	25	30	6.92251	.251584E+01	64-16773	. 995 97 5E+ 02
4.1*		3, 115.	- 148771586E+06	13	13	13	6	24.74814	- 999780E+02	119.58033	-164363E+04
45*		2,009.	-224990002E+06	5	4	4	2	-5419	-70445 3E +01	12,30003	.405207E+02
SUBTOTAL		26,736.	. 299365139E+07	14	72	12	4.1	8-74519	-109538E+03	66.72536	.178385E+04
*05		572-7	90430225587		4	ď	6	0 97682	201118 85 400	2010	10738 56 52 1
120		2. 217	2507075075		0 0	0	J 4	700000	20. 10.44.64	15 73770	30.30.40.00
14 101 2012			DO+36 ** ** ***				p 0	4004004	00-3670700	0710100	10.3166.00.
SUBTUTAL		- 700 40	- 14392281 98+05		15	15	ю	2-04236	-842955E+00	6-30233	-100332E+02
¥09		22, 793.	- 25521853 8E+07	55	53	53	56	19.35115	-146455E+02	107-70542	-318844F+03
61*		975	- 109212363F+06			~		11-42226	16525 RF +02	50654-49	101255F+04
SUBTOTAL		23,769.	.266139775E+07	58	5.6	26	53	19-02578	-311713E+02	105.93091	-1 331 39E+04
*02		16,921.	-189466687E+07		31	31	9	1.60911	-1 43 85 2E +00	3-54809	.585052E+ 00
7.1*		40 2310	-473731238E+06		16	16	13	28-65368	-108266E+03	102-18065	.795641E+03
72*		20446-	-2739036185+06	6	9	9	0	0-45730	-105236E+00	1-74058	.757485E+00
SUBTOTAL		23,598.	.264230172E+07		53	53	19	6.33936	.108515E +03	21-04430	.796984E+03
TOTAL	1	135,466-	- 151682520E+08	354	562	562	149	19.85284	-415211E+03	105.28394	.824786E+04

Table C-6. -- Population and biomass estimates for rock sole (cont'd).

ULATION UPPER	10 .397159396E+10 10 .397159396±+13	80		08 .316574399E+09		0+31/99/6220-		09 .623993880E+09				. 59 30 32 680E+07	07 -179422490E+09	-217972775E+0	•11 22 25 65 3E +1		.114506855E+10			08 .234277107E+09	-31 87 45 810E +07		10 .589317547E+10
NCE LIHIIS - POPULATION LOWER	.209697672E+10	-508713645E+0	9.	-689893876E+08	•	5720172235405	0.	•327 308 8 39 E+ 09	-333754186E+08	.0	** 36 785 087 E+ 09	0	-714640503E+07	-929051504E+07	-561814007E+09	0.	-> 82116867E+09		• 4 12 YZD 194 E+U G	-622792138E+0	•0	.838140466E+08	-389354783E+10
CONFIDENCE PERCENT	95.0	95-0	95.0	95.0	9	0.00	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0		72.0	95.0	95.0	95.0	95.0
EFF. DEG. FREEDON	57.00000	38-00000	2.00000	31.58978	00000	00000	25-16061	55-00000	12.00000	4-00000	31-60991	10-00000	8.00000	14-48496	24.00000	2.00000	30.39986		2000000	18.00000	8-00000	18-23091	83-82075
METHOD USED	-	1	-		-	٠.	•	-	-	-		-	1		-	1			7	-	-		
VARIANCE POPULATION	.218717284E+18	.344575510E+16	.236983976E+15	-368273903E+16	5879510015611	4 78 68 23 80 E+ 10	.588391686E+13	-547260692E+16	-187603328E+16	-192942054E+14	.736793441E+16	.301972449E+13	-547942012E+13	.849914461E+13	-194874928E+17	113321513E+15	• 19600c1 43E+ 17	10.70505	• 13400001Ct	-167545037E+16	.533239657E+12	.16957 0027E+16	-251073856E+18
POPULATION	.303428534E+10	.165874999E+09	-225063945E+08	-192781893E+09	1216052715+07	2275871546 +06	-344363987E+07	-475651359E+09	-127754381E+09	-847707503E+07	-611883316E+09	.299956922E +07	-125443271E+08	-155433963E+08	-842035269E+09	2133/444E +08	. 00:39274E+09	2050272787	0707564865400	-148278161E+09	-1460467995+07	-17 C3 30 87 6E +09	-489186167E+10
HEAN WT KG	0.191301	0.253541	0.220455	0.247009	7257120	0. 36 34 32	0-747355	0-107831	0.206553	0.287950	0-131062	0- 485330	0.255960	0.300223	0.179656	0 17 0 50	9096	21 22 27 0	71666	0-280471	0.262717	0.301239	0-000189
STRATUM	10* SUBTOTAL	20*	*12	SUBIUIAL	404	32*	SUBTOTAL	*05	41*	45*	SUBTOTAL	20*	52*	SUBTCTAL	*09	CHO TOTAL	20000	70.		7.1*	12*	SUBTOTAL	TOTAL

Table C-6. -- Population and biomass estimates for rock sole (cont'd).

UPZER	.766432705E+06 .766432705E+05	.590597458E+05 .118994127E+05 .746372961E+05	.685302323E+04 .166618584E+03 .593617996E+04	.748906061E+05 .437169211E+05 .826163116E+04 .113455305E+05	.353237227E+04 .451525599E+04 .696260691E+04	.211310455E+05 .967316856E+04 .215162206E+06	.138014657E+05 .733111577E+05 .101133533E+04 .333741824E+05	.112308990E+07
E LIMITS - BIDYASS LOWER	.394439303E+06 .394439303E+06	.170 807596E+05 0. .216030846E+05		.277372878E+35 .316292352E+04 0.	0. .190643893E+04. .237065127E+04	.912592537E+05 0. .950499253E+05	.487632430E+04 .986421152E+04 0.	.721775516E+06
CONFIDENCE Percent	95.0	95.0 95.0 95.0	95.0	95.0 95.0 95.0	95.0	95.0 95.0 95.0	95.0 95.0 95.0	0.56
EFF. DEG. FREEDCM	57.00000	38.00000 5.00000 38.98618	25.00000 5.00000 25.04407	55.00000 12.00000 4.0000	10.00000 8.0000 16.59249	54.00000 2.00000 55.99900	38_00000 18_00000 8_00000	93.45133
VART ANCE BIOMASS	.861479817E+10	.164346166E+09 .709550978E+07 .171441676E+09	.448393532E+07 .913585330E+03 .448484891E+07	.138238012E+09 .114114128E+09 .334604076E+07 .255693181E+09	.863703174E+06 .304204033E+06 .117290721E+07	.895120195E+09 .184952571E+07 .896969720E+09	.484545071E+07 .227986615E+09 .740817206E+05 .232906148E+09	.101774716E+11
BIOMASS NT	.580461004E+06 .580461004E+06	.43(702527E+05 .501993763E+04 .481201904E+05	.249091045E+04 .827123903E+02 .257362284E+04	.512139470E+05 .264399248E+05 .244105751E+04 .801949293E+05	.145578164E+04 .321084745E+04 .46E652909E+04	.151284859E+06 .382120609E+04 .155106065E+06	.933889501E+04 .415876846E+05 .383689236E+03 .513102689E+05	.922432710E+06
STRATUR	10* SUETOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SUGTOTAL	60* 61* Subtotal	70* 71* 72* SUETOTAL	TCTAL

Table C-6.--Population and biomass estimates for rock sole (cont'd).

UPPER	.553991381E+10 .57266546E+10 .589017547E+10
TOTAL POPULATION LOWER	.424380954E+10 .40570578EE+10 .339354788E+10
UPPER	.105278927E+07 .109028765E+07 .112308590E+07
TOTAL BIOMASS MT LOWER	.792076153E+06 .75457772E+06 .721775516E+06
	80.000 PERCENT 90.000 PERCENT 95.000 PERCENT

Table C-7.--Population and biomass estimates for flathead sole and Bering flounder.

STANDARD TRAML MIDTH = 16.54000000 NETERS

YARIANCE CPUE NO/HA	-193086E+02	.522772E+02 .220262E+02 .104303E+03	.279408E+03 .480492E+02 .327457E+03	-469735E+01 -151952E+02 -403094E+02 -602020E+02	*183217E+02 *529257E+02 *817473E+02	.380508E+01 .743807E+01 .162431E+02	-300122E+02 -954275E+02 -530205E+02 -176460E+03	-7 87722E+03
CPUE NO/ HA	30.92197	80.62426 11.95533 73.97202	41.55452 16.11813 39.24501	13-65794 21-22684 18-86877 14-93137	17.53317 16.43217 17.15029	20.95734 4.30530 20.27401	34.60847 35.83285 16.91429 32.99379	32.03249
VARIANCE CPUE KG/HA	-870924E+00 -870924E+00	-115912E +01 -117481E +01 -233393E +01	.386260E+02 .332420E+01 .419502E+02	-435388-01 -2796178+00 -499463E+01 -531779E+01	.126833E +01 .420676E +01 .547599E +01	.162485E +00 .157988E +00 .320473E +00	-407108E+01 -168430E+01 -338710E+01 -914248E+01	-654 10 9E +02
C P U E K G Z H A	6-75443	13.07640 2.74512 12.07556	10.58303 4.38269 10.02007	1.44810 2.60475 4.64501 1.82312	4.34252 4.20516 4.29475	2.90486 0.73887 2.81597	7.45299 4.98711 3.98499 6.65140	5.98599
HAULS WITH L-F	5.2	3 33	10	25 8 2 35	7 7 7 7	19	8 4 4 4 4 4	187
HAULS WITH NUMS.	51 51	39	26 5 31	113	11 6 17	4 2 2 3	37 117 59	309
HAULS NITH CATCH	51	39	26 5 31	6 M 66	11 6	43	37 117 5 59	309
TOTAL HAULS	58	39	26 5 32	56 13 74	11 9 20	55	39 19 9 67	354
SAMPLES	.256968492E+07	- 179494262E+07 - 192535328E+06 - 198747795E+07	.142546450E+07 .142350928E+06 .156781543E+07	.241988980E+07 .348771586E+06 .224990002E+06 .299365139E+07	.486525370E+06 .259397449E+06 .745922819E+06	.255218538E+07 .109212363E+06 .266139775E+07	.189466687E+07 .473731238E+06 .273903618E+06 .264230172E+07	-151682520E+08
ABEA Sa. MI.	22,950.	16,030. 1,720. 17,750.	12,731- 1,271- 14,002-	21,612. 3,115. 2,009. 26,736.	4, 345. 2, 317. 6, 562.	22.793. 975. 23.769.	16,921. 4,231. 2,446. 23,598.	135,466.
STRATUH	10* SUETOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-7. -- Population and biomass estimates for flathead sole and Bering flounder (cont'd).

I UP PER	.312587666E+09	.544293054E+09 .141673738E+93 .551399590E+09	.331803185E+09 .147994054E+08 .338960376E+09	.13456847E+09 .317525257E+08 .251510031E+08	.405356071E+03 .275918175E+08 .582394585E+08	.210408882E+09 .130330655E+08 .2113364262+09	-255317076E+09 -317415903E+03 -286401448E+03 -337701601E+09	-170186237E+10
E LIMITS - POPULATION	-174115673E+09	.342291846E+09 0. .349292299E+09	.310 919 813E+0 8 0. .379 914 2 84 E+0 8	.690255334E+08 .136032928E+08 .857378507E+06	.117247595E+08 0. .201345220E*08	-117274825E+09 0- -118727874E+09	.136401334E+09 .222151892E+08 0.	-127946768E+10
CONFIDENCE	95.0	95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0
EFF. DEG. FREEDON	57.00000	38-00000	25.00000 5.00000 25.36595	55.00000 12.00000 4.00000 22.73606	10.00000 8.00000 17.39176	54.00000 2.00000 55.89253	38.00000 18.00000 8.00000 63.42583	71-11217
METH OD USED	-					er er	ed ed ed	
VARIANCE PUPULATION	.119636581E+16	.248733112E+16 .766150373E+13 .249499263E+16	.532727094E+16 .913606813E+13 .533640701E+16	.254105308E+15 .173437138E+14 .191463378E+14 .294595359E+15	.418043723E+14 .397294085E+14 .815337807E+14	.538159286E+15 .832447150E+12 .538991733E+15	.101091787E+16 .200951214E+15 .373243890E+14	-111920793E+17
POPULATION	.242401669E+09	.447294950E+09 .705099451E+07 .450345944E+09	-181447583E+09 -702331892E+07 -188475902E+09	-101241190E+09 -226779092E+08 -13C041908E+08	.261301833E+08 .130568069E+08 .391869902E+08	.163841854E+09 -144029638E+07 -165282150E+09	-20(859205E+09 -515983900E+08 -141914872E+08 -267049082E+09	-149066503E+10
MEAN WT KG	0.218435	0.162189 0.229614 0.163245	0.254673 0.271910 0.255321	0.106026 0.122710 0.246175 0.122100	0.250419	0.139608 0.171618 0.138896	0.215352 0.139177 0.235599 0.201595	0. 000187
STRATUN	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTUTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-7. -- Population and biomass estimates for flathead sole and Bering flounder (cont'd).

		D DATE OF A	930	N TO A C C	SSANCTO - STIMIT	
STRATUM	BIONASS MT	BICHASS	FREEDCH	PERCENT	PERCENT LOWER	UP?ER
10* SUBTOTAL	.531673411E+05 .531673411E+05	.539626129E+08 .539626129E+08	57_00000	95.0	.384523516E+05	.678323306E+05
20* 21* SUBTOTAL	_718977336E+05 _161900789E+04 _735167415E+05	_350414261E+08 _408641836E+06 _354500680E+08	38-00000 5-00000 42-13908	95.0 95.0	.598969693E+05 0. .614562191E+05	.836984940E+05 .32625220E+04 .855372640E+05
30* 32* SUBTOTAL	.462107602E+05 -191107261E+04 .481218328E+05	.736454398E+09 .632063071E+06 .737086462E+09	25.00000 5.00000 25.18456	95.0	•••	_102114408E+05 _411865907E+04 _104049465E+06
40* 41* 42* SUBTOTAL	.107341874E+05 .27 E280901E+04 .32C130106E+04	.239232767E+07 .319152737E+06 .237237184E+07 .508345225E+07	55.00000 12.00000 4.00000 5.20692	95.0 95.0 95.0	.763263685E+04 .155181336E+04 0.	-138357379E+05 -401330465E+04 -7477036662+04 -225152333E+05
50* 52* SUBTOTAL	.647178302E+04 .334136862E+04 .981315164E+04	.281704995E+07 .265602535E+07 .547307531E+07	10-00000 8-00000 17-41654	95.0 95.0 95.0	.267522645E+04 0. .487689004E+04	.102683396E+05 .709952937E+04 .147494132E+05
60* 61* SUBTOTAL	.227097985E+05 .24718056E+03 .229569791E+05	.993094767E+D7 .176815462E+O5 .994862921E+O7	54_00000 2_00000 55_97262	95.0 95.0 95.0	.163872639E+05 0. .166321303E+05	.290323332E+05 .819354975E+03 .292818279E+05
70* 71* 72* SUBTOTAL	.432553773E+05 .723697914E+04 .334350215E+04 .53835856E+05	.137128726E+09 .354680379E+07 .238438264E+07 .143059913E+09	38.00000 18.00000 8.00000 46.84613	95.0 95.0 95.0	.195398853E*05 .328C17426E+04 0.	.669708694E405 .111937840E405 .690429967E404 .779332130E405
TOTAL	.27 E130202E +06	.990064612E+09	38.88910	95.0	-214406692E+06	.341853712E+06

Table C-7.--Population and biomass estimates for flathead sole and Bering flounder (cont'd).

CONFIDENCE LIMITS

UPPER	-162763651E+10 -166719237E+10 -170186237E+10
TCTAL POPULATION LONER	.135369355E+10 .131413769E+10 .127946768E+10
UPPER	.319173529E+06 .331199564E+06 .341853712E+06
IDIAL BIOMASS MT LOWER	_237086875E*06 _225060840E+06 _214406692E+06
	80.000 PERCENT 90.000 PERCENT 95.000 PERCENT

Table C-8. -- Population and biomass estimates for Alaska plaice.

STANDARD TRAML MIDTH = 16.54000000 METERS

STRATUR	AREA	S0. HI.	SAMPLES	TOTAL	HAULS NITH CATCH	HAULS WITH NUMS.	HAULS NITH L-F	CPUE KG/HA	VARIANCE CPUE KG/HA	CPUE ND/HA	VARIANCE C?UE NO/HA
10*		22.950	. 2569 6849 2E+07	8 2	20	20	60 (8-63437	. 362283E +01	17-19570	-112326E+02
308 101 41		.066433	. (369 t649 ZE + U	80	20	00	x 0	8-6343/	• 362288E +01	17-19679	.112026E+02
20*	_	16, 330.	.179494262E+07	39	17	17	1	4-14581	-693649E+01	7-57 902	-341540E+02
21*	-	1.720.	. 1925 3532 8E+06	9	2	2	2	5-71379	. 82527 6E+01	10.06522	.393478E+02
SUBTOTAL		17,750.	- 1987 4779 5E+07	45	22	22	M	4.29771	-151993E+02	7.81937	-740017E+02
30*		120731.	-142546450E+D7	28	2	2	0	0-01705	-139744E-03	0-01752	-147511E-03
32*		1,271.	.14235092 EE +06	9	S	2	0	0.65848	-113904E+00	0.76837	-212901E+00
SUBTOTAL		14,002.	. 1567 8154 3E+07	32	2	7	0	0.07 529	-119044E +00	0.08569	-213048E+00
									,		
*0 %		21,612.	. 2419 88 93 0E+07	26	99	99	24	32-17442	.205402E+02	65-15457	-698344E+02
41*		3, 115.	-148771586E+06	13	12	12	6	15.59195	-159226E+02	34.15952	.64575EE+02
45*		2,309.	.224990002E+06	2	2	S	4	25.86029	-825321E+C2	30-49377	.764959E+02
SUBTOTAL		26,735.	. 2993651392+07	7.4	7.3	7.3	09	29-76796	-119095E+03	58.93857	.230906E+03
Č				;							
0 1		46243	* 40832331 UE + UB	11	10	10	0	9 1 4 4 9 - 9	- / 90 50 /E +01	1-033390	-35355EF91
\$2\$		2,317.	- 259397449E+06	6	6	6	9	28-19393	-114404E+03	36.22245	-217074E+03
SUBTGTAL		6,662.	-745922819E+06	20	19	19	11	14.13816	-122310E +03	17.18433	.225457E+03
€0*		22,793.	.255218538E+07	55	54	54	24	28-14915	.2 19797E+02	57-14785	-81440EE+02
61*		975.	-109212363E+06	8	2	. 5	0	1-75288	-19023 BE +01	2-45539	-423718E+01
SUBTOTAL		23,769.	. 26613977 SE+07	58	96	26	24	27-06637	-238821E+02	54. 90 351	.856477E+02
104		16, 321.	-189466687E+07	39	20	20	5	3.03181	- 888742E+00	3.45161	.158959E+01
7.1*		4,231.	-473731238E+06	19	15	15	9	5.51246	.293325E +01	9.09140	-937628E+01
72*		2,446.	-273903618E+06	6	9	9		5.39441	-178671E +02	3. 39080	-722890E+01
SUB TOTAL		23,598.	.264230172E+07	19	4.1	41	12	3-72147	.216891E+02	4.50828	.181949E+02
TOTAL	,	135,466.	.151682520E+08	354	268	268	118	14-00133	.305917E +03	26.84280	.6456232+03

Table C-8.--Population and biomass estimates for Alaska plaice (cont'd).

-094113156F15 1 38-00000 95-0 -025007356F03 -034113156F15 1 38-00000 95-0 -025007356F03 -0350073666F14 1 5-00000 95-0 0-035007356F16 1 5-00000 95-0 0-03500736F16 1 5-00000 95-0 0-03500736F11 1 5-00000 95-0 0-03500736F16 1 5-00000 95-0 0-03500736F16 1 5-00000 95-0 0-03500731E+09 0-03534552EF14 1 12-00000 95-0 -15085616E+03 0-03534552EF14 1 12-00000 95-0 -17895606F+06 0-03534552EF14 1 10-00000 95-0 -17895606F+06 0-03534552EF14 1 10-00000 95-0 -178957024E+07 0-03534552EF14 1 10-00000 95-0 -178957024E+07 0-03534556F15 1 10-00000 95-0 -178957024E+07 0-03534556F15 1 1 10-00000 95-0 -17895709F+07 0-0353455852EF14 1 18-00000 95-0 -1887738697E+07 0-036886600EF13 1 18-00000 95-0 -187738697E+07 0-03688600EF13 1 18-00000 95-0 -188738697E+07 0-03688600EF13 1 18-00000 95-0 -188738697E+07 0-03688600EF13 1 18-00000 95-0 -188738697E+07 0-03688600EF13 1 18-00000 95-0 -188738697E+08 0-03688600EF13 1 18-00000 95-0 -188738697E+08 0-03688600EF13 1 18-00000 95-0 -188738697E+08 0-03688600EF13 1 18-00000 95-0 -188738897E+08 0-03688600EF13 1 18-000000 95-0 -188738897E+08 0-03688600EF13 1 18-000000 95-0 -188738897E+08	MEAN KT KG		POPULATION	VARIANCE	METHOD USED	FREEDON	CONFIDENCE PERCENT	LIMITS - POPUL	
.103251197E+16 1 38.00000 95.0 0106/46734E+0 .13804666E+14 1 5.00000 95.0 0155079537E+0 .104637244E+16 1 25.00000 95.0 0155079537E+0 .404809336E+11 1 25.00000 95.0 0356751021E+0 .404809336E+11 1 25.00000 95.0 0356751021E+0 .404809356E+14 1 15.00000 95.0 .356751021E+0 .965339650E+14 1 12.00000 95.0 .428286803E+0 .383719352E+14 1 10.00000 95.0 .414607321E+0 .363343522E+14 1 10.00000 95.0 .414607321E+0 .365343522E+14 1 10.00000 95.0 .414607321E+0 .365343522E+14 1 10.00000 95.0 .35626331E+0 .377425041E+0 .3774262E+15 1 2.00000 95.0 .35626331E+0 .3774262E+0 .3774262E+0 .377426E+0 .377426E+0 .377426E+0 .377426E+0 .3774266E+0 .377426E+0 .377426	0.502094 .135363462E+09	.135363462E	60	.694113156E+15	-	27-00000	9.0	.625607536E+08	-1 881 65 17 0E + 0 9
.281248461E+10 1 25.00000 95.0 0.		.416715904E+	0 0 0 7 0	.103251197E+16		38.00000	95.0	.0	.106746734E+09
-281248461E+10 1 25.00000 95.0 0404809336E+11 1 5.00000 95.0 0432934182E+11 5.00000 95.0 0383719355E+16 1 55.00000 95.0 .358751081E+09 -965339650E+14 1 12.00000 95.0 .428266803E+07 -36334552E+14 1 12.00000 95.0 .428266803E+07 -387006187E+16 1 67.12198 95.0 .428266804E+08 -186201523E+14 1 10.00000 95.0 .428266804E+09 -137054130E+15 1 8.00000 95.0 .17857024E+07 -497757973E+16 1 54.00000 95.0 .305226331E+09 -497757973E+16 1 54.00000 95.0 .305226331E+09 -4978565852E+14 1 38.00000 95.0 .3052263702E+09 -197445628E+14 1 18.00000 95.0 .305709979E+07 -535465852E+14 1 18.00000 95.0 .385709979E+07 -508886600E+13 1 8.00000 95.0 .385709979E+07 -508886600E+13 1 8.00000 95.0 .38570997E+08	0.549538 .476078119E+08	.476078119E+	8	.104637244E+16		42-46368	95.0	-0	-112914544E+09
-404809336E+11 1 5.00000 95.0 0. -432934182E+11 5.16135 95.0 0. -383719355E+16 1 55.00000 95.0 .358751081E+09 -965339650E+14 1 12.00000 95.0 .150856116E+03 -3653343522E+14 1 12.00000 95.0 .428286802E+07 -397006187E+16 67.12198 95.0 .44607321E+09 -186201523E+14 1 10.00000 95.0 .414607321E+09 -137054130E+15 1 8.00000 95.0 .17857024E+07 -497757973E+16 1 54.00000 95.0 .305226331E+09 -497855046E+12 1 54.00000 95.0 .305226331E+09 -497855465852E+14 1 38.00000 95.0 .356041062E+09 -535465852E+14 1 18.00000 95.0 .385709979E+07 -508886600E+13 1 8.00000 95.0 .385709979E+07 -508886600E+14 1 88.00000 95.0 .385709979E+07		-765050146E+0	2	.281248461E+10	1	25.00000	95.0	•	-1 85954945E+06
.383719355E+16 1 55.00C00 95.0 .356751081E+09 .965339650E+14 1 12.00000 95.0 .428286802E+07 .36334352E+14 1 12.00000 95.0 .428286802E+07 .397006187E+16 67.12198 95.0 .414607321E+09 .186201523E+14 1 10.00C00 95.0 .414607321E+09 .186201523E+14 1 10.00C00 95.0 .414607321E+09 .186201523E+14 1 10.00C00 95.0 .17857024E+07 .137054130E+15 1 2.00000 95.0 .110419064E+06 .497757973E+16 1 54.00000 95.0 .305226331E+09 .49785056E+15 54.18306 95.0 .305226331E+09 .49785056E+16 1 38.00000 95.0 .385709979E+07 .535465852E+14 1 18.00000 95.0 .385709979E+07 .535465852E+14 1 18.00000 95.0 .385709979E+07 .783800140E+14 59.27882 95.0 .187738697E+08		.335043118E+0	9	-404809336E+11	-	2.00000	95.0	•0	-352330083E+06
-383719355E+16 1 55.00000 95.0 .358751081E+09 -965339650E+14 1 12.00000 95.0 .150858116E+03 -36334352E+14 1 12.00000 95.0 .428286800E+07 -397006187E+16 67.12198 95.0 .868768046E+06 -137054130E+15 1 10.00000 95.0 .17857024E+07 -137054130E+15 1 2.00000 95.0 .17857024E+08 -497757973E+16 1 54.00000 95.0 .305226331E+09 -497757973E+16 1 54.00000 95.0 .305226331E+09 -497757973E+16 1 38.00000 95.0 .305226331E+09 -49780505EE+15 1 18.00000 95.0 .305226331E+09 -53546585EF+14 1 18.00000 95.0 .385709979E+07 -53546585EF+14 1 18.00000 95.0 .385709979E+07 -53846500E+13 1 8.00000 95.0 .187738697E+08	0.873561 .411553133E+06	-411553133E+0	9	-432934182E+11		5.16135	95.0	••	.946502915E+06
-965339650E+14 1 12.00000 95.0 .150856116E+03 -363343522E+14 1 4.00000 95.0 .428266802E+07 -397006187E+16 1 10.00000 95.0 .868768046E+06 -137054130E+15 1 8.00000 95.0 .17857024E+07 -497855046E+12 1 54.00000 95.0 .10419064E+08 -497855046E+12 1 54.00000 95.0 .305226331E+09 -497855046E+12 1 54.00000 95.0 .305226331E+09 -497855046E+12 1 54.00000 95.0 .305041062E+09 -49786585E+14 1 38.00000 95.0 .385709979E+07 -535455852E+14 1 18.00000 95.0 .521281770E+07 -53545585E+14 1 8.00000 95.0 .521281770E+07 -5384650E+13 1 8.00000 95.0 .38570997E+08 -783800140E+14 59.27882 95.0 .187738697E+08		*482966462E+09	_	.383719355E+16	1	55.00000	95.0	.358751081E+09	.607181844E+09
.363343522E+14 1 4.00000 95.0 .428286802E+07 .397006187E+16 67.12198 95.0 .414607321E+09 .186201523E+14 1 10.00000 95.0 .868768046E+06 .137054130E+15 1 8.00000 95.0 .17857024E+07 .155674282E+15 1 54.00000 95.0 .10419064E+08 .497757973E+16 1 54.00000 95.0 .305226331E+09 .497805054E+12 1 54.00000 95.0 .306041062E+09 .497805054E+16 1 38.00000 95.0 .385709979E+07 .535465852E+14 1 18.00000 95.0 .521281770E+07 .535465852E+14 1 8.00000 95.0 .521281770E+07 .5384650E+13 1 8.00000 95.0 .187738697E+08		-364946570E+08		-965339650E+14	-	12.00000	0.56	-150856116E+03	.579037023E+08
.397006187E+16 67.12198 95.0 .414607321E+09 .186201523E+14 1 10.00000 95.0 .868768046E+06 .137054130E+15 1 8.00000 95.0 .17857024E+07 .155674282E+15 1 54.00000 95.0 .10419064E+08 .497757973E+16 1 54.00000 95.0 .305226331E+09 .4978055046E+12 1 54.00000 95.0 .306041062E+09 .497805504E+16 1 38.00000 95.0 .385709979E+07 .535465852E+14 1 18.00000 95.0 .521281770E+07 .5354658600E+13 1 8.00000 95.0 .187738697E+08		-21 C1 60 36 1E + C8		.363343522E+14	7	4-00000	95.0	-428285803E+07	.377492041E+09
.186201523E+14 1 10.00000 95.0 .868768046E+06 .137054130E+15 1 8.00000 95.0 .17857024E+07 .155674282E+15 1 54.00000 95.0 .110419064E+08 .497857973E+16 1 54.00000 95.0 .305226331E+09 .497805058E+12 1 2.00000 95.0 .305226331E+09 .535465852E+14 1 38.00000 95.0 .305226331E+09 .535465852E+14 1 38.00000 95.0 .30526331E+09 .535465852E+14 1 88.00000 95.0 .3052637E+07 .508886600E+13 1 88.00000 95.0 .385709979E+07 .783800140E+14 559.27882 95.0 .187738697E+08	0.505067 .54C477155E+09	-54C477155E+09		.397006187E+16		67.12198	95.0	.414607321E+09	- 5663469905+09
-137054130E+15 1		.104828276E+08		.186201523E+14	1	10.00000	95.0	.868768046E+06	-200768371E+03
.497757973E+16 1 54.0000 95.0 .110419064E+08 .497857973E+16 1 54.0000 95.0 .305226331E+09 .497855046E+12 1 2.00000 95.0 0497855046E+12 1 54.18306 95.0 0535455852E+14 1 38.00000 95.0 .521281770E+07 .535465852E+14 1 18.00000 95.0 .385709979E+07 .508886600E+13 1 8.00000 95.0 .187738697E+08 .783800140E+14 59.27882 95.0 .187738697E+08	0. 778355 .287819399E+08	-287819399E+08		-137054130E+15	-	8-00000	95.0	-178557024E+07	.5577 83095 £+03
.497757973E+16 1 54.00000 95.0 .305226331E+09 .470855046E+12 1 2.00000 95.0 0497805054E+16 1 54.18306 95.0 .306041062E+09 .535465852E+14 1 38.00000 95.0 .521281770E+07 .5354658660E+13 1 8.00000 95.0 .385709979E+07 .783800140E+14 59.27882 95.0 .187738697E+08	0.822736 .392647674E+08	-392647674E+08		.155674282E+15		9.78070	95-0	-1 10 419064E+08	-674375234E+03
.470855046E*12 1 2.00000 95.0 0497805058E*16 54.18306 95.0306041062E*09 .535465852E*14 1 38.00000 95.0 .521281770E*07 .508886600E*13 1 8.00000 95.0 .187738697E*08 .783800140E*14 59.27882 95.0 .187738697E*08		.446774738E+09		-497757973E+16	1	54-00000	95.0	.305226331E+09	.588323144E+09
.497805058E+16 54.18306 95.0 .306041062E+09 .535465852E+14 1 38.00000 95.0 .521281770E+07 .508886600E+13 1 8.00000 95.0 0783800140E+14 59.27882 95.0 .187738697E+08		-821426324E+0		-470855046E+12	-	2.00000	95.0	.0	-37740966E+07
.535465852E+14 1 38.00000 95.0 .521281770E+07 .197445623E+14 1 18.00000 95.0 .385709979E+07 .508886600E+13 1 8.00000 95.0 0. .783800140E+14 59.27882 95.0 .187738697E+08	0.492981 .447596164E+09	.447596164E+0	6	-497805058E+16		54-18306	95.0	-306041062E+09	.589151265E+09
.197445628E+14 1 18.00000 95.0 .385709979E+07 .508886600E+13 1 8.00000 95.0 0. .783800140E+14 59.27882 95.0 .187738697E+08		-200323265E+0	60	.535465852E+14	1	38.00000	95.0	.5212817706+07	.348518353E+08
.508886600E*13 1 8.00000 95.0 0. .783800140E*14 59.27882 95.0 .187738697E*08		-131928627E+0	89	-197445623E+14	7	18.00000	95.0	-3 85 709 9 79 E+0 7	.225286256E+08
.783800140E+14 59.27882 95.0 .187738697E+08		-326447403E+0	~	.508886600E+13	-	8.00000	95.0	•0	-859956283E+07
	0.825474 .364895632E+08	-364895632E+0	60	-783800140E+14		59.27882	95.0	-187738697E+08	.542054567E+08
	0-000522 -124/21058E+10	•1<4/210385 +10		-109226956E+17		179-57621	95.0	.104 C28119E+10	-145413997E+10
1/9-5/621 95-0 .104628119E+10									

Table C-8.--Population and biomass estimates for Alaska plaice (cont'd).

STRATUN	BIDHASS MT	VARIANCE BIUMASS	EFF. DEG. FREEDOM	CONFIDENC PERCENI	CONFIDENCE LIMITS - BIOMASS Percent Lower	UPPER
10* SUBTOTAL	.67 \$652 352E +05	.224474205E+09 .224474205E+09	57.00000	95.0	.379373823E+05 .379373823E+05	.979930280E+05
20* 21* SUBTOTAL	.2279483322+05 .336985692E+04 .261646901E+05	.209697948E+09 .287407951E+07 .212572027E+09	38.00000 5.00000 42.50823	95.0 95.0 95.0	•••	.521520655E+05 .907604036E+04 .555999493E+05
30* 32* SUGTOTAL	.74444356E+02 .287129526E+03 .361574362E+03	.266439610E+04 .226083778E+05 .252727739E+05	25.00000 5.00000 5.27489	95.0 95.0	••••	.180983951E+03 .673707208E+03 .770296849E+03
40* 41* 42* SUBTOTAL	.236496920E+06 .166578137E+05 .176226832E+05 .272977417E+06	-112852029E+10 -181739705E+08 -392489731E+08 -118604324E+10	55-00000 12-00000 4-00000 37-66258	95.0 95.0 95.0	-171130654E+06 -736853183E+04 -431320611E+03 -203159276E+06	.305863133E+35 .259473955E+05 .352140459E+05 .34279558E+06
50* 52* SUBTOTAL	.99(194982E+04 .224025711E+05 .323045209E+05	.1756000945*08 .722314348E+08 .897914442E+08	10.00000 8.00000 11.14622	95.0	.565590471E+03 .280408954E+04 .114442086E+05	.192383092E+05 .420010526E+05 .531608332E+05
60* 61* SUETDTAL	.22(066534E+06 .589753015E+03 .22(656287E+06	.134337690E+10 .212909270E+06 .134359131E+10	54.00000 2.00000 54.30188	95.0	.146492874E+06 0.	.293640195E+06 .257524725E+04 .294197270E+06
70* 71* 72* SUBTOTAL	.175559004E+05 .795933565E+04 .452603904E+04 .301212751E+05	.299360291E+08 .617684392E+07 .125777403E+08 .486906133E+08	38.00000 18.00000 8.00000 23.35552	95.0	.651525606E+04 .277766637E+04 0.	.236765447E+05 .132210049E+05 .127042934E+05 .445584793E+05
TOTAL	.650551000E+06	.310518861E+10	131-43619	95.0	-540217422E+06	.760884579E+06

Table C-8.--Population and biomass estimates for Alaska plaice (cont'd).

*0	UPPER	-138192484E+10	-142048852E+10	145417 697 5410
TOTAL POPULATI	LOWER	-111249632E+10	-107393263E+10	1740781195+10
- X	UPPER	.722379388E+06	-742941512E+06	-760384579F+06
TOTAL SIDMASS NT	LOWER	.578722613E+06	.55816C489E+06	-540217422F+06
		PERCENT	PERCENT	PERCENT

Table C-9. -- Population and biomass estimates for Greenland turbot.

STANDARD TRAML MIDTH = 16.54000000 HETERS

STRATUM	AREA S2-	- HI -	SAMPLES	TOTAL	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	UΥ	C P U E K G / H A	VARIANCE CPUE KG/HA	CPUE NG/ HA	VARIANCE CPUE NOTHA
10* SUETUTAL	22	22,750.	.256968492E+07	58			00	00	0-00169	.285868E-05	0-00373	1389435-04
20*	15.	15.030.	-179494262E+07	39	2	1	-	0	0.36266	-276539E-01	0-09420	-132934E-02
SUBTOTAL	17.	17,750.	- 1925 35 32 8E + U6 - 1987 4779 5E + 07	5 0	0 ~	0 ~	0 =	00	0-00000	0. -276539E-01	0.00000	J- -132934E-02
30*	12	12,731.	-142546450E+07	26	21	21	10	2	3.37567	. 375329E +00	6.35332	-207124E+01
32*		1,271.	-14235092 8E+06	9	2	5	2	2	2-09103	-197866E+00	5.74922	.263482E+01
SUBTOTAL	14	14,002.	-156781543E+07	32	26	56	12	M	-25903	.573195E +00	6-75 307	.470505E+01
*07	21.	21-612	704308080192	25	-	•	•	•				
4.1.4	1	3.115	148771586E+16	2.5	7	17	* 4	ó	2000	2 20 09 3F - US	*00 KT*0	-2921/3E-02
42*		2.009	226990002F+06	3 5	~ ~	- ~	7 M	<i>•</i>	0.85286	7011105 700	100000	. 595 37 8E - 01
SUETOTAL	26,	26,736.	- 299365139E+07	7.4	27	27	11	0	0-12415	-403211E+00	0-34515	.706599E+ 00
20*	.4	4,345.	-48652537 0E+06	11	~	7	~	0	0.29893	.421538E -01	2-16151	. 358339E+ 00
52*	2.	2,317.	.259397449E+06	6	4	3	0	0	0-20450	-159901E-01	0.47838	-10477 3E+ 00
SUBTOTAL	9	5. 652°	-745922819E+06	20	11	11	m	o	.26599	-581439E-01	1.57619	-963113E+00
*0	22	27.793	2552185386+07	8	4	4	c	¢	82200	20-3557005	200	10110000
61*	i	975	1092123635 406	~	· c	• 0	c		00000	0		321393E-03
SUBTOTAL	23,	23,769.	-266139775E+07	58	4		0	0	0.02549	.500455E-03	0.03729	.591605E-03
*02	15,	15,921.	-189466687E+07	39	21	21	18	-	1-57565	-145076E+00	2.63965	-308602E+00
***	9	406310	- 4737 31 23 8E+06	13	~	3	m	o	0-08126	-305438E-02	0.33395	-329006E-01
12*	2	2.446.	-273903618E+06	6	80	80	~	2	.81876	.767174E +00	4-90509	-106201E+01
SUBTOTAL	23	2 3, 598.	- 564230172E+07	29	32	32	28	1	43659	-915304E+00	2-46111	.145352E+01
TOTAL	135,	135,466.	-151682520E+08	354	108	108	55	Ó	0-67237	-197801E+01	1-29069	.733131E+ 01

Table C-9. -- Population and biomass estimates for Greenland turbot (cont'd).

STÄATUN	HEAN WI KG	POPULATION	VARIANCE POPULATION	METH 00 USED	EFF. DEG. FREEDOM	CONFIDENCE PERCENI	SE LIMITS - POPULATION LOWER	UPPER
10* SUBTOTAL	0.453591 0.453591	.293410017E+05	.860894373E+09	1	57.00000	95.0	•••	.831462372E+05
20* 21* SUBTOTAL	3.849820 0.000000 3.849820	.517948067E+06 0. .517948067E+06	.401873335E+11 0. .401873335E+11		38.00000 0.00000 38.00000	95.0 95.0 95.0	.111960705E+05 0. .111960705E+06	.923735428E+06 0. .923935428E+06
30* 32* SUBTOTAL	0.492560 0.363706 0.482599	.299249679E+08 .25(694835E+07 .324319163E+08	.394907516E+14 .500983885E+12 .39917354E+14		25.00000 5.00000 27.41004	95.0 95.0 95.0	.169795845E+08 .687189015E+96 .194552695E+08	.428793514E+08 .432670768E+07 .454085630E+08
40* 41* 42* SUBTOTAL	0.256308 0.259419 0.573470 0.359695	.144573792E+07 .694507769E+06 .102496422E+07 .316520991E+07	.160540616E+12 .449569064E+11 .315574499E+12 .521072021E+12		55.00000 12.00000 4.00000	95.0	.642283977E+06 .227828776E+06 0.	.2243191372407 .1161186756407 .2584410486407 .5169074356407
50# 52# SUBTOTAL	0.138298 0.426851 0.168753	.322135378E+07 .380116848E+06 .360147063E+07	.190643962E+13 .661508402E+11		10.00000	9 5 5 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9	.145067747E+06 0. .472268258E+06	.629763941E+07 .97321556EE+05 .6730672992+07
60* 61* SUBTOTAL	0.683652 0.00000 0.683662	.303971603E+06 0. .303971603E+06	.361583769E+11 0. .361583769E+11		0.00000 0.00000 54.00000	95.0		.685676355E+06 0. .685675355E+05
70* 71* 72* SUBTOTAL	0.596914 0.243319 0.574651 0.583714	.153199490E+08 .484612580E+06 .411548331E+07 .195200449E+08	.103948310E*14 .174571946E*12 .747616544E*12 .113170195E*14		38.00000 18.00000 8.00000 47.03828	95.0 95.0 95.0	.8783727855+07 0. -212160452E+07 -131459696E+03	_218561701E+08 _13624635E+07 _610936211E+07 _266941202E+03
TOTAL	0.000521	-595699024E+08	.538796240E+14		48.76850	0.56	.451968667E+08	.747429330E+08

Table C-9. -- Population and biomass estimates for Greenland turbot (cont'd).

BIO4ASS UPPEA	.199323268E+02 .199823268E+02	0E+03	1E+04 .202505202E+05 SE+03 .141047611E+04 :2E+05 .211660512E+05	5E+03 .628423653E+03 6E+02 .303350983E+03 .179795425E+04 .240995573E+04	.112724229E+04 .393953703E+03 .130952905E+04	.558884288E+03 0. .558394233E+03	0E+04 .1362619952+05 .236413995E+03 2E+03 .405966105E+04 6E+04 .163432354E+05	6E+05 -336535663E+05
CONFIDENCE LIHITS - BIO1ASS Percent lower		.140375590E+03 0 0 140375590E+03	.922913801E+04 .413109146E+03 .101371922E+05	.112679475E+03 .569863446E+02 0.	000	000	.466317690E+04 0. .670356852E+03 .691193966E+04	-238177006E+05
	95.0	95.0 95.0 95.0	95.0 95.0	95.0 95.0 95.0	95.0 95.0	95.0 95.0	95.0 95.0 95.0	95.0
EFF. DEG. FREEDCH	57_00000	38.0000 38.0000 38.0000	25.00000 5.00000 26.08438	55.00000 12.00000 4.11463	10-00000 8-00000 12-53731	00000-75 00000-75	38.00000 18.00000 8.00000 39.92282	67-42724
VARIANCE BIOMASS	.177124422E+03	.836008451E+06 0. 836008451E+06	.715612130E+07 .376223405E+05 .719374364E+07	.165378880E+05 .319581983E+04 .190046233E+06 .209779941E+06	.936269564E+05 .100956818E+05 .103722639E+06	_305873990E+05 0_ _305873990E+05	.488666928E+07 .643191354E+04 .540060607E+06 .543316180E+07	.138071810E+08
BIDHASS HT	.133038099E+02 .133088099E+02	.195400689E+04 0. .199400689E+04	.147398291E+05 .911792628E+03 .156516217E+05	.37 C554 064E +03 .18C16866 4E +03 .587786693E +03 .113850 942E +04	.445507211E+03 .162253118E+03 .607760329E+03	.207813757E+03 0. .207813757E+03	.914468818E+04 .117915386E+03 .235500896E+04 .116276125E+05	-312406335E+05
STRATUM	10* SUBTOTAL	20* 21* SUBTGTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-9. -- Population and biomass estimates for Greenland turbot (cont'd).

ON UPPER	.695137268E+08 .722927545E+08 .747429380E+08
TOTAL POPULATION	.504260780E+08 .476470502E+08 .451968667E+08
UPPER	.360532777E+05 .374441022E+05 .386635663E+05
TOTAL BIONASS MT LOWER	.264279893E+05 .250371647E+05 .238177006E+05
	80.000 PERCENT 90.000 PERCENT 95.000 PERCENT

Table C-10. -- Population and biomass estimates for arrowtooth and Kamchatka flounders.

STAND ARD TRANL WIDTH = 16.54000000 METERS

VARITANCE CPUE NOZHA	.100204E+01	.177337E+02 .2497wCE+34 .251518E+34	.369807E+01 .151573E+01 .521330E+01	3. 231698E+02 3. 231698E+02	3. -579072E-02 -579072E-02 -579072E-02 -295296E+01 -371651E+02 -40113CE+02	3.40:128E+02 .445419E+00 .412562E+02 .262595E+04
CPUE NO/H®	2-49622	44.60836 37.11762 48.72641	4.56330 1.52479 4.26742	0.00000 12.05814 0.00000 1.40482	0.00000 0.07613 0.02645 3.55675 11.75485 3.89318	0.00000 29.76093 1.03634 5.44677
VARIANCE CPUE KG/HA	.591863E-01	.122820E +01 .353400E +02 .365682E +02	.131099E +01 .116823E +00	0. .507650E+00 0. .507650E+00	0-476564E-04-476564E-04-522265E-01-223481E+01	.672012E+00 .912363E+00 .108440E+00 .169232E+01
C P U E K G Z H A	0.69934	11-41314 11-75335 11-4609	2.75282 0.49386 2.54772	0.00000 2.07709 0.00000 0.24199	0.00000 0.00690 0.00240 0.48225 2.15109	6-13668 5-10718 0-47313 5-40086
HAULS WITH L-F		35	000	0 M O M	000 HNM	3.0 4 4 3.0 8.4
HAULS WITH NUMS.	22	39	23 2 25	0 0 11	0 1 1 1 1 1 1 1 1 1	36 18 3 57
HAULS HITH CATCH	22	39	23 25 25	1101	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	137 133 58 176
TOTAL	58	39 6 5	26 6 32	56 13 74	20 20 20 35 55 58	39 19 67 354
SAMPLES	.256968492E+07	.179494252E+07 .192535328E+06 .198747795E+07	.142546450E+07 .142350928E+06 .156781543E+07	.241988930E+07 .348771536E+06 .224990002E+06 .299365139E+07	.486525370E+36 .259397449E+06 .745922819E+06 .255218538E+07 .109212353E+07	.189466587E+07 .473731238E+06 .273903618E+06 .264230172E+07
A REA SO. HI.	22,950.	16,930-	12,731. 1,271. 14,002.	212612. 32115. 22009. 252736.	4,345 2,317 6,662 22,793 23,769	15,921. 4,231. 2,446. 23,598. 135,466.
STRATUM A	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTUTAL	50* 52* 52* 50* 60* 51*	70* 71* 72* SUBTOTAL TOTAL

Table C-10. -- Population and biomass estimates for arrowtooth and Kamchatka flounders (cont'd).

HEAN	N WT KG	POPULATION	VARIANCE POPULATION	METHOD USED	EFF. DEG. FREEDON	CONFIDENCE PERCENT	CE LINITS - POPULATION LGWER	IDN UPPER
0.280159	159	.196489393E+08	.620865855E+14 .620865865E+14		57_00000	95.0	.386511046E+07	.354327681E+09 .354327581E+09
255852	68.8	0114 3775 0 30 3 40	51 #378 00 19225	-	00000	0	6043711296861	2122756135403
1 2	7607	51 77 98 60 9F + 08	. A68687517F+15		2-00000	95.0	0-	127156025E+09
. 23	0.234905	-296649237E+09	.140630250E+16		5.99032	95.0	.200234938E+09	-393063537E+09
9	1363	00.1001.000.000	***************************************		20000	90	2073007302676	80.3301116271
32	0. 32 38 95	- 66 LA867405 + 06	-788201268F+12	- -	00000	95-0	0-	-204511216F+07
. 59	0.594231	-205905195E+08	.707966515E+14	•	25.85291	95.0	.325752581E+07	-379235132E+39
0	000000	-0	-0		000000	95.0	•0	•0
-	172257	12 58 24 12 7E 408	711356857756	-	12.0000	0 20	156 166 554 5+07	-242:111998F+03
10	000000	0-	-	٠,	00000	0 2 0	0	0-
	0.172257	-128824327E+08	.264458885E+14		12.00000	95.0	-156 366554E+07	2420119935+03
0.0	0.000000	0-0	.0	1	0000000	95.0	•0	,
0	9 07 13	-6046560595+05	-365608950E+10	-	8.00000	95.0	•0	-203465754E+05
0	0.090718	-604656059E+05	.365608950E+10		8.00000	95.0	• 0	.203466764E+06
7	0-135586	27 8063245E+09	-180482401E+15	-	24-00000	95.0	-838834121E+06	-5477 3814 9E+08
1	0.182996	-39 1246 87 1E + 07	-415952220E+13	-	2.00000	95.0	0.	-127083971E+38
. 14	0-141450	-317387932E+08	.184641923E+15		18.77430	0-56	.318977286E+07	.602373135E+03
1.2	0.265749	-135112419E+09	•0	m	0.0000	95.0	•0	• 0
1.17	0-171492	.432162132E+08	.859435166E+14	-	18.00000	95.0	-237367401 E+ 08	.626935862E+08
1.45	0.455538	-369515366E+06	-312149731E+12	1	8.00000	95.0	•0	.2157 88591E+07
1-24	0-243943	-17 51981 4 8E +09	-862556663E+14		18.27468	95.0	-159685335E+09	-1987 109 00E +09
3						,		
2 .00	0- 00 02 46	-56 C768 535E +09	-183653287E+16		7-17975	95.0	-459416961E+09	•662120139 <u></u> -

Table C-10. -- Population and biomass estimates for arrowtooth and Kamchatka flounders (cont'd).

UPrER	.934285815E+04 .934285815E+04	.750930389E+05 .159459415E+05 .853475458E+05	.223192916E+05 .598527387E+03 .225392133E+05	0. .385445909E+04 0. .359448909E+04	0. *124581326E+32 *124591326E+02	.735455423E+)4 .287161067E+04 .925975332E+04	.455412943E+05 .103233947E+05 .103499843E+04 .536926821E+35	-1>9097151E+05
CONFIDENCE LIMITS - BIOYASS Percent Lower	.166680475E+04 .166680475E+04	.504122585E+05 0. .540214381E+05	.172108106E+04 0. .193185285E+04	0. .543680140E+03 .543680140E+03	•••	.185631145E+03 0.	.262706718E+05 .449903198E+04 0.	•116609563E+06
CONFIDEN	95.0	95.0 95.0	95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0	95.0 95.0 95.0	0.56
EFF. DEG. FREEDOM	57.00000	38.00000 5.00000 10.43030	25.00000 5.00000 25.19105	12.00000 0.00000 12.00000	0.0000 8.00000 8.00000	54.00000 2.00000 5.65227	38.00000 18.00000 8.00000 50.42421	26.33764
VARIANCE BIOMASS	.366719336E+07 .366719386E+07	.371297435E+08 .122925059E+08 .494222494E+08	.249956569E+08 .222127542E+05 .250178697E+08	0. _579427704E+06 0. _579427704E+06	0. .300888358E+02 .300888359E+02	.319203923E+07 .250112985E+06 .344215221E+07	.226357901E+08 .192125373E+07 .763378552E+05 .246333817E+08	-106762305E+09
BIUHASS MT	_550493146E+04 _55C483146E+04	627526487E+05 693184328E+04 69E844920E+05	.12(201863E+05 .215346992E+03 .12235533E+05	0. .221903461E+04 0. .221903461E+04	0. .548532914E+01 .548532914E+01	.377014269E+04 .719624552E+03 .448976724E+04	.355059830E+05 .741121331E+04 .396966608E+03 .437141629E+05	-137853357E+06
STRATUM	10* SUBTOTAL	20* 21* SUBTUTAL	30* 32* SUBTGTAL	40* 41* 42* SUETGTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-10. -- Population and biomass estimates for arrowtooth and Kamchatka flounders (cont'd).

CONFIDENCE LIMITS

	IDIAL BIDHASS HI	UPPER	TOTAL PUPULATION	UPPER
80.000 PERCENT	-124266008E+06	.151440705E+06	.500129010E+09	.621408060E+09
90.000 PERCENT	-120225968E+06	.155480746E+06	.479558712E+09	.641978359E+09
95.000 PERCENT	-116609563E+06	.159097151E+06	.459416961E+09	.662120109E+09

Table C-11. -- Population and biomass estimates for Pacific halibut.

STANDARD TRAWL WIDTH = 16.54000000 METERS

VAKIANCE CPUE ND/HA	-169010E+00 -169010E+00	.5970782-01 .189399E+00 .249107E+00	.175882E-01	.316801E+00 .356?35E+00 0. .673037E+03	-130016E-01 -272832E-01 -402847E-01	.340392E-01 .210514E-01 .550907E-01	.645145E-02 .221816E+01 .222661E+01	.3430732+01
CPUE NOCHA	2-17342	0.94674 0.52915 0.90629	0.21636 0.00000 0.19671	1.27685 1.05726 0.00009 1.15647	0.24749 0.23283 0.24241	0.64173 0.14539 0.62140	C.43274 3.47694 0.00000 0.93402	1-01919
VARIANCE CPUE KG/HA	.700581E+00 .700581E+00	.673335E+00 .114522E+00 .787857E+00	.671260E-01 0. .671260E-01	.600557E+00 .192887E+00 0.	-211219E-01 -273630E+01 -275742E+01	.192896E+00 .156357E-01 .208532E+00	.317266E-01 .361915E+01 0.	.896583E+01
CP UE KGZHA	4.3075E	3.61388 0.45474 3.30784	0-49561 0-00000 0-45051	1.89024 0.86876 0.00000 1.62917	0.30564 1.76703 0.81384	1.59253 0.12504 1.53231	0.75786 4.51794 0.00000 1.35343	2.07594
HAULS WITH L-F	3 4	23 25 25	n C n	26 6 32	400	24	22 15 0 37	175
HAULS WITH NUMS.	3 3 4 4	23 2 25	909	26 6 0 32	409	24	23 15 0 38	176
HAULS WITH CATCH	4 4	2 2 2 2 5 5 5	909	26 6 0 32	*20	24 25	23	176
TOTAL HAULS	58	39	26 6 32	56 13 5 74	11 9	55	39 19 9 67	354
SAMPLES	.256968492E+07	-179494262E+07 -192535328E+06 -198747795E+07	.142546450E+07 .142350928E+06 .156781543E+07	.241988930E+07 .148771586E+06 .224990002E+06 .299365139E+07	.486525370E+06 .259397449E+06 .745922819E+06	.255218538E+07 .109212363E+06 .266139775E+07	.189466687E+07 .473731238E+06 .273903618E+06 .264230172E+07	-151682520E+08
AREA SO. HI.	22,950.	15,030. 1,720. 17,750.	12,731. 1,271. 14,002.	21,612. 3,115. 2,009. 26,736.	4, 345. 2, 317. 6, 662.	22,793. 975. 23,769.	16,921. 4,231. 2,446. 23,598.	135,466.
STRATUR	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50# 52# SUBTGTAL	60* 61* SUETOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-11. -- Population and biomass estimates for Pacific halibut (cont'd).

UPPER	_235936924E+03 _235936924E+08	.792916514E+07 .971983339E+05 .828189224E+07	.213763674E+07 0. .213763674E+07	.178510904E+08 .252966692E+07 0.	.747456399E+06 .487696912E+05 .100693744E+07	.791269356E+07 .257401406E+06 .795984065E+07	.359204728E+07 .958919612E+07 0.122192125E+03	.5949227302+08
LINIIS - POPULATION LOWER	-106224062E+08 -106224062E+08	_248174774E+07 0. _275319001E+07		_109846547E+07 0. _216791273E+07	0. 0. 100832621E+06	_212198711E+07 0_ _217191768E+07	_143095672E+07 _507629253E+06 290061684E+07	-352176832E+08
CONFIDENCE PERCENT	95.0	95.0 95.0	95.0	95.0	95.0	95.0 95.0 95.0	95.0	95-0
EFF. DEG. FREEDOM	57-00000	38.00000 5.00000 40.74191	25-00000	55.00000 12.00000 0.00000 63.67053	10.00000 8.00000 17.96222	54-00000 2-00600 55-61824	38.00000 18.00000 0.00000	134.34538
METHOD USED	-	e- e-						
VARIANCE POPULATION	-104719635E+14	.180503420E+13 .658796163E+11 .187091382E+13	.335341585E+12 0. .335341585E+12	-174072878E*14 -406604546E*12 0-	.288775074E+11 .172257891E+11 .461032966E+11	.208044818E+13 .235601784E+10 .208280420E+13	.284675508E+12 .467099577E+13 0.	.375765900E+14
POPULAFION	-17 1080 49 3E +08 -17 1080 49 3E +08	.520545694E+07 .312084181E+06 .551754112E+07	.944717818E+06 0. .944717818E+06	.946477791E+07 .114021556E+07 0.	.368843819E+06 .185041212E+06 .553885031E+06	.501734034E+07 .485388282E+05 .506587916E+07	.251150200E+07 .504841269E+07 0.	-472549806E+08
MEAN WT KG	1.981935	3.817171 0.859366 3.649871	2. 290718 0. 000000 2. 290718	1-480397 0-814015 0-000010 1-408749	1.2349317.587848	2.481428 0.861823 2.465910	1.751306 1.298655 0.000000 1.449031	0-002037
STRATUM	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SUBTOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-11. -- Population and biomass estimates for Pacific halibut (cont'd).

SUPPER	.471116783E+05	.290167358E+05 .822247489E+03 .292843917E+05	.449456218E+04 0. .449456213E+04	.255307005E+05 .195056607E+04 0.	.936070835+03 .451259411E+04 .493141946E+04	"193390117E+05 "221834354E+03 "193813548E+05	.549415785E+04 .123562737E+05 0.	-118194975E+06
CONFIDENCE LIMITS - BIOGASS Percent Luwer	.207023993E+05	.107234985E+05 0. .109922315E+05		.249254777 E+04 0. 0. 339444132 E+04		.556132435E+04 0. .560264499E+04	.230265869E*D4 .756016540E+33 0.	-747 1567 20E+05
CONFIDE	95.0	95.0	95.0	95.0 95.0 95.0	95.0 95.0	95.0 95.0	95.0 95.0 95.0	95.0
EFF. UEG. FREEDOM	27_00000	38.00000 5.00000 38.92501	25.00000 0.00000 25.00000	55_00000 12_00000 0_00000 57_98729	10.00000 8.00000 8.35613	54.00000 2.00000 54.28343	38_00000 18_00000 0_00000 20_49799	202-99457
VARTANCE BIONASS	.434081223E+08 .434081223E+08	.203556560E+08 .398349073E+05 .203954909E+08	.127984199E+07 0. .127984199E+07	.329988088E+08 .220160210E+06 0.332189690E+08	.469134787E+05 .172761795E+07 .177453141E+07	.117896501E+08 .174990452E+04 .117914000E+08	.106866783E+07 .762119613E+07 0.	.120558220E+09
BIONASS AT	.335070390E+05	-198701171E+05 -268194417E+03 -201383116E+05	.216408209E+04 0. .216408209E+04	-14C116241E+05 -92E152401E+03 0. -149397765E+05	.455496788E+03 .14C406459E+04 .185956138E+04	.41831860E+05 .418318600E+02 .124919999E+05	.439840828E+04 .655614512E+04 0.	.964553239E+05
STEATUR	10* SUBTOTAL	20* 21* SUETOTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SUETOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-11. -- Population and biomass estimates for Pacific halibut (cont'd).

CONFIDENCE LIMITS

IPPE R	E + 0 8
_	.552564996E+08 .575184445E+08
TOTAL POPULATION LOWER	.394534616E+08 .371915167E+08
UPPER	.110608223E+06 .114659641E+06 .118194976F+06
TOTAL BIOMASS MT LOWER	.823024249E+05 .782510070E+05 .747156720E+05
	80.000 PERCENT 90.000 PERCENT 95.000 PERCENT

Table C-12.--Population and biomass estimates for rex sole.

STANDARD TRAWL MIDTH = 16.54000000 HETERS

STRATUR	AREA	Sa. M.	SAMPLES	TOTAL	HAUL S WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	CPUE KG/HA	VARIANCE CPUE KG/HA	CPUE NOZHA	VARTANCE CPUE NO/HA
10* SUBTOTAL		22,950.	.256968492E+07	58	14	14	00	0-07294	.683769E-03	0.22357	.65826CE-02
20*		16,030.	-179494262E+07	39	33	33		0-89160	• 475605E -01	2-30177	-238597E+00
21* SUBTOTAL		17.750.	- 1925 35 32 8E+06 - 1987 4779 5E+07	9 15	36	36	0 #	0-05690	.193559E-02	0-41685	.102516E+00 .341213E+00
30* 32* SUBTOTAL		122731.	.142546450E+07 .142350928E+06 .156781543E+07	26 6 32	909	909	000	0-02282 0-00000 0-02074	.252760E-03 0. .252760E-03	0.14063 0.00000 0.12785	.490197E-02 3.490197E-02
40* 41* 42* SUBTOTAL		21,612. 3,115. 2,009. 25,736.	-241988980E+07 -348771586E+06 -224990002E+06 -299365139E+07	56 13 74	HH0 N	4102	0000	0.00156 0.00083 0.00000	.242080E-05 .691752E-06 0.	0-00858 0-01634 0-00000	.735377E-04 .336219E-03 .0.
50* 52* SUBTOTAL		4, 345. 2, 317. 6, 662.	.486525370E+36 .259397449E+06 .745922819E+06	20	000	000	000	00000-0	000	0.00000	• • • • • • • • • • • • • • • • • • • •
60* 61* SUBTOTAL		22,793. 975. 23,769.	.255218538E+07 .109212363E+06 .266139775E+07	55	4 10	4 -10	000	0.00984 0.01316 0.00997	.469597E-04 .173249E-03 .220209E-03	0.03797 0.14509 0.04236	.633242E-03 .210514E-01 .217347E-01
70* 71* 72* SUBTOTAL		16,921. 4,231. 2,446. 23,598.	.189466687E+07 .473731238E+06 .273903618E+06 .264230172E+07	39 9 9	19 6 0 25	19 6 25 25	m00m	0.26153 0.03517 0.00000 0.20280	.475485E-02 .351034E-02 0. .826518E-02	1-22527 0-34823 0-00000 0-94101	.117257E+00 .514701E-01 0
TOTAL	-	135,466-	-151682520E+08	354	88	88	2	0-15808	.589262E-01	0.56108	.543569E+00

Table C-12. -- Population and biomass estimates for rex sole (cont'd).

0.156276 .175979306£+07 .407859331E+12 1 57.00000 95.0 .47831366E+06 .30397527E+07 7.001640.0.356276 .175979306£+07 .4785336E+06 .30397527E+07 7.001640.0.3561318.06 .15639336E+06 .17597336E+06 .175979306£+07 .208440467E+07 .208440467E+08 .175979306£+08 .175979306€+08 .175979306£+08 .175979306£+08 .175979306€+08 .175979306€+08 .175979306€+08 .175979306€+08 .175979306€+08 .175979306€+08 .1759796€+08 .175979306€+08 .175979	HEAN WT KG	POPULATION	VARIANCE POPULATION	METHOD USED	FREEDOM	CONFIDENCE Percent	E LIMITS - POPULATION LOWER	ION UPPER
156007563E 08 .72130569EF13 1 38.00000 95.0 .995583281E+07 5.00000 95.0 0102095562E+08 7.24535613E+06 .35693445E+11 1 5.00000 95.0 0102095562E+08 7.24875041E+13 1 5.00000 95.0 0102095562E+08 7.24875041E+13 1 25.00000 95.0 0102095562E+08 7.24875041E+13 1 25.00000 95.0 0102095562E+08 7.24875041E+13 1 12.00000 95.0 0102095562E+08 7.24875041E+10 1 12.00000 95.0 0102095562E+08 7.2487578E+10 1 12.00000 95.0 01020956E+10 1 12.00000 95.0 01020956E+10 1 12.00000 95.0 01020956E+10 1 12.00000 95.0 01020956E+10 1 12.00000 95.0 0206632275E+07 7.47766 95.0 0206696454E+08 .118566341E+14 18.00000 95.0 0354548783E+07 7.47766 95.0 0354548783E+07 7.4776696454E+08 .118566341E+14 81.477351 95.0 0192070561E+09 7.477691E+09 7.477691E		-175979306E+07 -175979306E+07	-407859383E+12 -407859383E+12	-	57-00000	95.0	-479833386E+06 -479833386E+06	.303975273E+07
614071790E+06		-154049398E+08 -245356513E+06 -156507963E+08		m =	38.00000 5.00000 40.16801	95.0 95.0 95.0	.996583281E+07 0. .102095562E+08	.208440467E+02 .731587943E+06 .210920364E+08
635663035E+05		-614071790E+06 0- -614071790E+06			25.00000	95.0	000	-124384707E+07 9- -124384737E+07
296821617E+06 .417591572E+11	0-181436 0-045359 0-000000	.635663035E+05 .195897379E+05 0.			55.00000 12.00000 0.00000 61.79949	95.0 95.0 95.0	• • • • •	.171032634E+36 .522757765E+35 0.
296821617E+06 .417591572E+11 1 54.00000 95.0 0. 485388282E+05 .235601784E+10 1 2.00000 95.0 0. 345360445E+06 .441151750E+11 1 7.47766 95.0 0. 741114302E+07 .39496366E+13 1 38.00000 95.0 0. 761646773E+07 .405802236E+13 1 8.00000 95.0 0. 761646773E+07 .405802236E+13 1 42.11938 95.0 0. 260696454E+08 .118566341E+14 81.47351 95.0 .192070561E+09	0.0000000000000000000000000000000000000	•••			000000-0	95.0 95.0 95.0		•••
711114302E+07	0.259078 0.090718 0.235416	.296821617E+06 .48538282E+05 .345360445E+06			54-00000 2-00000 7-47766	95.0 95.0 95.0		.707024742E+06 .257401406E+06 .842095887E+06
-118566341E+14 81.47351 95.0 .192070561E+09	0-213449 0-244594 0-000000 0-215515	.711114302E+07 .505324710E+06 0. .761646773E+07	.394963666E+13 .108385703E+12 0.		38.00000 18.00000 0.00000 42.11938	99 99 99 99 99 99 99 99 99 99 99 99 99	.308632275E+07 0. 0. .354948783E+07	-111359633E+03 -119701559E+07 0.
	0.000282	.260696454E+08			81.47351	95.0	-192070561E+09	*329322346E+03

Table C-12. -- Population and biomass estimates for rex sole (cont'd).

STRATUM	BIOHASS HT	VARIANCE BIONASS	EFF. DEG. FREEDOM	C ONFIDENC PERCENT	CONFIDENCE LIMITS - BIOMASS PERCENT LOWER	UP.ER
10* SUBTOTAL	.574178846E+03	-426762833E+05	57.00000	95.0	-160146423E+03 -160146423E+03	.988211269E+63 .988211269E+03
20* 21* SUBTOTAL	.496225751E+04 .335580920E+02 .4935825602+04	.143740787E+07 .673268493E+03 .143848114E+07	38.00000 5.00000 38.22898	95.0 95.0	.247135992E+04 0. .250686760E+04	-7 33317510E+04 -1 00262903E+03 -7 364 78350E+04
30* 32* SUBTOTAL	.996263635E+02 0. .996263635E+02	.481919657E+04 0. .481919657E+04	25-00000	95.0 95.0 95.0	••••	.242632455E+J3 0. .242632456E+Q3
40* 41* 42* SUETOTAL	*115332375E*02 *886572588E*00 0. *124218101E*02	.133015567E+03 .789561245E+00 0.	55.00000 12.00000 0.00000 57.67581	95.0 95.0 95.0		.346602620E+02 .232477225E+01 0.
50* 52* SUBTOTAL	000	•••	000000000000000000000000000000000000000	95.0	••••	••••
60* 61* SUBTOTAL	.765000600E+02 .44C335369E+01 .812034137E+02	.287013639E+04 .193895237E+02 .288952592E+04	54-00000 2-00000 48-22940	95.0 95.0 95.0		.184384832E+03 .603523657E+02 .189489339E+03
70* 71* 72* SUBTOTAL	.151786629E+04 .123599177E+03 0.	.160160403E+06 .739206739E+04 0.	38.00000 18.00000 0.00000 44.69425	95.0 95.0 95.0 95.0	.706539912E+03 0. .815925222E+03	.2329192672+04 .304237133E+03 0.
TOTAL	.734482150E+04	.165655242E+07	16671-67	95.0	-475581331E+04	.93 33 82 96 9E + 04

Table C-12. -- Population and biomass estimates for rex sole (cont'd).

CONFIDENCE LIMITS

UPPER	-305237860E+08	- 31 80 7 8 C99 E+08	- 329322346E+08
TOTAL POPULATION	.216155047E+08	-203314808E+08	-192070561E+08
UPPER	.901782108E+04	-950472014E+04	-993382969E+04
TOTAL BIDMASS HT LOWER	.567182193E+04	-518492287E+04	-475581331E+04
	80.000 PERCENT	90.000 PERCENT	95.000 PERCENT

Table C-13. -- Population and biomass estimates for longhead dab.

STANDARD TRAML MIDTH = 16.54000000 METERS

VARIANCE CPUE NO/HA	.318742E+02	.768252E-03		.913990E+01 .79048EE-01 0.		.603072E+01 3. .603072E+01		-471747E+02
CrUE NO/HA	24.44971	0.02772 0.00030 0.02503	00000 -0	11.93005 0.28116 0.00000 9.59546	000000-0	12.33657 0.00003 11.83033	00000 00 000000000000000000000000000000	8.11483
VARIANCE CPUE KG/HA	.51\$293E+00	.123922E -04 0. .123922E -04		.924063E-01 .427915E-02 0.	000	.898020E-01 0. .898020E-01		*100793E+00
CPUE KG/HA	4-08780	0.00352 0.00000 0.00318	00000-0	1-16617 0-06542 0-00000 0-95028	00000-0	1.46521 0.00000 1.40508	000000-0	1-12702
HAULS NITH L-F	22	000	000	0000	000	000	0000	8
HAULS WITH NUMS.	£ 4 3		000	29	000	30	0000	104
HAULS NITH CATCH	\$ \$ 3	H 0 H	000	29 1 0 30	000	30	0000	104
TOTAL	58	39	26	56 13 5	11 9 20	55 3	39 19 67	354
SAMPLES	.256968492E+07	.179494262E+07 .192535328E+06 .198747795E+07	.142546450E+U7 .142350928E+06 .156731543E+07	.241988980E+07 .348771586E+06 .224990002E+06 .299365139E+07	.486525370E+06 .25939749E+06 .745922819E+06	.255218538E+07 .109212363E+06 .266139775E+07	.189466687E+07 .473731238E+06 .273903618E+06 .264230172E+07	-151682520E+08
AREA SO. HI.	22,950.	16,030.	12,731.	21º612. 3º115. 2º009. 26º736.	4, 345. 2, 317. 5, 562.	22,793. 975. 23,769.	16,921. 4,231. 2,446. 23,598.	135,466.
STRATUR AR	10* SUBTOTAL	20* 21* SUBTOTAL	30* 32* SUBTOTAL	40* 41* 42* SUETOTAL	50* 52* SUETOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

Table C-13. -- Population and biomass estimates for longhead dab (cont'd).

ION UPPER	.281475781E+09 .281475781E+09	.461354202E+05 0. .461354202E+06		.132629472E+09 .954895242E+06 0.	• • • •	.135123613E+09 0. .135123613E+09	0000	.4 823 24 118E+07
CE LINITS - POPULATION LUWER	-1 03434925E+09			.427539923E+0d 0. 0. 430503318E+08		.577679376E+08 0. .577679376E+08		-271167151E+09
CONFIDENCE PERCENT	95.0	95.0	95.0	95.0	95.0	95.0 95.0	95.0 95.0 95.0	95.0
EFF. DEG. FREEDOM	57-00000	38.00000 38.00000	000000-0	55.00000 12.00000 0.00000 55.08501	000000-0	54-00000 0-00000 54-00000	000000000000000000000000000000000000000	109.42619
METHOD USED	-							
VARIANCE POPULATION	.197493323E+16	.232251239E+11 0. .232251239E+11	•••	.502210048E+15 .902257296E+11 0.		.371648706E+15 0. .371648706E+15		.284890544E+16
POPULATION	.192455353E+09	.152397913E+06 0. .152397913E+06		.876917320E+08 .300375980E+06 0.		.964457752E+08 0. .964457752E+08		.377045634E +09
HEAN WT KG	0.167192	0.127005 0.000000 0.127005	0000000-0	0.093577 0.232665 0.000000 0.099034	0000000-0	0.118769 0.000000 0.118769	000000-0	0-000139
STRATUM	10* SUBTOTAL	20# 21# SUBTUTAL	30* 32* SUBTOTAL	40* 41* 42* SUBTOTAL	50* 52* SUB TOTAL	60* 61* SUBTOTAL	70* 71* 72* SUBTOTAL	TOTAL

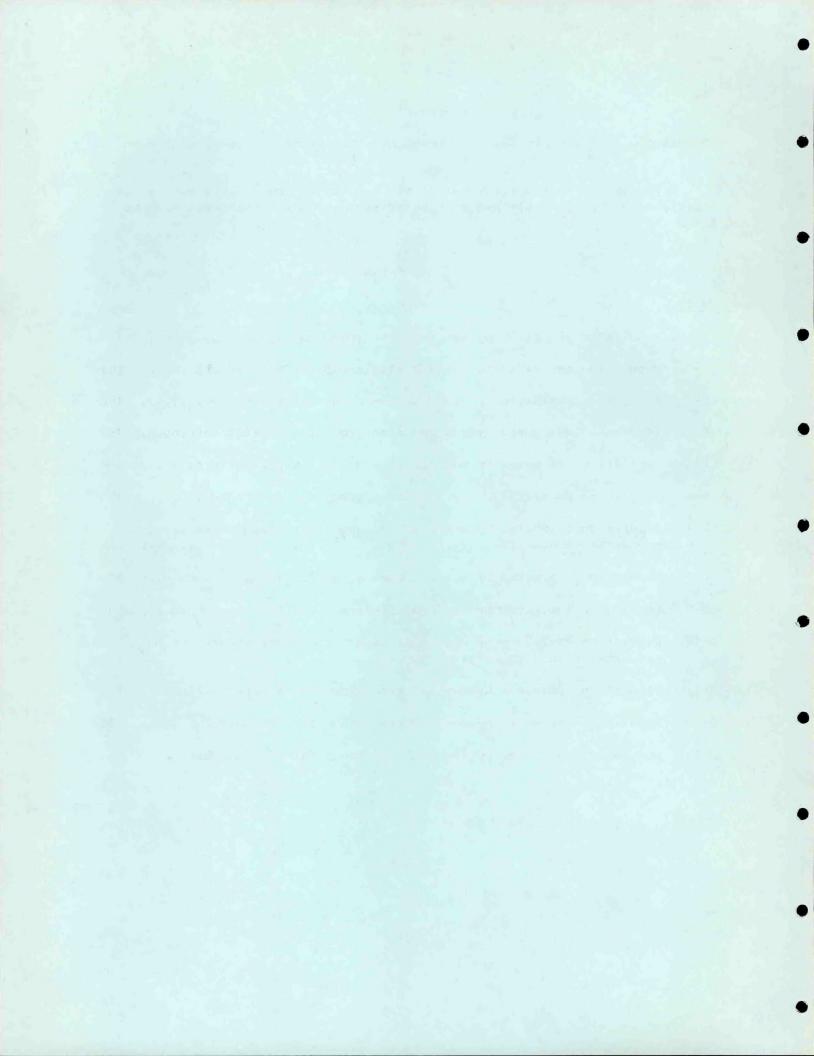
Table C-13. -- Population and biomass estimates for longhead dab (cont'd).

บคุรถ	.434906629E+05	.5 855 38465E+02 0. .5855 38465E+02		.131628235E+05 .222170658E+03 0.	· · · · · · · · · · · · · · · · · · ·	-161551157E+05 0. -161551157E+05	0000	.553134001E+05
CONFIDENCE LIMITS - BIUYASS Percent Ljwer	.208633623E+05		000	.4125£8569E+04 0. 0. .419359994E+04	•••	.675446987E+04 0. .675446987E+04		.394170044E+05
CONFIDEN PERCENI	95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0 95.0	95.0 95.0	95.0 95.0 95.0	0.56
EFF. DEG. FREEDOM	57_00000 57_00000	38-00000 0-00000 38-00000	00000000	55.00000 12.00000 0.00000 55.45239	000000-0	54-00000 0-00000 54-00000	000000000000000000000000000000000000000	97-34036
VARIANCE BIOMASS	.318656943E+08	.374630107E+03 0. .374630107E+03		.507744869E+07 .488418314E+04 0.		.548862604E+07 0. .548862604E+07		-424370279E+08
VARIANCE BIOHASS HT BIOHASS	.321770126E+05 .318656943E+08 .321770126E+05 .318656943E+08	_193553638E+02 _374630107E+03 0 0_ _193553638E+02 _374630107E+03	0.00.00.00.00.00.00.00.00.00.00.00.00.0	.864435458E+04 .507744869E+07 .69E869669E+02 .488418314E+04 0. .871424155E+04 .508233289E+07	.00.00	-114547928E+05 .548862604E+07 0. -114547928E+05 .548362604E+07		.523654022E+05 .424370279E+08

Table C-13. -- Population and biomass estimates for longhead dab (cont'd).

CONFIDENCE LIMITS

UPPER	.445914686E+09 .465668825E+09 .482924118E+09
TCTAL POPULATION LOWER	.308176582E+09 .298422443E+09 .271167151E+09
UPPER	.607799065E+05 .631986524E+05 .653138001E+05
TOTAL BIOMASS AT LOWER	.439508979E+05 .415321120E+05 .394170646E+05
	00 PERCENT 00 PERCENT 00 PERCENT


Appendix D

Population Estimates by Sex and Size Groups for Principal Species of Fish

Appendix D presents estimates of the numbers of individuals within the overall survey area by sex and centimeter-size group for principal species of fish.

List of Tables

Table										Page
D-1.	Population	estimates	by	sex	and	size	group	for	walleye pollock	191
D-2.	Population	estimates	by	sex	and	size	group	for	Pacific cod	193
D-3.	Population	estimates	by	sex	and	size	group	for	sablefish	. 196
D-4.	Population	estimates	by	sex	and	size	group	for	Pacific herring	197
D-5.	Population	estimates	by	sex	and	size	group	for	yellowfin sole	. 198
D-6.	Population	estimates	by	sex	and	size	group	for	rock sole	199
D-7.									flathead sole	. 201
D-8.	Population	estimates	by	sex	and	size	group	for	Alaska plaice	202
D-9.	Population	estimates	by	sex	and	size	group	for	Greenland turbot.	204
D-10.									arrowtooth and	206
D-11.	Population	estimates	by	sex	and	size	group	for	Pacific halibut	208
D-12.	Population	estimates	by	sex	and	size	group	for	rex sole	210
D-13.	Population	estimates	by	sex	and	size	group	for	longhead dab	211

0.27363

0.3554A

0.30822 0.32117 0.35301 0.39942

0.43053

0.37381

0.51455 0.56622 0.51537

0.25859

0.25570 0.25665 0.25027 0.26369 0.26837 0.23093 0.28832 0.29774

0.25521

0.00002

0.00101 0.33164 0.07953 0.12073 0.15385

0.18783 0.21944 0.25355 0.25476

0.23977 0.25080

0.46891 0.67914 0.73715 0.34355 0.10798 0.92724 0.79572 0.88165 0. 34213 0.00099 0.03315 0.02025 0.011111 0.00274 0.00121 0.00095 0.34736 0.00002 0-04120 0.03156 9 5000 -0 0.00048 0.00468 0-01048 0.00169 0.00523 C- 00730 0.01295 0.02083 0.02552 0.03116 0.03833 0.05158 0.05309 0.05932 0.02632 0-01488 0.00341 0.00742 0.00942 0.01431 0.01752 0.04563 0.05832 0.04792 0.03612 0.01926 0-01056 0.05857 .245708103E+08 .497406546E+08 .681903547E+08 .762306158E+03 -230938051E+06 -144466477E+08 - 394860171E+08 -176632626E+08 -663875701E+07 -138460043E+08 -282563030E+08 -106284155E+09 -152712950E+09 - 356761511E+09 -697172584E+09 -600094941E+09 -482819928E+09 -495786583E+09 . 459745561E+09 -295006443E+09 -161770882E +09 - 399517566E+08 -108029108E+09 -137253222E+09 .453912914E+09 - 704774670E+97 .188618191E+09 -208457508E+09 .255273216E+09 302994043E+09 -373127874E+09 . 558315128E+09 -664718083E+09 .752755165E+09 . 773385341E+09 . 856804841E+09 859693284E+09 853093937E+09 -696632380E+09 555236204E+09 . 38342884 1E+09 .280534535E+09 216780145E+09 -153851470: +09 Table D-1.--Population estimates by sex and size group for walleye pollock. -230938051E+06 -137567255E+08 877804749E+C8 .348382578E+09 68 30 86 500E+09 .586539079E+09 .385609468E+09 .461309551E+09 .437031956E+09 -265460541E+09 -149144394E+09 . 335412711E+08 -138954536E+08 .701344329E+06 .286190866E+05 .530016199E+07 -522236580E+07 000000000000000000 0 -255039982E+07 -103596438E+08 .339087567E+09 .577525254E+05 .577525254E+05 255673692E+06 - 227888840E +08 -331611597E+08 -125169669E+08 -117823354E+08 . 272233355E+08 - 329496833E+08 -476677015E+08 -690144242E+08 -709855463E+08 -632806855E+07 -607283123E+07 -455479655E+07 -141506727E+07 - 107747824E +07 -331574307E+07 -770462245E+08 .106101127E+09 -130934161E+09 -263325747E+07 -121838275E+09 -158419547E+09 -194484107E+09 -232638578E+09 - 320107134E+09 -304110981E+09 354542001E+09 376838516E+09 -392832837E+09 . 441141681E+09 -395807483E+09 329153902F+09 .231619675E+09 .169275199E+09 .123793946E+09 . 899648710E+08 .15182307 5E+0 8 - 359658425E+08 .409749126E+08 -19186257 3E+0 8 .546618395E+08 -16477496CE+07 81232594 FE+07 .854208275E+07 .655365725E+07 -235274175E+07 .433587015E+07 3E+07 -104391741E+08 -127 88475 CE+08 -225173191E+08 - 352405665E+08 -423218591E+08 .60361406CE+08 -682437975E+08 -81727403 EE+08 .133434545E+09 -18556838 EE+07 -43599344E+07 .11157196 EE+09 .102356381E+09 .172059882E+09 -214708326E+09 .259428807E+09 .325676151E+09 .350607102E+09 .432648031E+09 .413843335E+09 .479966325E+09 .46636044 EE+09 .41195230 EE +09 300824897E+09 .226082303E+09 .151809166E+09 929861985E+08 .638865991E+08 .111259336E+09 -115356847E+0 MALES -53073904 LENGTH (MM) 170.0 180.0 190.0 200.0 80.0 0-00 210.0 220.0 230.0 240.0 250.0 260.0 270.0 280.0 290.0 0.06 10.0 20.0 30-0 50.0 310.0 340.0 380.0 330.0 0.04 80.0 360.0 370.0 390.0 0 - 00 5 410.0 20.0 30.0 60.0

0.99468 0.99928 72566 0 0.76695 0.97295 0.97674 0.98053 0.98367 0.98853 64066-0 0.99231 99344 0.99568 0.99635 0.99715 9-99769 0-99903 67666 0 0.99983 48566 0 0-91986 066660 76666 0 16566-0 86566 0 86566 0 0.99998 66566 0 0.99999 0.96009 0.98627 0.99817 0-99861 0.9995) 66666-0 56666-0 16666-0 0.00740 0.00688 0.00598 0.00379 0.00311 0.00266 0.00226 0.00195 0.00185 0.00113 0.00124 0.00039 0.00029 0.00020 0.00012 0.00013 0.00031 0.00052 0.00048 0.00044 0.00002 0.00001 0.00068 0.00001 0.0003 0000 00000 0000000 40000-0 00000 0000 0000 d group for walleye pollock (cont'd) .107774596E+09 .871521561E+08 . 552159354E+08 . 329672339E+08 .267030451E+0B -180366122E+08 -117377264E+08 .963882657E+06 -138023696E+06 . 889900528E+05 .273511524E+05 820534571E+05 820534571E+05 .100194212E+09 . 45259786 4E+08 -387877141E+08 . 283933233E+0 8 -192732694E+07 .548500405E+06 .350963102E+06 506131212E+06 .437495334E+06 .149303741E+06 .284538063E+06 .27 351 1524E+05 .929055386E+05 273511524E+05 .1456653132+11 -995196033E+07 .764292459E+07 - 698906756E+07 -637823314E+07 -565857901E+07 -416388059E+07 -298385086E+07 .171108066E+07 273511524E+05 -347702194E+10 * UN SE XED sex and size .533142566E+08 .376362928E+08 262762590E+08 -223544068E+09 -211378902E+08 -132442976E+08 .106581147E+08 -114862394E+38 - 569345302E+06 -521149253E+06 . 323611949E+06 - 372559300E+06 . 382793029E+06 -12353720 8E+06 . 257186911E+06 -286190866E+05 .655543862E+05 -544942570E+10 . 628680195E+08 -576447032E+08 286768968E+08 -744328307E+07 -732216809E+07 .515975144E+07 -519482066E+07 .430921123E+07 .412304871E+97 -373627890E+07 223791231E+07 -146031541E+07 . 176407009E+07 Table D-1. -- Population estimates by 0 .163256851E+06 .39453735 EE +06 .13357191 3E+06 -10940461CE+06 .273511524E+05 273511524E+05 .564008367E+10 .449065763E+08 -338378995E+08 -192954362E+08 .165 82 889 (E+08 .125114452E+08 .72554330EE+07 -845374354E+07 -574815252E+07 .655032281E+07 .481538193E+07 -25086777EE+07 . 39155582 5E+07 .248317315E+07 .17942469CE+07 .206902191E+07 .154553030E+07 -427601687E+06 -745938551E+06 .250765247E+06 .273511524E+05 .273511524E+05 .54702304 8E+05 .257665325E+05 .273511524E+05 .547023048E+05 273511524E+05 . 32053457 1E+05 273511524E+05 .820534571E+05 .273511524E+05 .17579642EE+0 .106128272E+0 530.0 560.0 600.0 620.0 630.0 640.0 650.0 680-0 30.0 50.0 760-0 80-0 800-0 810.0 290.0 700-0 830.0 510.0 520.0 690.0 820.0 860.0 870.0 880.0 TOTAL

8868 CUSULATIVE PROPUSTION 0.00750 0.02823 0.39439 0-13085 0.16503 22678 0-26346 0.27 833 0.23368 0.28473 0.23605 0.47656 0.52097 0.60718 0-24540 0.27254 0.23145 0.23432 0.23213 0.31328 0-32389 0.37 625 0-39403 0.41713 0.42800 0.45623 0.49912 0.29652 0.33335 0.33723 0-34971 0.36563 0.38593 0.3986) 0.43343 0.40982 100 55 -0 0.56801 0.5876 0.03244 0.02934 0.01852 0.02073 0.00341 0.00064 0-00132 0-00262 0-00342 0.03596 0.00698 0.03346 0.03415 0.01806 0.00550 0.02033 0.32256 0.02135 0.02260 0-02445 0.00639 0.00052 10600-0 0.00442 0-00743 0.00933 0.01248 0.01590 0.01065 0.00965 0.00433 0.01037 0.01231 0.01622 0.01961 0.01062 0-01333 0.00813 0.00457 00731 -213402427E+08 -376270531E+06 -150782068E+08 -241413475E+08 -243356899E+08 . 261515 89 0E +0 8 -248335799E+08 -2353844645+08 -135421139E+08 -131375955E+08 - 454664855E+06 . 302242381E+06 -117966122E+08 -147868733E+08 -164369328E+08 -142223225E+0B -507895518E+07 -659939671E+07 . 399640971E+07 -248179057E+07 -162387336E+07 . 958799122E+36 . 190801810E+07 -24907027 3E+07 -321606357E+07 -540194007E+07 .678170582E+07 -772130451E+07 . 969587302E+07 .907766862E+07 -115603577E+08 .774571262E+07 -701494116E+07 .591375354E+07 - 332454076E+07 - 351253190E+07 .464754261E+07 -531310159E+07 .790285992E+07 -873343210E+07 -164046627E+08 -158909337E+08 -17778800 3E +08 -142636475E+0 .144642010E+06 .201547916E+05 .130601836E+08 -204984473E+06 . 38 8550 15 9E+0 7 -192117558E+08 -17 80 18 84 5E+0 8 .168265097E+08 -140352383E+08 -137472587E+06 .40 3095 83 3E+05 .191943875E+08 .177769706E+07 -315800018E+06 .818976488E+07 . 869011074E+07 .0 00000 - 496495053E+06 .151985123E+06 - 300179859E+06 .773246969E+06 . 361653097E+07 -234133393E+07 -591880602E+06 -237548949E+05 249838709E+35 596575865E+07 .118091605E+07 .436429479E+07 -740107764E+07 - 84673042 BE +07 .640161512E+07 -173587396E+07 . 259586346E+07 -28328674E+07 -277247190E+07 -241289014E+07 -185400058E+07 .109526830E+07 -134641334E+07 . 126431615E+07 .2643957872+07 . 312255728 9E + 07 -425199554E+07 . 479819623E+07 - 430705645E+07 .410372481E+07 . 353967634E+07 -342769344E+07 -159013300E +07 . 231865104E+07 .244753446E+07 .405339219E+07 -544712147E+07 .749647103E+07 .740881512E+17 . 859065682E +07 .744442983E+07 . 32596245 8E +07 -19300930 EE + 0 5 . 39327373CE+06 -89452017 1E+06 -435909960E+06 .524336717E+05 .462304065E+06 .464155653E+07 -138652227E+07 .108494127E+07 -114428935E+07 275798221E+07 .365913292E+07 -346930397E+07 .477061216E+07 .12447712CE+07 - 32110860CE+07 252807061E+07 .473317357E+07 .486489471E+07 -437213703E+07 -257987712E+07 -21061508 EE+07 -240880951E+07 -181650911E+07 -195174742E+07 -489767679E+07 55945990 RE+07 -364198781E+07 .3475264822+07 248606011E+07 19223989CF+07 232889157E+07 286556713E+07 436918731E+07 .73454860 3E+07 .890819171E+07 681921762E+07 -782070740E+07 .21435247 CE+07 -384946774E+01 63494907 3E+07 .782498647E+07 .916798871E+07 .848211861E+0 LENGTH (MM) 30.0 210.0 0.00% 100.0 0.04 50.0 180.0 240.0 50.0 260.0 290.0 310.0 380.0 50.0 70.07 360.0 20.0 30.0 0.05 0.09 70.0 80.0 2000 280.0 330.0 340.0 150.0 390.0 410.0 10.0

Table D-2.--Population estimates by sex and size group for Pacific cod.

0.82168 PROPORTION 0.99993 0.66755 0.73868 0.58927 0.72947 0.74 873 0.76938 444 CE -0 0.85260 0.86773 0.83078 0.32003 0.97749 0.99697 0.99903 0.99935 0.99913 0.99929 0.93433 0-94465 0.98197 0.99314 0.99492 0.99687 0.99807 0.93841 0-95401 00.3500 0.96643 0.97251 0.99107 0.99607 19566-0 0.01998 0.02068 0-00178 0.00005 0-02029 0.00315 0-00033 0.02165 0.01923 0-01930 0.01577 0.01724 0.01556 0.01535 0.01514 0.01304 0-01414 0-01349 0-01168 0.01425 0.01033 0.00935 0.00632 0.00640 0.00607 0.00499 0.00448 0.00376 0.00219 0.00115 0.0000.0 0-00056 2 5000 0 0.00022 0.00002 0.00207 18000-0 0-00081 -142199879E+08 -126339781E+08 .145326955E+08 -157431575E+08 -147535532E+08 .139843588E+08 -150402109E+08 -114656652E+08 -111668203E+08 -110092677E+08 -102814415E+08 -103629450E+08 834471420E+06 5857195425+06 .732127096E+05 .40932380 3E +06 338511494E+06 161478123E+06 586115020E+06 .174911422E+05 330064915E+05 -138789462E+06 236681675E+06 -686749402E+05 -948581465E+07 -9812158416+07 .849080635E+07 -680085906E+07 .465454825E+07 -441595786E+07 -3255745775+07 -129523661E+07 -751300744E+07 .437368510E+07 229402127E+07 -27 3326077E+07 .159116016E+07 150249791E+07 .362743316: +07 -14035509 8E+0 -12535224 8E+0 .113155385E+0 -158674471E+0 .562987413E+05 .562987413E+05 -201547916E+05 . 562987 41 3E+05 .764535330E+05 -56298741 3E+05 -201547916E+05 UNSEXED 000000000 0 .102861372E+07 369452007E+36 .161478123E+06 -655857410E+07 -556862316E+07 -610346256E+07 -832631124E+37 .541879422E+07 6 92 0 4 0 2 7 2 E + 0 7 - 603025756E+07 672610633E+07 -643820646E+07 .502375709E+07 4756538535+07 565402402E+07 556776357E+07 502697904E+07 .510094737E+07 .558237557E+07 544912498E+07 . 410766015E+07 .571009092E+07 .476636493E+07 .226199567E+07 - 304621553E+07 -273621512E+07 -149164377E+07 - 208446097E+07 -113465135E+07 -924393951E+06 635750746E+05 732127 09 6E + 0 5 272477606E+06 .238970943E+06 3740731476+06 174911422E+05 . 330064815E+05 .138789462E+06 780072040E+05 .105782981E+06 . 686749402E+05 . 435336953E+07 -340627541E+07 -2314821425+07 .158674471E+06 .528914903E+05 0. .109239641E+08 .94092435 EE+06 . 302377491E+06 .370342655E+06 -198720673E+06 -756141381E+07 -706535494E+07 .741684622E+07 .783315052E+07 - 79546012 EE+07 .759730331E+07 .777 869631E+07 -436304343E+07 .46523540 8E+07 .30331343 EE+07 -211669943E+07 -11919741CE+07 .891218035E+06 90+3508661849. -456503802E+06 -473884187E+05 -216267636E+06 -136346197E+06 -21204187 3E+06 .644190813E+07 .560521577E+07 .559905675E+07 -598228361E+07 .438486725E+07 .467891109E+07 43831462CE+07 -203449413E+07 -131344359E+07 .911390128E+0 . 925780573E+0 LENGTH CHM) 620.0 30.0 0.059 0000 10.0 20.0 30-0 0-05 20.0 60.0 80.0 0.06 240-0 550.0 70.0 10.0 560.0 0.075 580.0 90.0 600.0 610.0 80.0 690.0 0-006 640.0 9000 50.0 0.010 340.0 930-0 0.046 099 8 80-830. .09 890-920-

Table D-2. -- Population estimates by sex and size group for Pacific cod (cont'd)

Table D-2. -- Population estimates by sex and size group for Pacific cod (cont'd).

		.727248780E+09	-139392287E+09	- 287080542E+09	.300775951E+09	TGTAL
CUAULATIVE PROPORTION 1.00000	PROPORTION 0.00007	*** TOTAL *** .528914903E+05	** UNSEXED **	** FEMALES ** .528914903E+05	*** MALES ***	LENGTHCHH) 1640.0

Table D-3.--Population estimates by sex and size group for sablefish.

CUIUL ATIVE	PRCPORTION	0.01077	0.32154	0.07127	0.15773	0.26258	0.29489	0.39187	0.45625	0.4 6835	0.51039	0.53194	0.53552	0.55045	0.55835	0.57378	0.50906	0.63192	0.55361	0.69495	0.72263	0.7463)	0.77790	0.31704	0.86012	0.39530	0.93875	0.15455	0.97857	0.98627	0-99417	0.99812	
	PROPURTION	0.01077	0.01077	0.04975	0.08646	0-10485	0.03232	0.09698	0.06438	0.03260	0.02154	0.02154	0.00353	0.01493	0.00700	0.01543	0.03528	0.02196	0.02259	0.04134	0.02765	0.02370	0.03160	0-03913	0.04308	0.03518	0.04345	0.01580	0.02382	0.00790	0-00793	0.00395	
	*** TOTAL ***	.992744037E+05	. 992744037E+05	.458308033E+06	.796773785±+06	.966273117E+06	-297823211E+06	. 893739173E+06	.593337406E+06	-300401767E+06	-198548807E+06	-198548807E+06	.329967627E+05	-137600086E+06	.728084839E+05	-142209488E+06	.325095635E+06	-202391688E+06	-208203014E+06	.38100541 RE+06	-254629594E+06	-218425452E+06	-291233935E+06	-360634940E+06	.397039182E+06	-324230698E+06	.400446661E+06	.145616968E+06	.219520316E+06	.728084339E+05	-723084839E+05	.3640424192+05	.919861755E+07
	** UNSEXED **	0.	•0	•0	•0	•0	•0	•0	.969653873E+05	•0	•0	•0	•0	0.	0-	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	.96965387 2E+05
	** FENALES **	0-	•0	.201127363E+06	. 300401767E+06	-135678646E+06	0.	.101852960E+06	-198548807E+06	. 992744037E+05	•0	.992744037E+05	. 329967627E+05	0-	•0	. 329967627E+05	-167189369E+06	0.	.105805247E+06	-134192606E+06	- 364042419E+05	.109212726E+06	.728084839E+05	.287826456E+06	-254829694E+06	-291233935E+06	-213425452E+06	.728084839E+05	-183116074E+06	.354042419E+05	.728084839E+05	. 354042419E+05	.328162161E+07
	*** MALES ***	. 992744037E+05	.992744037E+05	.25718067CE+06	.49637201 EE+06	. 930 59947 1E+06	.297 82321 1E+06	.791886213E+06	.297 823211E+06	.20112736 3E+06	-198548307E+06	.992744037E+05	•0	.13760008EE+06	.728084839E+05	.109212726E+06	.15790626EE+06	.202391688E+06	-102397767E+06	.246812311E+06	-218425452E+06	.109212726E+06	.218425452E+06	-728084835E+05	.14220948 EE+06	.329967627E+05	.18202121CE+06	.723084339E+05	.364042419E+05	.364042415E+05	0.	•0	.582003055E+07
	LENGTH(MM)	350.0	370-0	390.0	0.004	410.0	420.0	4 30.0	440.0	450.0	0.09 4	4 80.0	520.0	240.0	550.0	260.0	570.0	580.0	590.0	0.009	610.0	620.0	6 30 • 0	0.049	650.0	0.099	0.029	680.0	0.069	7 00.0	710.0	720.0	TOTAL

Table D-4.--Population estimates by sex and size group for Pacific herring.

CUMULATIVE PROPORTION		0.00033 0.03249	0.00014 0.00263						0 00321		20000		0.07912							0.06976 0.85702	0.03736 0.39433			0.01949 0.96204					5099670
*** TOTAL ***		-123453668E+06	. 5295243322+05	-158857300E+06	-423619466E+06	-174087401E+07	-6354291995+06	- 117714599F+06	120551240F+07	219009812E +07	107226225407	8569927355407	297122809F+08	407095695F + 0.8	80+1030750857	475074082E+08	5 00 35 1 1 5 5 8 0 5 E + U B	7000E 7110E +00	- 390054711E+08	-2619/8399E+J8	-140312751E+08	-979823017E+07	- 8293973345+07	-731886704E+07	-764934795E+06	-308201826E+06	.246561461F+06	-184921096E+06	֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
** UNSEXED **	•0	•0	.529524332E+05	•0	0.	-367029385E+06	0.	0-	-367029385F+06	90+3692850722	0-	- 31160367 TF+07	-642581357F+07	-148113977F+0F	2287437125408	3512103105408	27.4977.75.454.08	30.75.07.05.00	120001014UE + UE	- 339691 89 EE + U/	-475120590E+06	-259029998E+06	•0	•0	•0	•0	•0	•0	
** FEMALES **	•0	-123453668E+06	.0	-105904866E+06	-264762166E+06	-844320293E+06	-423619466E+06	-264762166E+06	-679625718E+06	-778053474F+06	- 433188999F+06	- 322016689F+07	-107623800E+08	-126733568E+98	-112399765F+0a	1542357575 +08	-146336004F+08	106118656510	13603011001	- 120020767E +UC	- 67864630/E+0/	-518373334E+07	-570210667E+07	. 317183037E+07	.246561461E+06	- 308201826E+06	.245561461E+06	-184921096E+06	
*** HALES ***	-812015594E+06	•	•0	.529524332E+05	.15885730 CE +0 6	.529524332E+06	-211809733E+06	.529524332E+05	-15885730CE+06	-67798538 1E+06	-670073417E+06	-223366973E+07	-125240873E+08	.13224815CE+03	-116904585E+08	.165676536E+08	-138712255E+08	- 3585731576+07	1019A072 FE 108	20172 1007 101	10+30 TOTALE	-433331563E+U/	-259186567E+07	-4140380015+01	-518373334E+06	0.	•0	•0	
LENGTHCHM	0.07	0.00	0.001	150.0	160-0	170.0	180.0	190.0	200.0	210.0	220.0	230.0	240.0	250.0	260.0	270.0	230.0	290.0	300-0	310.0	0.00	0.025	350.0	0.01	350.0	360.0	370-0	380-0	

Table D-5. -- Population estimates by sex and size group for yellowfin sole.

CUTULATIVE	PROPORTIO'	0.00008	0.00011	0.00054	0.00143	0.03264	0.00512	0.00 807	0.01103	0.01526	0-02264	0.03194	0.05025	0-07694	0.11925	0.17831	0.25574	0.35093	0-45919	0.57 233	0.67635	0.76652	0.33505	0.39295	0.93547	0.96221	0.97818	0.93775	0.99311	11966-0	0.99803	0.99943	0.99969	0.99989	26666 0	16666.0	0.99999			
	PROPOPTION	0.00038	0.00002	5 000 0	0.00035	0.00124	0.00248	0.00295	0.00296	0.00423	0.00738	0.00929	0.01832	0.02669	0.04231	0.05905	0.07743	0.09524	0.10821	0.11313	0.10402	0.09017	0.06953	0.05692	0.04051	0.02874	0.01596	0.00957	0.00537	0.00306	0.00191	0.00132	0.00029	0.00020	0.00005	0.00003	0.00002			
	*** TOTAL ***	-161064971E+07	-401249224E+06	. 834148193E+07	.162967995E+08	236498653E+0		.562862711E+08		.806976575E+08		-177214123E+09	.349430257E+09	.509011379E+09	.807116532E+09	-112642467E+10	.147701291E+10	-181671501E+10	-206405360E+10	-215798816E+10			-132623936E+10	.108567464E+10	.77271157 5E +09	.548193125E+09	. 304502623E+09	-182580789E+09	-102353748E+09	. 583334234E+08	.363507214E+08	.252255779E+08	.547168555E+07	.377009046E+07	.103835573E+07	. 565494204E+06	-474267385F +06		.19074416 8E+11	
	** UNSEXED **				-0		. 0	•0	.0	•0	•0	0.	.428715018E+06	.428715018E+06	.128614505E+07	.278664762E+07	.385843516E+07	.578765274E+07	-364407765E+07		. 493022270E+07	.342972014E+07	-150050256E+07	-107178754E+07	.857430036E+06	-214357509E+06	-214357509E+06	.214357509E+06	0.	•0	•0	0.	•0	•0	•0	-0		•	.336541289E+08	
	AR FEMAIFS AR	79925	7896238F	265532047F+07	706589510F+07	77 467 760 75 407	2105722945+08	288488663F+08	10	1	-		-	2		- 529946975E+09	.635481957E+09	732505091E+09	- 808480983E+09	. 878954648E+09	. 864322941E+09	. 87 8166240E +09	. 826678133E+09	-814132107E+09	.635893659E+09	. 485058717E+09	. 273196351E+09	-170695575E+09	-989498846E+08	-548548076E+08	- 353590684E+08	.244323198E+08	-547168555E+07	7770090465 +07	1038355735 +07	5654 Q420 AF + 0.6	1712677056	. 4/ 426/ 303E + UB	.976085656E+10	
	AND TO SEE	STERRIZ	52353635353 5235368665405	56851616FF07	20177100000	1000562136408		274 7740 8 40 8	80+3267962U72	42314788CF+08	831208147F+08	10141304EF+0	199219976F+09	30269313CE+09	423124471F+09	593691044F+09	837672514F+09		125192854E+10	12760325CE+10	111490028E+10	. 93327 887 1E+09				-629200512E+08			. 350 386314E+07			793258072E+0					•	•0	.927990615E+10	
	CHANGETONE	80 0	000	0.00		130.0	20.0	0 0 7 1	0.051	160.0	170-0	130.0	190-0	200-0	210.0	220.0	0.022	0.072	50	260-0	270-0	280-0	290.0	300-0	310.0	120.0	330.0	3.40.0	350-0	360-0	370-0	380.0	300.0	0 00 7	0.00	0.00	0.024	4 30-0	TOTAL	

Table D-6. -- Population estimates by sex and size group for rock sole.

FNGTHCHH	A STAM SAS		ODALONII **		SOTTORGOOD	CUYULATIVE
60.0		77.7910161540	2000	4770311075	20000	70000
20.02	25 40	47710101E	•	9 0	170000	77000-0
	236363636403	7777677777	•	Э (0.00013	0.000.0
0.00	7177648475407	37614.084.25407	•	5 C	0.0000	0.00101
0001	2 4 4 5	8723167675	20.576.815.02	2 0	5 200.0	0.00353
110.0	3390914E	-112425721E+08	-262781984E+05	-231803931E+0E -312094833E+08	0.00638	0-01435
120.0	-723603427E+08	382236041E+0	-144485676E+0E	0	0.02556	0-03991
130.0	0+	6+	.222822664E+08	0	0.04374	0.08365
140.0	.114749283E+09	873804075E	.196599336E+08	221789624E+0	0.04574	0-12899
150.0	0+ 30	.691983015E+08	-771116248E+07	164283635E+0	0.03359	0-16257
160.0	4E+0	53062775E+0	-326735270E+07	120064416E+0	0.32454	0-13712
170.0	-666869962E+08	. 331014139E+08	-316562202E+06	0+	0.02057	0.23763
180.0	0	.359445361E+08	.373594120E+06	9	0.01770	0.22533
190.0	SE+0	-476117089E+08	•0	506E+0	0.02975	0.25512
200.0		.769616638E+08	-102743804E+06	-172848595E+09	~	0.29045
210.0	-1384626C7E+09	-893056878E+08	٥.	. 22£268295E+09	0.04686	0.33711
220.0	-133508667E+09	- 968734017E+08	•0	-230382069E+09	0410	0.38421
230.0	09141053E+0	-129090900E+09	•0	-338231953E+09	0.06914	0-45335
240.0	-184042361E+09	-112202933E+09	•0	. 296245295E+09	95 09 0 0	0.51391
0.000		-12538/3262+09	• 0	-339365475E+09	0.06937	0.53328
240.0	216 33 395 BE +U	-136225349E+09	• 0	- 352559306E+09	0.07207	0.65535
0.000	20094728CE+0	11553049845409	• 0	-317252264E+09	0.06485	0.72020
0.000	11/662441E+U	-12048/350E +09	• 0	0	0.06095	0.73115
0.002	75554719CE+0	-100911830E +09	• •	-197596750E+09	0.04039	0.32155
3000	2799170912408	. 874619520E +08	•	-142360300E+09	0.02916	0.85065
230.0		- 838331214E+08	• •	0	0.02327	0.37.39
320.0		-759550766E +08	• 0	. 884657733E+08	0-01808	0-39200
330.0	2095 / CE +0		• 0	0	0.01742	0.90943
340.0	4 56 50 46 4 3E * 0	. 852065510E+08	•0	-895715975E+08	0.01831	0.32774
0.000	550149E+0		• 0	- 680397446E+08	0.01391	0.94165
340.0	04522 EE + 0		• 0	. 634964962E+0 E	0.01298	0.95463
370.0	73885931 FE + 0		• 0	. 51 3221 3 3 3E + 0 8	0.01049	0.96512
80	-2/3913941E+06	51777365E+0	•0	-354515504E+08	0.00725	0.3723
390.0	•0	-29926201CE+08	•0	05+0	0.00612	0.97843
0.004		-257429242E+08	•0	-257429242E+08	0.00526	0.98375
410.0	.589904533E+05	-207218846E+08	•0	-207808751E+08	0.00425	0.93799
420.0	•0	7E+0	•0	-133607077E+08	0.00273	0.99073
30	•0	-149555473E+08	•0	-149555473E+08	0.00306	0.99378
0.044	•0	-643906048E+07	•0	0+	0.00132	0.99510
	•0	.570642415E+07	•0	E+0	0.00117	0.99627
60	•0	84203428E	•0	0+3	0.00140	0.33765
70.	•0	6266196	•0	561968E+0	0.00033	0.99 800
\$ 80°C	•0	6986044	•0	9860443E	0.00035	0.99834
0.06	.197319495E+07	-547702886E+06	•0	-252089733E+07	0.00052	88

Table D-6. -- Population estimates by sex and size group for rock sole (cont'd).

		. 488695757E+10	.718613380E+08	-232158067E+10	.24935155EE+10	TOTAL
0.99903	0.00001	. 663457519E+05	•0	.663457519E+05	•0	530.0
0.99893	0.00002	-111911792E+06	•0	-111911792E+06	•0	520.0
0.99895	0.00008	-377553109E+06	•0	- 377553109E+06	••	510.0
C. 39 883	0.00002	-119883629E+06	•0	.119883629E+06	•0	200.0
PROPURTION	PROPORTION	*** TOTAL ***	** UNSEXED **	** FEMALES **	*** MALES ***	LE NGTH (MM)
CURULATIVE						

0.00015 0.00059 0.00102 0.00317 0.0104 0.05057 0.06560 0.13645 0.16178 0.20075 0.24411 0.23505 0.32569 0.39027 0.42234 0.45725 0.49463 0.58027 0.68027 0.7556 0.79035 0.84328 0.984328 0.96938 0.97967 0.98748 0.99125 0.99667 PROPORTION 0.99845 0.99852 0.9987 0.9987 0.03321 0.02533 0.04362 0.04900 0.05126 0.00015 0.03491 0.05529 0-00043 00215 03203 0.03052 0.01029 PROPORTION 77000 0.01953 04335 0.04094 0.04346 0.03828 0.00028 00737 0.04084 0.03346 0.00279 00263 0.00083 0.00005 0.00019 0.00005 group for flathead sole and Bering flounder. 0.01577 0.05294 0.02811 0.01624 00377 0.00091 000 0 .610300501E+08 -225724499E+06 .638693333E+06 -651251751E+06 - 320761741E+07 -495111251E+08 -235134717E+08 .581052717E+03 -291128282E+08 -522201186E+08 -377637756E+08 646269124E+08 -603776966E+08 -504734245E+08 -478092494E+08 52038977 6E+08 .556713126E+08 -623153762E+08 -570661445E+08 -454894002E+03 . 650157556E+08 -730454298E+08 -764052052E+08 824129006E+08 -14892247 3E+10 .816653124E+08 .647877221E+08 -419015807E+08 .15337754 3E +0 8 -116504285E+08 -301550515E+05 283974024E+06 80972614E+05 -410247408E+06 562134363E+07 .415244738E+07 -392400084E+07 -131479237E+07 .117272319E+0 .135453969E+0 .789086614E+0 .242127018E+0 .922898255E+05 .328410125E+06 .446792232E+06 .153441511E+07 .423223466E+07 .744498696E+06 .628247169E+06 -324199534E+06 -148184711E+06 -468210355E+05 .648721528E+07 .494891732E+07 .202748529E+07 -298214326E+08 -777972151E+07 00000000000000000 size * .115 80135 6E+08 .509245146E+06 . 300987299E+07 -934671894E+07 -195139151E+08 .189921368E+08 .13596596 4E +08 -186164963E+08 296209623E+38 -294021371E+08 -259601856E+08 230304184E+08 -223759836E+08 -218218434E+03 239468665E+08 -265139431E+08 264E40677E+08 239652905E +08 322982993E+08 - 301438599E+08 .364851773E+08 .433885295E+08 .439623234E+08 -330271550E+08 -412614516E+08 - 331207246E+08 -189518200E+08 -132278419E+08 .102267951E+08 -552467824E+07 .411677337E+07 -135453969E+07 801550515E+05 .283974024E+36 -780972614E+05 .740769323E+09 -382974721E+07 -131479237E+07 410247408E+06 sex and Table D-7. -- Population estimates by -133434674E+06 310283209E+06 .20445952CE+06 -13278894CE+03 -25570071CE+08 -185190322E+08 -348577653E+08 329508106E+03 -250779094E+08 .231134116E+08 -25987406CE+08 -230921111E+03 -291573695E+08 .358313085E+08 . 350504551E+08 -407471305E+08 .462613453E+08 .459277228E+08 -116395715E+07 .443512421E+07 .24926432CE+08 -169619465E+08 -111883373E+U8 .318203865E+08 314755595E+08 -382767325E+08 34945338CE+08 .267605672E+08 -15804693CE+0 8 -366653908E+05 .35569011EE+05 .71863397 EE+09 -378085612E+07 .526088179E+07 -210991246E+07 -142363335E+07 942536354E+05 00000 LENGTH(MM) 130.0 80.0 100.0 160.0 150.0 200.0 210.0 220.0 230.0 240.0 250.0 280.0 310.0 310.0 320.0 340.0 350.0 0.06 370.0 400.0 360.0 440.0 30.0 50.0 0.09

0.00394 0.00033 0.03568 0.00668 0.00026 0.00223 0.00285 0.00965 0.00142 0.01319 0-34413 0.06783 0.95829 0.00 322 0.00772 0.01 857 0.10719 0.16685 0.25023 0.55336 0.83665 0-87199 0.97428 0.99193 0.99526 0.99633 14166-0 0.99854 0.32841 0.3467 0.45453 0.63500 0.69627 0-73699 0.3393) 0.93763 0.93725 0-93507 0.99792 0.77257 0.70004 0.00012 0.00131 0.0031 0.00071 0.00070 0.00104 0.00104 0.00195 0.00568 0.00568 0.01577 0.02365 0.03936 0.00026 0.03558 0.03438 0.03265 0.09883 0.08154 0.05127 0.04072 00045 0.09649 0.03269 0-03564 0.01599 0-01079 0.00685 0.00103 0.10731 0.02963 0.02103 0.00335 0.00117 29000 .490948826E+08 -889881031E+06 -130006317E+07 -124805620E +07 -294948108E+08 . 321525063E+06 .485625099E+05 -145687530E+06 -126043815E+07 .100694142E+07 -76606460 SE+06 .470315326E+06 -876411156=+06 -242536734E+07 .439876428E+07 -708575646E+07 -119017 69 0E+0 8 -196623265E+08 -744116515E+08 -103985701E+09 -120345574E+09 -13445793 BE+09 -123262809E+09 -101824486E+09 -764172939E+08 -507820407E+08 .443776793E+08 .425065367E+08 -407155778E+08 -407749174E+08 -444567890E+08 -369525434E+0 8 -262321735E+03 -199381684E+08 -134599352E+08 -415865372E+07 -129051207E+07 .146097079E+07 559627869E+06 .974469859E+05 -854926502E+07 -177123747E+0 .776680199E+0 . UNSEXED 000000000000000000 . 485625099E+05 . 321525063E+06 .485625099E +05 -291375060E+06 - 424 19130 1E+06 -187688708E+36 -266969632E+06 .499696590E+06 . 520274730E+06 -161996103E+08 .306909815E+38 -194250040E+06 .544142036E+06 .205879366E+08 -234064108E+06 .101062829E+07 .124956259E+07 -277665825E+07 -490648244E+07 . 855764909E+07 -828443509E+07 -145339625E+08 - 25181360 8E +08 .305414261E+08 -290259244E+08 - 354825393E+08 286526948E+08 - 34 39 3800 3E + 08 .366825446E+08 .379804752E+08 - 383459577E+08 423329856E+08 351280644E+08 258233498E+08 -199381684E+08 -134C13601E+08 -825196110E+07 -415865372E+07 .129051207E+37 -146097079E+07 .515828881E+06 .776680199E+06 -177123747E+06 .974469859E+05 * * * .969063088E+06 -582750119E+06 571814567E+06 . 282626518E+06 555816924E+06 509441524E+06 300366582E+06 50391416EE+06 77195794CE+06 -111046774E+08 -212103757E+08 -345609201E+08 .582120412E+08 - 833 97764CE+08 .951642135E+08 -103767007E+09 -927213328E+08 .585751011E+05 -297303919E+06 .141523905E+07 .314920165E+07 699528655E+07 .727985613E+08 -409347546E+08 -221293455E+08 -43799984E+05 -430909821E+07 .998387899E+07 .582399214E+07 .182447895E+07 .242895973E+07 -212380341E+07 MALES 0 LENGTH(HH) 70.0 200-0 220.0 0000 120.0 30.0 40-0 0.06 250.0 290.0 60.09 60.0 270-0 330.0 80.0 390.0 410.0 40-0 50.0 210.0 310.0 20.0 150.0 0.078 20.0 30.0 20.0 0.09 20.07 10.0 90. .06

Table D-8.--Population estimates by sex and size group for Alaska plaice.

Table D-8.--Population estimates by sex and size group for Alaska plaice (cont'd).

540.0 570.0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	** FEMALES ** •487234930E+05 •266372851E+06	** UNSEXED ** 0.	*** TOTAL *** •48723493CE+05 •266372851E+06	PROPORTION 0.00004 0.00021	CU4 UL ATIVE PROPURTIO 0.99883 0.99901
TOTAL	. 683537963E+09	.562439634E+09	•0	-124597750F+10		

18306

CUYUL ATIVE PROPORTICN 0.83836 0.57935 0-65899 0.75284 0.85273 0.84284 0-91427 0.93939 0.94365 0-01693 19690-0 0-09702 0.10179 0-12085 0.20278 0.43425 0.62103 0.39895 0.07 853 0.03211 0.10261 0.10587 0-10673 0.10835 0.11057 0-11465 0-13354 0-14315 0.22422 0.25851 0.29452 0.33241 0.3612 0-39620 0.43857 0.53391 0.70741 0.7845 0-81564 0-10427 0.16231 0.03500 0.03805 0.05432 0.04534 0.04534 0.03429 0.03245 0.00491 0.00166 0.00083 0.00166 0.00222 0.00409 0.00959 0.01971 0.03110 03110 0.02006 0.21426 03170 0.01612 0-01457 0.01056 0.01349 0.01268 0.02075 0-02879 0.03796 04842 04542 PROPORTION 0.02441 0.01531 0 .163452687E+06 -854998155E+06 - 80 E82 14 84E + 06 294271481E+06 -2858444572+06 -993385207E+05 .272403714E+07 -12029900 3E+07 .966885862E+06 .918057946E+06 -873489371E+06 . 63340267 5E +06 -267032719E+06 - 495031 4245+05 .996707565E+05 .959266751E+05 .495031424E+05 -132936044E+06 .245292937E+06 .371555744E+06 .760634161E+06 -57 501 099 1E +06 -136258319E+07 -175066769E+07 -271899779E+07 -249968563E+07 -227669263E+07 -146404094E+07 -194608748E+07 -115019787E+07 -118206183E+07 -128604129E+07 .325767946E+07 .272477099E+07 *186527154E+0 -124464520E+07 2056628535 +07 .215921559E+07 -227255075E+07 -172627116E+07 -209899481E+07 .228187573E+07 -290364908E+0 -190116366E+0 .158972573E+07 .519992261E+06 .163452687E+06 .730982703E+06 .148841663E+06 UNSEXED 0000000000 00 00 * . 469854495E+05 .964512741E+05 - 996707565E+05 . 990062848E+05 .181992454E+06 295795847E+06 54138900 3E +06 -511604750E+06 998399817E+06 -582610496E+06 660396804E+06 543114392E+06 808895424E+06 -234735745E+06 .993385207E+05 . 377035228E+06 .47106566E+06 -919988943E+06 -121351854E+07 -105948419E+07 -121855362E+07 -130168722E+07 -122583834E+07 .147243301E+07 -110797497E+07 -114795483E+07 - 101328411E+07 -142203736E+07 - 126779692E+07 -128785893E+07 -123829974E+07 -805718560E+06 -116893479E+07 .421283827E+06 . 3366969E+06 FEMALES 0 0 645939474E+05 .322969737E+05 *** -191444517E+06 -288829222E+06 -14542981 EE+05 -1893931 8 2E+06 -279215144E+06 .32465625 EE+06 .640672825E+06 -774436539E+06 94569704 EE+06 -880441185E+06 -940188513E+06 .613304732E+06 .295106145E+06 542593224E+06 42377147 CE+06 -496774119E+06 -29670571 3E+06 -113956512E+06 -495031424E+05 .959266751E+05 .495031424E+05 .993385207E+05 -33597523 (E+05 -146286652E+06 .189563285E+06 -383598933E+06 -679132201E+06 .121306656E+07 .114346067E+07 .12465647 EE+07 . 62697130CE+05 -55686462EE+06 -124015452E+06 -105822872E+07 .203184112E+07 -161679602E+07 .135173080E+07 .145624022E+07 -126340852E+07 -148161172E+07 MALES LENGTH(MM) 10.0 20.0 30.0 10.0 50.0 60.0 70.0 80.0 0.00 30-0 50.0 180.0 400-0 50-0 0.09 70.0 80.0 10.0 20.0 40.0 70.0 20.0 30.0 50.0 60.0 70.0 0.00 520.0 00.00 80.0 90.0

Table D-9. -- Population estimates by sex and size group for Greenland turbot.

Table D-9.--Population estimates by sex and size group for Greenland turbot (cont'd).

		. 592564729E+08	.490763790E+07	•	. 283650559E+08	.259837791E+08	TOTAL
0.98613	0.00864	-51794 8067E+06		•	.517948067E+06	•0	850.0
17626-0	0.00054	-322969737E+05		0	-322969737E+05	•0	6.20.0
0.97893	0.00313	-187808577E+06		0	-967832645E+05	.910253121E+05	610.0
0.97589	0.00185	-1107130045+06		•	.658944967E+05	.448185075E+05	0.009
0.97395	0.00246	-147404332E+06		0	-115107358E+06	.322969737E+05	590.0
0.97149	0.00129	-771154812E+05		0	- 322969737E+05	-448185075E+05	580.0
0.97021	0.00347	-207957274E+06		°C	-125146890E+06	.828103843E+05	570.0
0.96674	0.00631	.378574050E+06		0	. 378574050E+06	•0	260.0
0.96043	0.00529	-317370236E+06		0	-136367974E+06	.181002362E+06	550.0
0.95513	0.00445	-266891385E+06		0	.208939542E+06	.57951843EE+05	240.0
0.95068	0.00684	.409964566E+06		0	-377667593E+05	.322969737E+05	530.0
PROPORTICN	PRCPORTION	*** TOTAL ***	UNSEXED **	:	** FEHALES **	*** MALES ***	LENGTH(MM)
COLOLALIVE							

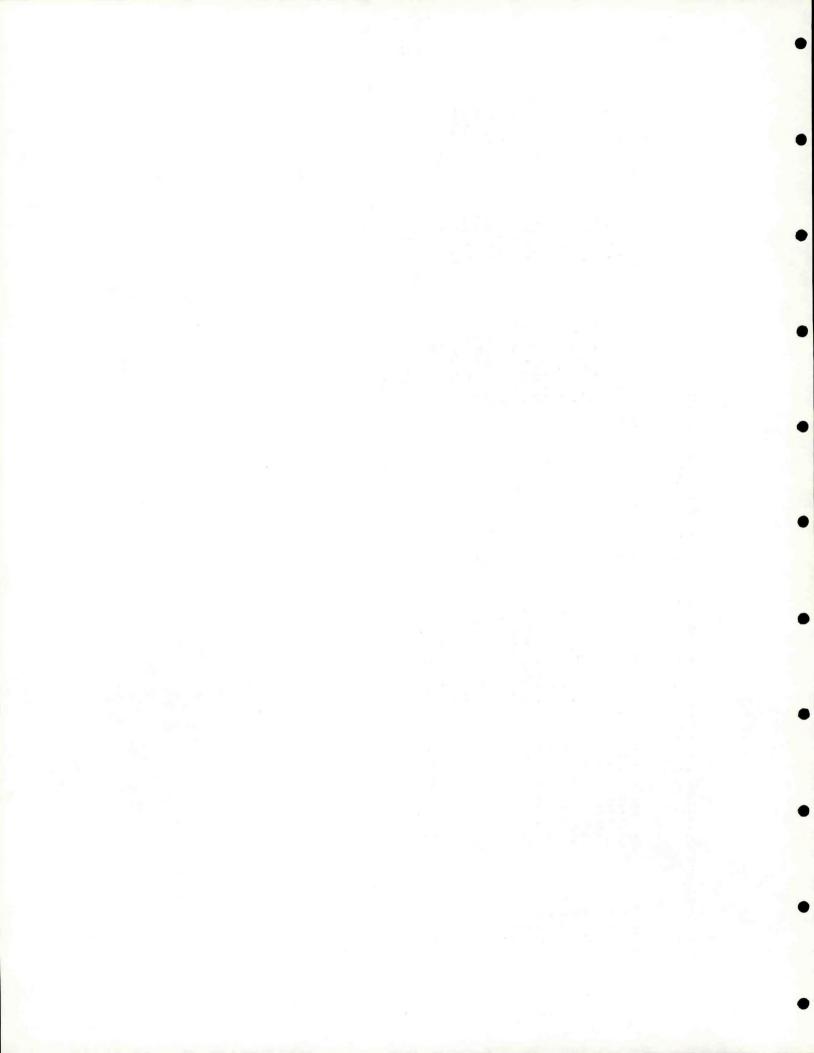
0.32303 0.54942 0.00036 0.00212 0.03794 0.10538 0.48989 0.55472 0.92769 0.00012 0.52859 0.23875 P ROPORTION 0.00195 0.00 347 0.06037 90094-0 0.74135 0.79858 0-36200 0-94799 0.15518 0-96769 0-98009 0.71693 0.77013 0-83367 0.88697 0. 10763 0.96145 0.00108 0.02935 0.02562 0.08238 0.03509 0.00017 0.02108 0.03659 0.02825 0.02848 0.02056 0.02006 0.00938 sex and size group for arrowtooth and Kamchatka flounders. 0.00012 0.00105 0.00447 0-03563 0.06039 0.07299 0.08424 0-01772 0.02073 0.03916 0.02895 0.02437 0.01092 0.00719 0.00623 0.00436 0.00269 0-02982 44200-0 0.00183 0.00051 0-01681 0-04501 0.05417 0.00627 .472396321E+08 .464738497E+08 .303794888E+08 .171961843E+06 -669469015E+05 -133893303E+06 -603668896F+06 -286507149E+06 .954134841E+05 . 589963247E+06 -199792421E+08 .252402124E+08 .338665727E+08 -409278606E+08 .167234019E+08 -118217173E+08 -116260122E+08 .205160913E+08 .143676893E+08 -139779459E+08 -15840007 3E +08 -159697851E+08 .196771089E+08 .162234597E+08 .136686892E+08 .115843195E+08 .112465258E+08 .250441935E+07 -94243500 BE+07 -993719755E+07 .164576905E+08 .206315949E+08 .219592516E+08 .612590971E+07 525723797E+07 -102361922E+07 .403238310E+07 .351867796E+07 349618477E+07 4174552212+07 278314025E+07 .15071840 3E+07 .118958210E+07 -211318549E+06 UN SE XED -774740707E+05 -21956024 3E+06 -604230604E+05 .144643583E+06 -135341384E+08 .255955202E+06 -110488014E+07 . 333398135E+07 -101397514E+08 -199913995E+38 .265121420E+08 .187231291E+08 -112401848E+08 .114233174E+08 . 135381638E+08 -105496679E+08 -119166808E+38 -139280502E+08 -117600694E+38 -110679231E+08 .989680786E+07 -543889399E+07 . 481661274E+07 .873378114E+07 805867248E+06 .98333350E+07 -961830056E+07 .715186910E+07 -813169373E+07 364241659E+07 .335115650E+07 . 323278803E+07 242429700E+07 368950703E+07 1191720435 +07 -134804897E+07 608400715E+0 234006397E+07 216181217E+07 Table D-10. -- Population estimates by .669469015E+05 -13389330 2E+06 .669469015E+05 . 334003045E+06 -207274901E+08 -201492514E+08 .216751975E+06 .360804284E+05 0. .31487627 EE +06 273182604E+05 .117060735E+08 209364611E+08 .105359341E+08 .139953921E+07 . 983949071E+07 .11656359 EE +0 8 -69165940CE+07 . 799595065E+06 -117861399E+07 -48504518CE+06 -52132808 EE+06 -31546359 EE+06 .60903637 2E+07 .44983035 EE+07 - 58093995 1E+07 .772390935E+07 .939141007E+07 .697792755E+07 .453435565E+07 .435964538E+07 529033935E+07 .41531042 (E+07 .574905877E+07 .446339025E+07 260076612E+07 443245038E+07 31148321 CE+07 248349311E+07 -190603147E+07 . 107 186777E+07 0.06 10.0 30.0 50.09 20.0 200.0 260.0 290.0 40.0 70.0 90.0 230.0 250.0 310.0 320.0 330.0 340.0 350.0 360.0 370.0 110.0 20.0 4 30.0 0.05 10.02 220.0 210.0 300.0 380.0 190.0 0.009 50.0 0.03

Table D-10. -- Population estimates by sex and size group for arrowtooth and Kamchatka flounders (cont'd).

						CUMULATIVE
LENCTH (MM)	*** MALES ***	** FENALES **	** UNSEXED **	*** TOTAL ***	FROPORTION	PROPURTION
520.0	•0	.636465722E+06	•0	-636465722E+06	0.00113	0.99033
530.0	•0	-315780389E+06	•0	-315780389E+06	0.00056	0.99089
240.0	0.	-720124931E+06	•0	-720124931E+06	0.00128	0.99218
550.0	•0	-103022357E+07	•0	-103022357E+07	0.00134	0.99402
260.0	•0	.722818439E+06	•0	.722818439E+06	0-00129	0.99533
570.0	.349904236E+05	-561473507E+05	0.	-911377744E+05	0.00016	0.99547
580.0	.533294033E+05	.415854118E+06	•0	-469183522E+06	0.00084	0.99630
230.0	•0	-129105027E+06	•0	-128105027E+06	0.00023	0.99653
0.003	•0	-639614408E+05	•0	-68951440 BE +05	0.00012	0.99665
610.0	•0	.536054685E+05	•0	.536054686E+05	0.00010	0.99675
620.0	0.	. 227185330E+06	• 0	-227189380E+06	1 7000 0	0.99715
TOTAL	.22622199 EE+09	. 33274035 3E+09	.211318549E+06	-559173668E+09		

Table D-11. -- Population estimates by sex and size group for Pacific halibut.

										CUP ULAS INL
LENGTH(MM)	* * *	MALES	***	*	FEMALES	*	*	*** TOTAL ***	PROPORTION	PROPURITION
220.0	0-0			0			-180057608E+05	8E+0	0-00338	0.00038
240.0	0			0			0	0+	0011	0.00152
270.0	0			0			7055+0		0.00028	0 03150
300.0	0			0			-61413488E+05	-61413488E+05	0, 30130	0-00 319
310.0	0			0			0		0-00322	1 49 60 0
320.0	•			0			.435424495E+06	0+	0.00919	0-01561
330.0	0			0			9565E+0	501519565E+0		0-02629
340.0	0			0			.642207676E+06	0+	0.01356	0.03976
350.0	•			0			-577403379E+06	5774033795+0	0.01219	0-05195
360.0	0			0			0	506373790E+0	0.01069	0.06265
370.0	0			0			.374169284E+06		0.00790	0.07055
380.0	•			0			-110705214E+07	110705214E+0	0.02338	0.09392
390.0	9.			0			-121063007E+07	-121063007E+07	0.02556	0.11949
00	0			0			-811404728E+06	-811404728E+06	0.01713	0.15662
10-	•			•			-856610336E+06	-865610336E+06	0.01830	0.15492
50.	0			0			-142461751E+07		0.03008	0-13501
30.	•			0			-171620598E+07	.171620598E+07	0.03624	0.22125
40.	•			0			. 235363298E+07	-235363298E+07	0.04970	0.27095
20.	•			0			.208974259E+07	-208974259E+07	0.04413	0.31503
e0.	0			0.			-161902587E+07	.161902587E+07	0-03419	3492
0.	0			0			-238018372E+07	-238018372E+07	0.05026	
80.	0			0			-268369087E+07	-268869087E+07	0.05678	0.45631
90.	0			0			-135043412E+07	-135043412E+07	0.02852	0.48483
0	0			0			-135746680E+07	-135746680E+07	0.02867	0.51349
10	0			0			-148651781E+07	-148661781E+07	0.03139	0.54489
20	0			0			0	.159370775E+07	0.03365	0.57 854
30	•			0			-820988125E+06	.820988125E+06	0.01734	0.59588
40	•			•			.141369889E+07	-1413698892+07	0.02985	0.62573
20.	0			0			-113611578E+07	-113611578E+07	0.02399	0.6497
09	0			•			-191206739E+07	-191206739E+07	0.04038	0.69010
70-	•			0			-146419393E+07	-146419393E+07	0.03092	0-72102
80	•			0			.163209196E+07	.163209196E +07	0.03447	0.75548
90.	•			0			-104995438E+07	-104995438E+07	0.02217	0.77765
00	•			0			0		0.02668	0.33434
10.	0			0				.770279871E+06	0.01627	0.32061
0	0			0			.475765698E+06	-47576569 BE +06	0.01005	0.83065
30.	•			0			-833069881E+06	-833069881E+06	0.01759	0.84824
40.	0			0			.745228454E+06	.745228454E+06	0.01574	0. 86398
650.0	0			0			. 832193785E+06	.832193785E+06	0.01757	0.93156
.09	0			0				-679392510E+06	0.01435	0.89590
	•			0			-267114981E+06	-267114981E+05	0.00564	0.93154
80.	0			0				.420459369E+06	C-00888	0-71047
0.069	•			0				-330550830E+06	0.00698	0.91749
00	•			•			.302657505E+06	-302657505E+06	0.00639	0.92379

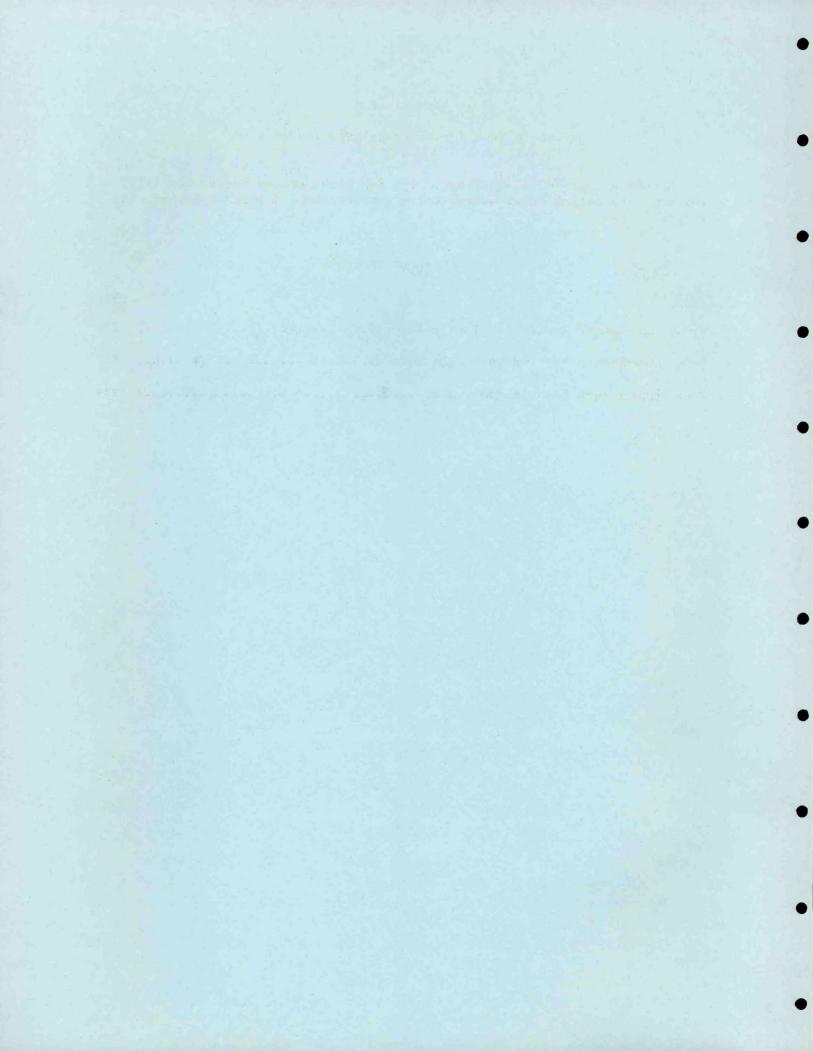

Table D-11. -- Population estimates by sex and size group for Pacific halibut (cont'd).

CHAIN ATTWE	P RUPURT ION	0.93090	0.93743	0.94187	0.94561	27676-0	0.95262	0.35700	0.95815	0.95830	0.95987	0.)6121	0.96433	0.97023	0.97104	0.97169	0.97295	0.37494	0.97659	92526-0	0.98387	0.93452	0.98682	0.98915	0.93249	0.99313	0.99375	0.99439	0.99651	0.99822	0.99857	1.00000	
	PROPORTION	0.00711	0.00653	0.00439	0.00379	0.00335	0.00315	0-00438	0.00115	6.00065	0.00137	0.00135	0-00312	0.00538	0.00033	0.00065	0-00127	0.00198	0.00165	0.00258	0.00461	0.00065	0.00230	0.00233	0.00334	0.00061	0.00055	0-00064	0.00212	0.00171	0.00035	0.00143	
	*** TOTAL ***	.336528000E+06	-309409558E+06	-208011981E+06	.179418468E+06	.182497544E+06	-149284181E+06	-207192915E+06	-544286474E+05	. 30982456 3E+05	.508119775E+05	-630928110E+05	-147942559E+06	-278229726E+06	-394028020±+05	-308887045E+05	.599246598E+05	-93989047 4E+05	-779433314E+05	-126726123E+06	-21 826567 2E+06	-306827798E+05	-109012425E+06	-110313040E+06	-158259542E+06	-287694237E+05	-308887045E+05	-302184041E+05	-100448711E+06	- 80 77 380 4 7E +0 5	-167337067E+05	.677026017E+05	.473549806E+08
	** UNSEXED **	.336528000E+06	.309409558E+06	-203011931E+06	.17 94 18 46 8E+06	.182497544E+06	-149284181E+06	-207192915E+06	.5442864745+05	.309824563E+05	.508119775E+05	.630928110E+05	-147942569E+06	-278229726E+06	. 394028020E+05	.308837045E+05	.599246598E+05	-939890474E+05	.77.9433314E+05	.126726123E+06	-21 326567 2E+06	.306827798E+05	-109012425E+06	-110313040E+06	-158259542E+06	-287694237E+05	.308887045E+05	-302184041E+05	-100448711E+06	. 307738047E+05	-167337067E+05	.677026017E+05	.473549806E+08
	**																																
	FEMALES																																
	*	0	o	•	0	0	0	0	0	0	0	•	•	0	•	0	0	0	0	0	•	•	•	•	o	0	0	ô	ô	0	ô	0	•
	MALES ***																																
	*** HAL	•0	•0	••	•0	•	.0	٥.	.0	•0		•	•0	•	•	•		•	•	•	J.	•	•	•	•	•	0.		•	•		•	•
	LENGTH(MM)	710.0	720.0	730.0	•	0									860.0		680.0		910-0		0.026		90.0						1160.0	1200.0	1520.0	1560.0	TOTAL

Table D-12. -- Population estimates by sex and size group for rex sole.

C US UL ATIVE	0-00 PS	0 01705	5011000	163 70 -0	69070-0	0.04921	0-05773	0.07479	0.09183	0.10035	0.13445	0.17707	0.23151	0.76561	0.28595	0.36539	0-37391	0.44155	0.52425	0.59187	0.63514	0.67463	0.72187	0.80463	0.32823	0-34005	0.85187	0.86369	
PROPOSITION	0.00852	0 00 852	70000	DO TID OD	0.01182	0.00852	0.00852	0.01705	0.01735	0.00852	0.03410	0.04262	0.05444	0.03410	0.02034	0.07943	0.00852	0.06762	0.08273	0.06762	0.04727	0.03545	0.04727	0.08273	0.02364	0.01132	0.01132	0.01182	
*** TOTAL ***	2222219F	222222105 +06	200000000000000000000000000000000000000	. 30009 61 9 6E + U 6	-308093796E+06	-222223219E+06	.222223219E+06	-444446439E+06	-444446439E+06	-222223219E+06	- 88 E892 87 7E+06	-111111510E+07	-141921489E+07	. 838892877E+06	-530322015E+06	-207081599E+07	.222223219E+06	-176271720E+07	-215669157E+07	.176271720E+07	-1232395185+07	-924296387E+06	-123239518E +07	-215669157E+07	.616197591E+06	. 308098796E+06	- 30409 879 6E+06	-308098796E+06	. 225160328E+03
UNSFXFD **																													
*	0			•	•	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AN FEMALES AN	2222212195 + 06	22222219F + 06	00.1/1.1111	•	•0	•0	.222223219E+06	. 222223219E+06	•0	. 2222232195+06	.66666965 8E +06	. 888892877E +06	-119699167E+07	-444446439E+06	. 222223219E+06	-145461840E+07	.222223219E+06	. 838420810E+06	.154049398E+07	. 530322015E +96	.615197591E+06	. 924296387E+06	.123239518E+37	.134859277E+07	.616197591E+06	-308098796E+06	- 308098796E+06	- 308098796E+06	-152783943E+08
*** MALES ***	-0	0	2080087965405	- 2000 701 7CE + 0 0	. 30809379EE+06	-222223215E+06	•••	-222223219E+06	-444446435E+06	•0	-222223219E+06	-222223215E+06	-222223219E+06	-44446635E+06	-308098796E+06	-516197591E+06	0.	-324296387E+06	-616197591E+06	-123239518E+07	.516197591E+06	•0	•0	- 308098796E+06	•0	•0	2.	-0	.72376885 CE+07
LENGTHCAM)	150.0	180.0	0 000		0.012	220.0	230.0	250.0	280.0	290.0	300.0	310.0	320.0	330.0	340-0	350.0	360-0	370.0	380.0	390.0	0.004	410-0	420.0	430.0	0.044	450.0	0.09%	470.0	TOTAL

Table D-13.--Population estimates by sex and size group for longhead dab.


Appendix E

Age-length Keys for Principal Species of Fish

Appendix E presents age-length keys for fish species (sexes combined) from the 1983 bottom trawl survey for which age samples were collected and have been read.

List of Tables

Table					Page
E-1.	Age-length	key	for	walleye pollock	215
E-2.	Age-length	key	for	yellowfin sole	217
E-3.	Age-length	key	for	rock sole	219

57 4 23 * 07 13 10 0 a. 3 10 # FALS-ST 3. DE V.

walleye pollock.

for

key

E-1.--Age-length

Table

0

50

50

63

93

123 157

250

356

138

152

213

1331

2.31

5.16

TOTAL

+ 00 # 23. 77 * 23 6. 4 10 0 · · 4 53 300 ST 3. DE V. 9.75 10.33 11.00 15.00 9957957795977959 995795779997799979 8.96 10.46 11.13 9.83 11.00 LEN GTH

(cont'd)

pollock

walleye

for

key

E-1. -- Age-length

Table

125

sole

yellowfin

for

key

Table E-2.--Age-length

00

25 0.0 00 00 0.0 00 .0 0.0 00 2 0.0 000000000000000000000000000 00 50 0.0 00 0.0 00 00 16 0.0 00 0 0.0 00 00 0 0.0 00 00 0.0 000000000000000 00 0 0 00 0 00 0.0 00 0 00 00 0 00 #0000c00c0000000000000000 0 --0 00 AGE 0 00 FREG-UENCY STD. DEV. 0.00 00.0 3.00 5.521 5.75 5.93 6.21 7.65 10.55 11.82 11.82 11.82 112.36 113.72 113.32 114.20 AVG 8.03 8.68 3.50 LEN GTH 60

Table E-2. -- Age-length key for yellowfin sole (cont'd).

.0 *		C					i	0.0	
25 36+	0	0	0	C	C	0	!		0-0
24	0	0	0	0	0	0	!	0.0	
23	C	0	0	0	0	C	!		0-0
22	C	0	0	0	0	0		0.0	
21	0	0	0	0	0	0			0.0
30	0	_	C	-	0	-	!	3.0	
13	0	C	0	0	0	0	!		0.0
1.9	-	-	M	0	4	0 0 0 0 0 0	:	94.0 45.9 45.0 52.0 43.0 22.0 11.0 3.9 0.9 0.1 0.3	
17 18	-	~	M	-	-	1	!	-	0-4
1 6	4	-	4	2	0	0		2.0	-
15 16	4	2	1	0	0	0	:	2	1.0
7 :	. ~	2	C	0	0	0		3.0	2
13	0	O	1	0	0	0	!	4	0-9
12	0	0	C	0	0	0	-	2.0	2
= :	O	0	0	0	0	0	1	2	8.0
10	0	0	C	O	C	0	:	5.0	~
o *	0	0	0	0	0	0	1	4	1.0
∞ *		0						5.0	9
~ :	0	0	0	0	0	0	!	4	2.0
6 7 8 7 9 8 4 8 8 9	0	0	0	0	0	0	!	4.0	6
5 *	0	0	0	0	0	0	:	6	43.0
	0	0	0	C	0	0	!	29.5	
53	0	0	0	0	0	0	:	2	3.5
CIN YEARS) 1 2 3 4	0	C	C	0	0	0	!	1.0	
UT:	0	0	0	0	O	0	!		0.0
AGE 0	0	0	0	0	0	0	!	0.0	
FREG- #GE (IN YEARS) UENCY 0 1 2 3	13	13	12	4	'n	61	:		717.0
	0	M	5	S	'n	2	!		
STO.	1.2	1.73	1.4	1.3	0.4	2.1		3.7	
AVG AGE	15.46	16.09	16.42	17.25	17.80	19.50		9-82	
H I	360	370	380	390	007	410		TOTAL 9-82 3-77	

20+ 23 22 717 00,000,000,000,000,000,000,000,000,000 50 3 S YE A. 354 FREG-STJ.

sole,

rock

for

key

E-3.--Age-length

Table

le (cont'd).
1e
sole
for rock
key f
Age-length
rable E-3.

1.53

		_	-	
20+	00000	0.0	C	0.0
25	00000	0.0	0	
42		0.0	0 !	0.0
53	00000	0.0	C	
22 23 24 25 20+	00000	٥.	0	
12 *		6.3	0	
20	00000	0.0	0	0.0
6	00-00	0.0	0	
60 *	20040	0.5	-!	10
17		0.0	٥	
15	0 0 0 1 1	· ·	0 !	12.
15	24004	.5	۰:	
1 4 4	00100	0.	0	0.0
13	3 0 0	٥٠.	0	16
12	00000	0.0	٥	3.0
=:	00000	0.	0	10.
3:	00000	0.0	٠,	9.0
0 *	00000	0.0	0	10
∞ *	-0000	0.0	0	0.0
6 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 Act ter ter ter ter ter ter ter ter ter te	0000	0.0	0	3.03
# 27	00000	0.0	c	5.0
	00000	0.0	6	.70
7 :		0-0	0	5.0
~ *	00000	0.0	c	00
C: #	00000	0.0	0 !	0.8
- :	00000	0.	c ¦	0
0 *	00000	٠.)	٥	6.5
× *	2 m M m ~)	1.5 C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.5
N #			1	645
6Th AGE CEV. DENCY 0 1 2 3 4 5	430 13.35 2.52 440 15.90 2.00 450 15.60 2.30 460 17.00 1.90 470 15.50 0.71	• 480 16.33 2.15	490 15.00 0.00	TUTAL 7-19 4-17 C.0 8-0 63-0 25-0 36-0 19-0 13-0 16-0 13-5 2-5 0-0 0-0 0-0 0-0 0-0 0-0 0-0
A GE	13.35 15.00 17.00 15.50	. 35	001	13
*	15	16	1.3	7
19	4 30 4 50 4 60 4 70	12.5	767	JEIC
		•		-

Appendix F

Estimated Age Composition for Principal Species of Fish

Appendix F presents estimates of the number of individuals at each age over the entire survey area for species having age samples read.

Estimated numbers listed as "below minimum key length" and "above maximum key length" resulted from population data with lengths not covered by the agelength key.

Asterisks (*) designate length classes which have been generated using linear interpolation to assign age distributions to length classes not represented by real data.

List of Tables

Table				<u>Pa</u>	ge
F-1.	Population	estimates h	y age	e for walleye pollock 2	23
F-2.	Population	estimates h	by age	e for yellowfin sole 2	24
F-3.	Population	estimates h	y age	e for rock sole 2	25

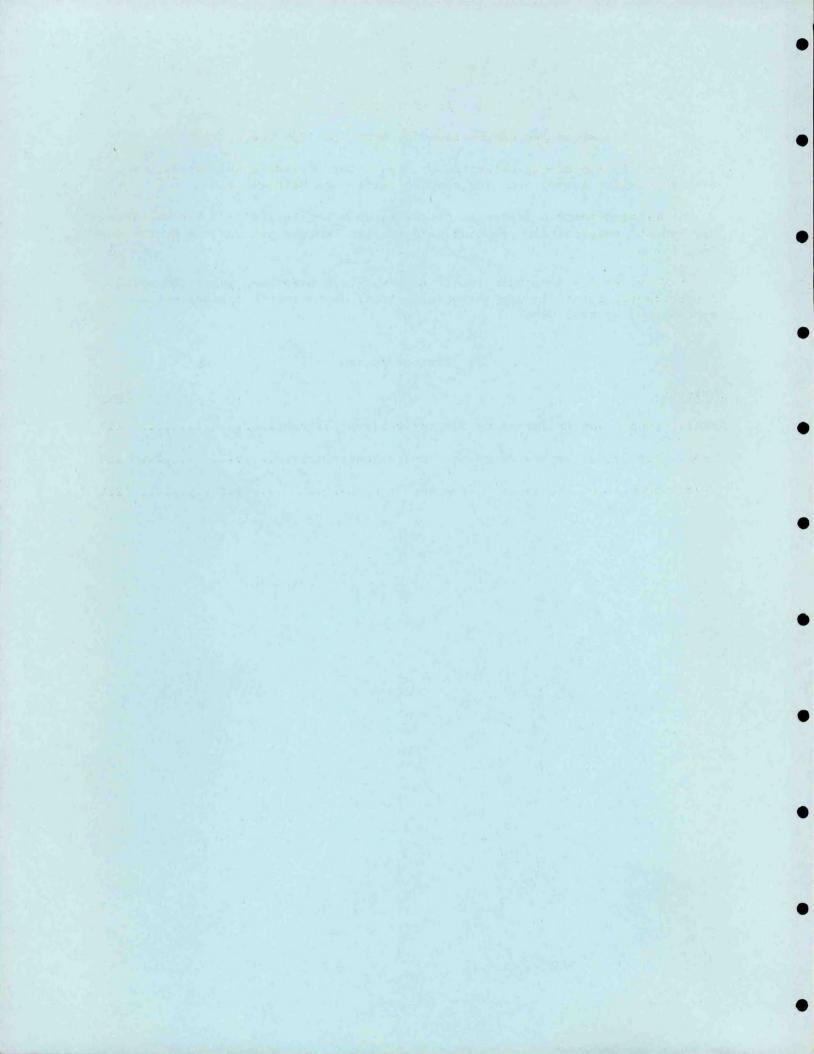


Table F-1.--Population estimates by age for walleye pollock.

AGF CLASS			CUMU_ATIVE	CUMULATIVE	SAME	STD. DEV.	
77 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N. F. BL. A	PART UNITED	NUMBER	PACPORTICA	LENGTH	OF LENGTH	
	**********	** ** * * * * * * *	****	***	****	* ** * * * * * *	
3	34,797,258	0.0024	54.797.75	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	7.6 75 51.6 177	1100	00-414140	\$700.0	105.1	10.44	
4 (See State of See 45	9547-0	3-679-313-695	0.2520	129.22	21.57	
2	5/2,422,104	0.0393	4.242.735.739	0.2913	274 90	79 05	
3	1,245,405,255	0.0355	5,437,141,053	27.55	27 377	10.00	
7	2,141,766,606	0.1470	7-679-019-660	0 5 5 7 8	0 0 0 0 0 0 0	77.7	
U I	4.341.228.750	7622 0	12-471-120 410	00000	01.500	70.62	
v	1-4.42-078-11.2		3744 5141 14451	7-5362	4 51 - 2 9	34.53	
	74147 164 70447	0-1018	13,954,115,552	0.9580	454.39	50.56	
	2112062308	0.0186	14,225,679,359	9.9766	439.78	6 4 9 9	
υ : * ·	145,920,527	0.0100	14.37 1.599, 879	0.9866	557.72	26.27	
	66,155,981	0.0045	14,437,755,860	0.9912	15.795	2 2 2 2 3 3	
* 10	57,393,205	0.0039	14,495,149,005	7.9951	568.00	7 7 2 3 3	
11	42,583,235	0.0029	14.537.832.300	U3 65 C	266 1.5		
* 12	15,172,935	0.0010	14.553.005.255	0 0001		7000	
* 13	5-347-822		100000000000000000000000000000000000000	1666-6	16.000	71.15	
71	770414646	*000.0	14.558.955.057	0.9995	631.05	49.17	
	320422046	0.0003	14,563,975,979	9666°U	563.24	76-97	
٠.	103/20/24	0.0001	14,565,350,834	0.9999	649.98	7675	
0.7	479,220	000000	14,555,830,053	1.0000	618.43	15.93	
ABOVE RAXIPUA							
NEY LENGTH	701,251	0000-0	14.565.531,304	1.0000	839.39	36.39	
			, , , , , , , , , , , , , , , , , , , ,				
LTAL	14,566,531,305	1.0000	14,566,531,304	1.0000	341-13	136-73	

11.42 116.28 20.65 21.43 22.27 21.04 25.71

22.90 24.22 27.31 28.93 5.02

24.70

38.90

33.89 41-75

21.54

STD. DEV. MEAN LENGTH 132.69 256.06 298-89 393.22 317.78 19-601 176.62 208.74 242.64 248.05 274.07 282.90 292.00 321.42 355.29 -----258.13 CUMULATIVE PROPORTICN 0-004 0.5292 0.3034 0.8203 0.9856 0.9980 0.1177 0.4014 0.7096 3-9043 0-9455 0.9938 1-0000 1.0000 NUMBER 541,221,068 CUMUL ATIVE *********** 7.261.359 2.244.196.991 10.093.261.772 11.909.006.146 13.534,290,043 15,646,476,605 17,248,844,473 18,034,036,652 18-739-036-999 18,955,387,999 5.785.843.144 19,035,382,947 19.067.022.064 153,495,371 7,656,660,627 19.074.416.341 623,857 19.071.632,168 19.074.416.841 0.0003 0.0077 0.0203 0.0893 PROPORTICA 0.1277 0.0852 0.0840 0.0412 0.0001 ** ** * * * * * * 0.0980 0.0952 0.0401 0.0082 0.0042 1.0000 0000000 0-1107 0.0017 -------N L M 3E R *********** 6,637,592 146,234,012 1.702.975.922 3,542,546,154 20436,601,145 1,625,283,897 2,112,186,562 785.242,179 764,950,347 156,351,000 19.994.943 2.784.673 623,857 387.725.697 31,635,116 19007404160841 ********** ABOVE MAXIMUM AGE CLASS UTAL

Table F-2. -- Population estimates by age for yellowfin sole.

Table F-3.--Population estimates by age for rock sole.

STD. CEV. OF LENGTH	10.93	14.43	20-16	20.75	26.93	28.05	32.79	49.13	35.13	43.53	40.42	48.42	36.62	13.11	7.21	0.03	00.0	60.93
MEAN LENGTH	89.70	115.54	211.47	251.92	277.24	267.82	311.46	320.72	322.23	353.55	355.57	366.37	393.70	444.03	463.07	450.00	490-00	 247.72
CUMULATIVE PROPORTION	0*0026	0.0150	0.3068	0.6238	0.7226	0.6258	0-9120	0.9272	0.9465	0.9721	0.9837	0.9917	0.9976	0.5987	0.9992	0.9993	1.0000	1.0000
CUMULATIVE NUHBER	17,793,773	45,428,632	930.802.941	1, 892, 632, 349	2,172,426,840	2,503,856,071	2,767,132,334	2,813,235,675	2, 872, 010, 828	2.949.543.927	2.934.950.554	3,009,077,933	3-327-058-153	3,030,326,199	3,031,795,834	30 0320 31 20143	3,034,235,338	3,34,235,338
PROPORTION	0.0059	0.0091	0.1766	0.1051	0.0988	0.1043	0.0370	0.0152	0.0194	0.0256	0.0116	0.0079	0.0059	0.0011	0.0005	0.0002	2000.0	1.0000
NURBER	17.793.773	27,0534,854	535,841,320 642,936,461	318,942,947	239.744.490	145-242-21	112,333,945	46,163,342	5807150152	77.633.099	35,316,627	2401170279	17098Cp 329	3,268,036	1047 (0635	515,259	1,973,195	3,034,285,338
AGE CLASS	JELOW MINIMUS KEY LENGTH	8.8	≯ ₪	φ.	~ 0	U JA	10	11	12	13	1.4	* 15	* 16	17	* 1 d	19	ABUVE MAXIHUS KEY LENGTH	TOTAL